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This article develops an agent-level stochastic simulation model, termed RAW-ALPS, for
simulating the spread of an epidemic in a community. The mechanism of transmission is
agent-to-agent contact, using parameters reported for the COVID-19 pandemic. When
unconstrained, the agents follow independent random walks and catch infections due to
physical proximity with infected agents. Under lockdown, an infected agent can only infect
a coinhabitant, leading to a reduction in the spread. The main goal of the RAW-ALPS
simulation is to help quantify the effects of preventive measures—timing and durations of
lockdowns—on infections, fatalities, and recoveries. The model helps measure changes in
infection rates and casualties due to the imposition and maintenance of restrictive
measures. It considers three types of lockdowns: 1) whole population (except the
essential workers), 2) only the infected agents, and 3) only the symptomatic agents.
The results show that the most effective use of lockdown measures is when all infected
agents, including both symptomatic and asymptomatic, are quarantined, while the
uninfected agents are allowed to move freely. This result calls for regular and extensive
testing of a population to isolate and restrict all infected agents.
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1 INTRODUCTION

There is a great interest in stochastic modeling and analysis of medical, economical, and
epidemiological data resulting from the ongoing COVID-19 pandemic [1]. Until a large amount
of infection, treatment, vaccination, containment, and recovery data from this pandemic become
available, the community will have to rely primarily on simulation models to help assess situations
and to evaluate countermeasures [2]. Naturally, simulation systems that follow precise mathematical
and statistical models will play an important role in understanding this dynamic and complex
situation [3]. There have been a large number of models proposed in the past literature, relating to
the spread of epidemics through human contact or otherwise. They can be broadly categorized in two
main classes (a more detailed taxonomy of simulation models can be found in [4]):

1. Population-Level, Deterministic, Dynamic Models: A large number of epidemiological
models have focused on coarse, population-level summaries, that is, counts of infected (I),
susceptible (S), removed or recovered (R), etc., whose evolutions are governed by
deterministic differential equations. The original model of this type is the Susceptible-
Infected-Removed (SIR) model [5], proposed by Kermack and McKendrick in 1927, that
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uses ordinary differential equations to model a constrained
growth of the counts in those three categories. Since then,
researchers have developed several advancements and
variations of this model, including the SIRD model [6]
given by

dS
dt

� −βI(t)S(t)
N

,
dI
dt

� βI(t)S(t)
N

− cI(t) − μD(t),
dR
dt

� cI(t), dD
dt

� μI(t) .
(1)

The scalar parameters β, γ, and µ together control the
dynamics of infections, recovery, and mortality. The zero-sum
condition dS/dt + dI/dt + dR/dt + dD/dt � 0 ensures constancy
of the community size: S(t) + I(t) + R(t) + D(t) � N . Several
studies have applied these general models to different epidemics,
such as Ebola and SARS [7]. A recent article [8] extends thismodel
to include hospitalizations and different strata of infections, and
estimates these quantities from theWuhan COVID-19 pandemic.
While they provide useful population-level summaries, these
models do not generally focus on capturing spatial dynamics.
Specifically, they do not explicitly model agent dynamics as
residents move around in a community or across communities.
Also, these models often provide deterministic outcomes, with
no mechanism to incorporate randomness in the model.
Several recent simulation models, focusing directly on the
COVID-19 illness, also rely on such coarser community-
level models [9].

2. Agent-Level Modeling: While dynamical evolutions
of population variables are simple and effective,
especially for the overall assessment, they do not
take into account any social dynamics, human
behavior, societal restrictions, and complexities of
human interactions explicitly. The models that study
these human-level factors and variables, while
tracking disease at an individual level, are called
agent-level models [10]. Here one models the
mobility, health status, and interactions of
individual subjects (agents) to construct an overall
population-level picture in a bottom-up way. The
advantages of agent-based models are that they are
more detailed and one can vary the parameters of
lockdown measures, such as social distancing, at a
granular level to infer overall outcomes.
Furthermore, these models have built-in stochastic
components for agent motions, interactions,
infections, and recoveries, thus enabling a more
realistic simulation environment. Agent-based
models have been discussed in several articles,
including [4, 11–13] and so on. The importance
of simulation-based analysis of epidemic spread is
emphasized in Ref. [14] but with a focus on infection
models within a host. Ref. [12] constructed a detailed
agent-based model for spread of infectious diseases,
taking into account population demographics and
other social conditions, but they did not consider

countermeasures such as lockdowns in their
simulations. A broad organization of different
agent-based simulation methods has been
presented in Ref. [4]. A recent article [15] studies
the socioeconomic impact of social distancing using
agent-based models. Although there are numerous
other articles on the topic of agent-based simulations
for simulating the spread of infections, we have only
listed the most relevant ones.

In this article, we develop a mathematical simulation model,
named RAW-ALPS, to simulate the spread of an infectious
disease, such as COVID-19, in a confined community and to
study the influence of some external interventions on outcomes.
Since RAW-ALPS is purely a simulation model, the underlying
assumptions and choices of statistical distributions for random
quantities become critical in its success. On the one hand, it is
important to capture the intricacies of the observed phenomena as
closely as possible, using sophisticated modeling tools. On the other
hand, it is desirable to keep the model efficient and tractable (for
individual laptops) by using simplifying assumptions. One can, of
course, relax these assumptions and obtain more and more realistic
models as desired, albeit with increased computational complexity.

Simulation Setup: We assume a closed community with
infection initiated by a single infected agent at the beginning.
The infections are transmitted through physical exposure
(proximity) of mobile susceptible agents to mobile infected
agents, as shown in the middle panel of Figure 1. When
unconstrained, the agents follow a smooth random-walk
motion, independent of other agents (see the left panel of
Figure 1). When instructed to enter lockdown, an agent
moves toward his/her allocated household unit and stays put
until the restrictions are imposed. The households are arranged,
so that they are equally spaced at the grid points of a square
domain (see the right panel of Figure 1).

An agent’s health situation follows the chart shown on the left
side of Figure 2. Susceptible agents become infected when
exposed to infected agents, with a certain probability. The
infected agents go through a period of sickness, with two
eventual outcomes—full recovery for most and death for a
small fraction. That is, one starts as noninfected or susceptible,
potentially gets infected with a certain probability, and later
recovers or dies according to their event probabilities. Those
with nonfatal infections are further labeled as symptomatic or
asymptomatic agents. Naturally, agents with fatal outcomes are
labeled as symptomatic. This labeling allows for the selective
imposition of lockdown measures on a subset of the population.
Once recovered, we assume that the agents can no longer be
infected, as suggested by the CDC FAQ [16]. The social
dynamical model used here is based on a fixed domicile, that
is, each agent has a fixed housing unit. Under unrestricted
conditions, that is, no lockdown, the agents are free to move
over the full domain using a simple motionmodel. These motions
are independent across agents and encourage smooth paths.
Under lockdown conditions, the required agents head directly
to their housing units and generally stay there during that period.
The remaining agents, including a small fraction of agents,
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termed essential workers, are allowed to move freely under the
restrictions. The infected agents under lockdown can only infect
other susceptible agents living in the same household and not the
general public, as shown on the right side of Figure 2. Similarly,
mobile infected agents can only infect other mobile agents but not
those under the lockdown. Three types of lockdowns are
considered: 1) lockdown of the full population or LD1, 2)
lockdown of infected agents or LD2, and 3) lockdown of
symptomatic agents or LD3.

The main highlights and contributions of this article are as
follows: 1) agent-level transmission of infections and thus, a more
granular analysis than (population-level) deterministic
dynamical models, 2) random-walk motions of agents when
unconstrained and restricted to households when under
lockdowns, 3) different classifications of infections: fatal and
nonfatal, with the latter being either symptomatic or
asymptomatic, 4) selective lockdowns for different strata of
the population, and 5) statistical quantifications of gains
resulting from lockdown restrictions and their timings on
infection rates.

The rest of this article is as follows. Random-Walk, Agent-
Level Pandemic Simulation (RAW-ALPS) develops the proposed
RAW-ALPS model, specifying the underlying assumptions and
motivating model choices. It also discusses choices of model

parameters and provides comparisons with the SIRD model.
Exemplar Outcomes and Computational Cost presents some
illustrative examples and discusses the computational
complexity of RAW-ALPS, while Analyzing Effects of Lockdown
Measures develops the use of RAW-ALPS in understanding the
influences of countermeasures. The article ends by discussing
model limitations and suggesting some future directions.

2 RANDOM-WALK, AGENT-LEVEL
PANDEMIC SIMULATION (RAW-ALPS)

In this section, we develop our simulation model for agent-level
interactions and the spread of the infections. For this, we consider
a population in a predetermined geographical domain. In terms
of the model design, there are competing requirements for such a
simulation to be useful. On the one hand, we want to capture
detailed properties of agents and their pertinent environments, to
render a realistic scenario for pandemic evolution. On the other
hand, we want to keep model complexity reasonably low, to
utilize it for analyzing variable conditions and countermeasures.
Also, to obtain statistical summaries of pandemic conditions
under different scenarios, we want to run a large number of
simulations and compute averages. This process also requires

FIGURE 1 | Left: random walk model for agent motions. Middle: proximity-based spread of infections from infected to susceptible agents. Right: layout of
households on a square grid in the center of the domain.

FIGURE 2 | Left: flow chart for evolution of infection dynamics for the population. Right: scheme for infection of susceptible agents from infected agents.
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keeping the overall model simple, from a computational
perspective, to allow for multiple runs of RAW-ALPS.

2.1 Simplifying Assumptions
The overall setting of the simulation model is as follows. We
assume that the community is located in a square geographical
region D with h household units arranged centrally on a
uniformly spaced square grid in D (see the right panel of
Figure 1). We assume that there is a fixed number, say N, of
total agents in the community (including all
classifications—uninfected, infected, dead, etc.) and their
health status updates every unit interval (e.g., 1 h), indexed by
variable t. The unconstrained agents can traverse freely through
all parts of D but are largely restricted to their home units under
restrictions. Next, we specify some simplifying assumptions:

• Independent Agents: An agent’s movements and infection
status are independent of those of other agents. The actual
infection event is, of course, dependent on one being in close
proximity to an infected carrier (within a certain distance,
say ≈ 6 feet) for a certain exposure time. But the probability
of an agent being infected is independent of such events for
other agents.

• Full Mobility in Absence of Restrictive Measures: As
mentioned above, we assume that each agent is fully
mobile and moves across the domain freely when no
restrictive measures have been imposed. In other words,
there is no effect of an agent’s age, gender, or health on his/
her mobility. Also, we do not impose any day/night
schedules on the motions. Some articles, including [17],
provide two- or three-state models where the agents
transition between some stable states (home, workplace,
shopping, etc.) in a predetermined manner. To
implement such detailed models requires careful
considerations about the daily movement patterns of
agents, and that increases model complexity.

• Homestay During Restrictive Measures: We assume that
most agents comply with instructions and stay at home at all
times during the lockdown conditions. Only a small
percentage (set as a parameter ρ0) of the population,
representing essential workers, are allowed to move freely,
but a large majority stays at home.

• Sealed Region Boundaries: In order to avoid complications
resulting from a transportation model in the system, we
assume that there is no transfer of agents into and out of the
region D. The region is modeled to have reflecting
boundaries to ensure that all citizens stay within the
region. The only way the population of D can be changed
is through death.

• Fixed Domicile: The whole community is divided into a
certain number of living units (households or buildings).
These units are placed in square blocks with uniform
spacing. Each agent has a fixed domicile at one of the
units. During a lockdown period, the agents proceed to
and stay at home with a high compliance level. We
assume that all agents within a domicile unit are exposed

to each other, that is, they are in close proximity and can
potentially infect others.

•NoReinfection: We assume that once a person has recovered
from the disease, he/she cannot be infected again for the
remaining observation period. While this is an important
unresolved issue for the current COVID-19 infections, it has
been a valid assumption for the past coronavirus infections
and it remains the current CDC guideline [16].

• Single Patient Ground Zero: The infection is introduced in
the population using a single carrier, termed patient ground
zero at time t � 0. This patient is selected randomly from the
population and the time t is measured relative to this
initial event.

• Constant Immunity Level: The probability of infection of
agents, under the exposure conditions, remains the same
over time. We do not assume any increase or decrease in an
agent’s immunity level over time. Also, we do not assign any
age or ethnicity to the agents and all agents are assumed to
have equal immunity levels.

2.2 Model Specifications
There are several parts of the model that require individual
specifications. These parts include modeling the movements of
each agent (with or without restrictions in place), the mechanisms
of transmitting infections from agent to agent, and the processes
of recovery and fatality for infected agents. A full listing of the
model parameters and some typical values are given in Table A1
in the Appendix.

• Motion Model: The movement of an agent follows a simple
random-walk model where the instantaneous velocity vi(t) is
a weighted sum of three components: 1) velocity at the
previous time, that is, vi(t − 1), 2) a directed component
guiding them to their home, (hi − xi(t − 1)), where xi(t) is
the agent location at time t, and 3) an independent Gaussian
increment σwi(t), wi(t) ∼ N (0, 1). Note that the motions of
different agents are kept independent of each other. The location
hi ∈ D denotes the home unit (or stable state) of the ith agent.

Using mathematical notation, the model for instantaneous
position xi(t) and velocity vi(t) of the ith agent are given by

vi(t) � μ vi(t − 1) + α (1 − μ) (ht − xi(t − 1)) + σwi(t), 0≤ μ≤ 1,
xi(t) � xi(t − 1) + δvi(t).

(2)

Here α ∈ R+ determines how fast one moves toward their
home and µ quantifies the degree to which one follows the
directive to stay home. When μ � 0, an agent reaches home
and stays there, except for a random perturbation wi.
However, if μ � 0.5, then a significant fraction of motion
represents continuity in velocity, irrespective of the home
location. The value μ � 1 implies that either there is no
lockdown or the agent does not comply with the directive.

Reflecting Boundaries: When a subject reaches the boundary
of the domain D, the motion is reflected, and the motion
continues in the opposite direction.
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Figure 3 shows examples of random agent motions under
different simulation conditions. The leftmost panel shows a
situation with no lockdown and the agents are moving freely
according to Eq. 2. The middle panel shows the case where the
restrictions are imposed on Day 10 and stay in place after that.
The last panel shows the case where a lockdown is imposed on
Day 10 and then lifted on Day 20. The blue curves represent free
motion before a lockdown, the red denotes motion toward home
during a lockdown, and the green represents free motion again
after the lockdown is lifted.

• Lockdown Model: Once the lockdown starts, at time say T0,
agents are directed toward their homes and asked to stay
there. We assume that ρ% of the subjects follow this directive,
while the others ((100 − ρ)%) follow a different motion
model. The variable ρ changes over time according to

ρ(t) � { 0, t <T0 (under no restrictions)
ρ0, t ≥T0 (under restrictions) ,

where ρ0 is set to be a large number: 98% or 99%. We note that
the people who do not follow restrictions follow the prescribed
motion model Eq. 2 with μ � 1. We study three types of
lockdowns in this article: 1) lockdown of the full
population, termed LD1, 2) lockdown of infected agents,
termed LD2, and 3) lockdown of symptomatic agents,
termed LD3.
• Exposure–Infection Model: Infection of a susceptible agent
depends on the level of exposure to an infected agent,
irrespective of the infected agent being symptomatic or
not. Recall that mobile infected agents can only infect
other mobile agents, while agents in a lockdown can only
infect agents in the same household. To create the conditions
for the spread of infection:

• The physical distance between the susceptible agent and
the infected agent during exposure should be less than r0.

• The exposure time in terms of the time units is at least τ0. In
this study, we use the cumulative time exposure for an agent
over the whole history, rather than just the recent history.

•Under these conditions, the probability of being infected at
each time t is an independent Bernoulli random variable
with probability pI .

• Recovery–Death Model: Once a subject is infected, we
randomly assign a label or infection type immediately.
Either an infected agent is going to recover (nonfatal
type, or NFT) or the person is eventually going to die
(fatal type, or FT). The probability of having a fatal type,
given that a person is infected, is pF . An agent with the NFT
label is further classified as either Symptomatic (S) or
Asymptomatic (AS) with a certain probability pS. All
agents with the FT label are classified as symptomatic.

• Recovery: An agent with a nonfatal type (NFT) is sick for a
period of TR days. After this period, the person can recover at
any time, according to a Bernoulli random variable with
probability pR in each time step.

• Fatality: An agent with a fatal type (FT) is sick for a period of
TD days. After this period, the person can die at any time,
independently according to a Bernoulli random variable with
probability pD.

2.3 Chosen Parameter Values
A complete listing of the ALPS model parameters is provided in
Appendix Table A1. In this section, we motivate the values chosen
for those parameters in these simulations. We justify these choices
from the current reports of the COVID-19 pandemic. As argued in
[18], a realistic choice of parameters is very important in establishing
the validity of simulation models.

• Population Density: We use a square domain D of size 2p2
miles2 or 5p5 miles2 for a community with a population of N
agents. The value of N changes in different experiments.
The values of N � 900 and D � [0, 2]2 represent a
population density of 225 people/mile2. The
community contains h living units (buildings) with a
domicile of N/h people per unit. In case N/h is high
( ≈ 100), a unit represents a tall building in metropolitan

FIGURE 3 | Sample agent motions under different conditions. Blue curves denote unrestricted movements, red curves denote movement toward home units
during a lockdown, and green curves denote movement after lockdown.
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areas, but when N/h is small ( ≈ 5), a unit represents a
single-family home in a suburban area.

The time unit for updating configurations is 1 h and the
occurrence of major events is specified in days. For example,
the lockdown can start on Day 1 and end on Day 30.

• Agent Speeds: The standard deviation for accelerations, denoted
by σ, in agent mobility are approximately 1–5 feet/h (fph).
Through integration over time, this results in agent speeds
up to 1,000 fph. We assume that ρ0 � 0.9 − 0.98, that is,
90–98% of the people follow the restriction directives.

• Infection Rates: The physical distance between agents to catch
infection should be at most r0 ≈ 6 ft and the exposure time
should be at least τ0 � 5 time units (hours). The probability pI
of getting infected, under the right exposure conditions, is set at 5%at
each time unit (hour) independently. There is no current reference
literature on selecting this value since it is difficult tomeasure precise
exposure events for people who have tested positive for COVID-19.
While contact tracing [19] is being developed to ascertain infection
rates, there are no public data currently available to measure this
infection rate. This value leads to overall infection rates that are
similar to national and international infection rates [20].

• Fatality Rate: Once infected, the probability of having a fatal
outcome is set at 5–10%, according to the mortality rate listed by
the CDC [21]. The period of recovery for agents with nonfatal
outcomes starts at 7 days. The probability of reaching full

recovery for those agents is pR � 0.001 at each subsequent
time unit (hour). Similarly, for the agents with fatal outcomes,
the period of being infected is set to be 7 days and after that, the
probability of death at each time unit (hour) is set to be pD � 0.1.

•Asymptomatic InfectedAgents:Thepercentageof infected agentswho
remain asymptomatic is set to be in the range of 15–40% [22, 23]).

Figure 1 provides a pseudocode for the RAW-ALPS algorithm.

2.4. Model Validation
Although RAW-ALPS is perhaps too simple model to capture
the intricate dynamics of an actual active society, it does
provide an efficient tool for analyzing effects of
countermeasures during the spread of a pandemic. Before it
can be used in practice, there is an important need to validate it
in some way.

As described in Ref. [4], there are several ways to validate a
simulation model. One is to use real data (an observed
census of infections over time) in a community to
estimate model parameters, followed by a statistical model
testing. While such data may emerge for COVID-19 in the
future (especially with the deployment of tracking apps in
many countries), there are currently no such agent-level data
available for COVID-19. The other approach for validation is to
consider coarse population-level variables and their dynamics and
compare them against established models such as SIR and its
variations. We will perform validation of RAW-ALPS in two ways.

Algorithm 1 | RAW-ALPS Pseudocode
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FIGURE 4 | Evolution of population-level infection measurements under a typical SIR model (left) (source: Wikipedia) and the RAW-ALPS model (right). Visually,
the RAW-ALPS model can generate infection curves with shapes similar to those of the SIR model.

FIGURE 5 | Estimation of SIRD parameters from data simulated by RAW-ALPS for an unconstrained spread. The pandemic curves generated by the SIRD model
with estimated parameters match the RAW-ALPS output.

FIGURE 6 | Estimation of SIRD parameters from data simulated by RAW-ALPS for the case when the restrictions are imposed on Day 5. Once again, the pandemic
curves generated by the SIRD model with estimated parameters match the RAW-ALPS output.
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2.4.1. Qualitative Comparisons with SIR Model
As the first comparison, we study shapes of infection curves
resulting from the RAW-ALPS model and compare them
qualitatively to the shapes resulting from the SIR model.
Figure 4 shows plots of the evolutions of global infection
counts (susceptible, infected, and recovered) in a community
under the well-known SIR model (on the left) and the proposed
ALPS model (on the right). In the ALPS model, the counts for
recovered and fatalities are kept separate, while in the SIR model,
these two categories are combined. One can see a remarkable
similarity in the shapes of the corresponding curves, and this
provides a certain validation to the RAW-ALPS model. In fact,
given the dynamical models of agent-level mobility and
infections, one can derive the parameters of the population-
level differential equations used in the SIRD model. We
pursue this topic in the next section.

2.4.2 Estimation of SIRD Parameters
In this section, we use data simulated from RAW-ALPS to fit the
SIRD model given in Eq. 1 and use estimated SIRD model
parameters to provide interpretations. Rearranging equations

in the SIRD model (Eq. 1), we get the instantaneous values of
the parameters:

μ(t) � D′(t)
I(t) , c(t) �

R′(t)
I(t) , β(t) � −N S′(t)

I(t)S(t)
� N

I′(t) + cI(t) + μI(t)
I(t)S(t) .

Let 1f (t)> 0 denote the domain over which a function f (t) is
strictly positive. We define the estimators of overall SIRD
parameters to be

μ̂ � mean(D′(t)
I(t) 1I(t)> 0) , ĉ � mean(R′(t)

I(t) 1I(t)> 0),

β̂ � N
2
mean(1I(t)S(t)> 0

I(t)S(t) (I′(t) + cI(t) + μI(t) − S′(t))).
Since in our simulations we have a small population size (N),

the number of dead agents becomes a constant soon after any
changes are complete, makingD′(t) � 0 for most of the study. To
focus on the mortality rate in the active period, we modify the
estimator of µ to be

μ̂ � mean(D′(t)
I(t) 1D′(t)I(t)> 0).

FIGURE 7 | Example 1: model outputs at different times under no restrictive measures. Blue dots are susceptible agents, red dots are infected agents, green dots
are recovered agents, and purple circles denote fatalities. The pandemic curves in the bottom right exhibit typical behavior of the RAW-ALPS model at the
population level.
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Figure 5 shows an example of this estimation using data
simulated from RAW-ALPS for an unrestricted situation. The
left plot shows the evolution of S/I functions under the chosen
simulation parameters. The infection reaches its peak around
Day 26 and there are no uninfected agents left after that. For
these data, the estimated values of parameters are
β̂ � 0.036281, ĉ � 0.000860, and μ̂ � 0.001005 (at hourly unit
time). We clarify that the simulation is updated at an hour unit,
but the final estimates of these rates are converted into daily
time unit to compare with published values. The basic
reproduction number for this simulation comes out to be R0 �
β̂

ĉ
� 42.1703.
Figure 6 shows when the restrictions are imposed on Day 5.

The left plot shows the evolution of S/I functions—the
infection reaches its peak around Day 20 even though
there is a significant portion of uninfected agents. For
these data, the estimated values of parameters are
β̂ � 0.002860, ĉ � 0.001005, and μ̂ � 0.002459 (at hourly
unit time). The basic reproduction number for this
simulation comes out to be R0 � β̂

ĉ
� 2.8458.

Compared with the previous example, we see that the
infection rate comes down significantly, from β̂ � 0.036281
to β̂ � 0.002860, when the restrictions are imposed. Similarly,
the reproduction number also comes down from 42.1703 to
2.8458.

3 EXEMPLAR OUTCOMES AND
COMPUTATIONAL COST

We illustrate the use of the RAW-ALPS model by presenting
some sample outcomes under some typical scenarios.
Furthermore, we discuss the computational cost of running
RAW-ALPS on a laptop computer.

3.1 Examples From RAW-ALPS
We start by showing sample outputs of RAW-ALPS under some
interesting settings. In these examples, we use a relatively small
number of agents (N � 1500) and household units (h � 289),
with T � 50 days, in order to improve visibility of displays.

1. Example 1—No Restrictive Measures: Figure 7 shows a
sequence of temporal snapshots representing the community
at different times over the observation period. In this
example, the population is fully mobile over the
observation period and no social distancing restrictions are
imposed. The snapshots show the situations on Day 8, 17, 33,
and 42. The corresponding time evolutions of global count
measures [S(t), I(t),D(t), and R(t)] are shown in the
bottom right panel. The infection starts to spread rapidly
around Day 5 and reaches a peak infection level of 78%
around Day 17. Then, the recovery starts and continues until

FIGURE 8 | Example 2: displays of model outputs when a lockdown of infected people (LD2) is imposed on Day 5. The pandemic curves in the bottom right show a
drastic reduction in infection due to the lockdown.
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very few infected people are left. In this simulation, the
number of fatalities is found to be 6%.

2. Example 2—Early Restrictions: In the second example, a
lockdown of all the infected agents is introduced on Day 5
and these measures stay in place after that. The results are
shown in Figure 8. Once again we show snapshots for
situations on Day 8, 17, 33, and 42. The corresponding time
evolutions of global count measures are shown in the bottom
right panel. As the summary shows, an early restriction of
lockdown is very effective in controlling the spread of the
infection and the peak infection rate is minuscule at 3%.

3. Example 3—Early Restrictions but Removed Later: In
the next example, a full lockdown or LD1 is introduced
on Day 2 but removed on Day 30. The results are
shown in Figure 9. In early snapshots, the population
is under a lockdown and the spread is minimal. By Day
33, the lockdown is released, and the population is fully
mobile. Consequently, the infection begins to spread
again, and by Day 42, the infection reaches its
peak value.

4. Example 4—Delay in Imposing Restrictions: In the last
example, with results shown in Figure 10, a full lockdown
(LD1) is introduced very late (on Day 10). In this
simulation run, the infection rate reaches a peak value
of 80% despite a lockdown. This is because the infection

had already spread extensively in the population by the
time the lockdown starts.

3.2. Computational Complexity
The main computational cost in the simulation comes from the
need to update the following variables at each time t:

• locations of all agent according to their independent motion
model;

• pairwise distance matrix between Susceptible agents and
Infected agents; and

• infection status of each agent according to the infection dynamics.

In general, we obtain some efficiency by performing matrix
operations, rather than using “for loops” for these updates across
agents. Additionally, we increase speed by maintaining a list of
neighborhoods for each agent and checking interactions only
between the neighbors at each t.

Since the computational efficiency of the simulator is of vital
importance, we study the computational cost of running RAW-
ALPS for different variable sizes. In these experiments, we note
the time taken by RAW-ALPS code on a MacBook Pro laptop
with an Intel 2.8 GHz Core i7 processor and 16 GB memory. In
Figure 11 we plot average run times (using five runs in a setting)
of the code for different values of N, h, and T. Recall that h is the

FIGURE 9 | Example 3: model outputs when a full lockdown or LD1 is imposed on Day 2 and removed on Day 30. As seen in the plot of the resulting pandemic
curves, the infection is controlled at first by the lockdown, but it spreads fast after the lockdown is lifted.
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number of household units, N is the number of agents, and T is
the period length. From these results, we see that the
computational cost is linear in T, which makes sense. The
computational cost is superlinear in N, keeping other variables
fixed. This is because an increase in N represents a higher density
and increased infection rates, thus requiring additional
computations for tracking infected agents. Interestingly, for
the range of parameter values studied here, the computational
cost does not grow with an increase in h. As an aside, we note that
for N � 5000 and h � 1521, the run time for T � 100 days is
approximately 330 s and for T � 150 days is approximately 484 s.

4 ANALYZING EFFECTS OF LOCKDOWN
MEASURES

There are several ways to utilize this model for prediction,
planning, and decision-making. We illustrate some of these
ideas using examples.

4.1 Timing of Imposition of Full Lockdown
First, we study the effect of time of a full lockdown on the
epidemic infections. In the following simulations, we have
used N � 1000 agents with h � 361 households in the scene

FIGURE 10 | Example 4: model outputs when a full lockdown is imposed on Day 10. The pandemic curves show that the infection has spread widely in the
community by the time a lockdown is imposed.

FIGURE 11 | Plots of run times vs. simulation parameters T, N, and h. The algorithmic cost is linear in T but superlinear in N.
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domain [0, 2]2 miles. For the infection parameters, we use a
contact radius r0 � 0.02 miles, contact period τ0 � 5 h, and
pI � 0.1. The motion parameters are: σ � 0.0002 mph,
μ � 0.02, and α � 0.1. In each setting, we run the code
30 times and collect the simulation outputs.

Figure 12 shows examples of RAW-ALPS outputs when we
impose a full lockdown on the community but at different
times. From top to bottom, the plots show lockdowns starting
on Day 2, Day 10, and Day 30, respectively, with the last row
showing results for no lockdown. Once the restrictions are
imposed, they are not removed in these examples. As
expected, the best results are obtained for the earliest
imposition of restrictions. In the case of no lockdown, the
peak infection rate in the population ranges from 60 to 80%,
which is very high for a community. The fraction of fatalities
ranges from 6 to 8%, and the fraction of community that is
never infected is zero in all runs. In case the restrictions are
imposed on Day 2, with all other parameters held the same,

there is a remarkable improvement in the situation. The peak
infection goes down to 2–3%, the fatalities decrease to
0.1–0.2%, and the fraction of uninfected goes up to
98–99%. Thus, an early imposition of full lockdown
measures helps significantly reduce infection in the
community.

4.2 Timing of Removal of Restrictions
In the next set of simulations, we study the effects of lifting
restrictions and thus re-allowing full mobility in the community.
Some sample results are shown in Figure 13. Each plot shows the
evolution for a different end time T1, while the start time is kept
fixed at T0 � 5. As these plots indicate, the gains made by early
imposition of restrictions are nullified when the restrictions are
lifted too soon. In the case of early lifting of restrictions, the full
population gets infected eventually. Since we do not assume any
change in the immunity levels of the agents over time, the results
from early lifting of restrictions are quite similar to those from not

FIGURE 12 |Results fromRAW-ALPS runs for a full lockdown (LD1) starting at different times. Going from top to bottom, we impose lockdowns later and later. The
effect of a lockdown diminishes significantly if the start of the lockdown is delayed.
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imposing any restrictions in the first place. The results appear to
be the same, just shifted in time.

4.3 Statistical Summaries
In the next set of experiments, we compute average values of some
variables of interest using 30 runs of RAW-ALPS. In the first
result, we study three variables—number of deaths, number of
agents remaining uninfected, and the peak infection rate—using
N � 1000 agents living in a community of h � 361 households,
observed over [0, 100] days. We vary the start time T0 (start day
of restrictions) from 2 to 30 and then to 100 and study the
resulting outcomes. (The value of T0 � 100 implies that the
restrictions are never imposed in that setting.)

Figure 14 shows box plots of these three variables against
T0, with each row representing a different type of lockdown.
The first column shows the median percentage of fatalities in
the population for different lockdown types. The second
column shows the fraction of the uninfected population and
the last column shows the peak infection rates. It can be seen
that the results are very similar for a full lockdown (LD1) and a
lockdown of infected agents (LD2) but are quite different for a
lockdown of only the symptomatic agents (LD3). We find that
this last type of lockdown is ineffective in containing the
spread of the infection, except for when T0 � 2. These
results suggest that a lockdown of only the infected agents
(LD2) can be an effective strategy in controlling the epidemic.

Of course, given the asymptomatic nature of the disease, it is
not possible to ascertain the infection status precisely. One can
only estimate this status for a large population using accurate
and extensive testing schemes.

In Figure 15, we study the impact of changing T1 while T0 � 1
is kept fixed (and other experimental conditions being the same as
in the last experiment). The three panels show the fractions of
deaths (left), the number of uninfected (middle), and the peak
infection rates (right). Each curve in the panel corresponds to a
different lockdown type: full LD or LD1, infection LD or LD2,
and symptomatic LD or LD3. The results show that for LD1
and LD2, a delay in the lifting of the restrictions is effective in
controlling the epidemic. In contrast, the imposition of LD3
is not as effective. Interestingly, these results show that LD2 is
more effective than LD1. This may be because in full
lockdown, the chances of susceptible agents coinhabiting
with the infected agents increase and this, in turn,
increases the infection rates.

5 DISCUSSION AND CONCLUSION

This article develops an agent-based simulation model, called
RAW-ALPS, for modeling the spread of an infectious disease in a
closed community. Several simplifying yet reasonable
assumptions make RAW-ALPS efficient and effective for

FIGURE 13 |Results fromRAW-ALPS runs for a full lockdown (LD1) ending at different times. Going from top to bottom, we keep the lockdowns for longer periods.
A longer imposition of lockdown helps in reducing the spread of the epidemic.
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statistical analysis. The model is validated at a population level by
comparing it with the popular SIR model in epidemiology.

The results from RAW-ALPS show that a lockdown of only
the infected agents (LD2) is the most effective kind. However, this
includes both symptomatic and asymptomatic agents, with the
latter ones not being easy to detect. This calls for regular and
extensive testing of the population to isolate and restrict all
infected agents while allowing for free movements of
all uninfected agents. Furthermore, these results indicate that

1) early imposition of lockdown measures (right after the first
infection) significantly reduces infection rates and fatalities; 2)
lifting of lockdown measures recommences the spread of the
disease, and the infections eventually reach the same level as that
of the unrestricted community; and 3) in the absence of any
extraneous solutions (a medical treatment/cure, a weakening
mutation of the virus, or natural development of agent
immunity), the only viable option for preventing large
infections is the judicious use of lockdown measures.

FIGURE 14 | Statistical summaries of infection variables obtained using 30 runs of RAW-ALPS, plotted against the starting day of the lockdown. In all three
lockdown types, a delay in imposing lockdown causes an increase in infections and casualties.

FIGURE 15 | Statistical summaries of infection variables obtained using 30 runs of ALPS, plotted against T1, the reopening day. In all three types of lockdowns, a
delay in reopening after a lockdown helps control the number of infections and deaths.
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The strengths and limitations of the RAW-ALPSmodel are the
following. It provides efficient yet comprehensive modeling of the
spread of infections in a self-contained community, using simple
model assumptions. The model can prove very useful in
evaluating costs and effects of imposing different types of
social lockdown measures in a society. In the current version,
the initial placement of agents is set to be normally distributed
with means given by their home units and fixed variance. This
variance is kept large to allow for near arbitrary placements of
agents in the community. In practice, however, agents
typically follow semirigid daily schedules of being at work,
performing chores, or being at home. Thus, at the time of
imposition of a lockdown, the agents can be better placed in
the scenes according to their regular schedules, rather than
being placed arbitrarily.

In terms of future directions, there are many ways to develop
this simulation model to capture more realistic scenarios. 1) It is
possible to model multiple, interactive communities instead of a
single isolated community. 2) One can include typical daily
schedules for agents in the simulations. A typical agent may
leave home in the morning, spend time at work during the day,
and return home in the evening. 3) It is possible to provide age
demographics to the community and assign immunity to agents
according to their demographic labels [24]. 4) As more data
becomes available in the future, one can change immunity levels
of agents over time according to the spread and seasons. 5) In
practice, when an agent is infected, he/she goes through different

stages of the disease, associated with varying degrees of mobility
[13]. One can introduce an additional variable to track these
stages of infections in the model and change agent mobility
accordingly. 6) One can incorporate super spreader events in
the model to help capture these mechanisms of transmission. 7)
Finally, one can use the output of RAW-ALPS, in conjunction
with techniques for the analysis of epidemic curves [25–27], to
further adapt simulation parameters to a given community or
region.
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APPENDIX: LISTING OF ALPS
PARAMETERS

Table A1 provides a listing of all the parameters one can adjust in
ALPS to achieve different scenarios. It also provides some typical
values used in the experiments presented in the article.

TABLE A1 | Listing of parameters associated with different model components of ALPS.

No Sym Explanation Range Typical values

Community parameters
1 T Current time instance 0≤ t≤ T T � 4800 h
2 N Total number of agents N >1 N ≈ 1000
3 H Total number of housing units h> 0 h � 9, 49, 81

Motion-related parameters
1 A Rate at which a person heads home α ∈ R+ α � 0.2
2 Μ Relative proportion of homeward motion μ ∈ [0, 1] μ � 0—Lockdown

And random walk μ � 1—Free
3 Σ Variance in acceleration noise σ ∈ R+ σ � 0.0001 mph

Social distancing–related parameters
1 ρ0 Fraction of people following restrictions ρ0 ∈ [0, 1] ρ � 0.98
2 T0 When lockdown starts T0 ∈ {1, 2, . . . , } T0 � 5 days
3 T1 When lockdown ends T1 ∈ {1, 2, . . . , } T1 � 30 days

Infection-related parameters
1 r0 Maximum distance to catch infection r0 ∈ R+ r0 � 6 feet
2 τ0 Minimum exposure time to catch infection τ0 ∈ R+ τ0 � 5 h
3 pI Probability of infection at each time pI ∈ [0, 1] pI � 0.01

Recovery/death-related parameters
1 D Disease type—fatal or nonfatal D � FT, NFT
2 pF Probability of FT once infected pF ∈ [0, 1] pF � 0.1
3 pS Probability of symptoms, given NFT pS ∈ [0, 1] pF � 0.6
4 TR Period before recovery starts for NFT TR ≥0 TR � 7 days
5 TD Period before death can occur for FT TD ≥0 TD � 7 days
6 pD Probability of death after TD at each t pD ∈ [0,1] pD � 0.1
7 pR Probability of recovery after TR at each t pR ∈ [0, 1] pR � 0.001
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