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The crosstalk between organs plays a crucial role in physiological processes. This

coupling is a dynamical process, it must cope with a huge variety of rhythms with

frequencies ranging from milliseconds to hours, days, seasons. The brain is a central

hub for this crosstalk. During sleep, automatic rhythmic interrelations are enhanced and

provide a direct insight into organ dysfunctions, however their origin remains a difficult

issue, in particular in sleep disorders. In this study, we focus on EEG, ECG, and airflow

recordings from polysomnography databases. Because these signals are non-stationary,

non-linear, noisy, and span wide spectral ranges, a time-frequency analysis, based

on wavelet transforms, is more appropriate to handle this complexity. We design a

wavelet-based extraction method to identify the characteristic rhythms of these different

signals, and their temporal variability. These new constructs are combined in pairs to

compute their wavelet-based time-frequency complex coherence. These time-frequency

coherence maps highlight the occurrence of a slowly modulated coherence pattern in the

frequency range [0.01–0.06] Hz, which appears in both obstructive and central apnea. A

preliminary exploration of a large database from the National Sleep Research Resource

with respiration disorders, such as apnea provides some clues on its relation with

autonomic cardio-respiratory coupling and brain rhythms. We also observe that during

sleep apnea episodes (either obstructive or central), the cardiopulmonary coherence

(in particular respiratory sinus-arrhythmia) in the frequency range [0.1–0.7] Hz strongly

diminishes, suggesting a modification of this coupling. Finally, comparing time-averaged

coherence with heart rate variability spectra in different apnea episodes, we discuss their

common trait and their differences.

Keywords: time-frequency analysis, correlation, wavelet coherence, electrocardiogram, electroencephalogram,

breath, polysomnogram, rhythms

1. INTRODUCTION

During the past decades, the possibility to capture in real time physiological signals from many
tissues (brain, heart, muscles, breath, vessels, intestines, lungs, blood . . . ) has opened new medicine
fields, and has brought physicians to amore global view of human beings as complex andmultiscale
networks of interactions, contributing synergistically to the preservation of health [1–3]. Each
organ can be considered as a dynamical system per-se with non-linear and complex oscillations
and its interaction with nearby or distant tissues may lead to spatial and/or temporal correlations
[4, 5]. These correlations and their adaptation to the environment appear as decisive for human
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beings survival [6]. Self-organized criticality concepts have
been introduced for biological rhythms in the late nineties by
physicists [7–12]. Non-linear neuronal feedback interactions
and networked structure of central and autonomous nervous
systems have been suggested as essential factors for emergent
scale-invariant organization at the system level [1, 13–17]. The
subtle balance between coherent oscillatory (synchronous) and
highly disorganized (asynchronous) patterns of brain activity
and their time-frequency entanglement could help enlarge our
concept of criticality used for about 30 years, including a
dynamical reinterpretation of the concept of homeostasis of
living organisms [6, 18–22]. The analysis of non-linear dynamical
systems has also given rise to numerous practical measures based
on the idea of entropy [23]. In relation with these information
theoretic approaches, the concepts of predictability and Granger
causality have been applied to the study of sleep apnea from
breathing, heart rate variability (HRV) and EEG band signals
[24]. Recent progresses have linked the localization of these
measures in the spectral domain with the concept of coherence,
and its partial, multiple, and directed versions [25–28]. Their
integration into a time-frequency formalism thus seems more
appropriate than ever.

Sleep disorders are nowadays becoming a serious public
health problem; health consequences from sleep disorders and
sleepiness are staggering. Being able to recognize in its early stage
a sleep disorder and to propose a treatment is of paramount
importance. During sleep, the physiological interaction network
is orchestrated by automatic and involuntary processes, and
the variety of electrical and mechanical signals recorded by
polysomnography are precious markers for deciphering the
complexity of these interactions. It was previously shown
that the coupling of heart and respiration across sleep
stages is intermittent and occur through multiple interaction
mechanisms [29, 30]. Above this non-stationarity and variability
of physiological records, comparing signals of different nature,
from distant zones of the body (for example ECG with
EEG, air flow with EMG, ECG with blood pressure . . . ),
adds a supplementary complexity. Even for the same rhythm,
these signals have quite different spectral distributions: the
cardiac rhythm measured from the electromagnetic impulses
in thoracic electrodes (ECG) is much more non-linear (farther
from a pure sine wave) than the signal of blood pressure
collected in a catheter. The EEG signals represent the
integration of a network of multiple neurons throughout
the brain that exhibits both erratic (noisy and/or scale-free)
and rhythmic behaviors in the wide range of frequencies.
For these signals, it is not possible to define a single
time-modulated fundamental mode, contrarily to ECG and
respiration signals. To compare physiological signals of very
different natures, and find out common characteristics (spectral
and/or temporal similitudes) between them implies introducing
sophisticated versions of the standard (Pearson) correlation
and coherence. Because physiological signals can cover several
frequency decades with a diversity of temporal dynamics,
a generalization to time-frequency markers was introduced
in the eighties. Time-frequency estimators were proposed,
based on temporal or spectral windowing [31], short time

Fourier transform (STFT) [32, 33] or wavelet transform
(WT) [34].

In this study, we focus on neural (EEG), cardiac (ECG)
and respiration rhythms recorded during sleep. In the second
section, we describe the two PSG databases (MIT-BIH and
NSSR) from which we have selected the signals. In the third
section, we introduce the wavelet formalism and describe how
it can be applied to complex and non-stationary physiological
signals, such as EEG, ECG, and respiration, to characterize
their rhythms and extract their temporal rate modulations.
In the fourth section, we compute and describe the wavelet-
based time-frequency complex coherence of either the previous
rates or the raw signals. The significance of our coherence
estimator is discussed in relation to the chosen wavelet and
time-smoothing kernel. This original method, based on a two-
step time-frequency decomposition, can be used to capture the
rhythm modulations of any physiological signal and requires no
signal-specific adjustment, other than the possibility to restrict
the spectral range. Applied on the PSG record of a subject affected
by obstructive apnea, this method shows how repeated apnea
events during the NREM sleep stage 2 are associated to very
coherent modulations across all possible pairs of rate signals
(slow mode apnea modulation), at a very low frequency (∼0.035
Hz). Interestingly, the phase of this slow mode is also computed
by our method and gives a direct access to the phase shift between
the selected signals. We also propose a combined color-shading
coding that highlights both the phase and the amplitude of the
coherence in the time-frequency plane. Finally, in the last section
5 of this manuscript we perform a preliminary statistical survey
of the large shhs2 database from NSSR, by reconstructing the
averaged coherence spectra for subpopulations of patients with
sleep apnea disorders. These coherence spectra not only confirm
the statistical validity of the first observation on the selected
subject of the smaller slpdb (MIT-BIH) database, but also draw
our attention to two other key elements, (i) the coherence spectra
around the slow mode apnea modulation is bimodal, meaning
that the frequency band [0.02–0.06] Hz is the combination of two
slow modes, (ii) another band appears in the heart-respiration
coherence spectra (around 1/4 Hz) for normal or hypopneic
sleep intervals which vanishes for more severe apnea levels
[obstructive sleep apnea (OSA) or central sleep apnea (CSA)].
Finally, comparing time-averaged coherence with HRV spectra
in different apnea episodes, we discuss their common trait and
their differences.

2. DATABASES FOR PSG RECORDINGS

A cardiorespiratory polysomnography (PSG) [35, 36] generally
includes a minimum of 12 physiological signals, among which
EEG, ECG, and respiration on which will be focused this
analysis. The polysomnographic signals were downloaded from
the PhysioNet Research Resource for Complex Physiological
Signals (https://physionet.org) [37] (MIT-BIH database) and
from the National Sleep Research Resource (Sleep Heart Health
Study) [38, 39]. These signals were used after ethics review board’s
(IRB) approval. All the samples were annotated with sleep events,
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such as sleep stage, movements (only in MIT-BIH database),
arousal, apnea, etc. The MIT-BIH polysomnographic database
(slpdb) [37, 40] includes 16 male subjects, aged 32 to 56 (mean
age 43), with weights ranging from 89 to 152 kg (mean weight
119 kg), and most of them were affected by a severe sleep apnea.
Recordings in slpdb were all sampled at 250 Hz, whereas various
sampling frequency were used in shhs2 (EEGs at 125 Hz, ECG at
250 Hz and airflow at 10 Hz). The Sleep Heart Health Study [38],
visit 2 (shhs2), includes 2650 annoted samples. Participants of
SHHS were recruited from nine existing epidemiological studies
with pre-collection of cardiovascular risk factors [39, 41]. The
recordings saturate rarely in slpdb, more frequently in shhs2. We
use here the latest classification of AASM [36], that divides the
NREM sleep in three stages: N1 for light sleep, N2 for middle-
deep sleep and N3 for deep sleep, combining the previous N3-N4
annotations when necessary.

2.1. Respiratory Rhythm
The respiration is measured from both air flow temperature
changes on a nasal thermistor, thoracic or abdominal
motion/inductance plethysmography. Occasional artifacts
occur due to sleep position changes, affecting mainly the
amplitude of the oscillations. We select the air flow signal, which
can be found in both databases, and has less motion artifacts
than other signals in shhs2. In slpdb, the unit is calibrated in liter
per second (l·s−1), the resolution is about 10−3l·s−1, certainly
with an instrumental filter as in shhs2 (not specified). In shhs2,
the unit is arbitrary (in [−1, 1]), the resolution is 8 · 10−3, the
sampling frequency is 8 or 10 Hz and there is an instrumental
high pass filter at 0.05 Hz.

2.2. Cardiac Rhythm
We concentrate on cardiac signals, recorded from
electrocardiography (ECG) in millivolts (mV), in both databases.
A blood pressure signal (invasive measure from a catheter in the
radial artery) in also available in slpdb. In slpdb, the resolution
is 2.10−3 mV, the sampling frequency is 250 Hz, without
specification of an instrumental filter. In shhs2, the resolution is
10−3 mV, the sampling frequency is 250 or 256 Hz and there is
an instrumental high pass filter at 0.15 Hz. The ECG oscillation
is a sharp pulse train, which can be affected by saturation, limited
time sampling, as well as sleep position changes.

2.3. Neural Rhythms
The brain activity is measured from electroencephalography
(EEG) in millivolts (mV) or microvolts (µV). In slpdb, a single
EEG is available, measured between different points depending
on the subject (C4-A1, O2-A1, or C3-O1), the resolution is about
10−4mV, without specification of an instrumental filter. In shhs2,
the electric potential is measured between the points C4-A1 for
the first EEG and C3-A2 for the second one, the resolution is
1µV, the sampling frequency is 125 or 128 Hz and there is an
instrumental high pass filter at 0.15 Hz.

Given that these signals have different sampling frequencies,
they were interpolated in time at the highest sampling
frequency, for instance the one of ECG before further
time-frequency analysis.

2.4. Subjects Selection
The signal chosen for illustration of the computation method
and the manifestation of sleep apnea on time-frequency
coherence corresponds to subject slp04. Several criteria have
been considered for this selection among the 15 subjects of
the slpdb database affected by sleep apnea. First, body motions
result in temporal singularities (vertical artifacts), especially in
the EEG signals, from low (< 1 Hz) to high frequencies. When
these artifacts have a strong amplitude, the saturation of the
signal can occur, erasing relevant signal components from the
recording. Such saturation effects are minimal in the selected
signal. Second, the presence of both ECG impulses [42] and
respiration oscillations is commonly observed in EEGs, at various
intensities. We found appropriate to avoid these effects as much
as possible. In the course of this study, it is made clear however
that such intrusion of a rhythm in the recording of another one
is a widespread phenomenon (respiration oscillations in the ECG
is another example).

The statistical analysis reported in section 5 was obtained
from a large selection of subjects from the full shhs2 database.
The selection of typical apneic subjects was based on respiratory
events scored by clinicians when the amplitude of the air flow
drops for more than 10 s, below 70% of the baseline for hypopnea
or below 25% of the baseline for apnea. Obstructive sleep apnea
(OSA) is distinguished from central sleep apnea (CSA) by a
greater amplitude in the thoracic or the abdominal effort signal.

The proportion of the cumulated duration of sleep apnea is
first computed for each person (between the first and the last sleep
stage). Then, the groups are selected from the 2650 persons in
the shhs2 databased using criteria on these proportions. Group
H corresponds to the 87 subjects affected by hypopnea more
than 20% of their sleep time while the other apneas last <1%.
Group O corresponds to the 153 subjects affected by OSA more
than 10% of their sleep time. Group C corresponds to the 189
subjects affected by CSA more than 1% of their sleep time and
OSA <10%. These three groups have comparable sizes: group H
contains 25277 hypopneas lasting 161 h out of 647 h of total sleep
time, group O contains 25627 OSA lasting 217 h out of 1152 h
of total sleep time, and group C contains 10480 CSA lasting 61 h
out of 1,463 h of total sleep time. Two other groups are defined; a
fourth control group of 129 subjects which are very few affected
by any type of apnea: <3% of sleep time (3851 events lasting 19
h over a total of 957 h) and a fifth group (all) which includes the
whole shhs2 database without any conditioning, and cumulates
the 20114 h of sleep time over 2650 subjects. The proportion of
apneas in sleep time in the shhs2 database are as follows: 12.1% of
hypopnea, 2.3% of obstructive apnea, and 0.4% of central apnea
(469264 scored respiratory events in total).

3. WAVELET-BASED TIME-FREQUENCY
DECOMPOSITION OF NON-STATIONARY
SIGNALS

To introduce the wavelet transform [43, 44] for this application
to physiological rhythms, we discuss an important aspect of the
wavelet time-frequency analysis, often implicit or hidden in other

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 April 2021 | Volume 7 | Article 624456

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Guillet et al. Tracking Rhythms Coherence From Polysomnograms

processing methods and rarely discussed in that context, namely
the quality factor. It has the specificity to be constant across
frequencies, fixing a constant relative frequency uncertainty (or
log-frequency resolution) and a time resolution that adapts
to the frequency so that it corresponds to a fixed number
of oscillations. This “scale-free” resolution is the main and
noteworthy difference with alternative approaches based on short
time Fourier transform.

3.1. The Continuous Wavelet Transform
We define the continuous wavelet transform (CWT) of x(t) as

Wψ [x](a, b) =
∫ +∞

−∞
x(t)ψ

(

t − b

a

)

1

a
dt

=
∫ +∞

−∞
x̂(f )ψ̂(af )ei2π fbdf , (1)

where a is the scale parameter, b is the shift parameter and ψ is
the analysing wavelet. An analytic wavelet ψ̂(af ) is defined as a
real windowing function over positive frequencies only, it is very
useful to decompose the phase and amplitude behavior of amulti-
frequency signal x(t) into analytic signals at each scale a with
a certain amplitude |Wψ [x](a, b)| and phase ℑ{logWψ [x](a, b)}.
A paradigmatic, yet largely ignored, analytic wavelet is the log-
normal wavelet of only parameter the quality factor Q, and
reference (peak maximum) frequency f0:

ψ̂Q(f ) = θ(f /f0)e
− 1

2

(

Q log
f
f0

)2

, (2)

where θ is the Heaviside step function. Besides its log-frequency
Gaussian shape, illustrated in Figure 1 for two values ofQ (25 and
5), this wavelet has numerous convenient properties related to its
ability to turn the dilation of frequencies by the scale parameter
a into a shift in log-frequencies. See the reference [45] for an
insightful introduction of this wavelet, that we refer thereafter
as the Grossmann wavelet, in contrast to the well-known Morlet
wavelet [46–48]. The Grossmann wavelet is related, as a limit
case, to a two-parameter family of analytic wavelets, the Morse
wavelets [49, 50]. The single remaining parameter, the quality
factor Q, quantifies the frequency localization of the wavelet.

The CWT of the signal can be given a time-frequency
interpretation when the wavelet is well-localized in the frequency
domain. Indeed, while the parameter b naturally represents a
time, the scale a can be associated to a frequency fp/a where fp
is a characteristic frequency of the wavelet. In general, there are
many ways to define this characteristic frequency [51], but forψQ

they all belong to the same family of weighted frequency average
indexed by an exponent p:

fp =
∫ +∞
−∞ f |ψ̂(f )|pdf
∫ +∞
−∞ |ψ̂(f )|pdf

, p > 0. (3)

The “center instantaneous frequency” f1 is obtained from the
derivative of the phase of an analytic wavelet in the time domain
(when this wavelet is positive in the frequency domain), the
“energy frequency” f2 is used for the Heisenberg uncertainty

relation, and the limit case f∞, “the peak frequency” is the
frequency at the maximum of ψ̂ . For the Grossmann log-normal
wavelet, the characteristic frequency is a function of f0 and Q:

fp = e
3

2pQ2 f0 and it agrees exactly with its reference f0 frequency at
its peak frequency f∞ = f0. We note also that all these frequencies
fp converge to f0 for a large quality factor Q.

Notwithstanding the different frequency interpretations at
low quality factor, we choose for the Grossmann wavelet the peak
frequency f0 to define the frequency associated to the scale a
as f = f0/a, and we denote the time-frequency representation
of x(t):

XQ(f , t) = WψQ [x]

(

f0

f
, t

)

. (4)

Its squared modulus provides one way to define a time-varying
power spectral density:

Sx(f , t;Q)|f | =
Q√
π
E

[

|XQ(f , t)|2
]

, (5)

The power spectral density Sx(f ) (PSD) of a stationary signal
is obtained by a temporal averaging (see Supplementary File

section 1):

Sx(f ;Q)|f | =
Q√
π

〈

|XQ(f , t)|2
〉

T
. (6)

Notice the factor |f | that appears here; it is related to the
scale normalization convention chosen in the definition of the
CWT. Equation (6) integrates to the power with respect to the

integrator
df
|f | , i.e., with respect to d log f for positive frequencies,

which suggests a logarithmic (geometric) frequency sampling.
This sampling is indeed natural for the CWT because the log-
frequency width of its analytic wavelet is constant at all scales.
Thus, we call the product Sx(f )|f | the power log-frequency
density, so that the power is directly read from the area under
its curve on a log-frequency axis.

3.2. Resolution Trade-Off and
Time-Frequency Atom
Note that, contrary to more common fixed size moving
temporal windows, the temporal and frequency widths of the
analysing wavelet scale with the frequency [43, 44]. The square
modulus of the wavelet transform XQ at point (f ,t) provides a
smoothed realization of the time-varying power spectral density
Sx(f , t;Q). The widths of this time-frequency smoothing region
are commonly estimated, similarly to f2 in Equation (3), from
the variances (1t)2 and (1f )2 associated to the un-normalized
distributions |ψ(t)|2 and |ψ̂(f )|2. A quality factor of the wavelet

can be defined as QF = f2
21f

[52] and the smoothness region is

well-described by the Heisenberg uncertainty relation 1f 1t ≥
1
4π . It means that the time and frequency resolutions cannot
be both chosen arbitrarily small. In the case of the Grossmann

wavelet, we can compute1f and get QF = 1
2 (e

1
2Q2 − 1)−

1
2 ≈ Q√

2

up to a term of order 1
Q when Q is large enough, which confirms
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FIGURE 1 | Grossmann log-normal wavelets of quality factor Q = 25 and 5 (in blue and red, respectively), represented in frequency in logarithmic scales (A) and in

time (B), with the reference frequency f0 = 1. In (B), the real part of the wavelet is represented with a blue (respectively red) line, in quadrature, the imaginary part is a

light blue (respectively light red) line, and the envelope ±|ψQ(t)| is delimited by dotted lines. The uncertainty time-frequency relation is clear here: the higher the quality

factor, the more the wavelet is localized in frequency and the more it has oscillations in time. The effective number of oscillations of the wavelet are N25 ≈ 10 and

N5 ≈ 2.

the interpretation of its parameter. We cannot, however, get an
expression for 1t. Instead, we find numerically that the effective
number of oscillations at full-amplitude of ψQ(t) is very close
to NQ ≈ Q√

2π
. For this reason, we define an effective wavelet

duration δt = Q

f
√
2π

, and associate to it an effective log-frequency

width, very close to the full width at half maximum (FWHM) of

the wavelet: δ log f =
√
2π
Q . The equality f δt · δ log f = 1 is a

practical variant of the Heisenberg uncertainty relation for ψQ,
and it defines a time-frequency atom. This atom is interesting for
sampling XQ(f , t) in a given time-frequency domain �, because
it gives an indication of the minimum sampling points density in
the time and log-frequency directions (more than one per atom).

3.3. Illustration of the Wavelet Transform
on a Pedagogical Signal
We illustrate the time-frequency representation XQ(f , t) on a
pedagogical signal x(t) = s(t) + ξ (t) in Figure 2. The signal
represented in Figure 2A is the sum of a deterministic oscillation
s(t) of increasing frequency (a chirp) and decreasing amplitude,
and of a pink noise ξ (t) of lower amplitude [the “1/f” noise, in
reference to the behavior of its power spectral density Sξ (f )].

Since XQ(f , t) = 1
2A(f , t)e

iφ(t) is a complex value, it is represented
by the amplitude A (or its square) and the phase φ. The factor 2
can be computed from a simple harmonic signal A cos(2π f0t) for
which the modulus of the CWT is A

2 ψ̂Q(f ), i.e., at most A
2 for

f = f0.
The image in Figure 2B is the amplitude of the CWT, that is

maximum for t > 0 at the frequencies of the chirp. The amplitude
of the chirp trace decreases while its frequency increases in
time. With a color-coding of A(f , t) = 2|XQ(f , t)| we observe
that the maximum amplitude of the chirp in Figure 2B matches
closely the amplitude of the oscillation in Figure 2A. Since we
code the amplitude on a logarithmic scale, the image of its
square, called the scalogram, is identical. The regions of lower
amplitude appear more noisy, corresponding to the pink noise
ξ (t), the amplitude of which is invariant with frequency. This is
a specificity of the pink noise: it has a constant power density per
decade [Sξ (f )f is constant] and has a strong physiological interest

since it has been proposed to describe the scale invariance of
many natural stochastic signals, such as EEGs [16, 42, 53, 54]. The
pink noise was generated from a MATLAB library, applying to a
white Gaussian noise a filter optimized so that the noise remains
Gaussian with a constant power log-frequency density Sξ (f )|f |.

The next image in Figure 2C represents the phase of XQ(f , t),
i.e., the complex argument φ(f , t) = ℑ{logXQ(f , t)}, which is
conveniently represented with the hues in the chromatic circle
since the phase is a circular quantity. In this work, the phase
0 is represented in green, ±π is in magenta and the interval
from −π to π follows the progression of the colors in the
visible light spectrum (at the exception of the magenta, which
is not in the physical spectrum since it closes the circle). The
phase in time and frequency has a particular behavior. It always
increases continuously and monotonously in time, at a rate that
is consistent with the frequency f : ∂

∂tφ(f , t) ≈ 2π f . This behavior
fails near singular points in time and frequency, namely phase
vortices (of unit charge), for which the phase is not defined (and
the amplitude vanishes). These singular points are distributed
randomly with a global density of 1 per time-frequency atom, and
they are repelled from high amplitude regions. These properties
result in a structure of tree for the lines of constant phase, that
is branching at each singular point toward higher frequencies.
“Channels” made from the repulsion of the singular points out
of the high amplitude region can be noticed, where the phase
progression directly represents the phase of the chirp oscillation.
Remark the fast progression of the phase at a high frequency f
which blurs its visualization at very large time-scales compared
to the period f−1.

The last image in Figure 2D combines both the amplitude and
the phase of the complex value XQ(f , t) in a two-dimensional
color map. This type of shaded-color coding, possible because
the color space is at least two-dimensional (three-dimensional
for at least 96% of human beings), could be represented in
polar coordinates (in C) as a chromatic disc where the phase
angle is the hue and the radius (amplitude) is the saturation
of the color (no defined hue/phase if no saturation/amplitude).
Here the color of vanishing amplitude is set to white, the
low amplitude of the noisy regions indeed appears with
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FIGURE 2 | Graphical representations of the CWT on a pedagogical signal x(t). The signal x(t) is represented in (A), and its CWT (Equation 4) of quality factor Q = 5 is

computed. The amplitude is color-coded in a logarithmic scale in (B), and the phase with the chromatic circle in (C). Note that we represented twice the amplitude of

the CWT in (B) so that it is directly comparable to the amplitude of the time signal (A). Both dimensions of the complex value of the CWT are combined in (D) with a

two-dimensional shaded-color coding: the phase is still associated to a hue in the chromatic circle and the amplitude is coded by the saturation of the color.

very faint and pastel colors, whereas the chirp has a more
intense color.

This shaded-color coding is a synthetic way of representing a
map of complex values at the scale of few oscillations (otherwise
the colors would hardly be distinguishable). While less suited
for illustrating XQ(f , t) at large scale (only the amplitude is
represented as in Figure 2B), the shaded-color coding will be
ideal for time-frequency coherence maps (see reference [55] for a
similar use for fMRI signals).

3.4. Wavelet Based Time-Frequency
Decomposition of EEG, ECG, and
Respiration Signals
We focus here on three types of signals; EEG, ECG, and
respiration from the PSG databases. Among these, the EEG
remains the most complex, because its spectral signature is
a mixture of rhythms of different natures: some of them
have been recognized with a physiological origin, others which
are more volatile (unsteady) can be interpreted falsely from
spectral decomposition [56]. The cross-correlation of these EEG
“rhythms” with other physiological signals (such as the heart
and respiration rates) can help discriminate artifacts from steady
rhythmic sources. Our study proposes a methodology to assist
this clarification. The cardiovascular system is vital for feeding
and clearing the whole body organs, its failure in the brain or

other neuronal tissues leads rapidly to irreversible issues, it must
therefore be finely regulated to keep a correct flux and filtration
of blood. The cerebral blood flow has been reported to increase
during sleep, both in slow wave sleep (4–25%) and in REM sleep
(25–80%) [57]. Recently, it was also shown that the brain rhythms
can be placed in resonance with the HRV and respiration when
modulating the respiration frequency to lower bands [58].

Wake-sleep phases (wake, REM, and NREM) have been
classified in subclasses (stages) related to different patterns
of brain electrical activity, we used this classification to
overlay the hypnogram from a clinician annotation (Figure 3A)
with the corresponding EEG, ECG, and respiration signals
(Figures 3B–D). The hypnogram is a simplified representation
of sleep, based on a set of criteria about the behavior of the
power density of the EEG (possibly complemented by the EOG
and EMG) in the time-frequency domain, roughly discretized in
frequency bands (δ up to 4 Hz, θ from 4 to 8 Hz, α from 8 to
12 Hz, σ from 12 to 16 Hz, β from 16 to 20 Hz, and γ above
20 Hz) estimated from 30 s time epochs. It is an approximation
that cannot account for the continuous dynamics and the micro-
structures of sleep (such as sleep spindles and K-complexes). It
has been shown in reference [59] that the use of a continuous
time-frequency representation of an occipital EEG can simplify
considerably the scoring of the sleep stages but also their reading
at the global scale of sleep, while conserving the information
about micro-structures.
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FIGURE 3 | Comparison of three polysomnographic signals of subject slp04 selected from the database slpdb. (A) Hypnogram of the person (black line), who is

shifting from NREM sleep stage 2 (N2) to wake phase (W) between 3,060 and 3,090 s. Leg movements, which were annoted by the clinician in this 30 s epoch, are

represented by a green bar. (B) EEG (C3-O1) in millivolt, (C) ECG in millivolt, and (D) nasal respiration in liter per second.

We choose the EEG, ECG, and respiration signals from the
same person (slp04) of the PSG database slpdb. In Figure 3, the
transition from NREM stage 2 to wake phase can be noticed on
the three signals. A visual inspection of the signals shows a drastic
change around 3,070 s. We also note that the 30 s length epochs
cannot designate with accuracy the time of this transition on the
hypnogram (Figure 3A).

The scalograms (CWT-based spectrograms) corresponding to
these three signals are shown in Figure 4 (same time interval).
We recognize the fundamental modes of ECG (∼ 20 = 1 Hz)
and respiration signals (∼ 2−2 = 1/4 Hz) in Figures 4D,F, and
some of their harmonics (two harmonics for the ECG which are
visible during the whole time interval and two harmonics for
the respiration in the 3,000–3,060 time interval). The scalogram
of the EEG signal is completely different, there is no clear
fundamental mode. As expected, this means that the EEG is
a mixture of complex dynamics spread over a large frequency
range (at least up to 125 Hz and down to the instrumental
cut-off visible near 1/16 Hz, illustrated in this example). On
the wake stage (beyond 3,090 s) a very thin frequency band
near 10 Hz corresponds to α waves, typical of the phase of
wakefulness with closed eyes [59]. If we look more precisely in
the N2 stage (Figure 4B) we can guess a similar band much
more intermittent and less intense: it is the σ band constituted
of bursts of sleep spindles. This time-frequency representation is
very helpful to recognize different components; singular events

are expressed as vertical structures, whereas periodic components
translate in horizontal bands. Below 4 Hz we observe localized
bursts (with vertical cone rather than horizontal band shape)
corresponding to sharp and sudden events in the signals. The
comparison in Figures 4C,E,G of the log-frequency densities
estimated either directly from the squared Fourier transform
(thin gray line) or from the CWT (Equation 6) (thick black
line), highlights the interest of the CWT method to get a better
differentiation of the peaks and of their power ratio with other
non-periodic components.

3.5. From Raw Signals to Rhythm
Modulations: Capturing Their Amplitude
and Phase
EEG signals are quite complex, they combine both noisy
frequency bands, and aperiodic or quasiperiodic local rhythms
embedded in a rather wide frequency range. The amplitude
or power density changes with time within various frequency
bands are straightforwardly computed from a (complex) analytic
wavelet transform [60], namely the modulus |XQ(f , t)| or its
square. The natural bandwidth at any frequency f is given by
the width of the wavelet δ log f , which can be broadened by
decreasing the quality factor Q or by mean of an integration over
a larger frequency range.
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FIGURE 4 | CWT’s amplitude (twice its modulus) (B,D,F) and spectral densities (C,E,G) of the signals presented in Figure 3. (A) Hypnogram. (B) amplitude of the

EEG (C3-O1) (color bar in mV) and (C) power log-frequency density (in mV2 ). (D) Amplitude of the ECG (color bar in mV) and (E) power log-frequency density (in mV2 ).

(F) Amplitude of the nasal respiration signal (color bar in l·s−1) and (G) power log-frequency density [in (l·s−1)2]. The CWTs are computed with the Grossmann wavelet

of quality factors Q = 10, sufficient to appreciate the frequency localization of the α EEG waves. The corresponding power log-frequency density Sx (f )|f | is estimated

either directly from the squared Fourier transform (thin gray line) or from the CWT (Equation 6), (thick black line).

Alternatively, instantaneous frequencies can be systematically

extracted from the respiration and heart beat signals, yielding
the respiration and heart rates. Preprocessing operations are

required to obtain these signals of interest from the recordings.

The extraction of the instantaneous frequency of a rhythm is

generally aimed at detecting quasiperiodic oscillations (such
as the ECG’s peaks); it is subject to threshold choices,

instabilities in certain situations and requires an homogeneous

resampling. More sophisticated techniques using masking and

synchrosqueezing operations (such as in [61]) are often tedious

and computationally intensive. We propose here an alternative
and fairly simple approach, based on the idea of slowly
modulated carrier waves, that uses the CWT XQ(f , t) of a
measured signal x(t).

For an ideal harmonic oscillation x(t) = A cos(2π f1t),
the time-frequency representation is simply XQ(f , t) =
A
2 ψ̂Q(f1f0/f )e

i2π f1t , from which we estimate the frequency as

2π f1 = ∂
∂tℑ{logXQ(f , t)} = ℑ{ Ẋ(f ,t)

X(f ,t)
} (ℑ is the imaginary part

and the dot stands for a time derivative). We expect this relation

to hold approximately when the frequency is slowly modulated,
f1 = f1(t). This frequency estimated from the phase derivative
is called an instantaneous frequency, and the time-frequency
coordinate points such that f1(t) = f , called the phase ridges [51,
62] (very close to the ridge of peak amplitude). When the envelop
of the oscillation is also slowly modulated, A = A(t), the

CWT can be approximated by XQ(f , t) ≈ A(t)
2 ψ̂Q(f1f0/f )e

i2π f1t

and the amplitude modulation is estimated from the real part

of the logarithmic derivative: ℜ{ Ẋ(f ,t)
X(f ,t)

} ≈ Ȧ(t)
A(t)

. Therefore, the

logarithmic time derivative of the CWT characterizes both the
frequency and the amplitude modulations (assumed to be slow).

Note that ℑ{ Ẋ(f ,t)
X(f ,t)

} is not expected to depend heavily on

f in the above idealized case. A careful selection of this
frequency parameter is however essential for the estimation of
the amplitude and frequency modulations in real signals, either
because the signal-to-noise ratio is only high near the time-
frequency ridge of the mode, or because of multiple simultaneous
modes. However, we argue that these modulations can be
captured in a generic way, without the help of signal-specific
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information, by means of a frequency average:

〈

∂

∂t
logXQ(f , t)

〉

w

=
∫ ∞
0

∂
∂t {logXQ(f , t)}w(f )d log f

∫ ∞
0 w(f )d log f

, (7)

where w(f ) is the frequency weight function. The power density
of the signal at each time t is a natural choice, w(f ) =
|X(f , t)|2, which emphasizes the modulations of the more intense
components (typically the signal) rather than the less intense ones
(typically the noise). For this particular weighting, we get the
simpler expression

K[XQ](t) =
〈

∂

∂t
logXQ(f , t)

〉

|XQ|2
=

∫ ∞
0 ẊQ(f , t)XQ(f , t)d log f
∫ ∞
0 |XQ(f , t)|2d log f

,

(8)
where ẊQ(f , t) is straightforwardly computed by replacing the

wavelet ψ̂Q(f ) by i2π f ψ̂Q(f ) in the numerical implementation
of the CWT. The weight function can include a frequency band
selection window, w(f ) = |X(f , t)|2χband(f ), such as a simple
rectangle function on the band interval [f−

band
, f+

band
]. Such band-

limited frequency average will be of strong interest for screening
specific EEG frequency bands and cross-correlate them with the
heart and respiration rhythms. Note that reducing the band to
a single frequency, χf0 (f ) = δ(f − f0), replaces the frequency

average by an evaluation at f0:
∂
∂t {logXQ(f0, t)}. K[XQ](t) is

complex with the dimension of a rate (Hz), so that we choose to
refer to it as the complex rate of a signal (given a weight function
and an analytic wavelet). It can be decomposed into real and
imaginary parts:

K[XQ](t) = KR(t)+ iKI(t), (9)

interpreted as real and instantaneous modulations of the rhythm
in the signal x(t) (at the scale of the NQ ≈ Q/2.5 oscillations):
KR(t) is the average rate of exponential growth or decay and
KI(t)/2π is the average instantaneous frequency. KI(t)/2π
provides a direct and quick estimation of the HRV [63].

To test Equation (8), let us define model signals of the form
A(t)z(φ(t)), where A(t) is the amplitude, φ(t) is the phase and
z(t) is a periodic triangle wave. Two modulated signals will be
illustrated here, x(t) with a constant amplitude and y(t) with a
constant characteristic frequency:

x(t) = z(φ(t)), so that φ̇(t)2π = f0 + a1 cos(2π f1t)

+a2 sin(2π f2t) (10)

y(t) = A(t)z(2π f0t), so that Ȧ(t)
A(t)

= a1 cos(2π f1t)

+a2 sin(2π f2t). (11)

The triangle wave z(φ) has the specificity of containing
only harmonic frequencies of odd orders (n = 1, 3, 5, . . .),
with an amplitude that decays as n−2 (comparable with the
respiration signal).

The time-frequency analysis of these two model signals for
the parameters (f0, f1, f2) = (1, 1/20, 1/60) Hz, and (a1, a2) =
(0.2, 0.1), reported in Figure 5 with a quality factor Q = 5,

confirms that modulations are indeed slow compared to the
chosen wavelet. At higher quality factor, the modulations are not
resolved entirely by the wavelet, leading to a confusion between
amplitude and phase modulations. The modulated amplitude
A(t) is precisely estimated by

Ã(t) = A0 exp

(∫ t

t0

KR(t
′)dt′

)

, (12)

up to an integration constant A0 (set by hand in Figures 5A,B,
black lines), and the characteristic frequency φ̇(t)/2π is slightly
overestimated by KI(t)/2π (Figures 5E,F). This separation
between the average instantaneous and fundamental frequencies
is due to the harmonic modes in the frequency average
(Equation 8), and it increases with their weight (i.e., with
the non-linearity of the oscillation). The bias is +3.6% here
and it could be predicted from the oscillation’s spectrum:
1+3−3+5−3+7−3+9−3...
1+3−4+5−4+7−4+9−4...

≈ 1.0366 for the triangle wave. Yet, its

correction would not improve a correlation or coherence analysis
since the signal will be standardized (centered and reduced).
Around the ideal modulations given in Equations (10) and (11),
small and fast periodic oscillations at the fundamental frequency
of the rhythm can also be noticed in both types of rate signal.
This non-linear effect finds its origin in pulses in the CWT
(Figures 5C,D), caused by high harmonic frequencies that are
not resolved by the wavelet (as soon as their harmonic order
exceeds the number of wavelet oscillations NQ ≈ Q/2.5).

When the model signal has a much stronger non-linearity
(see Supplementary Figure 2), the deviations from the ideal
modulations are so important that the rate signals can not
be compared directly to the true modulated amplitude and
frequency. More concerning, this fast oscillation could dominate
the correlation analysis of the estimated modulations, if its
amplitude exceeds that ones of the true modulations.

That is precisely where the coherence analysis is helpful,
since it can easily discriminate these artifacts of well-
defined frequency. Amazingly, from our computations
on model and real physiological signals, we have reached
the conclusion that these periodic perturbations are
even beneficial since they enrich the complex rate with
a repetition of the carrier wave. No such oscillations are
included in the usual rate estimation methods (that use lower
sampling frequency).

Compared to peak extraction and re-sampling methods,
common for the study of the respiration and heart rates
variability, the method presented here requires no signal-
specific adjustment, other than a possible frequency band
selection. It also provides for free the amplitude variability
(instantaneous exponential rate) in addition to the average
instantaneous frequency.

3.6. Complex Rates of Physiological
Rhythms Estimated From Recordings
The extraction of the rhythm modulations is required in
order to explore their correlations beyond (lower than)
their natural frequency bandwidths. These modulations
are given by the complex rate K (Equation 8). For
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FIGURE 5 | Idealized modulated signals: triangle waves. (A) Signal x(t) of modulated frequency and constant amplitude. (B) Signal y(t) of modulated amplitude and

constant frequency. In (A,B) the amplitude modulation (estimated from Equation 12) is plotted in black lines. (C,D) Color-coded illustration of the amplitudes of the

signal CWTs (twice the modulus), with their estimated frequency modulation KI (t)/2π (black lines). (E,F) Real and imaginary parts of the complex rates (Equation 8):

KR(t) and KI(t)/2π in black lines, are compared to the ideal values of the instantaneous frequency (blue dashed line centered to 1 Hz) and exponential rate (blue line

centered to 0 Hz), see definitions in Equations (10) and (11). The Grossmann wavelet of quality factor Q = 5 is used for the CWTs and for the rates computations.

FIGURE 6 | Illustration of the complex rate of the ECG (A,C) and of the respiration signals (B,D), from subject slp04 of slpdb near the transition from deep sleep stage

to wake phase represented in Figures 4, 5. In (A,B), the physiological recording is plotted with a blue line, the amplitude estimated using KR(t) (Equation 12) is the

black line, and the alternative estimated amplitude is the black dotted line (see details below). (C,D) Color-coded amplitude of the signals CWT, with their frequency

modulations estimated as the imaginary parts of the complex rates KI/2π (Equation 8) (black lines), and the alternative estimations (black dotted line). In each panel,

the alternative estimation (black dotted line) aims at reducing the non-linearity-induced oscillations (see text and Supplementary Figure 2). The Grossmann wavelet

of quality factor Q = 5 is used for the CWTs. The frequency ranges shown in (C,D) are the ones used for the complex rates computation.

illustration, we apply this method to the EEG, ECG, and
respiration signals of subject slp04 from the database slpdb
(see Figures 6, 7).

The previous computation of K from model signals
(Figure 5 and Supplementary Figure 2) is reproduced
easily for the respiration rhythm, yielding two additional
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respiration fluctuation signals K
Resp
R (t) and K

Resp
I (t), compared

in Figures 6B,D to the original respiration signal and its CWT.
Extracting K from an ECG perturbed by its strongly non-linear
nature (Figure 7A). This non-linearity takes the form of sharp
pulses of high amplitude simultaneous to the ECG pulses.

For the sake of pedagogy, a quick attempt of attenuating
of this non-linear effect is proposed in Figures 6A–D (black
dotted lines), using an alternative weight function w(f ) =
|f−2XQ(f , t)|2 (in Equation 7) to damp the high frequencies.
Although the resulting average instantaneous frequencies are
closer to the fundamental mode during the deep sleep stage, they
are markedly shifted by low frequency perturbations, favored by
the average. This is especially the case for the ECG signal when
the person wakes up (Figure 6C, after 3,090 s). This alternative
computation of the complex rate has the additional side effect
of contaminating the modulated amplitude estimation by the
opposite of the frequency modulation (as observed for the model
signal in Supplementary Figure 2).

The fast oscillations in exp
∫

KR(t) ∼ A(t) and KI(t)/2π ∼
f1(t) (black lines in Figures 6A,C), are produced by the high
harmonic frequencies that are not resolved by the wavelet. Those
which are resolved are continuous harmonic lines that follow
the modulations of the fundamental mode. They all contribute
to the final complex rate KR(t) + iKI(t) proportionally to their
spectral power. In the following, we will prefer this original
weight function for computing the complex rate (Figure 6, black
lines) to the damped version (black dotted lines) that lacks all fine
details. Although these new physiological fluctuation rate signals
do not compare directly to the idealized cardiac and respiration
rates, their spectral richness capture all the modulations that are
resolved by the wavelet in the considered frequency range (plus
the carrier wave).

For the EEG, we select a longer time interval for which the
subject falls asleep (around 20 min) and wakes up (around 50
min), see the hypnogram in Figure 7A. These transitions are
well observable in Figure 7C from the changes of high and low
frequency contents of the scalogram at these times, as in the
average instantaneous frequency (Figure 8E), summarizing this
behavior as the hypnogram in a suprisingly close way. Notice that
we can access much more information from the CWT than from
the hypnogram, such as micro-states of arousal during sleep at
40 and 46 min, yielding transient high amplitudes at the high
frequencies. A conventional way to deal with the complexity of
an EEG signal x is to divide it into band-limited power signals,
computed straightforwardly from its CWT (Equation 5) as:

Pband(t) =
∫ f+

band

f−
band

Q√
π
|XQ(f , t)|2d log f . (13)

While the conventional frequency bands [f−
band

, f+
band

] (δ, θ , α, σ ,
β , γ ) are quite even in a linear frequency scale (with a width
of about 4 Hz), this is not the case on a logarithmic frequency
scale. For this reason, we slightly adapt the bands in this study
as follows: the δ band from 0.25 to 4 Hz, θ from 4 to 8 Hz,
α − σ band from 8 to 16 Hz, and the β − γ band above 16
Hz (up to 125 Hz, the Nyquist frequency limit), see Figure 7D.
Since the real part Kband

R of the complex rate computed in each

band (Figure 7F) is used to estimate the log-amplitude in the

band once integrated, we expect that
∫ t
0 K

band
R (t′)dt′ describes the

samemodulation as the power signal (a squared amplitude) in the
same band. As we can see in Figures 7D,F,

∫

K
band
R and log Pband

are indeed indistinguishable (except for the factor 2 due to the
square in Equation 13). Therefore, both kinds of signal can be
used interchangeably to study the modulation of the amplitude
in the EEG bands. The imaginary part of the complex rate in each
band, not used in the following and hence omitted in Figure 7,
could nonetheless be useful to distinguish α waves from sleep
spindles in our custom α − σ band.

3.7. CWT of the Respiration, Cardiac, and
EEG Band Modulations
The complex rates are computed for the full overnight records
of subject slp04. In particular, we discuss the modulations of the
cardiac frequency, respiratory frequency, and EEG log-amplitude
in the δ and β − γ bands, captured, respectively by the rate

signals KECG
I , K

Resp
I ,

∫

K
δ
R and

∫

K
β-γ
R (from Equations 8 and 9).

The contributions from multiple scales, superimposed in these
modulation estimators, are revealed by their CWT.

The wavelet transform is performed on two distinct levels to
obtain this time-frequency rates coherence: a first CWT of each
recording is required to compute its complex rate, and a second
CWT is applied on the real and imaginary parts of this new
complex signal. Even though the choices of the parameters could
be distinct in these two rounds of CWT, we use as previously the
Grossmann wavelet ψQ of quality factor Q = 5, which seems
again a good compromise between a precise time localization and
a sufficient frequency resolution. This fixes the wavelet widths to

f δt = Q√
2π

≈ 2 oscillations and δ log f =
√
2π
Q ≈ log 1.65 (1.65

being the least distinguishable frequency ratio). The amplitudes
of these CWTs are represented in Figures 8B–E. In addition, we
construct a the phase-randomized surrogate of K

θ
R, shown in

Figure 9A for Figure 8A for comparison.
At this stage of the analysis,

∫

K
θ
R (Figure 8B) is hardly

distinguishable from its surrogate signal (Figure 9A); they both
exhibit a quite homogeneous distribution of the modulation’s
amplitude in the time-frequency plane (especially for the
surrogate). The amplitude Figure 9B vanishes when approaching
the upper frequency 8 Hz of the θ band selected for the for
the θ-EEG rate computation. As observed in Figure 6, the
most intense oscillations in K

ECG
I (Figure 8D) are localized at

the cardiac frequency (and its harmonics): this is the carrier
frequency of the cardiac modulations in the strongly non-linear
ECG signal. The information about the HRV is nonetheless
present at lower frequencies: a mode of varying amplitude at
0.2 Hz confirms the known fact that the heart rate is modulated
by the respiration frequency. We note that the respiration
modulation intensifies, becomes unsteady and extends toward
low modulation frequencies in the time interval between 50 and
180 min (NREM sleep stage 2). Apart from the respiration mode

due to the non-linear carrier wave frequency, K
Resp
I (Figure 8E)

exhibits in this time-frequency region an intense mode at about
0.035 Hz. The subject slp04 is severely affected by sleep apnea,
and this time interval corresponds to an uninterrupted sequence
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FIGURE 7 | Modulation analysis extended to the EEG. (A) Hypnogram of the subject slp04 of slpdb during a sleep cycle: the subject falls asleep around 20 min and

wakes up around 50 min. (B) EEG signal (C3-O1) in black line. (C) Color-coded amplitude of the EEG signal CWT (twice the modulus) during the selected time

interval, computed with a quality factor Q = 5. The color bar gives the amplitude in millivolt. (D) Natural logarithm of the EEG band powers defined in the text and in

Equation (13): Pδ in blue, Pθ in red, Pα-σ in orange, Pβ-γ in purple. The black line is the power integrated on the full frequency range (from 0.04 to 125 Hz), PEEG. (E)

Average instantaneous frequency KEEG
I /2π on the full frequency range. (F) Average rate of exponential growth K

band
R computed in the same frequency bands as in

(D). In (D,F), the central value of each signal has been aligned to the position in (C,E) of the middle frequency of its band. These signals have no dimension and are

scaled in the same way.

of such events (“obstructive apnea with arousal” are marked
with red dots in the hypnogram). The presence of a clear
mode at ∼0.035 Hz means that the corresponding apneic events
occur with a quite regular period: approximately every 30 s.
For this reason, we refer to this phenomenon as the “apneic
rhythm”. So far, we can anticipate that this apneic rhythm causes
correlations between the rate signals, since it is noticeable in all
rates (Figures 8B–E).

4. TIME-FREQUENCY COHERENCE

4.1. Computing the Time-Frequency
Coherence With the Wavelet Transform
The time-frequency coherence can be viewed as a generalization
of both Pearson correlation and traditional (spectral) coherence
and has the advantage to preserve both temporal and spectral
components of the compared signals. A rigorous definition of
these quantities can be found in Supplementary Section 1. A
time-frequency coherence appears to be more appropriate for
the correlation analysis of single trial, non-stationary, non-linear,
and/or multiscale signals produced by physiological rhythms.

This time-frequency coherence is extended from the non-
stationary cross-spectrum (Equation S8), replacing the non-
stationary cross Sxy(f , t) and auto-spectra Sx(f , t) and Sy(f , t) of
the two signals x and y by their CWTs, XQ(f , t) and YQ(f , t):

γxy(f , t;Q) =
E

[

XQ(f , t)YQ(f , t)
]

√

E
[

|XQ(f , t)|2
]

E
[

|YQ(f , t)|2
]

. (14)

This equation computes averages over multiple realizations of
the signals, which is not applicable in general to physiological
signals, apart from rather rare cases [64]. Even though the
wavelet transform already performs a smoothing in both time
and frequency, this averaging is of fundamental importance since
it defines a finite size box over which the spectral and temporal
coherence is evaluated. This quest for a correct coherence
evaluation emerged from the sixties with the introduction of
spectral methods in neurology [65, 66] and led to an abundant
literature. We will only mention here two lines of researches
which are closely related to our time-frequency approach,
namely (i) single and multi-taper methods [59, 67–70] and their
application to time-frequency coherence [32, 71–74] and (ii)
wavelet-based coherence [55, 75–81].
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FIGURE 8 | CWT of the physiological rate signals of subject slp04 from the database slpdb, computed as the real and imaginary parts of Equation (8). (A) Surrogate

signal of (B)
∫

K
θ
R, the amplitude modulation in the θ band, (C) amplitude modulation in the β − γ band

∫

K
β-γ
R , (D) frequency modulation in the ECG K

ECG
I , (E)

frequency modulation in the respiration signal K
Resp
I . The color codes for the amplitude (twice the modulus) of the CWTs, computed with the Grossmann wavelet of

quality factor Q = 5. The amplitude has the unit of the signal: no dimension in (A–C), in radian per second in (D,E). At the top row, the hypnogram is marked with red

dots corresponding to annotated events of obstructive apnea with arousal.

Given that the wavelet effectively performs a smoothing
in both time and frequency, we will use the quality factor
Q for spectral smoothing and introduce another kernel
(see Supplementary Section 2) with a larger size than the
effective wavelet duration δt, defined in section 3.2. The width
of this kernel determines both the temporal resolution of
the coherence analysis and the level of spurious coherence
(expected background noise of the estimator). The statistical
distribution of this spurious coherence is essential to the
evaluation of the coherence (see Supplementary Section 2 and
Supplementary Figure 1).

The temporal smoothing of a time-frequency representation
S(f , t) is performed by convolution with a positive kernel χ :

〈

S(f , t)
〉

χ
=

∫ +∞

−∞
S(f , t)χ(f (t′ − t))f dt′,

〈1〉χ =
∫ +∞

−∞
χ(u)du = 1. (15)

The normalized kernel is adapted to the time resolution of the
CWT; note its similarity with the wavelet in Equation (1). It leads
to the following estimators of the time-frequency power densities
and coherence with respect to the kernel χ :

Sxy(f , t;Q,χ)|f | =
〈

XQ(f , t)YQ(f , t)
〉

χ
,

γxy(f , t;Q,χ) =
〈

XQ(f , t)YQ(f , t)
〉

χ
√

〈

|XQ(f , t)|2
〉

χ

〈

|YQ(f , t)|2
〉

χ

. (16)

Remarkably, the temporal smoothing in Equation (15) preserves
an homogeneous level of spurious coherence in the time-
frequency plane (see Supplementary Section 2), while a
smoothing kernel of constant duration at all frequencies implies
a much greater spurious coherence at low frequencies than
at higher ones as described in Torrence and Compo [77] and
Gurley et al. [78].

More explicitly, we use a Gaussian time-smoothing kernel
χn with a temporal spread of n times the width of the
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Grossmann wavelet:

χn(ft) =
2
√
π

nQ
e−(

2π ft
nQ )2, (17)

for which the root mean square of the spurious coherence
|γsp| is found to be very close to 1/

√
n. The significance of

the estimator |γxy(f , t;Q, n)|2 is given by the distribution of
the squared spurious coherence, simulated by two independent
jointly stationary Gaussian noises. This spurious coherence
follows a beta distribution with a single parameter β = β(Q, n),
which turns out to be practically independent of Q and very
close to n (when >10): β ≈ n. A simple expression for the
p-value of any squared coherence level is obtained from the
beta distribution:

p(γ 2) ≡ Pr(|γsp|2 > γ 2) = (1− γ 2)β . (18)

As proposed in the context of a multi-wavelet estimator [75],

it provides the threshold coherence value γ 2(p) = 1 − p
1
β

above which |γxy(f , t;Q, n)|2 exceeds a p-level of significance.
See Supplementary Section 2 and Supplementary Figure 1 for
more details. As a consequence, the higher the value of n ≈ β , the
more significantly we can distinguish low coherence values from
the background (spurious), but the lower the time resolution.
Equation (18) serves to calibrate the phase-amplitude shaded-
color coding of the complex-valued map shown in Figure 2D,
and thus build a synthetic visualization of the significant time-
frequency coherence. The computed significance levels are then
assessed from the coherence map obtained from a phase-
randomized surrogate. It is worth mentioning here that well-
constructed surrogates can also serve to estimate the significance
directly, see for instance reference [82].

4.2. Wavelet-Based Time-Frequency
Coherence From Raw Signals
The physiological interpretation of the time-frequency coherence
highly depends on the choice of the compared signals. The
time-frequency coherence computed directly from the CWTs
of the original records includes all the components from
physiological and instrumental sources. It provides a way to
locate the oscillations that are jointly collected by both measuring
apparatus, regardless of their intensity in each recording. Regions
of significant coherence may also indicate cross-talks between
the sensors (which are preferably minimized for an optimal
specificity of each measure).

We compute the CWT of the EEG, ECG, and respiration
signals of subject slp04 from database slpdb with a quality factor
Q = 5 (see Supplementary Figure 5). The time-frequency
coherence, computed from pairs of signal CWTs with the
Gaussian kernel of parameter n = 50, is represented in Figure 9.
See also Supplementary Section 5 and Supplementary Figure 8

for another detailed example of coherence computation between
2 EEGs. In the panels of Figures 9B,D,F, we also compare
the spectral coherence γxy(f ) (Equation 8), computed from
“Fourier” spectral densities (first method) and from CWTs
(second method). The spectral densities are estimated in the first

method from cross and squared Fourier transforms computed in
1 min windows with 30 s overlap and averaged (Welch’s method),
whereas in the second method, cross and squared CWTs are
averaged over all times.

The most coherent region (|γxy| > 0.7) lies around 0.2
Hz between the ECG and the respiratory signal (Figures 9E,F)
which corresponds to repeated apneic episodes for this subject.
This imprint of respiration on the ECG signal around 0.2 Hz
is reminiscent of the complex interaction between autonomic
system,mechanical and other factors on the excitable cells located
in the sinoatrial node (respiratory sinus-arrhythmia RSA [83]).
The shaded-color representation of Figure 9E shows that the
phase of the coherence gets closer to π/2 (phase quadrature)
during the longer NREM sleep stage 2 (N2) (typically between
100 and 180 min, in the first half of night), whereas it is in
phase opposition (π or−π) when the N2 sleep stages are shorter.
This heart-respiratory coordination vanishes in the wake or REM
phases. Interestingly, this coordination is more visible in the
EEG-respiratory pair coherence in Figure 9C in the second part
of the night, with a narrower band of coherence around 0.2 Hz,
and again in phase opposition.

Cardiac pulses that appear in the EEG yield another significant
coherence (up to |γxy| ∼ 0.5) (Figure 9A). The high cardiac
harmonic frequencies are particularly coherent with the EEG
oscillations above the δ band, with a phase relation to the
frequency which follows the linear trend φEEG − φECG = ±π +
2πτ f , where τ ≈ 14 ms. This means that the cardiac pulses in
the EEG seem to appear slightly early compared to the ones in
the ECG. This phenomenon is related to the one of heart-beat
evoked response/potential [84].

Finally, we notice in Figure 9C two interesting features, (i)

the imprint of respiration on ECG appears also in the EEG-
respiration pair coherence but is more visible in the last part of

the night, and it also gives a phase opposition of these two signals,

(ii) another coherent mode (|γxy| ∼ 0.5) in phase opposition

(magenta) between the EEG and the respiration signal appears

in the very low frequency range (∼ 0.035 Hz). An intermittent

mode at 0.035 Hz is indeed noticeable in the CWT of the
respiration signal (Supplementary Figure 5C), sign of a periodic

loss and recovery of the lung capacity at every apneic cycle (about

six respiration cycles). Such a mode can hardly be observed

directly from the CWT of the EEG because of its damped

amplitude at such a low frequency. In spite of this instrumental

attenuation of slower oscillations, the coherence normalization
compensates the loss of EEG power as long as the very weak

oscillations are resolved in the signal. A close inspection of the

EEG CWT (Supplementary Figure 5A) uncovers bursts (vertical
singularities) about every 30 s across higher frequencies, the

low frequency roots of which could produce such weak but
regular oscillations at 0.035 Hz. The phase opposition with the
respiration signal means that the EEG bursts occur precisely
when the lung capacity is at its lowest level. The study of
the very low frequency band, complicated in raw signals by
their instrumental high-pass filtering, is however unleashed in
modulation signals, which can oscillate arbitrarily slowly (no low
frequency decay in Figure 8).
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FIGURE 9 | Time-frequency coherence γxy (f , t;Q, n) (A,C,E) and spectral coherence γxy (f ) (B,D,F) computed from pairs of CWTs (see Supplementary Figure 5) for

subject slp04 from the database slpdb. (A,B) EEG vs. ECG, (C,D) EEG vs. respiration signal, (E,F) ECG vs. respiration signal. The ranges of coherence moduli |γxy |
for the color saturation coding are delimited by the lower thresholds γ (10−1) ≈ 0.21, γ (10−3) ≈ 0.36, 0.5, 0.7. The wavelet and smoothing kernel parameters are

Q = 5 and n = 50. For each coherence image, a black line materializes a distance nδt from the initial and final times, beyond which border effects are possible. The

spectral coherence γxy (f ) (right column) computed from Fourier transforms (thin gray line for its modulus) is compared to the one computed from CWTs (black line for

its modulus and colored dots for its phase). See text for details.

4.3. Time-Frequency Coherence From EEG,
ECG, and Respiration Modulation Signals
We extract first the modulations of the respiratory and cardiac
frequencies and of the EEG bands with a wavelet time-frequency
decomposition described in section 3.5, and we compute the
cross and auto power spectral density from their wavelet
transforms and the coherence from them. We use the Gaussian
time-smoothing kernel χn (Equation 17) with a duration of
n = 10 wavelets, giving a time-localization of 10δt ≈
20/f , sufficient to identify the respiration rate at a resolution
of 1 or 2 min and to resolve the variability of the apneic
rhythm. However, the spurious coherence at a 90% level of
significance (p < 10−1) associated to this quite local estimator
is as high as γ (10−1) ≈ 0.46 (see Equation 18): this time-
frequency coherence analysis is therefore limited to rather strong
correlations. The resulting time-frequency coherence of different
pairs of modulation signals for the subject slp04 are represented
in Figure 10.

The most striking observation in Figure 10 is an intermittent
but strong coherence in the frequency band near 0.035 Hz,
between 50 and 180 min, in all pairs of physiological rate signals
(Figures 10C–H) (which can extend to 200 min, and is also
visible around 340 min). By comparing the time intervals in
which this apneic rhythm appears with the annotations of the
hypnogram (Figure 10A), we notice that it only occurs during
the NREM sleep stage 2 (N2) and that the coherence decreases or
disappears when the person wakes up (W). coherence decreases
or disappears when the person wakes up (W). The different
colors of this region indicate different phase shifts between rates.
For instance, in Figure 10C, the EEG β − γ band is − 2π

3 to

− 5π
6 radians delayed (late) compared to the EEG θ band. This

means that not only these two EEG frequency bands behave
coherently, but also that they are quite in phase opposition; while
the EEG signal in the θ band reaches its maximum, the EEG
signal in the β − γ band increases progressively from its lowest
value. In Figure 10D, the small phase shift between K

ECG
I and
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FIGURE 10 | Time-frequency coherence analysis of the physiological rate signals pairs, obtained from their CWTs represented in Figure 8. In the following, the

coherence of signal x vs. signal y corresponds to the quantity γxy (f , t;Q, n), the EEG band signals are the log-amplitude modulations estimated as
∫

K
band
R , and the

cardiac and respiratory rates are the frequency modulations estimated from the ECG and respiration signals as KI. (A) Hypnogram; the red dots corresponds to

annotated events of obstructive apnea with arousal. (B) Band θ surrogate (phase-randomized signal) vs. θ . This control coherence illustrates the level of significance of

the spurious coherence. (C) β − γ vs. θ band, (D) cardiac vs. respiratory rate, (E) β − γ band vs. cardiac rate, (F) θ band vs. cardiac rate. (G) β − γ band vs.

respiratory rate. (H) θ band vs. respiratory rate. The ranges of coherence moduli |γxy | for the color saturation coding are delimited by the lower thresholds

γ (10−1) ≈ 0.46, γ (10−3) ≈ 0.71, 0.8, 0.9. The quality factor of the Grossmann wavelet is Q = 5 and the Gaussian time-smoothing parameter is n = 10. For each

coherence image, a black line materializes a distance nδt from the initial and final times, beyond which border effects are possible.

K
Resp
I indicates that the decreases and increases of the cardiac

and respiratory rhythms occur quasi in-phase at each cycle of
apnea (or the cardio-apneic rate variation slightly precedes the
respiratory one). The light green color of the apneic coherent
region in the next panels (Figures 10E–H) indicates that the
cardiac and respiratory modulations evolve nearly in phase with
the EEG β − γ band, while it is rather in phase opposition with
the EEG θ band (purple blue color).

We can also observe in Figure 10G a region of strong
coherence (|γ | ∼ 0.8 − 0.9) in phase opposition (magenta),
from 250 to 340 min at very low frequencies (below
2−6 ∼ 0.02 Hz, i.e., at the scale of a few minutes). As can
be checked in Supplementary Figures 5A,C, this region
corresponds to isolated events of apnea (at times 250, 265,
292, 303, 306, 324 min), with relatively quick drops and
restoration of the respiration frequency and simultaneous
rise and disappearance of β − γ amplitude in the EEG.
These kinds of micro wake states may constitute a different
recovery mechanism, slower than the apneic rhythm
around 0.035 Hz.

Other regions of significant coherence can be observed. In
Figure 10D, the modulation of the cardiac rate by the respiration
in the frequency range 0.1–0.4 Hz is also observed in some
time intervals (from 30 to 40 min and from 270 to 320 min).
Amazingly, the strong coherence which was computed from the
CWTs of the raw signals (Figure 9E) has quite disappeared, in
particular during the sleep apnea episodes. Comparatively, the
coordination of the apneic rhythm has a much stronger echo in
the EEG signals.

In Figure 10E, in-phase coherent lines at the cardiac
fundamental and harmonic frequencies highlight the presence of
cardiac impulses in the β − γ band of the EEG (also visible but
less significant in the θ band). Interestingly, a slight coherence of
phase shift π3 , at the respiratory frequency from 100 to 150 min,
also appears between the cardiac rate and the β − γ amplitude.

This evidence questions the relation of the apneic rhythm to
a dysfunction of the autonomic regulation of cardio-pulmonary
coupling during sleep apnea [83, 85]. The fact that the coherence
phase changes in subject slp04 when comparing different EEG
frequency bands [β − γ and θ illustrated in Figures 10E–H]
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could suggest a different implication of sub-groups of neurons in
this regulation. Brain inter-band EEG correlation patterns have
recently been demonstrated in different sleep stages [86], by the
computation of a Pearson correlation coefficient ρxy from pairs
of frequency bands. This distinguishes well in-phase fluctuations
from those in phase opposition, however both positive or
negative phase quadrature (e.g., due to a differential relation)
lead to a vanishing correlation. Extending the Pearson correlation
ρxy to a complex correlation coefficient (or global coherence)
ρ∗xy (Equation S6), that takes values in the unit disk, could
restore a whole 2π interval of phase-shift values. The observation
of heterogeneous EEG inter-band coherence in Figure 10 and
Supplementary Figure 7 further suggests the importance of
introducing the spectral localization (i.e., the coherence γxy)
for contributions of slow and fast modulations [87]. Finally,
in (Figure 10C) a wide domain of in-phase coherence (green)
appears between the θ and β − γ bands when the person is
awake (from 190 to 240min), while this type of correlation damps
out during sleep (apart from the apneic rhythm). An explanation
could be found in the singular events crossing the full frequency
range, possibly related to motions of the waked person. The
complete EEG inter-band coherence analysis (for all EEG band
pairs) is presented in the Supplementary Figure 7.

The richness of the proposed time-frequency method offers
more analytic perspectives than those tested in here. In the case
of EEGs for instance, the modulation of the amplitude (or power)
in each band could be compared to the EEG itself; such a choice
of input signals for a coherence analysis could help understand
the relations between the phase of slow waves (e.g., δ) and the
modulations of faster ones (e.g., sleep spindles).

This thorough coherence analysis of the subject slp04 points
out the interest of themethod proposed in this work, generalizing
it to the shhs2 polysomnography database in next section 5,
brings a statistical confirmation of its validity, as compared to
other analysis of the HRV published in the last two decades
[88–90].

5. STATISTICAL CONFIRMATION OF THE
APNEIC RHYTHM IN THE SHHS2

DATABASE

Finally, we complete this study with a statistically robust
analysis of a large selection of subjects from the shhs2 database,
distributed in five groups defined by their type of sleep apnea (see
section 2.4).

Before selection, an individual analysis of the rates coherence
(Figure 10) is performed from all the subjects of the shhs2
database. The statistics is performed in each group by averaging
in time, over the selected and cumulated intervals, the time-
frequency squared coherence |γxy(f , t;Q, n)|2. This reduces the
huge amount of generated individual data to the typical intensity
of synchrony defined as the squared coherence between the
physiological rate signals, across frequencies and apnea groups.
Note that the square is essential here to focus on the average
instantaneous coherence strength. It prevents the sleep stages
and inter-personal variabilities of the coherence phase (complex

argument) from reducing the global mean intensity, as would be
the case when estimating the (stationary) spectral coherence. The
distribution of the phase can be studied separately.

5.1. Averaged Synchrony Between
Physiological Rate Modulations
The coherence profiles, resulting from the conditional averaging
of |γxy(f , t;Q, n)|2 over the full cumulated times of apnea in each
group, are compared in Figure 11 for three pairs of modulation
signals from the heart, breathing and brain activity. The total
duration of these averaging intervals (for each sub-group H,
O, and C) is very long compared to the width of the (time)
smoothing kernel (of characteristic duration nδt = nQ√

2π f
≈

20f−1 s for our estimate), which makes these profiles very
robust. They can further be compared to the expected spurious
coherence level 〈|γsp|2〉 ≈ 0.09 (gray thick dashed line in
Figure 11) fixed by the time smoothing parameter n = 10.

CSA and OSA are associated with the rise of a peak of
coherence between all pairs of rate signals, maximum around 0.02
Hz, on the group C and O (green and red lines in all panels of
Figure 11). This mode is much less prominent in the group H
(blue line) and absent from the control group (black line); instead
the baseline of coherence at very low frequency is enhanced. This
band corresponds to the “apneic rhythm” in the breathing and
heart rates and in every band of the EEG activity (only θ band,
shown in Figures 11B,C). In contrast, a peak of coherence at the
respiratory frequency (near 1/4 Hz) is visible in Figure 11A only,
meaning that the heart rate is modulated by the breathing cycle
[this is the respiratory sinus arrhythmia (RSA)]. Contrary to the
slower coherent mode, this modulation is most coherent in the
control and the H group, whereas it is almost incoherent in the C
and O groups.

The asymmetric shape of these two coherent modes can be
explained as follows: (i) the bandwidth of the Grossmann wavelet
δ log f covers less than an octave (from the quality factor Q =
5), and imposes a log-normal shape and a minimum width to
isolated and non-averaged coherence peaks; (ii) the variability of
the frequency of both coherent modes over times and subjects in
each group is likely to spread the averaged peaks on larger widths
(>1 octave); (iii) before averaging, a second peak (harmonic
mode) of lower coherence can be distinguished, with frequency
shifted one octave higher than the fundamental one.

Furthermore, a coherent mode at the cardiac frequency (at 1
Hz and above) is visible in panel B for all group averages. It is due
to the presence of cardiac pulses in the EEG (studied as the heart-
beat evoked response/potential [84]). Finally, a decrease of the
coherence level below the expected spurious level can be noticed
between the breathing and cardiac frequencies in Figures 11A,B.

5.2. Comparison to HRV Power Spectral
Density
We use the PhysioNet cardiovascular signal toolbox [91] to
compute the HRV signals from the ECG’s RR intervals (jqrs
algorithm), corrected automatically for ectopic and non-normal
beats. We then compute the typical power spectral density
profiles corresponding to each group as in Figure 11 as follows:
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FIGURE 11 | Comparison of typical squared coherence profiles for different sleep apneas and from different rate signals pairs, obtained from the full database shhs2.

In each panel, colored lines are obtained by averaging the squared modulus of the time-frequency coherence, |γxy (f , t;Q, n)|2, over the time duration of apneic events

in distinct groups: 87 subjects strongly affected by hypopnea (blue lines), 153 by OSA (red lines) and 189 by CSA (green line). See text for details of the selection. The

black line is the average over the full sleep duration of a control group very mildly affected by any type of apnea, the black dotted line is the unconditional average over

the full sleep duration of all 2,650 subjects in the database, and the gray thick dashed line traces the expected level of spurious coherence. These profiles are mean

squared coherences between (A) the cardiac vs. respiratory rate, (B) the θ band vs. the respiratory rate and (C) the θ band vs. the cardiac rate modulation signals, as

shown for a single subject in Figures 10D,F,H before squaring and time averaging.

(i) we obtain the CWT squared modulus (Q = 5) of the
heart rate signal of each subject in shhs2, (ii) we select the
subjects of each group and the time intervals with sleep apnea
as previously (section 5.1), (iii) we perform the (conditional and
unconditional) time averages for each subject. Figure 12A is then
obtained by averaging individual spectra in each group, weighted
by the duration of each individual time selection, whereas in
Figure 12B the individual spectra are normalized prior to the
group average (also weighted by individual duration). As a
result, the profiles in (A) give mean absolute values for these
HRV spectra, whereas (B) shows the mean profiles relative to
the strength of the HRV (by normalizing out strong or weak
individual HRV).

The only difference between the data selection in Figures 11,

12 lies in an additional data exclusion of all 10-s epochs of

non-physiological RR intervals (outside 0.375 to 2s during more

than 15% of the duration, before correction). This mask excludes
about 5–10% of the total durations in each group. The mean

normalized HRV spectra in Figure 12B are nearly insensitive

to this procedure compared the ones obtained without any

data exclusion or with a stricter selection criterion (sqi > 0.9,

excluding 25–30% of the heart rate duration that does not
coincide with the alternative estimation from the sqrs algorithm).

These selections, supposedly affected by detection artifacts, tend
to have strong amplitudes, so that their exclusion leads to a global
decrease of the values of the mean HRV spectra in Figure 12A.

A first observation is the clear correspondence between rates

coherence and HRV power spectra profiles, in particular we note
the presence of a peak at low frequencies in Figures 11, 12,

especially prominent in the case of obstructive and central sleep
apneas. In the respiratory frequency band, however, differences
between the groups are much harder to grasp from the HRV
power spectra: the control group seems to have a significantly
higher proportion of respiratory HRV (RSA) than the apneic
groups (Figure 12B). This inversion of intensity from the low

frequency to the respiratory bands between apneic and healthy
subjects was much easier to discriminate in the rates coherence
profiles (Figure 11A).

While these two measures both describe a certain intensity
of the physiological activity in these frequency bands, their
interpretation is very different. The HRV power spectra is
limited to quantify the extent of the HRV amplitudes across
frequencies, while the cardio-respiratory rates coherence of
Figure 11A characterizes the quality of the synchrony, regardless
of these amplitudes.

Based on all the above presented profiles for central and
obstructive sleep apnea, we finally give our estimation of the
localization of the fundamental apneic (low frequency) mode:
the global maximum lies at 0.019 ± 0.002 Hz (i.e., a period of
12–15 breathing cycles), and the widths suggests a variability of
this rhythm among subjects ranging from 0.011 to 0.038 Hz (i.e.,
1.8 octave).

6. CONCLUSION

We addressed the question of characterizing the coherence
between distinct dynamics inside a physiological network. As
suspected quite early (250 years for the heart rate), the variability
(modulation) of these rhythms is at the core of neural regulation
of organ systems, such as the cardiovascular and respiratory
systems considered in this study. Analysing pair-wise interactions
under the angle of a coherence analysis, we highlighted the high
level of complexity of polysomnography database signals. Their
non-stationarity, their nonlinearity and their wide frequency
ranges are all taken into account without needing any pre-
processing treatment (such as spectral whitening/detrending, or
rank statistics). Moreover, this time-frequency extension of the
correlation analysis is a starting point for the study of interaction
network (see for instance [92]), which directly benefits from
analytic expressions for the significance of the estimators,
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FIGURE 12 | Comparison of typical HRV power spectral densities, obtained from the full database shhs2. (A) Power log-frequency density of the HRV signal, in

bpm2, obtained by averaging its squared CWT in time (see Equation 6) over the selected time durations for the same subject groups as those used for Figure 11

(using the same color coding). (B) Time-averaged spectra, normalized for each subject prior to the group average (weighted by individual durations). The heart rate

signals are estimated for each subject’s ECG from the corrected RR interval.

multidimensional refinements, such as multiple and partial
correlations [93], as well as more recent directed versions of the
coherence [25, 94]. We believe this is the natural framework to
recast the questions of correlations, synchronization, delays, and
the search for their stability and persistence, strengthening their
physical roots.

It has been recognized since the sixties that the autonomous
nervous system is undergoing profound changes during sleep
[95], and that these changes can be traced in the sleep stages [96].
The autonomic nervous system regulation of the cardiovascular
system changes from N1 to N3 sleep stages, the parasympathetic
nervous system getting predominant at deeper sleep stages.
Spectral analysis of the HRV was widely used in the last decades
[8, 63, 97], and led to distinguishing three frequency bands: (i)
a low frequency band (LF) (0.04–0.15 Hz), representing both
sympathetic and parasympathetic (vagal) regulation, (ii) a high
frequency band (HF) (0.15–0.40 Hz) where the parasympathetic
regulation dominates and (iii) a very low frequency band
(VLF) (below 0.04 Hz) where sleep-related respiration disorders,
thermo or vasomotor regulation mechanisms could be involved
[63, 98].

We proposed a novel method, namely the complex rate, to
extract the instantaneous temporal variation of frequency and
amplitude of rhythms directly and simultaneously from the
wavelet transform of the original (raw) records, and we described
how they differ from the signals extracted by other methods.
From these modulation signals, we computed a time-frequency
coherence based on the Grossmann wavelet and we revealed both
the spectral and temporal structure of the correlation between
the cardiac, respiratory rates variability, and the neural activity
in distinct frequency bands. Our wavelet-based computation of
the complex rate K[XQ](t) was straightforward and did not
require usual preprocessing steps [98]. The manipulation of
complex-valued maps, such as XQ(f , t) or γxy(f , t) was shown
to be of major importance to account for the richness of
the dynamics under consideration. Their high dimensionality

can however discourage their full visualization which could
explain the few attempts existing in the literature (the color
coding is often limited to the real-valued squared modulus).
For this reason, we believe that our use of a polar color-shaded
coding (saturation and hue) for the modulus and the phase
was also a useful achievement of this work, yielding a synthetic
graphical visualization.

We first focused on a subject affected by obstructive sleep
apnea to illustrate how slow rhythmic events related to apnea
and recovery were ubiquitous in the modulations from all the
records (EEG in all bands, ECG and respiration), pointing
out the strong interaction of different organs involved in
the mechanisms associated to apnea. After exploring the rich
phenomenology of individual polysomnographic recordings, we
repeated this analysis on all subjects of the shhs2 database
and we exposed a statistical analysis of the rates squared
coherence profiles for different types of sleep apnea in a
large database of apneic subjects, and compared it to averaged
HRV spectra.

Without any preprocessing or filtering of the data, we showed
that apnea intervals were unambiguously related to an apneic
modulation in the VLF frequency band of the neural, cardiac
and respiratory rhythms. For severe sleep apnea, this modulation
is most coherent and rhythmic, with a quite well-defined
fundamental frequency localized not farther than an octave from
0.02 Hz (depending on the subject). It is also easily observable
from the oxygen saturation (SpO2) recordings provided by the
slpdb database, and it clearly corresponds to a peak in the HRV
power spectra at the same frequency. The increase of this rate
coherence and HRV power in the VLF band is concomitant
with the decrease of a second coherent mode a decade higher:
the well-known heart rate modulation by the breathing cycle
(respiratory sinus arrhythmia (RSA) [83] in the HF band).
This trade-off between the activities in the VLF and the HF
bands, which is harder to grasp from the HRV power spectra,
corresponds to an increased sympathetic activity and decreased
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vagal (parasympathetic) activity [4, 5] during sleep apnea (and
hypopnea to a lesser extent).

Finally, the HRV power spectra, which can be computed
from ECGs only, are therefore easier to capture and to analyse.
However, they measure only the extent of the HRV amplitudes
across frequencies, while the cardio-respiratory rates coherence
characterizes the quality of their synchrony, regardless of the
amplitude of the modulations. This can be used to capture
intervals of synchronization from a pair of oscillators, also giving
access to their phase shift. Cardio-respiratory synchronization
is not generally recorded in rest or sleep, it has been observed
during specific breathing and/or vocal exercises [99, 100].

The analytic wavelet decomposition that underlies our time-
frequency method shares a deep connection with the Hilbert
transform, used in other phase detection methods. For instance,
at the basis of the construction of synchronization indices and
coupling functions between the heart and breathing phases [101,
102], the non-linear Hilbert protophase is transformed into a
genuine (linear) phase from the preliminary estimation of the
noise-free oscillation shapes. In the analytic wavelet transform of
a rhythmic oscillation, this genuine phase is estimated “on the
fly” from the phase of the fundamental mode, while harmonic
modes account for non-linearities (i.e., the mismatch between
the recorded oscillations and our generic wavelet shapes).
Preliminary estimations, such as correct window sizes for highly
noisy and non-stationary signals can be the most difficult task.
They reduce in our approach to the choice of a quality factorQ for
the wavelet transform, and the size of the time-averaging kernel
n in the coherence analysis. We have discussed their role in the
compromises between resolutions and significance.

We showed how the time-frequency coherence can overcome
the comparisons of signals of very different spectral and temporal
signatures and uncover otherwise hidden or mixed correlations.
In particular, the cardiac and respiration rhythms were identified
in the EEGs with different intensities, overlaps which are rarely
taken into account [42]. Such a cross-talk is also expected
between EEGs recorded at distant locations, and their alternating
coherence patterns (strong or weak, in-phase or out-of-phase,
in different frequency bands), could be used to study sleep
stages. This is illustrated in the Supplementary Material for
two EEG signals recorded contralateraly from a subject of the
shhs2 database. In spite of their expected very strong and
global correlation, we observe in Supplementary Figures 8, 9 the
emergence of different patterns related to the phases of sleep. The
rate coherence from other EEG frequency bands have also been
investigated (Supplementary Figure 7), and we have been rather
amazed by the variety and richness of cross-couplings (in phase
and intensity) that our rather simple method could uncover. This
reinforces the complementarity of the time-frequency coherence
for physiology signals investigation to other methods aiming at
reconstructing phases coupling [101, 102] for characterizing sleep
disorders and their organic or central nervous system origin [29,
97]. It also provides a complete and visual picture of correlations

between distant zones and should help addressing new issues in
Network Physiology [3, 103, 104].
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