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Mathematical models used in epidemiology to describe the diffusion of infectious diseases
often fail to reproduce the recurrent appearance of exponential growth in the number of
infections (waves). This feature requires a time-modulation of some parameters of the
model. Moreover, epidemic data show the existence of a region of quasi-linear growth
(strolling period) of infected cases extending in between waves. We demonstrate that this
constitutes evidence for the existence of near time-scale invariance that is neatly encoded
via complex fixed points in the epidemic Renormalization Group approach. As a result, we
obtain the first consistent mathematical description of multiple wave dynamics and its
inter-wave strolling regime. Our results are tested and calibrated against the COVID-19
pandemic data. Because of the simplicity of our approach that is organized around
symmetry principles, our discovery amounts to a paradigm shift in the way epidemiological
data are mathematically modelled. We show that the strolling period is crucial in controlling
the emergence of the next wave, thus encouraging the maintenance of (non)
pharmaceutical measures during the period following a wave.

Keywords: COVID-19, multi-wave pattern, mathematical modelling, health decision making, renormalization group
equations, scale invariant dynamics

HIGHLIGHTS

e Traditional mathematical modelling used for describing the diffusion dynamics of infectious
diseases cannot describe the multi-wave pattern of pandemics without an ad-hoc modulation of
the parameters.

e Within the symmetry-based framework of the epidemic Renormalization Group (eRG), we
propose a consistent mathematical model where multi-waves arise naturally.

o The strolling period, characterized by a linear increase of infections between two waves, is
associated to the presence of complex fixed points in the flow of the system.

e Our results demonstrate the key role of the strolling period in regulating the diffusion of the
pandemic, and delaying or avoiding a future wave.

e As a consequence, pharmaceutical and non-pharmaceutical interventions are needed during
the strolling period, at the end of a wave, as the number of infections during this time controls
when the next wave will appear.

Pandemics are a threat to humanity. Understanding their spreading dynamics is, therefore,
paramount to controlling it. The disease diffusion dynamics is traditionally described via
compartmental models [1] or complex network diffusion techniques [2-4], providing an
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accurate description of the initial time evolution of the number of
affected individuals. Another symmetry-based approach is the
epidemic Renormalization Group (eRG) framework [5-7], shown
to provide robust prognoses for the time evolution of a pandemic
across different regions of the world.

Viral pandemics often feature multiple episodes of
exponentially growing infections, called “waves™ it has been
the case of the 1918 “Spanish” flu, which hit the world in at
least three consecutive waves [8], and of the 2020 COVID-19,
which is currently in its second or third wave in various regions of
the world. The common flu, now endemic to the human
population, also occurs in seasonal waves. An extremely
important period for any pandemic is the one bridging two
waves, whose striking feature is a strolling increase of
infections. It is a challenge to consistently model strolling as
part of the inter-wave dynamics within the current approaches.
Typically, the wave pattern is generated by an ad-hoc time-
modulation of the parameters of the model, without any
insight provided on the dynamics generating such pattern. In
this work we will address this issue in the eRG framework, with
the aim of finding a dynamical explanation for the waves and for
the strolling period of linear growth in the number of infections.
The goal is to find a consistent mathematical characterization of
these phenomena.

Here we demonstrate that strolling data constitute evidence for
the existence of near time-scale invariance that is efficiently
encoded in complex fixed points of the eRG beta function. As
a result we achieve an economic and profound understanding of
the wave dynamics and the bridging period between waves.
COVID-19 pandemic data are used to confirm, test and
calibrate the complex eRG framework (CeRG). A more
detailed and quantitative analysis of the epidemiological data
is presented in a companion publication [9]. Because of the
simplicity of the CeRG that is organized around symmetry
principles the discovery amounts to a paradigm shift in the
way epidemiological data are mathematically modelled,
classified and understood. The CeRG or strolling pandemic
framework is applicable to a wide range of infectious disease
dynamics because it provides the bedrock of consistent
mathematic modelling based on symmetry principles. It also
offers a guiding principle to unveil the underlying microscopic
dynamics.

INTRODUCTION

Pandemics are becoming a growing threat to our society [10],
with COVID-19 being the latest example [11-13]. It is therefore
of paramount importance to understand the diffusion of the virus
in order to design effective protocols to control its spreading in
the population [14-17]. Data collected in various instances show
that the number of infected people in a limited region grows
exponentially at the beginning, while then subsiding after a period
of time characteristic of each type of virus. This feature can be
effectively described by various mathematical models, including
compartmental ones [1, 18-21], complex network diffusion
techniques [2-4], the eRG approach [5-7] and other infection
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models [22]. Going beyond the first wave is however a
challenge [23].

Epidemic data for multi-wave pandemics show the existence
of a region of quasi-linear growth of infected cases extending in
between consecutive waves. In this period of time, the number of
new infected cases grows much slower than the exponential
growth in each wave, thus we refer to it as the region of
strolling epidemic regime. The scope of our work is to
demonstrate that:

i) modelling the strolling regime is important to achieve a deep
understanding of the underlying epidemic dynamics, in a
unified way within and between waves;

ii) near time-scale invariance is key to such an understanding;

iii) the eRG approach [5, 6], when extended to include complex

fixed points, is the ideal framework to explain and model
strolling dynamics.

Evidence for the above comes from applying the novel
framework to COVID-19 data in the world [9]. Here, strolling
dynamics eminently explains the pandemic diffusion data
showing that the novel approach achieves a better
characterization of the data compared to the original eRG
with real fixed points. Thus the resulting framework
constitutes a paradigm shift in our understanding of epidemic
diffusion dynamics.

The eRG framework [5-7] is based on a single differential
equation describing the time evolution of the total number of
infected cases, inspired by particle physics methods [24, 25]. It
has been shown to be highly effective when describing how the
pandemic spreads across different regions of the world [6], and to
be able to effectively predict the time frame of a second wave [26,
27]. Due to the presence of real fixed points, in the original eRG
approach the onset of the second wave had to be modelled
independently alongside the region bridging the waves. The
link between the eRG and traditional compartmental
approaches [1] has also been established [28, 29]. In this
article we propose the novel strolling paradigm as a unified
way to model and understand epidemic data, within and
between waves, that stems from the emergence of complex
zeros of the eRG beta function.

The strolling regime in epidemiology has an important
counterpart in particle and condensed matter physics. It has to
do with the loss of near-scale invariance. In particle physics, the
latter is married to special relativity, thus yielding what is known
as conformal Depending on the underlying
mechanism behind the loss of conformality, one can envision
several scenarios like a Berezinski-Kosterlitz-Thouless (BKT)-
like phase transition, first discovered in two dimensions [30]. A
similar mechanism was than envisioned to occur in four
dimensions in [31-37], unless a jumping (non-continuous)
phase transition [38] occurs. This dynamics underlies time-
honored models of composite Higgs boson. Evidence for the
BKT transition has been found in various two-dimensional
materials and physical systems [39-42]. A large body of
numerical and analytical work has followed the discovery that
one can achieve (near) conformal dynamics in four dimensions

invariance.
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FIGURE 1| Emergence of the strolling dynamics from the CeRG beta function. Left panel: illustration of the beta function (—|,B (zx)|) extended to the complex plane,
i.e., considering a complex a. The red line represents the trajectory on the real plane, emerging from the real fixed point at « = O (red dot): the strolling emerges as the
solution slows down when passing between the two complex fixed points (green dots). Right panel: (A) beta functions and (B) solutions for p = 0.65 and various choices
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with a small number of matter fields [43]. The work culminated in
the well-known conformal window phase diagram [44] that
serves as road map for first-principle lattice studies, as
summarized in [45], and for building phenomenologically
relevant models of composite Higgs.

In this work we demonstrate that an approximate scale-
invariant dynamics can explain the emergence of the strolling
regime as well as of a new wave, in epidemiological data. Our
approach is organized around symmetry principles, which allow
for a compact and efficient way to analyse the data. Our discovery
amounts to a paradigm shift in the way epidemiological data will
be modelled in the future. This discovery offers also a precious
guideline in unveiling underlying models aimed at a microscopic
understanding of multi-wave diffusion of the pandemics, inspired
by the work done in particle and condensed matter physics.

The key equation of the strolling framework is the complex
eRG (CeRG, pronounced as Serge) beta function:

d
Poa (@) = Fr = al (1w = 3] M

The solutions of this differential equation, a(¢), will be used to
characterize the time-evolution of the number of infected cases.
This beta function features the following zeros:

0(1:1—\/5,

corresponding to time-scale invariant fixed points of the theory.
This implies that if « equals any of these values, at any given time,
its value will remain fixed (i.e., constant in time). For positive §
and an initial value of « between zero and «;, the solution
interpolates between zero and the first fixed point. This

a =1+V6, 2)

a =0,

dynamics is the one employed in the first eRG studies [5-7],
where p was 1/2 with § = 0. It nicely encodes the time-scale
invariance at short and large times, as well as the fast exponential
growth in between the first two zeros.

For negative §, the two non-trivial fixed points become complex
and therefore can’t be reached. Nevertheless the dynamics still feels
their presence for sufficiently small |§]. The overall effect is that the
solution spends a long time near the would-be fixed pointat o = 1,
where it features a slow linear rise. This behavior is naturally
identified with the strolling regime. This dynamics is illustrated in
the left plot of Figure 1, where we display the beta function
analytically continued in the complex plane as function of a
complex a (more precisely, we plot minus its absolute value).
The trajectory of a, on the real plane, is indicated by the red line,
which originates at the real fixed point ap = 0. The valley with
negative beta function values drives the exponential growth of «
with time, until the near fixed point value is reached, at the local
maximum « = 1. The trajectory, thus, needs to pass through the
two fixed points in the complex plane, indicated by the green dots:
the closer they are to the real plane (i.e., the smaller |d]), the slower
is the evolution with time and the longer time « spends near the
complex fixed points. This is shown in the panel B), where we plot
the solutions for p = 0.65 and various values of 8. The value
Omax = 0.18 corresponds to the largest value of |§| after which
the valley in the real plane disappears, as shown in panel A). A
more in depth analysis on the properties of the CeRG beta function
and of the solutions is reported in the next section.

The solutions of Eq. 1 constitute a two parameter family of
functions that we use to efficiently model the COVID-19
epidemic data. To do so we can identify a(t) either with the
logarithm of the number of infected cases, or with the total
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number itself, up to a normalization, where t is the time variable
rescaled by a constant y measured in weeks. This choice is
equivalent to the scheme dependence in the beta function [29].

MATHEMATICAL MODELLING

Review of the Epidemic Renormalization
Group

In the original eRG approach [5], rather than the number of
cases, it was used its natural logarithm «(t) = InI(#). For a
single wave pandemic, this provides a better fit to the data
than a similar equation for a(t) = I(¢) [7]. The derivative of
a(t) with respect to time provides a new quantity that we
interpret as the beta function of an underlying microscopic
model. In statistical and high energy physics, the latter
governs the time (inverse energy) dependence of the
interaction strength among fundamental particles. Here it
regulates infectious interactions.

More specifically, as the renormalization group equations in
high energy physics are expressed in terms of derivatives with
respect to the energy p, it is natural to identify the time as
t/ty = —In(u/u,), where t; and y, are a reference time and energy
scale, respectively. We choose t; to be one week so that time is
measured in weeks, and will drop it in the following. Hence, the
dictionary between the eRG equation for the epidemic strength
a(t) and the high-energy physics analog is

Blatty = o) . _datD ©
dln(ufpp)  dt
The pandemic beta function able to represent an isolated region
of the world [5] can be parametrized as

da(t) ( (x>2P
~B(a) = =yaf1-= 4
Bl == =ya(1-1 @
whose solution, for 2p = 1, is a familiar logistic-like function
ae”"
a(t) = 7 (5)

The dynamics encoded in Eq. 4 is that of a system that flows from
an Ultra-Violet fixed point at = —co where & = 0 to an Infra-Red
one where a = a. The latter value encodes the total number of
infected cases in the region under study. The coefficient vy is the
diffusion slope, while b shifts the entire epidemic curve by a given
amount of time. Further details, including what parameter
influences the flattening of the curve and location of the
inflection point and its properties can be found in [7] and in [5].
The rate with which the fixed points are approached is
determined by a universal quantity termed scaling exponent:

9B

=2 o with «* = fixed point (6)

At o* =0 and o* = a we have, respectively,

9(0) = -y, 9(a) =y ™)
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A negative (positive) exponent means that the fixed point is
repulsive (attractive).

The presence, however, of a truly interacting fixed point at large
times predicts that the number of new cases drops to zero. This is,
however, not what is observed for COVID-19 for most of the
countries. The system does not reach a time-scale invariant state.
What it is generally observed is the occurrence of a temporal region of
roughly constant number of new infected cases. After this time, if
there is no herd immunity, the system will start a new epidemic wave.
The extent to which the system remains in this state in between two
waves depends on the intrinsic dynamics of the virus as well as social
distancing measures. The point we will now address is how this
important phenomenon can be encapsulated in a mathematically
consistent way as a controllable deformation of a symmetry limit of
the model, i.e,, a phenomenon emerging as near time-dilation.

Complex Epidemic Renormalization Group
(CeRQG): Strolling Region of Pandemics

Here we propose the CeRG model for which the beta function in
Eq. 4 becomes:

—B () :%2)}0([(1—%)2_5]17
=ya(g—1+\/3)P<g—1—\/S)p ©)

with § and p real numbers and p positive. One can rescale the time
by 1/y and « by a per each country to eliminate them from the
equations, so that we can rewrite the beta function in the form of
Eq. 1. Here we are interested in negative values of § = —|d],
leading to the following zeros of the beta function:

0(1,:1—1'\/W, 0C1+:1+i\/Ws (9)

with each complex zero of order p. The zero at the origin
corresponds to a repulsive fixed point, meaning that a
deformation around it (initial infections) drives the beginning
of the pandemic, while the other two zeros control the dynamics
at large times, as discussed above. For § =0 we recover the
original eRG of Eq. 4, featuring physical fixed points. Since at
each complex fixed point the beta function vanishes, one observes
the occurrence of two complex time-dilated invariant theories.

As shown in Figure 1, the beta function has a local maximum
at values of a = 1, which becomes flatter for larger |§], until it
disappears for § < — Oyax = —p?/ (1 + 2p). Thus for large negative
values of §, the strolling regime is lost and the solution will keep
growing exponentially fast.

For small |J]|, the solutions feature a period of slow linear
growth, as shown in panel B) of Figure 1: this period we identify
with the strolling regime. In this case, the solution for « < 1 can be
approximated by the beta function with § = 0, which allows for an
analytic solution in terms of Hypergeometric functions

a =0,

t a<l da
dr:j — 22 (B[ 1L1+2p;2,2;a] - "
[la=] e gy P ORI nd )

a
+In—
Qin
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FIGURE 2 | Values of Alstroling for p = 0.5-0.9 and 1.

The strolling regime occurs because the real beta function
develops a maximum near a« =1 for small |§], technically
allowing the theory to feel the nearby presence of the complex
fixed points. For any fixed p, the duration of the strolling region
increases with decreasing |§]. The duration can be estimated as
follows
®  da

Atsirolling = —2 jl Bone (@ (11)
The results as a function of &, for different values of p, are shown
in Figure 2. For fixed p, the strolling time grows like an inverse
power law of 8, while for fixed and sufficiently small § it increases
exponentially with p.

Multi-Wave Dynamics

The CeRG model can be easily extended to include multiple
waves, with their strolling regime in between consecutive waves.
For a pandemic with w waves, the multi-wave CeRG equation
reads [9]:

B =a[(1-a-8]"[] [(1 ~Ca) - a,,]” (12)

=2

in terms of normalized « and time. Here, the inverse of the
parameters (, <1 represents the cumulative total number of
infected cases after each wave divided by the first wave result.
Thus they are ordered as follows: 0<(,, <(, ;< ... <{,<1.
Also, we can choose J,, =0 so that the pandemic is
extinguished after the last wave, with a total number of cases
a(t — 00) = 1/(,,. This beta function has a series of complex fixed
point pairs

oy, =—————, for p=1,...w-1 (13)

(where {; = 1), with each pair generating the strolling period
between the pth wave and the next. For oc; =1/(,, the beta
function hits a maximum: this point also corresponds to the
time when the number of new cases is the smallest during each
strolling period. It is convenient to define the following strolling
parameters [9].

Complex Pandemics

(14)

which measure the severity of the strolling period after the
pth wave.

In Figure 3 we illustrate the behavior of the solution in the case
of two waves, w = 2. In the panel A), we show the beta function
for three different choices of the strolling parameter S; = S; ;. For
decreasing Sy, the function approaches the real zero at « = 1. In
the panel C), we illustrate sample solutions for the same beta
function, with the solid lines representing «(t) and the dashed
lines its derivative. The solutions highlight the special feature that
the second wave is flatter than the first, as it involves the same
number of total infected cases. For comparison, in panel D), we
show the solutions for a larger second peak, corresponding to
{; =0.45. A relevant time scale in this solution is the delay
between the peaks of the two waves. This can be computed
once the value of « at the peaks o)™ is known, by means of the
formula:

max

o1 d [0
A =" == 1
Epeak,p J? 3@ (15)

The extremes of integration correspond to zeroes of the derivative
of the beta function. For w = 2, for instance, we find

L+2p + 0 +2p20, F \/(1 +2p + 6 +2p200) =4 (1+2p) +2p2)0,
2(1+2p1 +2p2)¢,

max _
12 =

(16)

In panel B) of Figure 3, we show Afpe.x as a function of {, for
various choices of the exponents p;,. We see that the delay
increases for increasing (,, i.e. for decreasing number of infected
cases in the second wave. When {, > 0.8 the solution cannot be
trusted any more because the second peak is dissolved.

In Figure 4 we show the beta function and sample solutions
for a multi-wave CeRG model with three waves. Here we chose
the two waves to contain the same number of total infected, and
the same strolling parameter S; for the two strolling periods. The
characteristic pattern that emerges is that the second wave tends
to be flatter than the other two. Note also that the delay between
the peaks increases for decreasing S;, as expected.

RESULTS

The CeRG model can effectively describe a single wave and the
subsequent strolling period, characterized by a linear growth in
the total number of infected cases. The solutions of Eq. 1 contain
five parameters that can be fitted on the epidemiological data: the
two parameters characterizing the family of solutions, p and 6,
two normalization factors a and y, and the initial condition. The
latter determines the beginning of the infection spread. Following
the original eRG formulation [5], here we identify a with the
logarithm of the total number of infected cases. The
normalizations appear as
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where t,, is the time measured in weeks, and 7 is the total number
of infected in each region that we consider. Note that the infection
rate y and the normalization a are equivalent to the parameters of
the original eRG approach, for p = 1/2 and § = 0. The results for
six countries/regions is shown in Figure 5, where the blue dots
indicate the data (from www.worldometer.info) while the red
curve is the solution of the CeRG model. We chose to test the
model against the first wave data and the subsequent strolling
period in Italy, France, Spain, Germany, the United Kingdom and
New York state as the number of cases is large enough to provide
a good statistics with a consistent testing practice. The data show
that the presence of the strolling regime is a physical property of
the pandemic.

The figure clearly demonstrates that the CeRG model provides
an excellent description of the data. As a comparison, in dashed
green we also show the fit from the original eRG model, which has
only 3 parameters. The values of the parameters used in the plots
are listed in Table 1. For the eRG, the parameters are obtained via
a x* fit of the data. For the CeRG solution, this is not possible due
to the implicit form of the solution in Eq. 10, thus we obtained the
values of the parameters by modifying the eRG ones until a visual
agreement with the data is obtained (a precise numerical fit of the
data is beyond the scope of this work). The effect of each
parameter can be easily understood: a determines the overall
normalization of the number of cases (more precisely of its
natural logarithm), while the infection rate y makes the
exponential growth in the curve more or less steep by
rescaling the time. The new parameter p smoothens the curve
when it approaches the near-fixed point at & = 1. Thus, tuning p

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org

June 2021 | Volume 7 | Article 659580


http://www.worldometer.info
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Cacciapaglia and Sannino

Complex Pandemics

15
1.0
0.5

1.0
0.5
0.0

3.0 30 5
. 7
2.5 25} France 4} Spain /
5 /
2.0 20
3
15 15
2
g 1.0 1.0
3 05 05 1
o
2 00 0.0 0
% 5 40 10 15 20 25 30 35 40 5
B 30 35 5
3 3.0
£ 25F Germany ! 4t New York _——"".
= o5 25
= 2
A I 20 3
— 15

0.0

10 15 20 25 30 35 40 10 15 20 25 30 35 40 10 15 20 25 30 35 40

Calendar weeks

FIGURE 5 | Fit of the CeRG solutions (red curves) compared to the total number of infected cases (blue dots) adjourned to the 28th of August. For comparison, in
dashed green we show the eRG first wave fits obtained in [26], which do not feature the strolling dynamics. The epidemiological data is from www.worldometer.info.

TABLE 1 | CeRG and eRG parameters used to obtain the curves in Figure 5.

eRG and CeRG parameters

- Y a P 3
Italy (CeRG) 0.69 12.40 0.58 3.1.10°
ltaly (eRG) 0.43 12.38 0.5 —
France (CeRG) 1.0 11.98 0.647 4.0-10°°
France (eRG) 0.584 11.89 0.5 —
Spain (CeRG) 1.0 12.51 0.60 40.-10°°
Spain (eRG) 0.53 12.48 0.5 -
Germany (CeRG) 1.1 12.15 0.635 1.4.10°°
Germany (eRG) 0.616 12.09 0.5 -
United Kingdom (CeRG) 0.70 12.63 0.64 3.0-10°°
United Kingdom (eRG) 0.368 12.55 0.5 -
New York (CeRG) 0.95 12.98 0.65 1.9.107°
New York (eRG) 0.42 12.91 0.5 —

allows to improve the fit of the exponentially growing initial
phase, i.e. the first wave. The role of ¢ is to determine the flatness
of the strolling phase, namely the constant number of new cases
registered after the end of the first wave, and the time when the
second exponential growth begins. It is, therefore, non-trivial to
be able to reproduce both with a single solution. Once the second
exponential phase starts, the model looses validity, because the
solution diverges (we stop the red curves at this stage).

Most regions of the world are currently experiencing a second
or third wave of the COVID-19 pandemic. The multi-wave CeRG
could then be used to model this structure [9]. One first remark is
that the multi-wave model works better for the total number of
infected cases, a(t) = I (t), instead of its log. The reason behind is
that the parameters {, would be very close to unity if defined in
terms of the log of the total number of infected cases after each
wave, thus falling in a regime where the model is not accurate, as
discussed in the previous section. Furthermore, the data present a
challenge, as the number of infected cases, detected via the testing,
crucially depends on the number of tests done in various periods,
and the testing strategy. Thus, it is not easy to compare multiple
waves, where the numbers could be biased by the testing
strategies. Some results can be found in [9] for various regions

of the world, showing that the multi-wave CeRG model can
provide a good description of the data, at least for the most recent
waves of COVID-19.

DISCUSSION

We provided a new physical paradigm for describing pandemic
dynamics, which is able to naturally account for the observed
strolling phase in between waves. It is based on the realization
that the strolling phase appears as a manifestation of near time-
scale invariance of the underlying pandemic diffusion theory. In
the CeRG framework this is encoded in the emergence of complex
fixed points of its beta function. The discovery is supported by the
COVID-19 data that we accurately reproduce with solutions of
the CeRG beta function. In comparison, traditional approaches
like compartmental models can reproduce the multi-wave
behavior only via time-dependence of some parameters, like
the effective infection rate. In practice, a modulated increase in
the infection rate is modelled in, which thus generates the
exponential increase of the number of infections in waves.
This pattern is, therefore, introduced ad-hoc, while in our
model it naturally emerges from the complex fixed point
structure of the equation. As such, our model has a stronger
predictive power than traditional approaches as it allows to
correlate the global time-evolution of the virus spreading to
the emergence of the next wave.

Limitations

The mathematical approach to pandemics we propose here is
based on symmetry principles instead of the underlying
mechanism of diffusion of infectious diseases. The eRG
framework is based on the time-invariance symmetry, i.e. the
property of a system that remains constant in time (steady states).
In the case of pandemics, the emergence of an exponential
increase in the number of infections (pandemic wave) can be
understood as a transition between a steady state (with zero
infections) to another steady state with a non-zero total number
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of infections. The multi-wave structure and the strolling period in
between waves, therefore, emerge when the second steady state
cannot be reached and the system starts a new exponential growth
after spending a sizeable time around an approximate steady
state. This phase is characterized by a linear increase in the
number of infections. The limitation of this approach is that it
does not include the details of the mechanism of the infections.
Thus, it is not possible to study in detail the effect of various (non)
pharmaceutical interventions, nor variations in the virus
dynamics.

In fact, the philosophy of the eRG approach is to “integrate
out” the details and study the overall time evolution of the
pandemic: the effect of social distancing, different policies,
pharmaceutical interventions, and the presence of strains with
different infectious power are contained in the value of the
parameters characterizing the solution (5 for the CeRG model,
and three for the eRG one). In particular, the effective infection
rate y is the most sensitive one, together with the total cumulative
number of infections. It would be interesting to apply this
mathematical framework to numerical simulations that are
sensitive to the complexity of the system [46] and see how
they influence the parameters of the model. Results for the
effect of vaccinations can be found in [27]. Psychological
factors, like trust and the perceived gravity of the situation
[47], also influence the values of the parameters of the model,
as well as the impact of social media [48, 49]. An analysis of the
impact of strains is under way.

We apply the framework to the cumulative number of
infected, with caveats already stated in the text, which offers
the most accurate description of the time evolution of the
pandemic. In principle, the same formalism can be applied to
the hospitalizations and deaths. However, they crucially depend
on the demographics of the region, and on the presence of
comorbidity in the infected individuals. Thus, the time
structure of the number of hospitalizations and deaths would
be biased by factors that go beyond the virus infectious power and
measures taken to curb the epidemic diffusion.

The model can also be used to forecast the evolution of the
pandemic. In particular, by fitting the strolling period, the
occurrence of a next wave can be predicted, with extensive
results presented in [9]. These predictions, however, can be
affected by changes in the policies and the effect of extensive
vaccinations of the population. For this reason, they should be
considered as a guideline for the implementations of measures
that can prevent or delay the emergence of a future wave.

CONCLUSION

The new approach we propose here correctly describes, in a better
way than the eRG, the exponential growth of the first wave. This is
so because it allows for larger values of y, as shown in Table 1,
which better reproduce the initial data of the exponential
epidemic growth. The fact that the initial data needed a larger
infection rate y was already observed in early data fits [5].
Additionally, allowing the parameter p to be greater than 1/2
slows the epidemic curve near the ending of the first wave, again

Complex Pandemics

in better agreement with data. Strolling was not part of the
previous approach and here it depends on the parameter §,
which carries the physical significance of controlling the
distance from exact time-dilation invariance. The numerical
value of & determines both the slope of the strolling (the
constant number of new infected cases after the first wave)
and its duration before the onset of the second wave. Thus the
CeRG solution predicts the beginning of the second wave once we
know the strolling slope. Caveats apply to this prediction power
because of the presence of additional effects that a single equation
cannot embody, such as interactions across different regions of
the world. These interactions have been shown to be important
for the beginning of the second wave [6, 27]. The CeRG approach
can also be extended to describe multiple waves and their
respective inter-wave strolling periods [9].

The CeRG approach, which is based on the implementation of
important symmetries of the pandemic, is a macroscopic
realization that serves as a guiding principle to unveil its
microscopic dynamics. A natural step in this direction is to
consider a possible realization in terms of a BKT-like theory
[30]. The strolling period of pandemic raise in between waves is
now explained by an elegant yet profound mechanism that once
was sought to underly certain time-honored composite Higgs
boson theories.

Our discovery amounts to a paradigm shift in the way
epidemiological data are mathematically modelled, classified
and understood, and we further believe that the CeRG
framework can be applied to a wide range of diffusion-based
social dynamics. In the case of infectious diseases, like COVID-
19, our new approach highlights the importance of the inter-wave
period, where a constant number of new infected cases is
recorded. To control and delay the next wave of the
pandemic, it is crucial to control this phase and limit the
number of new daily cases as much as possible. It has been
established that limiting to 10-20 new daily cases per million
inhabitants is necessary [27, 50], and decision makers should
implement suitable social measures to achieve this goal. In
practice, this means that social distancing measures should be
maintained even after the number of new daily infections
decrease. This includes hygiene measures, mask wearing,
sanitization of enclosed environments and respect of distances
between individuals. In addition, vaccination campaigns should
be deployed during the strolling phase in order to reduce the
population susceptible to infections.
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