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Data assimilation in models representing spatio-temporal phenomena poses a
challenge, particularly if the spatial histogram of the variable appears with multiple
modes. The traditional Kalman model is based on a Gaussian initial distribution and
Gauss-linear forward and observation models. This model is contained in the class of
Gaussian distribution and is therefore analytically tractable. It is however unsuitable
for representing multimodality. We define the selection Kalman model that is based on
a selection-Gaussian initial distribution and Gauss-linear forward and observation
models. The selection-Gaussian distribution can be seen as a generalization of the
Gaussian distribution and may represent multimodality, skewness and peakedness.
This selection Kalman model is contained in the class of selection-Gaussian
distributions and therefore it is analytically tractable. An efficient recursive
algorithm for assessing the selection Kalman model is specified. The synthetic
case study of spatio-temporal inversion of an initial state, inspired by pollution
monitoring, suggests that the use of the selection Kalman model offers significant
improvements compared to the traditional Kalman model when reconstructing
discontinuous initial states.
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1 INTRODUCTION

Data assimilation in models representing spatio-temporal phenomena is challenging. Most statistical
spatio-temporal models are based on assumptions of temporal stationarity, possibly with a
parametric, seasonal trend model [1]. We consider spatio-temporal phenomena where the
dynamic spatial variables evolve according to a set of differential equations. Such phenomena
will, in statistics, normally be modeled as hidden Markov models [2]. The celebrated Kalman model
[3] is one of the most frequently used hidden Markov models.

In studies of hidden Markov models, it is natural to distinguish between filtering and smoothing
[2]. Filtering entails predicting the spatial variable at a given time with observations up to that point
in time. Smoothing entails predicting the spatial variable given observations both at previous and
later times. Filtering is naturally based on recursive temporal updating while smoothing appears as
more complicated since updating must also be made backwards in time. We focus on a particular
smoothing challenge, namely to assess the initial state given observations at later times and we denote
the task spatio-temporal inversion.

Spatio-temporal inversion is of interest in many applications. In petroleum engineering, initial
water saturation is often unknown. Ensemble smoothing techniques [4–6] are commonly used to
evaluate this parameter and improve fluid flow prediction. In air pollution monitoring [7], inverse
trajectory methods are used to identify potential source contribution. Source mapping of wildfire
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origin from airborne smoke observations is a spectacular example
[8]. Evaluation of groundwater pollution mostly focuses on the
future pollution of the pollutant, but as emphasized in [9], the
identification of the heterogeneous source may be complicated.

We study a continuous spatial variable, a random field (RF),
with temporal behavior governed by a set of differential
equations. The spatio-temporal variable is discretized in space
and time, and the hidden Markov model is cast in a Bayesian
framework. The prior model consists of an initial spatial model
and a forward spatio-temporal model, representing the evolution
of the spatio-temporal phenomenon. The likelihood model
represents the observation acquisition procedure. The
corresponding posterior model, fully defined by the prior and
likelihood models, represents the spatio-temporal phenomenon
given the available observations. The traditional Kalman model
constitutes a very particular hidden Markov model [3] with a
Gaussian initial model and a linear forward function with
Gaussian error term (Gauss-linear) forward model, and a
Gauss-linear likelihood model. Since the class of Gaussian
models is closed under linear operations, the posterior
distribution is also Gaussian in the Kalman model, and the
posterior model parameters are analytically tractable. Based on
this posterior Gaussian model, both filtering and smoothing can
easily be performed. In particular, the spatio-temporal inversion
can be obtained by integrating out the spatial variables at all time
points except the initial one, which is a simple task in Gaussian
models. Most spatio-temporal models used in statistical studies
are defined in the traditional Kalman model framework [10, 11].
Moreover, most of these models are based on spatial stationarity
and consider filtering. Their focus is primarily on computational
efficiency, not on model flexibility.

The fundamental Gauss-linear assumptions of the traditional
Kalman model are often not suitable in real studies. The initial
spatial variable may appear as non-Gaussian and/or the forward
and/or the likelihood functions are non-linear. In the control
theory community, linearizations such as the extended Kalman
filter [12] or quantile-based representation such as the unscented
Kalman filter [13] are recommended in these cases. These
approaches are suitable for models with mild deviations from
Gauss-linearity. Statisticians will more naturally use various
Monte-Carlo based approaches such as the particle filter [2] or
the ensemble Kalman Filter (EnKF) [14]. The particle filter is a
sequential Monte Carlo algorithm with data assimilation made by
reweighting the particles. To avoid singular solutions, resampling
is usually required during the assimilation. The need for
resampling makes the definition of an efficient corresponding
particle smoother difficult. The EnKF is also a sequential Monte
Carlo algorithm with data assimilation based on linear updates of
each ensemble member. The sequential linear updates cause the
ensemble distribution to drift toward Gaussianity. A
corresponding ensemble smoother [15] is available but the
ensemble drift toward Gaussianity makes it difficult to
preserve non-Gaussianity in the posterior distribution. The
discrete representation of the spatial variable makes the spatio-
temporal model high-dimensional, and according to [16, 17], the
EnKF is preferable to the particle filter in high dimensional
models. Lastly, brute force Markov chain Monte Carlo

(McMC) [18] algorithms may be used for spatio-temporal
inversion, but the increasing coupling of the temporal
observations makes these algorithms inefficient. Focus in our
study is on the spatial initial state of the spatio-temporal
phenomenon, and we aim at reproducing clearly non-
Gaussian marginal features, such as multi-modality, skewness
and peakedness. Several models with such features are presented
in the literature.

In [19], a hidden Markov model with a skew-Gaussian initial
model is defined, and for Gauss-linear forward and likelihood
models, it is demonstrated that the filtering is analytically
tractable. The skew-Gaussian model is based on a selection
concept, and the current spatio-temporal model will later be
defined along these lines.

In [16, 20–24], the initial model in the hidden Markov model
is defined to be a Gaussian mixture model representing
multimodality. These studies all consider filtering problems
and the filter algorithms are based on a combination of
clustering/particle filter and Kalman filter/EnKF. The Gaussian
mixture model contains a latent categorical mode indicator,
which in a spatial setting must have spatial coupling, for
example in the form of a Markov RF [25]. Data assimilation
in such categorical Markov RFs, either by particle filter or EnKF,
appears as very complicated [23, 24], particularly in a smoothing
setting.

The spatio-temporal case we consider in the current study has
a non-Gaussian spatial initial model, while both the forward and
likelihood models are Gauss-linear. We study this special case
since it has a particularly elegant analytical solution. Further, we
study spatio-temporal inversion, which entails smoothing to
assess the initial spatial variable given observations up to
current time, as it constitutes a particularly challenging
problem. To our knowledge, no reliable methodology exists for
solving such a spatio-temporal inverse problem.

In the hidden Markov model considered in this study, the
initial spatial model is assigned a selection-Gaussian RF [26],
which may capture multi-modality, skewness and/or peakedness
in the spatial histogram of the initial spatial variable. Recall that
the forward and likelihood models are assumed to be Gauss-
linear. Since the class of selection-Gaussian models is closed
under linear operations [26] the posterior model will also be
selection-Gaussian. The posterior model parameters are then
analytically tractable. A general algorithm for assessing this
posterior selection-Gaussian model is defined. Based on this
posterior model, both smoothing and filtering can be
performed. We denote this special hidden Markov model the
selection Kalmanmodel. The class of Gaussian models is a central
member in the class of selection-Gaussian models [26], hence one
may consider the selection Kalman model to be a generalization
of the Kalmanmodel. We develop the results presented above and
demonstrate the use of the selection Kalman model on a synthetic
case study of spatio-temporal inversion. This entails assessing the
initial spatial variable in a dynamic model based on a limited set
of observations.

The characteristics of the class of selection-Gaussian models
are central in the development of the selection Kalman model
properties. These characteristics are thoroughly discussed in [26],
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which is inspired by the results presented in [27, 28]. In these papers,
the general concept of the selection-Gaussian pdf is defined in a
probabilistic setting. In [19], the one-sided selection concept is used
to define a skew Kalman filter in a non-spatial setting.

In this paper y ∼ f (y) denotes a random variable y distributed
according to the probability density function (pdf) f (y), or
alternatively according to the corresponding cumulative
distribution function (cdf) F(y). Moreover, φn(y; μ,Σ) denotes
the pdf of the Gaussian n-vector y with expectation n-vector μ
and covariance (n × n)-matrix Σ. FurtherΦn(A; μ,Σ) denotes the
probability of the aforementioned Gaussian n-vector y to be in
A ⊂ Rn. We also use in to denote the all-ones n-vector and In to
denote the identity (n × n)-matrix.

In Section 2, the problem is set. In Section 3, the traditional
Kalman model is cast in a Bayesian hidden Markov model
framework. The generalization to the selection Kalman model is
then defined, and the analytical tractability is investigated. Further a
general recursive algorithm for assessing the posterior distribution is
specified. In Section 3, a synthetic case study of the advection-
diffusion equation is discussed to showcase the ability of the selection
Kalman model to solve the spatio-temporal inversion problem. The
goal is to reconstruct the initial state. Results from the selection
Kalman model and the traditional Kalman model are compared. In
section 4, conclusions are presented.

2 PROBLEM SETTING

The case is defined in a spatio-temporal setting. Consider the
variable {rt(x); x ∈ Lr , t ∈ T }; r·(·) ∈ R, with Lr a grid of size n
over a two-dimensional spatial area of interest while T :
{0, 1, . . . ,T} is a regular discretization in time. Let t � T
represent current time while t � 0 represents the initial time. The
spatial variable {r0(x); x ∈ Lr} is a discretized representation of the
initial state which later will be assumed to be unknown. Figure 1

displays the initial state that we evaluate in the case study. It is a
spatial field with two areas: the blue area is at low value and the
yellow area is at much higher value. One may consider the yellow
area as the release of a pollutant at time t � 0.

The spatio-temporal variable evolves in time, {rt+1(x); x ∈ Lr} �
ωt[{rt(x); x ∈ Lr}] where ωt(·) is a dynamic function usually
represented by a set of discretized differential equations. Figure 2
shows the temporal evolution of the field presented in Figure 1
according to a set of differential equations. The spatio-temporal
variable is not fully observable, it can only be measured at a
number of observation sites. The observations at the observation
sites are collected with some measurement error, they appear as time
series denoted {dt � (d1t , . . . , dmt ), t ∈ T } wherem is the number of
observation sites. The five observation locations in the case study are
represented by dots in Figure 1. Figure 3 displays the observations
collected at these observation locations. The typical challenge is to
infer the spatio-temporal variable {rt(x); x ∈ Lr, t ∈ T } based on the
observed time series {dt ; t ∈ T }. It constitutes a complex spatio-
temporal inverse problem. In the current study we focus on assessing
the initial spatial variable {r0(x); x ∈ Lr} from the observed time
series {dt ; t ∈ T }.

3 MODEL DEFINITION

Consider the unknown temporal n-vector rt , representing
the discretized spatial variable {rt(x); x ∈ Lr}, for t ∈ T r :
{0, 1, . . . ,T ,T + 1}. Define the variable r � {r0, r1, . . . , rT , rT+1}
and let ri:j denote {ri, ri+1, . . . , rj},∀(i, j) ∈ T 2

r , i≤ j. Moreover
assume that the temporalm-vectors of observations dt for t ∈ T d :
{0, 1, . . . ,T} are available, and define d � {d0, d1, . . . , dT} and di:j �
{di, . . . , dj} accordingly. The objective of this study is to assess
[r0|d]. To that end, we define a Kalman type model, represented as
a hidden Markov model in a Bayesian inversion framework.

3.1 Bayesian Inversion
The Kalman type model, phrased as Bayesian inversion, requires
the specification of a prior model for r and a likelihood model for
[d|r]. The model specified below defines a hidden Markov model
as displayed in Figure 4.

3.1.1 Prior Model
The prior model on r synthesizes the knowledge and experience
with the spatial variable of interest, and it consists of an initial
distribution and a forward model:

Initial Distribution
The prior distribution for the initial state r0 is denoted f (r0).

Forward Model
The forward model given the initial state [r1:T+1|r0] is

defined as,

f (r1:T+1|r0) � ∏T
t�0

f (rt+1|rt) (1)

with,

[rt+1|rt] � ωt(rt , εrt) ∼ f (rt+1|rt) (2)

FIGURE 1 | Initial state with observation locations (·) and monitoring
locations (×).
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where ωt(·, ·) ∈ Rn is the function that propagates rt forward in
time, with εrt a random component. Since ωt(·, ·) only involves the
variable at the previous time step, rt , the forward model is a
Markov chain.

3.1.2 Likelihood Model
The likelihood model on [d|r] provides a link between the
variable of interest r and the observations d and is defined as,

f (d|r) � ∏T
t�0

f (dt |rt) (3)

with,

[dt |rt] � ψt(rt , εdt ) ∼ f (dt |rt) (4)

where ψt(·, ·) ∈ Rm is the likelihood function with εdt a random
component. The likelihood model is defined assuming
conditional independence and single state response and is thus
in factored form.

3.1.3 Posterior Model
Bayesian inversion endeavors to assess the posterior distribution
of [r|d],

f (r|d) � [∫ f (d|r)f (r)dr]− 1 × f (d|r)f (r)
� const × f (d0|r0)f (r0)
×∏T

t�1
f (dt |rt)f (rt |rt−1)f (rT+1|rT)

� f (r0|d)∏
T

t�1
f (rt |rt−1, dt:T)f (rT+1|rT)

(5)

which is a non-stationary Markov chain for the hidden Markov
model with a likelihood model in factored form as defined above
[29]. Assessing such a posterior distribution is usually difficult as
both the normalizing constant and the conditional transition
matrices are challenging to calculate.

3.2 Kalman Type Models
The current study is limited to Kalman type models. They
comprise an initial and a process part.

Initial Distribution
The initial distribution is identical to the initial

distribution of the prior model f (r0), and as such captures
the characteristics of the initial state of the process. Two
model classes are later discussed: the Gaussian and the
selection-Gaussian classes.

Process Model
The process model includes the forward model and likelihood

models defined in Section 3.1. It thus characterizes the process
dynamics and the observation acquisition procedure. The
forward model is defined by,

[rt+1|rt] � Atrt + εrt

f (rt+1|rt) � φn(rt+1;Atrt ,Σr|r
t ) (6)

with forward (n × n)-matrix At and n-vector error term εrt
defined as centered Gaussian with covariance (n × n)-matrix
Σr|r
t . The forward model is therefore Gauss-linear. The

likelihood component is defined by,

FIGURE 2 | Spatio-temporal diffusion.
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[dt |rt] � Hrt + εdt

f (dt |rt) � φp(dt;Hrt ,Σd|r
t ) (7)

with the observation (m × n)-matrix H and the m-vector error
term εdt defined as centered Gaussian with covariance
(m ×m)-matrix Σd|r

t . The likelihood model is also Gauss-
linear. This process model coincides with the frequently used
traditional Kalman model [3].

3.3 Traditional Kalman Model
The traditional Kalman model is defined by letting the initial
distribution be in the class of Gaussian pdfs,

r0 ∼ f (r0) � φn(r0; μr0,Σr
0) (8)

with initial expectation n-vector μr0 and positive definite
covariance (n × n)-matrix Σr

0. The Gaussian initial distribution
is parametrized by ΘG � (μr0,Σr

0). In our spatial study, this initial
distribution will be a discretized stationary Gaussian RF. The
process model is Gauss-linear and identical to the traditional
Kalman type.

This traditional Kalman model is analytically tractable. The
posterior distribution f (r|d) is Gaussian and the posterior
distribution parameters can be calculated by algebraic
operations on the parameters of the initial distribution,
process model and the observed data. Therefore the
assessment of the posterior distribution does not require
computationally demanding integrals. The analytical
tractability follows from the recursive reproduction of
Gaussian pdfs:

• The initial model f (r0) is Gaussian and the likelihood model
f (d0|r0) is Gauss-linear, hence the joint model f (r0, d0) is
Gaussian. Consequently, the conditional model f (r0|d0) is
Gaussian.

• The conditional model f (r0|d0) is Gaussian and the dynamic
model f (r1|r0) is Gauss-linear, hence the joint conditional
model f (r1, r0|d0) is Gaussian.

By recursion, we obtain that f (r|d) �
f (r0, . . . , rT+1|d0, . . . , dT ) is Gaussian. Note in particular that
since f (r|d) is Gaussian, so is f (r0|d). This pdf is obtained by
marginalization of f (r|d) which, for the Gaussian case, amounts
to removing rows from the expectation vector and rows and
columns from the covariance matrix. Additionally, the joint pdf
f (r, d) can be assessed using a simple recursive algorithm, see
Supplementary Appendix Algorithm A1 in Supplementary
Appendix A.

From the joint Gaussian pdf f (r, d), the posterior
distribution f (r|d) can be analytically assessed. In spatial
models, the grid dimension n may be large while the number
of data collection sites m usually is small. Supplementary
Appendix Algorithm A1 requires storing the covariance
[n(T + 2) +m(T + 1)] × [n(T + 2) +m(T + 1)]-matrix of the
Gaussian vector [r, d] which is hardly ever necessary in practice
where the target distribution is clearly identified. Only the spatial
variables of interest need to be stored, which entails that only the
covariance [n +m(T + 1)] × [n +m(T + 1)]-matrix of [r0, d] need
to be stored in our spatio-temporal inversion study.

FIGURE 3 | Observations at the observation locations and true curve.

FIGURE 4 | Graph of the hidden Markov model.
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3.4 Selection Kalman Model
The selection Kalman model is defined by letting the initial
distribution be in the class of selection-Gaussian pdfs [27, 28].
This class is defined by considering an auxilary n-vector ~r with
pdf from the Gaussian class,

f (~r) � φn(~r; μ~r ,Σ~r) (9)

with expectation n-vector μ~r and covariance (n × n)-matrix Σ~r . In
our spatial study this pdf will represent a discretized stationary
Gaussian RF. Define further an auxiliary q-vector ] by a Gauss-
linear extension,

[]|~r] � μ] + Γ]|~r(~r − μ~r) + ε]|~r (10)

with the expectation q-vector μ], and the regression (q × n)-matrix
Γ]|~r and the centered Gaussian q-vector ε]|~r , independent of ~r, with
covariance (q × q)-matrix Σ]|~r . In the current spatial study the
dimension of ~r and ] will be identical. Generally, we have,

f (]|~r) � φq(]; μ]|~r ,Σ]|~r) (11)

with μ]|~r � μ] + Γ]|~r(~r − μ~r). As a consequence, [~r, ]] is jointly
Gaussian,

[~r]] ∼ f (~r, ]) � φn+q([~r]];[ μ~r
μ]

],[ Σ~r Σ~rΓT]|~r
Γ]|~rΣ~r Σ]

]) (12)

with the covariance (q × q)-matrix Σ] � Γ]|~rΣ~rΓT]|~r + Σ]|~r . Define a
selection subset A ⊂ Rq, and define the class of selection-
Gaussian pdfs by rA � [~r|] ∈ A]. In the current spatial study
the set A will be separable in Rq. Generally, it follows that,

f (rA) � f (~r|] ∈ A)
� [Φq(A; μ],Σ])]− 1
× Φq(A; μ]|~r ,Σ]|~r) × φn(~r; μ~r ,Σ~r)

(13)

This class of pdfs is parametrized by ΘSG �
(μ~r ,Σ~r , μ], Γ]|~r ,Σ]|~r ,A) for all valid parameter sets. The class of
selection-Gaussian pdfs is very flexible and may represent multi-
modality, skewness and peakedness [26].

Four one-dimensional selection-Gaussian pdfs are displayed
in Figure 5 in order to demonstrate the influence of the selection
set A ⊂ R. The bivariate variable [~r, ]] is bi-Gaussian and
identical in all displays, while the selection sets are marked as
solid gray bars along the vertical ν-axis. Figure 5A contains a
selection set comprised of two segments symmetric about the
expectation of ν, making the selection-Gaussian pdf along the
horizontal axis bimodal and symmetric. Figure 5B contains a
selection set of two asymmetric segments, making the selection-
Gaussian pdf bimodal and asymmetric. Figure 5C contains a
selection set of three segments symmetric about the expectation
of ν, making the selection-Gaussian pdf trimodal and symmetric.

FIGURE 5 | Realizations of 1D selection-Gaussian pdfs (histogram) with varying selection sets A ⊂ Rn (solid gray bars) for a bi-Gaussian pdf [~r, ]] (dark gray).
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Lastly, Figure 5D contains a selection set comprised of only one
segment, making the selection-Gaussian pdf skewed. This
selection concept can be extended to higher dimensions and
even to discretized spatial models.

Note that assigning a null-matrix to Γ]|~r entails that
f (~r, ]) � f (~r)f (]) and selection on ] does not influence ~r. It
follows that f (rA) � f (~r) is Gaussian. The selection-Gaussian
model can therefore be seen as a generalization of the
Gaussian one. Assume that the conditional independence,
f (dt , ]|~rt) � f (dt |~rt)f (]|~rt), holds for all t, it can then
be demonstrated [26] that the following recursive
reproduction of selection-Gaussian pdfs holds:

• The initial model f (rA,0) is selection-Gaussian and the
likelihood model f (d0

∣∣∣∣rA,0) is Gauss-linear, hence the joint
model f (rA,0, d0) is selection-Gaussian. Moreover, the
conditional model f (rA,0|d0) is selection-Gaussian.

FIGURE 6 | Prior marginal distribution of the initial temperature field for
the selection Kalman model.

FIGURE 7 | Realizations from the prior distribution of the initial state; maps (upper), spatial histograms (lower).
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• The conditional model f (rA,0|d0) is selection-Gaussian and the
dynamic model f (rA,1

∣∣∣∣rA,0) is Gauss-linear, the joint conditional
model f (rA,1, r0,A|d0) is therefore selection-Gaussian.

By recursion, we obtain that f (rA|d) � f (rA,0, . . . , rA,T+1|
d0, . . . , dT ) is selection-Gaussian. Recall that these characteristics
are similar to those of the class of Gaussian pdfs that make the
traditional Kalman model analytically tractable. The selection
Kalman model is defined with an initial distribution from the
class of selection-Gaussian pdfs and a process model which is
Gauss-linear and identical to the traditional Kalman type. From
the characteristics of the class of selection-Gaussian distributions, it

follows that the posterior distribution f (rA|d) is in the class of
selection-Gaussian distributions and so is f (rA,0|d).

Consider the augmented (n + q)-vector [~r0, ]] which together
with the selection set A ∈ Rq defines the initial state
rA,0 � [~r0||] ∈ A]. The recursive algorithm, see Algorithm 1, is
initiated with this augmented vector which is Gaussian. The
conditional independence f (dt , ]|~rt) � f (dt |~rt)f (]|~rt) entails
that f (dt

∣∣∣∣rA,t) � f (dt |rt), which is Gauss-linear for all t.
Algorithm 1 provides the Gaussian pdf of the

[n(T + 2) + q +m(T + 1)]-vector [~r, ], d]. From the joint
Gaussian pdf f (~r, ], d), the pdf f (rA,0|d) � f (~r0|] ∈ A, d) can
be assessed by first marginalizing ~r and thereafter sequentially

ALGORITHM 1 | Joint Selection Kalman Model
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conditioning on d and then on ]. The final step, conditioning on
] ∈ A, is computer demanding even though ] has only dimension
q. Rejection sampling is only possible for very low values of q. We
therefore use the Metropolis-Hastings algorithm, a McMC
method, detailed in [26] and extended from [30]. Algorithm
1 requires storing the covariance [n(T + 2) + q +m(T + 1)] ×
[n(T + 2) + q +m(T + 1)] -matrix of the augmented Gaussian
vector [~r, ], d] which can usually be avoided in practice. Only the
spatial variables of interest need to be stored, which entails that only
the covariance [n + q +m(T + 1)] × [n + q +m(T + 1)]-matrix of
[~r0, ], d] need to be stored in our spatio-temporal inversion study.

4 SYNTHETIC STUDY

The synthetic study is introduced in Section 2, and we discuss it
in larger detail in this section.

4.1 Model
Consider a discretized spatio-temporal continuous RF representing
the evolution of a temperature field {rt(x), x ∈ Lr},
t ∈ T r : {0, 1, . . . . ,T ,T + 1}; rt(x) ∈ R, as defined in Section 2.
The number of spatial grid nodes is n � 21 × 21, while temporal
reference T is the current time up to T � 50. The discretized spatial
field at time t is represented by the n-vector rt .

The initial temperature field r0, given in Figure 1, is assumed
to be unknown. It is divided into two distinct areas: the blue area
where the temperature is set at 20°C and the yellow area where the
temperature is set at 45°C. Assume that, given the initial
temperature field, the field evolves according to the advection-
diffusion equation, a linear partial differential equation,

zrt(x)
zt

− λ∇2rt(x) + c · ∇rt(x) � 0 (14)

∇rt(x) · n � 0 (15)

with λ ∈ R+ the known diffusivity coefficient, n the outer normal
to the domain and c � [c1, c2] the known velocity field. The
forward model is defined as,

[rt+1|rt] � Art + εrt (16)

f (rt+1|rt) � φn(rt+1;Art ,Σr|r
t ) (17)

where the (n × n)-matrix A is obtained by discretizing the
advection-diffusion equation using finite differences, see
Supplementary Appendix B for finite differences scheme and
parameter values, while the centered Gaussian n-vector εrt , with
covariance (n × n)-matrix Σr|r

t � 0 × In represents model error.
Under these assumptions, the forward model is exact which
constitutes a limiting case to Gauss-linear models. The
evolution of the temperature field is described in Figure 2.

FIGURE 8 | Marginal pdfs at monitoring locations for increasing current time T from the inversion with the selection Kalman model.
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FIGURE 9 | Marginal pdfs at monitoring locations for increasing current time T from the inversion with the traditional Kalman model.

FIGURE 10 | MMAP predictions of the initial state for increasing current time T from the inversion with the selection Kalman model (SKM-upper) and with the
traditional Kalman model (TKM-lower).
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The observations are acquired at m � 5 different locations on the
spatial grid Lr at each temporal node in T d providing the set of
m-vectors {dt , t ∈ T d}. The observation locations are represented with
dots in Figure 1. The corresponding likelihood model is defined as,

[dt |rt] � Hrt + εdt (18)

f (dt |rt) � φm(dt;Hrt ,Σd|r
t ) (19)

where the observation (m × n)-matrixH is a binary selection matrix,
see Supplementary Appendix B, while the centered Gaussian
m-vector εdt with covariance (m ×m)-matrix Σd|r

t � σ2d|r × Im with
σd|r � 0.1, represents independent observation errors. Under these
assumptions, the likelihood model is Gauss-linear. The observations
are displayed as time series in Figure 3. Note that Σr|r

t and Σd|r
t are in

this example constant through time.
The forward and likelihood models are Gauss-linear. In order

to fully defined the selection Kalman model and traditional
Kalman model, we must specify the prior distribution for the
initial temperature field for both approaches.

We assume we know the initial temperature field has large
areas with low temperatures in the range [5°C, 25°C] and
possibly, smaller areas with high temperatures in the range
[40°C, 55°C]. The exact location, extent and temperature of
these smaller areas are unknown. The prior is therefore
spatially stationary in both models.

The prior distribution is set to be selection-Gaussian for the
selection Kalman model. Such a prior model can represent
multimodality. The model is constructed according to [26] and is
defined considering an auxiliary discretized stationary Gaussian RF,

f(r̃0) � φn(~r0; μ~rin, σ2~rΣρ

~r
) (20)

with expectation and variance levels, μ~r and σ2
~r
respectively. The

spatial correlation (n × n)-matrix Σρ

~r
is defined by an isotropic

second order exponential spatial correlation function
ρ~r(τ) � exp(−τ2/δ2); τ ∈ R+. Define the auxiliary n-vector ]
given ~r0,

[]|~r0] � c(~r0 − μ~rin) + ε] (21)

f (]|~r0) � φn[]; c(~r0 − μ~rin), (1 − c2)In] (22)

� ∏
i�1

n

φ1[]i; c(~r0,i − μ~r), (1 − c2)] (23)

with coupling parameter c ∈ R[−1,1] and centered Gaussian
independent n-vector ε] with variance (1 − c2). Note that this
pdf is in factored form. Consequently the joint pdf of [~r0, ]] is,

[~r0] ] ∼ φ2n([~r0] ];[ μ~rin
0in

],[ σ2
~r
Σρ

~r
σ2
~r
cΣρ

~r

σ2
~r
cΣρ

~r
σ2
~r
c2Σρ

~r
+ (1 − c2)In ])

(24)

Define a separable selection set A ⊂ Rn such that
A � Bn,B ⊂ R. Therefore, the prior distribution is represented
by the discretized selection-Gaussian RF rA,0 defined as,

rA,0 � [~r0|] ∈ A] (25)

f (rA,0) � [Φn(A; 0in, σ2~rc2Σρ

~r
+ (1 − c2)In)]− 1

× ∏
i�1

n

Φ1[Ai; c(~ri − μ~r), (1 − c2)]
× φn(rA,0; μrin, σ2~rΣρ

~r
)

(26)

Note that after selection on the auxiliary variable ] is made, the
expectation and variance of the resulting rA,0 will no longer be
μ~rin and σ2

~r
Σρ

~r
.

FIGURE 11 |MMAP predictions (solid black line) with HDI 0.8 (red) intervals in cross section A-A′ of initial state at current time T � 50 with selection Kalman model
(left) and with traditional Kalman model (right). True cross section (dotted line).
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The parameters values are listed in Table 1 and they are
chosen to reflect what is assumed about the initial
temperature field. The prior marginal distribution is
bimodal, the dominant mode is centered about 18°C while
the smaller mode is centered about 40°C as shown in Figure 6.
The spread of the dominant mode covers the assumed
temperature range for the low temperature areas while the
spread of the smaller mode covers the assumed range for the
high temperature areas. Realizations from the prior
distribution and associated spatial histograms are shown in
Figure 7A. They exhibit large areas at low temperatures and
smaller areas at higher temperatures. Similarly to the
marginal distribution, the spatial histograms cover the
assumed range for high and low temperature areas.

The prior distribution for the traditional Kalman model is
Gaussian and is defined as,

f (r0) � φn(r0; μrin, σ2rΣρ
r ) (27)

with expectation and variance levels, μr and σ2r , respectively and
spatial correlation (n × n)-matrix Σρ

r defined by a second order
spatial correlation function ρr(τ) � exp(−τ2/δ2); τ ∈ R+. The
parameter values are listed in Table 1.

Figure 7B displays four realizations with associated spatial
histograms from the prior distribution for the traditional Kalman
model. The mean and variance levels are chosen so that the prior
covers the assumed range for the high and low temperature areas
as can be seen in the spatial histograms.

FIGURE 12 | Realizations from the posterior distribution of the initial state at current time T � 50.

TABLE 1 | Parameter values for the selection Gaussian initial model (SKM) and the
Gaussian initial model (TKM).

SKM
μ~r σ~r δ Γ A

28.75 10 0.15 0.95 [[−∞,−0.2)∪[0.5,+∞)]n

TKM
μr σ r δ

20 10 0.15
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Figure 7B can be compared to Figure 7A, and one observes
that only the selection-Gaussian distribution can capture bi-
modality in the spatial histograms. In studies with real data,
the prior model specification must of course be based on
experience with the phenomenon under study.

In the next section, we demonstrate the effect of specifying
different initial models in the spatio-temporal inversion model.

4.2 Results
The challenge is to restore r0 based on the observations d �
{d0, . . . , dT} by evaluating the posterior distribution in the
selection Kalman model f (rA,0

∣∣∣∣d0, . . . , dT ) and in the
traditional Kalman filter f (r0|d0, . . . , dT). We compare the
results from these two models that have been specified in the
previous section. The posterior distributions are analytically
tractable for both the selection Kalman model and the
traditional Kalman model. They are calculated using
Algorithm 1 and Supplementary Appendix Algorithm A1
respectively. In order to evaluate the results, we present
various characteristics of the posterior distributions for
increasing values of current time T:

1. Marginal pdfs at four monitoring locations represented by
crosses and numbered 1, 2, 3, 4 in Figure 1,

f (rA,0,i|d0:T) � ∫ f (rA,0|d0:T)drA,0,−i i � 1, . . . , 4 (28)

and similarly for f (r0,i|d0:T ) based on f (r0|d0:T). The index −i
stands for all the indices in 1, . . . , n but the ith index.

2. Spatial prediction based on a marginal maximum a
posteriori (MMAP) criterion,

r̂A,0 � MMAP{rA,0|d0:T} � {MAP{rA,0,j|d0:T}; j � 1, 2, . . . , n}
� {arg max{f (rA,0,j|d0:T)}, j � 1, 2, . . . , n} (29)

and similarly for r̂0 based on f (r0|d0:T ). This MMAP criterion is
used as the marginal posterior model may be multi-modal. For
uni-modal symmetric posterior distributions such as the
Gaussian one, the MMAP predictor coincides with the
expectation predictor.

3. The MMAP prediction and the associated 0.80 prediction
interval along a horizontal profile A-A’, see Figure 1. The
prediction interval is computed as the highest density
interval (HDI) [31], which entails that the prediction
intervals may consist of several intervals for multimodal
posterior pdfs.

4. Realizations From the Posterior Pdfs f (rA,0|d0:T ) and
f (r0|d0:T ).

Figure 8 displays the marginal posterior pdfs based on the
selection Kalman model at the four monitoring locations,

vertically, for increasing current time T, horizontally. At
current time T � 0, all pdfs are virtually identical to the
marginal pdf of the stationary initial model. As current time
T increases, and the observations are assimilated, one observes
substantial differences between the marginal pdfs at the
monitoring locations. The height of the high-value mode
increases depending on the proximity of monitoring location
to the yellow area, as expected. The posterior marginal pdf at
observation location one clearly indicates that it lies in the
yellow area already at current time T � 20 as the high-value
mode is increasing. At location two the high-value mode also

FIGURE 13 | Set up from the two yellow area test case.
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increases somewhat at T � 20, but does not increase more
thereafter. This monitoring location is outside the yellow
area, although fairly close to it. Location three is far from
both the yellow area and observation locations and the
posterior marginal pdf remains almost identical to the prior
model. Lastly, location four is far from the yellow area but close
to an observation location at which the observations remain

stationary, hence the low-value mode grows to be completely
dominant.

Figure 9 displays the marginal pdfs from the traditional
Kalman model. These marginal posterior pdfs are also
virtually identical at current time T � 0. As current time T
increases the marginal pdfs at the monitoring locations are
indeed different as they are shifting. However, this shift is

FIGURE 14 | Results from the two-yellow-area test case.
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difficult to observe. By using the selection Kalman model, the
indications of a yellow area at the correct location can be observed
from current time T � 20, while one can hardly observe any
indications of it if the traditional Kalman model is used.

The upper panels of Figure 10 display the MMAP spatial
prediction based on the selection Kalman model for increasing
current time T. At current time T � 0, the predictions are
virtually constant bar some boundary effect as the initial prior
model is stationary. As current time T increases, indications of the
yellow appear at T � 30, it is however at T � 50 that correct
location and spatial extent are identified. The prediction value of
the yellow area is very close to the correct value of 45. The blue
area value is predicted with some variability around the expected
20. The lower panels of Figure 10 present the corresponding
spatial predictions based for the traditional Kalman model. As
current time T increases, indications of something occurring in
the yellow area appears, but the location is uncertain and the
spatial extent only vaguely outlined. Moreover the predicted value
in the yellow area is much lower than the correct value 45. The
background value is however fairly precisely predicted around the
expected 20. The circular features centered about the observation
locations that appear on the predictions based on the selection
Kalman model in Figure 10 are not artifacts. These features are
also present on the predictions based on the traditional Kalman
model, although less prominent.

We evaluate the root mean square error (RMSE) values of the
two models at time T � 50. The RMSE criterion is used to
quantify the difference between the MMAP predictions in
Figure 10 and the truth in Figure 1. The RMSE for the
selection Kalman model is 2.76 while the RMSE of the
traditional Kalman model is 3.33 The selection Kalman model
therefore offers a 18% reduction in RMSE compared to the RMSE
of the traditional Kalman model.

Figure 11 displays the MMAP predictions with associated 0.80
prediction intervals along the horizontal profile A-A’. The
prediction from the selection Kalman model captures the yellow
area while the prediction from the traditional Kalmanmodel barely
indicates the yellow area. The prediction intervals follow the same
pattern. Note, however, that the prediction intervals of the
selection Kalman model may appear as two intervals close to
the yellow area since the marginal posterior models are bimodal.
By using the selection Kalman model, the location, spatial extent
and value of the yellow area is very precisely predicted at current
time T � 50. Predictions based on the traditional Kalman model
are less precise and rather blurred.

Figure 12 displays realizations from the posterior pdfs at
T � 50. For the selection Kalman model, see Figure 12A, the
yellow area is precisely reproduced in the majority of realizations
while for traditional Kalman model, see Figure 12B, the yellow
area is only vaguely indicated. Note however that the realizations
from the selection Kalmanmodel reflect the bimodality of the prior
model outside the central area where the five spot observation
design provides the most information. These observations are
consistent with the results observed in Figures 8, 9.

Conditioning on the observed data takes the same time for both
methods but the selection Kalmanmodel requires sampling from a
high dimensional truncated Gaussian pdf in order to evaluate the

posterior distribution which means that the computational
demand for the selection Kalman model is higher than that of
the traditional Kalmanmodel. For n � 441, as in our study, it takes
an average of 7.4s to generate 100 realizations from a selection-
Gaussian on our laptop computer, so a little over 12 min to
generate the 10,000 realizations used to estimate the MMAP for
the selection Kalman model. Note that the sampling becomes
increasingly more resource consuming as the grid dimension
increases and the computational time can be reduced by
introducing parallelization in the algorithm.

To demonstrate the generality of the selection Kalman model,
we define an alternative true initial state with two yellow areas, see
Figure 13A. We used the same model parameters as in the
primary case. The prior distribution for both the selection
Kalman model and the traditional Kalman model are identical
to the first case. Note in particular that the number of yellow areas
is not specified. The observed time series will of course be
different, see Figure 13B. These time series have many
similarities with the ones from the primary case. We inspect
the marginal pdfs at two monitoring locations, one inside each
yellow area, as they evolve with current time T, see Figure 14A.
Both marginal pdfs are identical at current time T � 0, and as
current time T increases the height of the high-value mode
increases, indicating that both monitoring locations are within
the yellow areas. In Figure 14B the corresponding MMAP
predictions are displayed for increasing current time T. We
observe that location, areal extent and value of both yellow
areas are well reproduced, but not as well as for the first case
since identifying two sources is more complicated. The
identification challenge is of course increasing with an
increasing number of yellow areas. Figure 14B also displays
the MMAP prediction for the traditional Kalman model for
the two-yellow-area case, where location, areal extent and
value are hard to evaluate, similarly to the first test case.

5 CONCLUSION

We define a selection Kalman model based on a selection-
Gaussian initial distribution and Gauss-linear dynamic and
observation models. This model may represent spatial
phenomena with initial states with spatial histograms that are
multimodal, skewed and/or peaked. The selection Kalman model
is demonstrated to be contained in the class of selection-Gaussian
distributions and hence analytically tractable. The analytical
tractability makes the assessment of the selection-Gaussian
posterior model fast and reliable. Moreover, an efficient
recursive algorithm for assessing the selection Kalman model
is specified. Note that the traditional Kalman model is a special
case of the selection Kalmanmodel, hence the latter can be seen as
a generalization of the former.

A synthetic spatio-temporal inversion case study with Gauss-linear
forward and observation models is used to demonstrate the
characteristics of the methodology. We specify both a selection
Kalman model and a traditional Kalman model and evaluate their
ability to restore the initial state based on the observed time series. The
time series are noisy observations of the variable of interest collected at
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a set of sites. The selection Kalman model outperforms the traditional
Kalmanmodel. The former model identifies location, areal extent and
value of the yellow area very reliably. The traditional Kalman model
only provides blurry indications with severe under-prediction of the
yellow area.We conclude that for spatio-temporal inversionwhere the
initial spatial state has bimodal or multimodal spatial histograms, the
selection Kalman model is far more suitable than the traditional
Kalman model.

The selection Kalman model has potential applications far
beyond the simple case evaluated in this case study. For all spatio-
temporal problems where multimodal spatial histograms appear,
the selection Kalmanmodel should be considered. The model can
easily be extended to a selection extended Kalman model, along
the lines of the extended Kalman model. A more challenging and
interesting extension is the definition of a selection ensemble
Kalman model including non-linear dynamic and observation
models. Research along these lines is currently taking place.
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