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We develop a chatbot using deep bidirectional transformer (BERT) models to handle client
questions in financial investment customer service. The bot can recognize 381 intents,
decides when to say I don’t know, and escalate escalation/uncertain questions to human
operators. Our main novel contribution is the discussion about the uncertainty measure for
BERT, where three different approaches are systematically compared with real problems.
We investigated two uncertainty metrics, information entropy and variance of dropout
sampling, in BERT, followed by mixed-integer programming to optimize decision
thresholds. Another novel contribution is the usage of BERT as a language model in
automatic spelling correction. Inputs with accidental spelling errors can significantly
decrease intent classification performance. The proposed approach combines
probabilities from masked language model and word edit distances to find the best
corrections for misspelled words. The chatbot and the entire conversational AI system are
developed using open-source tools and deployed within our company’s intranet. The
proposed approach can be useful for industries seeking similar in-house solutions in their
specific business domains. We share all our code and a sample chatbot built on a public
data set on GitHub.
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1 INTRODUCTION

Since their first appearances decades ago [1–3], chatbots have always been marking the apex of
artificial intelligence as forefront of all major AI revolutions, such as human–computer interaction,
knowledge engineering, expert system, natural language processing, natural language understanding,
deep learning, and many others. Open-domain chatbots, also known as chitchat bots, can mimic
human conversations to the greatest extent in topics of almost any kind, thus are widely engaged for
socialization, entertainment, emotional companionship, and marketing. Earlier generations of open-
domain bots, such as those mentioned in Ref [3, 4], relied heavily on hand-crafted rules and recursive
symbolic evaluations to capture the key elements of human-like conversation. New advances in this
field are mostly data-driven and end-to-end systems based on statistical models and neural
conversational models [5] aim to achieve human-like conversations through a more scalable and
adaptable learning process on free-form and large data sets [5], such as those given in Ref [6–9]
and [10].

Unlike open-domain bots, closed-domain chatbots are designed to transform existing processes that
rely on human agents. Their goals are to help users accomplish specific tasks, where typical examples
range from order placement to customer support; therefore, they are also known as task-oriented bots
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[5].Many businesses are excited about the prospect of using closed-
domain chatbots to interact directly with their customer base,
which comes with many benefits such as cost reduction, zero
downtime, or no prejudices. However, there will always be
instances where a bot will need a human’s input for new
scenarios. This could be a customer presenting a problem it has
never expected for [11], attempting to respond to a naughty input,
or even something as simple as incorrect spelling. Under these
scenarios, expected responses from open-domain and closed-
domain chatbots can be very different: a successful open-
domain bot should be “knowledgeable, humorous, and
addictive,” whereas a closed-domain chatbot ought to be
“accurate, reliable, and efficient.” One main difference is the
way of handling unknown questions. A chitchat bot would
respond with an adversarial question such as Why do you ask
this? and keep the conversation going and deviate back to the topics
under its coverage [12]. A user may find the chatbot is out-
smarting, but not very helpful in solving problems. In contrast,
a task-oriented bot is scoped to a specific domain of intents and
should terminate out-of-scope conversations promptly and
escalate them to human agents.

This article presents AVA (a Vanguard assistant), a task-
oriented chatbot supporting phone call agents when they
interact with clients on live calls. Traditionally, when phone
agents need help, they put client calls on hold and consult
experts in a support group. With a chatbot, our goal is to
transform the consultation processes between phone agents
and experts to an end-to-end conversational AI system. Our
focus is to significantly reduce operating costs by reducing the call
holding time and the need of experts, while transforming our
client experience in a way that eventually promotes client self-
provisioning in a controlled environment. Understanding intents
correctly and escalating escalation intents promptly are key to its
success. Recently, the NLP community has made many
breakthroughs in context-dependent embeddings and
bidirectional language models like ELMo, OpenAI, GPT,
BERT, RoBERTa, DistilBERT, XLM, and XLNet [1, 13–21]. In
particular, the BERT model [1] has become a new NLP baseline
including sentence classification, question answering, named-
entity recognition and many others. To our knowledge, there
are few measures that address prediction uncertainties in these
sophisticated deep learning structures, or explain how to achieve
optimal decisions on observed uncertainty measures. The off-the-
shelf softmax outputs of these models are predictive probabilities,
and they are not a valid measure for the confidence in a network’s
predictions [22–25], which are important concerns in real-world
applications [11].

Our main contribution in this study is applying advances in
Bayesian deep learning to quantify uncertainties in BERT intent
predictions. Formal methods like stochastic gradient (SG)-
MCMC [23, 26–30] and variational inference (VI) [22, 31–33]
extensively discussed in the literature may require modifying the
network. In conventional neural networks, the parameters are
estimated by a single point value obtained using backpropagation
with stochastic gradient descent (SGD), whereas Bayesian deep
learning assumes a prior over model parameters and then data are
used to compute a distribution over each of these parameters.

However, for BNNs with thousands of parameters, computing the
posterior is intractable due to the complexity in computing the
marginal likelihood [34]. SG-MCMC and VI methods propose
two different solutions to address the aforementioned complexity.
SG-MCMC mitigates the need to compute gradients on full data
set by using mini-batches for gradient computation, which
enables easier computation (with the same computational
complexity as SGD), but still lacks the ability to capture
complex distributions in the parameter space. VI performs
Bayesian inference by using a computationally tractable
“variational” distribution q(θ) to approximate the posterior,
and the capacity of uncertainty representation is limited by the
variational distribution. Re-implementation of the entire BERT
model for Bayesian inference is a non-trivial task, so here we took
the Monte Carlo dropout (MCD) approach [22] to approximate
variational inference, whereby dropout is performed at training
and test time, using multiple dropout masks. Our dropout
experiments are compared with two other approaches (entropy
and dummy class), and the final implementation is determined
among the trade-off between accuracy and efficiency. Recently,
similar MCD dropout approach has been proposed for
transformer models to calibrate speech detection outcomes [35].

We also investigate the usage of BERT as a language model to
decipher spelling errors. Most vendor-based chatbot solutions
embed an additional layer of service, where device-dependent
error models and N-gram language models [36] are utilized for
spell checking and language interpretation. At the representation
layer, WordPiece model [37] and byte pair rncoding (BPE) model
[38, 39] are common techniques to segment words into smaller
units; thus, similarities at the sub-word level can be captured by NLP
models and generalized on out-of-vocabulary (OOV) words. Our
approach combines efforts of both sides: words corrected by the
proposed language model are further tokenized by the WordPiece
model to match pretrained embeddings in BERT learning.

Despite all advances of chatbots, industries like finance and
health care are concerned about cyber security because of the
large amount of sensitive information entered during chatbot
sessions. Task-oriented bots often require access to critical
internal systems and confidential data to finish specific tasks.
Therefore, 100% on-premise solutions that enable full
customization, monitoring, and smooth integration are
preferable than cloud solutions. In this study, the proposed
chatbot is designed using RASA open-source version and
deployed within our enterprise intranet. Using RASA’s
conversational design, we hybridize RASA’s chitchat module
with the proposed task-oriented conversational systems
developed on Python, TensorFlow, and PyTorch. We believe
our approach can provide some useful guidance for industries to
contemplate adopting chatbot solutions in their business
domains.

2 BACKGROUND

Recent breakthroughs in NLP research are driven by two
intertwined directions: Advances in distributed representations,
sparked by the success of word embeddings [40, 41], character
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embeddings [42–44], and contextualized word embeddings [1,
19, 45], have successfully tackled the curse of dimensionality in
modeling complex language models. Advances of neural network
architecture, represented by CNN [46–48], attention mechanism
[49], and transformer as the seq2seq model with parallelized
attentions [50], have defined the new state-of-the-art deep
learning models for NLP.

Principled uncertainty estimation in regression [51],
reinforcement learning [52], and classification [53] are active
areas of research with a large volume of work. The theory of
Bayesian neural networks [54, 55] provides the tools and
techniques to understand model uncertainty, but these techniques
come with significant computational costs as they double the
number of parameters to be trained. The authors of Ref [22]
showed that a neural network with dropout turned on at test
time is equivalent to a deep Gaussian process, and we can obtain
model uncertainty estimates from such a network by multiple-
sampling the predictions of the network at test time. Non-
Bayesian approaches to estimate the uncertainty are also shown
to produce reliable uncertainty estimates [56]; our focus in this study
is on Bayesian approaches. In classification tasks, the uncertainty
obtained from multiple sampling at test time is an estimate of the
confidence in the predictions similar to the entropy of the
predictions. In this study, we compare the threshold for
escalating a query to a human operator using model uncertainty
obtained from dropout-based chatbot against setting the threshold
using the entropy of the predictions. We choose dropout-based
Bayesian approximation because it does not require changes to the
model architecture, does not add parameters to train, and does not
change the training process as compared to other Bayesian
approaches. We minimize noise in the data by employing
spelling correction models before classifying the input. Further,
the labels for the user queries are human-curated with minimal
error. Hence, our focus is on quantifying epistemic uncertainty in
AVA, rather than aleatoric uncertainty [57]. We use mixed-integer
optimization to find a threshold for human escalation of a user query
based on the mean prediction and the uncertainty of the prediction.
This optimization step, once again, does not requiremodifications to
the network architecture and can be implemented separately from
model training. In other contexts, it might be fruitful to have an
integrated escalation option in the neural network [58], and we leave
the trade-offs of integrated reject option and non-Bayesian
approaches for future work.

Similar approaches in spelling correction, besides those
mentioned in Section 1, are reported in Deep Text Corrector
[59] that applies a seq2seq model to automatically correct small
grammatical errors in conversational written English. Optimal
decision threshold learning under uncertainty is studied in Ref
[60] as reinforcement learning and iterative Bayesian
optimization formulations.

3 SYSTEM OVERVIEW AND DATA SETS

3.1 Overview of the System
Figure 1 illustrates system overview of AVA. The proposed
conversational AI will gradually replace the traditional

human–human interactions between phone agents and internal
experts and eventually allow clients self-provisioning interaction
directly to the AI system. Now, phone agents interact with AVA
chatbots deployed on Microsoft Teams in our company intranet,
and their questions are preprocessed by a sentence completion
model (introduced in Section 6) to correct misspellings. Then,
inputs are classified by an intent classification model (Sections 4,
Sections 5), where relevant questions are assigned predicted intent
labels, and downstream information retrieval and questioning
answering modules are triggered to extract answers from a
document repository. Escalation questions are escalated to human
experts following the decision thresholds optimized using methods
introduced in Section 5. This article only discusses the intent
classification model and the sentence completion model.

3.2 Data for Intent Classification Model
Training data for AVA’s intent classification model is collected,
curated, and generated by a dedicated business team from
interaction logs between phone agents and the expert team. The
whole process takes about one year to finish. In total, 22,630 questions
are selected and classified to 381 intents, which compose the relevant
question set for the intent classification model. Additionally, 17,395
questions are manually synthesized as escalation questions, and none
of them belongs to any of the aforementioned 381 intents. Each
relevant question is hierarchically assigned with three labels from Tier
1 to Tier 3. In this hierarchy, there are five unique Tier-1 labels,
107 Tier-2 labels, and 381 Tier-3 labels. Our intent classification
model is designed to classify relevant input questions into 381 Tier-3
intents and then trigger downstream models to extract appropriate
responses. The five Tier-1 labels and the numbers of intents included
in each label are account maintenance (9,074), account permissions
(2,961), transfer of assets (2,838), banking (4,788), tax FAQ (2,969). At
Tier-1, general business issues across intents are very different, but at
the Tier-3 level, questions are quite similar to each other, where
differences are merely at the specific responses. Escalation questions,
compared to relevant questions, have two main characteristics:

• Some questions are relevant to business intents but
unsuitable to be processed by conversational AI. For
example, in Table 1, question “How can we get into an
account with only one security question?” is related to call
authentication in account permission, but its response needs
further human diagnosis to collect more information. These
types of questions should be escalated to human experts.

• Out-of-scope questions. For example, questions like “What
is the best place to learn about Vanguard’s investment
philosophy?” or “What is a hippopotamus?” are totally
outside the scope of our training data, but they may still
occur in real-world interactions.

3.3 Textual Data for Pretrained Embeddings
and Sentence Completion Model
Inspired by the progress in computer vision, transfer learning has
been very successful in NLP community and has become a
common practice. Initializing deep neural network with
pretrained embeddings and fine-tuning the models toward
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task-specific data are proven methods in multitask NLP learning.
In our approach, besides applying off-the-shelf embeddings from
Google BERT and XLNet, we also pretrain BERT embeddings
using our company’s proprietary text to capture special semantic
meanings of words in the financial domain. Three types of textual
data sets are used for embeddings training:

• SharePoint text: About 3.2G bytes of corpora scraped from
our company’s internal SharePoint websites, including Web
pages, Word documents, ppt slides, pdf documents, and
notes from internal CRM systems.

• Emails: About 8G bytes of customer service emails are
extracted.

• Phone call transcriptions: We apply AWS to transcribe
500 K client service phone calls, and the transcription
text is used for training.

All embeddings are trained in case-insensitive settings.
Attention and hidden layer dropout probabilities are set to 0.1,
hidden size is 768, attention heads and hidden layers are set to 12,
and vocabulary size is 32,000 using SentencePiece tokenizer. On
AWS P3.2xlarge instance, each embeddings is trained for one
million iterations and takes about one week CPU time to finish.
More details about parameter selection for pretraining are available
in the GitHub code. The same pretrained embeddings are used to
initialize BERTmodel training in intent classification and also used
as language models in sentence completion.

4 INTENT CLASSIFICATION
PERFORMANCE ON RELEVANT
QUESTIONS

Using only relevant questions, we compare various popular
model architectures to find one with the best performance on
5-fold validation. Not surprisingly, BERT models generally

FIGURE 1 | End-to-end conceptual diagram of AVA.

TABLE 1 | Example questions used in AVA intent classification model training.

T1 label T2 label T3 label Questions

Account
maintenance

Call authentication Type 2 Am I allowed to give the client their social security number?
Call authentication Type 5 Do the web security questions need to be reset by the client if their web access is blocked?
Web reset Type 1 How many security questions are required to be asked to reset a client’s web security questions?

Account permission Call authentication Type 2 How are the web security questions used to authenticate a client?
Agent
incapactiated

Type 3 Is it possible to set up agent certification for an incapacitated person on an individual Roth 401 k?

TAX FAQ Miscellaneous What is Do I need my social security number on the 1099MISC form?
Transfer of asset Unlike registrations Type 2 Does the client need to provide special documentation if they want to transfer from one account to another

account?
Brokerage transfer Type 3 Is there a list of items that need to be included on a statement to transfer an account?

Banking Add owner Type 4 Once a bank has been declined how can we authorize it?
Add/change/delete Type 3 Does a limited agent have authorization to adjust bank info?

Escalation – – How can we get into an account with only one security question?
– – Am I able to use my Roth IRA to set up a margin account?
– – What is the best place to learn about Vanguard’s investment philosophy?

TABLE 2 | Comparison of intent classification performance. BERT and XLNet
models were all trained for 30 epochs using batch size 16.

Model Performance

BERT small + SharePoint embeddings 0.944
BERT small + Google embeddings 0.949
BERT large + Google embeddings 0.954
XLNet large + Google embeddings 0.927
LSTM with attention + Word2Vec 0.913
LSTM + Word2Vec 0.892
Logistic regression + TFIDF 0.820
Xgboost + TFIDF 0.760
Naive Bayes + TFIDF 0.661
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produce much better performance than other models
(Table 2). Large BERT (24-layer, 1024-hidden, and 16-
heads) has a slight improvement over small BERT (12-layer,
768-hidden, and 12-heads) but less preferred because of
expensive computations. To our surprise, XLNet, a model
reported outperforming BERT in multitask NLP, performs 2
percent lower on our data.

BERT models initialized by proprietary embeddings
converge faster than those initialized by off-the-shelf
embeddings (Figure 2A). And embeddings trained on
company’s SharePoint text perform better than those built
on Emails and phone call transcriptions (Figure 2B). Using
larger batch size 32) enables models to converge faster and
leads to better performance.

5 INTENT CLASSIFICATION
PERFORMANCE INCLUDING ESCALATION
QUESTIONS

We have shown how the BERT model outperforms other
models on real data sets that only contain relevant

questions. The capability to handle 381 intents
simultaneously at 94.5% accuracy makes it an ideal intent
classifier candidate in a chatbot. This section describes how we
quantify uncertainties on BERT predictions and enable the bot
to detect escalation questions. Three approaches are
compared:

• Predictive entropy: We measure uncertainty of
predictions using Shannon entropy H � −∑K

k�1pik log pik,
where pik is the prediction probability of ith sample to kth
class. Here, pik is softmax output of the BERT network
[56]. A higher predictive entropy corresponds to a greater
degree of uncertainty. Then, an optimally chosen cutoff
threshold applied on entropies should be able to separate
the majority of in-sample questions and escalation
questions.

• Dropout: We apply Monte Carlo (MC) dropout by doing
100 Monte Carlo samples. At each inference iteration, a
certain percent of the set of units drop out. This
generates random predictions, which are interpreted
as samples from a probabilistic distribution [22].
Since we do not employ regularization in our
network, τ−1 in Eq. 7 in Ref [22] is effectively zero
and the predictive variance is equal to the sample
variance from stochastic passes. We could then
investigate the distributions and interpret model
uncertainty as mean probabilities and variances.

• Dummy class: We simply treat escalation questions as a
dummy class to distinguish them from original questions.
Unlike entropy and dropout, this approach requires
retraining of BERT models on the expanded data set
including dummy class questions.

5.1 Experimental Setup
All results mentioned in this section are obtained using
BERT small + SharePoint embeddings (batch size 16). In
entropy and dropout approaches, both relevant questions
and escalation questions are split into five folds, where four
folds (80%) of relevant questions are used to train the BERT
model. Then, among that 20% held-out relevant questions,
we further split them into five folds, where 80% of them
(equal to 16% of the entire relevant question set) are
combined with four folds of escalation questions to learn
the optimal decision variables. The learned decision
variables are applied on BERT predictions of the
remaining 20% (906) of held-out relevant questions and
held-out escalation questions (4,000), to obtain the test
performance. In the dummy class approach, the BERT
model is trained using four folds of relevant questions
plus four folds of escalation questions and tested on the
same amount of test questions as entropy and dropout
approaches.

5.2 Optimizing Entropy Decision Threshold
To find the optimal threshold cutoff b, we consider the following
quadratic mixed-integer programming problem

FIGURE 2 |Comparison of test set accuracy using different embeddings
and batch sizes.
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min
x,b

∑i,k(xik − lik)2
s.t. xik � 0 if Ei ≥ b, for k in 1, . . . ,K

xik � 1 if Ei ≥ b, for k � K + 1
xik ∈ {0, 1}∑K+1

k�1 xik � 1 ∀i in 1, . . . ,N
b≥ 0

. (1)

to minimize the quadratic loss between the predictive assignments
xik and true labels lik. In Eq. 1, i is the sample index, k is class (intent)
indices, xik isN × (K + 1) binarymatrix, and lik is alsoN × (K + 1),
where the first K columns are binary values and the last column is a
uniform vector δ, which represents the cost of escalating questions.
Normally, δ is a constant value smaller than 1, which encourages the
bot to escalate questions, rather than making mistaken predictions.
The first and second constraints of Eq. 1 force an escalation label
when entropy Ei ≥ b. The third and fourth constraints restrict xik as
binary variables and ensure the sum for each sample is 1.
Experimental results (Figure 3) indicate that Eq. 1 needs more
than 5,000 escalation questions to learn a stabilized b. The value of
escalation cost δ has a significant impact on the optimal b value and
in our implementation is set to 0.5.

5.3 Monte Carlo Dropout
In the BERT model, dropout ratios can be customized at
encoding, decoding, attention, and output layers. A
combinatorial search for optimal dropout ratios is
computationally challenging. Results reported in the article are
obtained through simplifications with the same dropout ratio
assigned and varied on all layers. Our MC dropout experiments
are conducted as follows:

1. Change dropout ratios in encoding/decoding/attention/
output layer of BERT

2. Train the BERT model on 80% of relevant questions for 10 or
30 epochs

3. Export and serve the trained model by TensorFlow serving
4. Repeat inference 100 times on questions, average the results

per each question to obtain mean probabilities and standard
deviations, and then average the deviations for a set of
questions.

According to the experimental results illustrated in Figure 4,
we make three conclusions: 1) Epistemic uncertainty estimated by
MCD reflects question relevance: when inputs are similar to the
training data, there will be low uncertainty, while data are
different from the original, training data should have higher
epistemic uncertainty. 2) Converged models (more training
epochs) should have similar uncertainty and accuracy no
matter what drop ratio is used. 3) The number of epochs and
dropout ratios are important hyper-parameters that have
substantial impacts on uncertainty measure and predictive
accuracy and should be cross-validated in real applications.

min
x,c,d

∑i,k(xik − lik)2

s.t. αik � { 0 if Pik ≤ c, for k in 1, . . . ,K
1 if otherwise

βik � { 0 if Vik ≥ d, for k in 1, . . . ,K
1 if otherwise

xik � 0 if αik � 0 OR βik � 0
xik � 1 if αik � 1 AND βik � 1∑K+1

k xik � 1 ∀i in 1, . . . ,N
1≥ c≥ 0
1≥ d ≥ 0

. (2)

We use mean probabilities and standard deviations obtained
from models where dropout ratios are set to 10% after 30 epochs
of training to learn optimal decision thresholds. Our goal is to
optimize lower bound c and upper bound d and designate a
question as relevant only when the mean predictive probability
Pik is larger than c and standard deviation Vik is lower than d.
Optimizing c and d, on a 381-class problem, is much more
computationally challenging than learning entropy threshold
because the number of constraints is proportional to class
number. As shown in Eq. 2, we introduce two variables α and
β to indicate the status of mean probability and deviation
conditions, and the final assignment variable x is the logical
AND of α and β. Solving 2) with more than 10 k samples is very
slow (shown in Supplementary Appendix), so we use 1,500
original relevant questions and increase the number of
escalation questions from 100 to 3,000. For performance
testing, the optimized c and d are applied as decision variables

FIGURE 3 |Optimizing the entropy threshold to detect escalation questions. As shown in (A), in-sample test questions and escalation questions have very different
distributions of predictive entropies. Subfigure (B) shows how test accuracies, evaluated using decision variables b solved by (1) on BERT predictions on test data,
change when different numbers of escalation questions are involved in training. Subfigure (C) shows the impact of δ on the optimized thresholds when the number of
escalation questions increase optimization. Usually, to safeguard making wrong predictions in client-facing applications, δ is set to a value smaller than 1 because 1
means the cost of making wrong predictions is the same as spending human effort on a question. In contrast, a value 0.5 means the cost of wrong predictions is two
times larger than human answering cost. Such a cost is guided by business reasons, and different δ could lead to different optimal thresholds.
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on samples of BERT predictions on test data. Performance from
dropout is presented in Table 3 and Supplementary Appendix.
Our results showed a decision threshold optimized from Eq. 2
involving 2000 escalation questions and gave the best F1 score
(0.754), and we validated it using the grid search and confirmed
its optimality (shown in Supplementary Appendix).

5.4 Dummy Class Classification
Our third approach is to train a binary classifier using both
relevant questions and escalation questions in the BERT model.
We use a dummy class to represent those 17,395 escalation
questions and split the entire data sets, including relevant and
escalation, into five folds for training and test.

Performance of the dummy class approach is compared with
entropy and dropout approaches (Table 3). Deciding an optimal
number of escalation questions involved in threshold learning is
non-trivial, especially for entropy and dummy class approaches.
Dropout does not need as many escalation questions as entropy
does to learn the optimal threshold mainly because the number of
constraints in Eq. 2 is proportional to the class number (381), so
the number of constraints is large enough to learn a suitable
threshold on small samples. (To support this conclusion, we
present extensive studies in Supplementary Appendix on a 5-
class classifier using Tier one intents.) The dummy class approach
obtains the best performance, but its success assumes the learned
decision boundary can be generalized well to any new escalation
questions, which is often not valid in real applications. In
contrast, entropy and dropout approaches only need to treat a

binary problem in the optimization and leave the intent
classification model intact. The optimization problem for
entropy approach can be solved much more efficiently and is
selected as the solution for our final implementation.

It is certainly possible to combine dropout and entropy approach,
for example, to optimize thresholds on entropy calculated from the
average mean of MCD dropout predictions. Furthermore, it is
possible that the problem defined in Eq. 2 can be simplified by
proper reformulation and can be solved more efficiently, which will
be explored in our future works.

6 SENTENCE COMPLETION USING
LANGUAGE MODEL

6.1 Algorithm
We assume misspelled words are all OOV words, and we can
transform them as [MASK] tokens and use bidirectional language
models to predict them. Predicting masked word within
sentences is an inherent objective of a pretrained bidirectional
model, and we utilize the masked language model API in the
Transformer package [61] to generate the ranked list of candidate
words for each [MASK] position. The sentence completion
algorithm is illustrated in Algorithm 1.

6.2 Experimental Setup
For each question, we randomly permutate two characters in the
longest word, the next longest word, and so on. In this way, we

FIGURE 4 | Classification accuracy and uncertainties obtained from Monte Carlo dropout.

TABLE 3 | Performance of cross-comparison of three approaches evaluated on test data of the same size (906 relevant questions plus 4,000 escalation questions).
Precision/recall/F1 scores were calculated assuming relevant questions are true positives. In entropy and dropout optimization processes, δ is set to 0.5. Other delta
values for the dropout approach are listed in Supplementary Appendix.

Number of escalation
questions in training

Entropy Dropout Dummy class

1,000 5,000 8,000 10,000 100 1,000 2000 3,000 1,000 5,000 8,000 10,000

Optimal entropy cutoff b 2.36 1.13 0.85 0.55 – – – – – – – –

Optimal mean probability cutoff c – – – – 0.8172 0.6654 0.7921 0.0459 – – – –

Optimal standard cutoff d – – – – 0.1533 0.0250 0.0261 0.0132 – – – –

Mean accuracy in 381 classes 91.9% 88.3% 85.6% 81.7% 88.41% 80.13% 80.24% 74.72% 94.2% 93.7% 87.7% 82%
Accuracy of the dummy class 79.25% 91.2% 93.25% 95.2% 86.69% 91.83% 91.95% 92.57% 73.6% 94.5% 99.4% 99.6%
Precision (binary classification) 51.4% 70.2% 74.7% 79.8% 90.7% 68.8% 68.9% 63.7% 81% 95.3% 99.5% 99.6%
Recall (binary classification) 96.7% 91.3% 88.1% 83.5% 93.9% 82.7% 83.2% 84.7% 99.7% 98.7% 92.6% 86%
F1 score (binary classification) 0.671 0.794 0.808 0.816 0.738 0.751 0.754 0.727 0.894 0.967 0.959 0.923

Bold values represent best performance.
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generate one to three synthetic misspellings in each question. We
investigate intent classification accuracy changes on these questions,
and how our sentence completion model can prevent performance
changes. All models are trained using relevant data (80%) without
misspellings and validated on synthetic misspelled test data. Five
settings are compared: 1) no correction: classification performance
without applying any autocorrection; 2) no LM: autocorrections
made only by word edit distance without using masked language
model; 3) BERT SharePoint: autocorrections made by masked LM
using pretrained SharePoint embeddings together with word edit
distance; 4) BERT Email: autocorrections using pretrained email
embeddings together with word edit distance; and 5) BERT Google:
autocorrections using pretrained Google small uncased embedding
data together with word edit distance.

We also need to decide what is an OOV or what should be
included in our vocabulary. After experiments, we set our vocabulary
as words from four categories: 1) All words in the pretrained
embeddings; 2) all words that appear in training questions; 3)
words that are all capitalized because they are likely to be proper
nouns, fund tickers, or service products; 4) all words start with
numbers because they can be tax forms or specific products (e.g.,
1099b and 401 k). The purposes of including 3) and 4) are to avoid
autocorrection on those keywords that may represent significant
intents. Any word falls outside these four groups is considered as an
OOV. During our implementation, we keep monitoring the OOV
rate, defined as the ratio of OOV occurrences to total word counts in
recent 24 h. When it is higher than 1%, we apply manual
intervention to check chatbot log data.

We also need to determine two additional parameters M, the
number of candidate tokens prioritized bymasked languagemodel,
and B, the beam size in our sentence completion model. In our
approach, we setM and B to the same value, and it is benchmarked
from 1 to 10 k by test sample accuracy. Notice that whenM and B

are large, and when there are more than two OOVs, beam search
becomes very inefficient in Algorithm 1. To simplify this, instead of
finding the optimal combinations of candidate tokens that
maximize the joint probability argmax∏d

i�1pi, we assume they
are independent and apply a simplified algorithm (shown in
Supplementary Appendix) on single OOV separately.

In additional to BERT, we also implemented a conventional
spelling correction algorithm using Google Web 1 T n-gram [62].
We used the longest common subsequence (LCS) string matching
algorithm [63] and compared a variety of best combinations of
n-grams report in the article. The experimental setting is identical as
the one we set up for BERT models: We apply auto-spelling
correction algorithms on synthetic misspelled test data (20%),
and then the intent classification accuracy performance is
evaluated using the BERT SharePoint model trained on 80%
relevant data without misspellings for 10 epochs. As shown in
Table 4, n-gram models do not provide comparable performance
as BERT language models, and the most complicated hybrid n-gram
models (5-4-3 g and 5-4-3-2 g) [63] is not comparable to Google
BERT model and far worse than BERT SharePoint model.

An further improved version of sentence completion algorithm
to maximize joint probability is our future research. In this article,
we have not considered situations when misspellings are not OOV.
Detecting improper words or improper grammar in a sentence
may need evaluation of metrics such as perplexity or sensibleness
and specificity average (SSA) [10], and the simple word matching
algorithm can be much generalized as reinforcement
learning–based approach [64].

TABLE 4 | Comparison of intent classification accuracy using the best BERT
model vs. conventional n-gram models.

Model Single OOV Two OOVs Three OOVs

BERT SharePoint 0.934 0.882 0.849
5 G 0.755 0.719 0.622
5-4 G 0.817 0.731 0.643
5-4-3 G 0.823 0.752 0.646
5-4-3-2 G 0.826 0.755 0.643

TABLE 5 | Benchmark of intent classification API performance across different
models in real-time application. Each model is tested using 10 threads,
simulating 10 concurrent users, for a duration of 10 min. In this test, models are
not served asMonte Carlo sampling, so the inference is done only once. All models
are hosted on identical AWSm5.4xlarge CPU instances. As seen, the simplest
model (6A-6H, six attention layers and six hidden layers) can have a double
throughput rate and half latency than the original BERT small model, and the
accuracy performance only drops 1.6%. The performance is evaluated using
JMeter at the client side, and APIs are served using Domino Lab 3.6.17 Model
API. Throughput indicates how many API responses being made per second.
Latency is measured as time elapse between request sent till response
received at client side.

Model Performance Throughput Average latency (ms)

12A-12H 0.944 8.9/s 1,117
6A-12H 0.941 9.0/s 1,108
12A-9H 0.934 11.8/s 843
3A-9H 0.933 12.0/s 831
3A-12H 0.930 9.1/s 1,097
6A-6H 0.928 18.1/s 552
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6.3 RESULTS

According to the experimental results illustrated inFigure 5, pretrained
embeddings are useful to increase the robustness of intent prediction
on noisy inputs. Domain-specific embeddings contain much richer
context-dependent semantics that helps OOVs get properly corrected
and leads to better task-oriented intent classification performance.
Benchmark shows B ≥ 4000 leads to the best performance for our
problem. Based on this, we apply SharePoint embeddings as the
language model in our sentence completion module.

7 IMPLEMENTATION

The chatbot has been implemented fully inside our company network
using open-source tools including RASA [65], TensorFlow, and
PyTorch in Python environment. All backend models (sentence
completion model, intent classification model, and others) are
deployed as RESTful APIs in AWS SageMaker. The front end of
chatbot is launched on Microsoft Teams, powered by Microsoft Bot
Framework andMicrosoft AzureDirectory, and connected to backend
APIs in AWS environment. All our BERT model trainings, including
embeddings pretraining, are based on BERT TensorFlow running on
AWSP3.2xlarge instance. The optimization procedure usesGurobi 8.1
running on AWS C5.18xlarge instance. The BERT language model
API in the sentence completionmodel is developed using Transformer
2.1.1 package on PyTorch 1.2 and TensorFlow 2.0.

During our implementation, we further explore how the intent
classification model API can be served in real applications under
budget. We gradually reduce the numbers of attention layer and
hidden layer in the original BERT small model (12 hidden layers
and 12 attention heads) and create several smaller models. By
reducing the number of hidden layers and attention layers in half,
we see a remarkable 100% increase in performance (double the
throughput and half the latency) with the cost of only 1.6% drop
in intent classification performance (Table 5).

8 CONCLUSION

Our results demonstrate that optimized uncertainty thresholds applied
on BERT model predictions are promising to escalate escalation
questions in task-oriented chatbot implementation, meanwhile the
state-of-the-art deep learning architecture provides high accuracy on

classifying into a large number of intents. Another feature we
contribute is the application of BERT embeddings as the language
model to automatically correct small spelling errors in noisy inputs,
and we show its effectiveness in reducing intent classification errors.
The entire end-to-end conversational AI system, including two
machine learning models presented in this article, is developed
using open-source tools and deployed as in-house solution. We
believe those discussions provide useful guidance to companies
that are motivated to reduce dependency on vendors by leveraging
state-of-the-art open-source AI solutions in their business.

We will continue our explorations in this direction, with particular
focuses on the following issues: 1) Current fine-tuning and decision
threshold learning are two separate parts, and we will explore the
possibility to combine them as a new cost function in BERT model
optimization. 2) Dropout methodology applied in our article belongs to
approximated inferencemethods,which is a crude approximation to the
exact posterior learning in parameter space. We are interested in a
Bayesian version of BERT, which requires a new architecture based on
variational inference using tools like TFP TensorFlow Probability. 3)
Maintaining chatbot production systemwould need a complex pipeline
to continuously transfer and integrate features from deployed model to
new versions for new business needs, which is an uncharted territory for
all of us. 4) Hybridizing “chitchat” bots, using state-of-the-art progresses
in deep neural models, with task-oriented machine learning models is
important for our preparation of client self-provisioning service.
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