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The increasing impact of antibacterial resistance concerns various stakeholders, including
clinicians, researchers and decision-makers in the pharmaceutical industry, and healthcare
policy-makers. In particular, possible multidrug resistance of bacteria poses complex
challenges for healthcare risk assessments and for pharmaceutical companies’willingness
to invest in research and development (R&D). Neglecting dependencies between
uncertainties of future resistance rates can severely underestimate the systemic risk for
certain bug-drug combinations. In this paper, we model the dependencies between
several important bug-drug combinations’ resistance rates that are of interest for the
United Kingdom probabilistically through copulas. As a commonly encountered challenge
in probabilistic dependence modelling is the lack of relevant historical data to quantify a
model, we present a method for eliciting dependence information from experts in a formal
and structured manner. It aims at providing transparency and robustness of the elicitation
results while also mitigating common cognitive fallacies of dependence assessments.
Methodological robustness is of particular importance whenever elicitation results are used
in complex decisions such as prioritising investments of antibiotics R&D.
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modeling

1 INTRODUCTION

The emergence of antibacterial resistance is a pressing concern for everyone who works in andmakes
use of healthcare services. Addressing this issue requires coordinated action by clinical practitioners
and researchers, policymakers, the pharmaceutical industry and the public. The growth in
antibacterial resistance is often attributed to mis- and over-prescription of antibiotics by
clinicians together with patients’ failure to follow the treatment course, or even patients’
expectation to receive antibiotics [1,2]. The prevalence of antibiotics in meat products through
their frequent use in livestock [3] and environmental contamination more generally [4,5] are also
important contributing factors.

Characterising our uncertainty about the future development of antibacterial resistance poses a
particular challenge. Because some resistance mechanisms confer resistance to multiple drugs and
can be shared across multiple pathogens and because changing resistance patterns influence
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prescribing behaviour, which in turn impacts the emergence and
spread of resistance, we cannot regard the resistance rates of
different bug-drug combinations as independent from one
another. In fact, doing so would severely underestimate the
risk of multidrug or even pan-resistance (the latter is the
resistance to all available antibiotics). Yet, the emergence of
multidrug resistance, where many or all drugs used to treat a
particular infection fail simultaneously, is a worrying
scenario—and one for which investment in clinical research
and development (R&D) is often neglected [6].

Therefore, a better understanding of multidrug resistance,
i.e., the dependency relationships between the proportions of
different pathogens resistant to different antibiotics, is crucial for
clinical decisions on drug prescribing together with investment
and policy decisions about drug discovery. Investing into research
of first- and second-line drugs1 to which a bug is already or will
quickly become resistant severely undermines diversification
efforts for an antibiotic’s portfolio.

In this paper, we focus on probabilistic modelling of the
dependencies between future resistance rates (i.e., the percent
of isolates of a given pathogen resistant to a given antibiotic)
using copula models with the aim of providing a framework to
better understand and model the risk of multidrug resistance and
establish the value of its research. The main reason for using
copulas is their modelling convenience of explicitly considering
upper and lower tail dependencies in addition to central
dependence strength. As such, random variables can exhibit
no (or little) dependence in a joint distribution’s central region
while they are strongly dependent for joint extreme values in their
lower, upper or both tails [7]. Thus, this is an important feature to
capture in a joint distribution as neglecting it can lead to poor
understanding of the overall risk and therefore poor decision-
making when events, possibly evoking joint extreme values,
occur. We explain throughout this paper how this feature of
copulas applies to multidrug resistance.

A common challenge when modelling dependencies
probabilistically is the lack of relevant historical data for
quantifying a model. When data is scarce and simplifying
assumptions, such as independence, are not justifiable, eliciting
dependence information from experts is the most sensible
approach to risk assessment. Hence, in this paper, we consider
dependencies in a subjective probability context. This means that we
refer to the situation in which there aremultiple uncertain quantities,
future resistance rates for several bug-drug combinations, and
gaining information about one changes experts’ assessment about
another. In the case of independence, experts simply not change the
quantity’s assessment when given information about the other. We
consider the potential sources of the resistance rates’ uncertainties to
bemostly of epistemic nature. That is, the uncertainties stem from an
imperfect state of knowledge (see [8] for a more detailed discussion

on classifying different types of uncertainty). Here, this is about the
emergence of antibiotic resistance and its future development,
influenced by complex, possible contributing factors, which can
be known in principle but are often not well understood in practice.
As such, the experts’ individual assessments and resulting copulas
from the combined assessments represent the (individual and
aggregate) lack of knowledge and hence uncertainty about how a
certain bug-drug combination’s resistance is impacted by a change in
another bug-drug pair’s resistance, i.e., their dependence. This is also
shown in the experts’ rationales that are elicited together with the
quantitative assessments. In the context of imperfect knowledge,
note that while experts’ assessments might be influenced (partially)
by the historical development of resistance and rates of resistance in
theUnited Kingdom and other geographical areas, expert judgement
is needed to evaluate the relevance of historical data in projecting the
future trajectory of resistance in the United Kingdom.

A formal and structured process to dependence elicitation supports
transparency and reproducibility of the expert judgement study,
mitigates experts’ potential cognitive fallacies and ensures confidence
in the results of modelling [9]. These are important desiderata for an
elicitation process given the complex uncertainties commonly prevalent
in medical decision-making (MDM) and possible misconceptions
about the concept of probability in the communication of health
risks in probabilistic form [10,11].

Structured Expert Judgement (SEJ) methods have been used
previously in several areas of MDM (even though only univariate
uncertainties were considered), for instance in health technology
assessment [12–18], assessment of surgery effectiveness [19],
modelling the risk and efficacy of treatment types [20] and
antibacterial resistance risk assessment [21,22].

In the remainder of this paper, we present a structured process
for eliciting dependence information from experts in form of
conditional probabilities and we use these assessments to quantify
several copula models for multidrug resistance rates. In addition
to outlining the main elements of our elicitation process, we
present an illustrative case study in which it has been applied for
quantifying the dependence between the uncertainties of the
specific bug-drug pairs’ resistance rates in the
United Kingdom. This paper’s focus is on Klebsiella
pneumonia and Escherichia coli isolates resistant to
Carbapenems given a resistance to third generation
Cephalosporins in invasive clinical isolates (i.e., bacteria taken
from a body fluid that is typically sterile, like blood, in a patient
with a symptomatic infection). This excludes community-
acquired urinary tract, skin and soft tissue infections and
other non-invasive infections. The elicitations presented here
were done in summer 2017 (with each expert individually and
remotely) for (at that time) future resistance rates in 2021. Our
study is part of a series of studies resulting from the initiative of
DRIVE-AB2 (Driving reinvestment in R&D and responsible
antibiotic use) which underlines that such an application is of

1First-line drugs are the drugs that are typically the first, recommended option to be
administered for a specific disease, usually because they have fewer side effects,
promise higher clinical effectiveness, are easier to administer, and/or are cheaper
than alternative treatments. Second-line drugs are the “second choice” option if the
first-line drugs are ineffective, show side effects, or are contraindicated.

2DRIVE-AB is a project funded by the Innovative Medicines Initiative aiming to
identify new economic models for addressing the R&D and optimal use of new
classes of antibiotics. See: http://drive-ab.eu/.
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particular relevance for informing policy-making and guidance-
setting in antibiotics research and prescribing.

The paper’s first contribution is the presentation of (according to
the authors’ knowledge) one of the first applications of using expert
judgement for quantifying dependencies and modelling copulas in a
healthcare context, and more specifically for multidrug resistance.
The second, methodological contribution is the combined
application of methods addressing various aspects in an
elicitation process for dependence assessments, including methods
for their aggregation together with a method for supporting experts’
reasoning on the dependence relationships. Previously, the methods
presented here have been introduced separately and we discuss the
broader literature on assessing dependencies and elaborate on our
method’s novelty and place within it later.

In the Section 2, we provide a brief overview on multidrug
resistance, the risk which poses the main motivation for the
illustrative case study. In Section 3, we present our method for
eliciting dependence from experts and structuring their
knowledge on the dependence relationships. The results of our
case study elicitations together with the correspondingmodels are
presented in Section 4. Finally, in Section 5 we briefly reflect on
our method and present how it can inform policy-making and
guidance provision on antibiotics’ use and research before we
conclude the paper.

2 DEPENDENCE BETWEEN
UNCERTAINTIES OF RESISTANCE RATES
THROUGH MULTIDRUG RESISTANCE
In this section, we briefly discuss the importance of considering
multidrug resistance and its possible causes when discussing
antibiotic resistance. This underlines the question of why an
antibiotic risk assessment should account for dependencies
between resistance rates.

When we use the term “resistance rate” in this paper, note that
although a rate would usually refer to a frequency in a population
over time, we use the term here as the percentage of bacterial
isolates which tested resistant or non-susceptible to a certain drug
out of all tested bacterial isolates. Hence, an estimate of it can be
obtained through:

( # bacterial isolates resistant to drug
# bacterial isolates tested for drug susceptibility

) × 100

According to [23] antibiotic resistance is defined as:
“Bacteria have antibiotic resistance when specific antibiotics

have lost their ability to kill or stop the growth of the bacteria.
Some bacteria are naturally resistant to certain antibiotics
(intrinsic or inherent resistance). A more worrying problem is
when some bacteria, that are normally susceptible to antibiotics,
become resistant as a result of genetic changes (acquired
resistance). Resistant bacteria survive in the presence of the
antibiotic and continue to multiply causing longer illness or
even death. Infections caused by resistant bacteria may require
more care as well as alternative and more expensive antibiotics,
which may have more severe side effects.”

Following from that. [24] define multidrug resistance as a
microorganism’s, such as a bacteria’s, resistance to several
administered drugs even with a previous sensitivity to them.
This is despite the drugs being structurally unrelated, with diverse
mechanisms and having different molecular targets. Bacteria’s
ability to combat antimicrobial drugs can lead to ineffective
treatment and spreading of infections. Resistance to multiple
antibiotics seems to be concentrated on the same strains, such
that multidrug resistant strains’ frequency is higher than expected
if frequencies of individual resistance determinants were
randomly distributed in a population [25].

2.1 Multidrug Resistance Risk in the Past,
Present and Future
Currently, around 700,000 deaths related to antibiotic resistance
are recorded annually with a potential increase up to 10 million
by 2050 [26,27]. While such an “antibiotic apocalypse” might be
regarded as media hysteria or even scaremongering by various
researchers in the field, the occurrence of multidrug resistance
together with its impact on healthcare is evident (see e.g.,
[1,24,28]). As such, multidrug resistant infections likely lead to
poorer clinical outcomes together with higher treatment costs
than other infections [25].

Although resistance to individual antibiotics was observed
earlier (and the underlying mechanisms have been reviewed
extensively, see e.g., [26] and references therein), the first
bacteria that became resistant to multiple drugs were enteric
ones, such as Escherichia coli, Shigella and Salmonella. Their
multidrug resistance has been observed first in the late 1950s to
early 1960s. Nevertheless, at this time these discoveries did not
lead to changes in health policy-making as they were regarded as
of little concern. However, this changed a decade later when
Haemophilus influenzae and Neisseria gonorrhoeae, organisms
causing respiratory and genitourinary infections, started to
develop resistance to multiple drugs. From then onwards,
multidrug resistance and even pan-resistance scenarios have
become established as public health concerns. For a more
extensive historical overview on multidrug resistance, see. [29]
and [30].

More recently, multidrug resistant pathogens such as
Klebsiella pneumoniae and Pseudomonas aeruginosa isolates
have appeared globally, even though the case of MRSA
(methicillin-resistant Staphylococcus aureus strains) has (most
arguably) attracted the most public attention [1,31]. It has been
observed globally as a main cause of bacterial infections in
community and healthcare settings since its initial appearance
in the 1960s. To be more precise, note that methicillin is no longer
in use in clinical practice, however its replacements, such as
oxacillin, flucloxacillin and dicloxacillin, are still often referred to
as MRSA [31]. While MRSA strains show varying resistance in
different parts of the world, other occurrences of multidrug
resistance pose a risk more specifically to certain global
regions. For instance, while in this paper we focus explicitly
on Escherichia coli and Klebsiella pneumonia resistance to
Fluoroquinolones in the United Kingdom, it is estimated that
in Southeast Asia and China as of 2004 about 60–70% of
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Escherichia coli were resistant to Fluoroquinolones in addition to
five other drug families [30].

2.2 Contributing Factors for Multidrug
Resistance
While multidrug resistance is a natural phenomenon [24], several
factors favor its increasing development.

A first factor contributing to the rise inmultidrug resistance is the
misuse of antibiotics treatment [1,2]. [32] list high prescription rates
of antibiotics as a main reason that has led to the emergence of
multidrug resistance. In that context, they highlight that in both,
hospital and outpatient settings, prescribing broad-spectrum
antibiotics is often unnecessary, for example in the case of
patients with viral infections and non-infectious diseases.
Especially, patients with prolonged drug exposure are prone to
develop multidrug resistant bacteria [30]. At the same time, the
success rate for the development of antibiotics that can be used
against multidrug resistant pathogens is low [32]. Further in this
context. [31] mention the case of high methicillin resistance rates in
Asia due to inappropriate use in form of self-medication and over-
the-counter use.

Next, the rise in immunocompromised conditions, such as
HIV, diabetes and organ transplants, might increase the spread of
multidrug resistance due to these patients’ susceptibility to
hospital-acquired infections [24].

Other influencing factors for dependence between resistance rates
of bugs to several drugs stem from the transmission of resistant
bacteria between agricultural animals and humans [33]. Here, the
use of antibiotics in livestock for meat products is a main factor [3].
In particular the use of antibiotics in livestock for non-medical
reasons, such as animal growth (see e.g., [34]), poses additional
pressures on the spread of multidrug resistance. However, in this
context [35] emphasize that high resistance rate correlations among
humans and animals do not pose evidence for causation. This
remark is of particular importance when analyzing the results of
our elicitation together with the experts’ rationales (in Section 3.2).
Additionally, tomeat consumption, other agricultural products, such
as milk [36] and fruits from trees treated with antibiotics as aerosols
[34] can spread bacteria resistance to multiple antibiotics.

In addition to the misuse of antibiotics in medical treatment
settings and agricultural production, multidrug resistance also
increases due to broader environmental factors [4,5]. For
instance, multidrug resistant bacteria have been found in
municipal wastewater systems [37].

3 STRUCTURED EXPERT JUDGMENT FOR
MULTIDRUG RESISTANCE RATES

After having introduced the motivation for eliciting dependencies
between antibacterial resistance rate uncertainties from experts
and modelling these, in this section we present the main
components of our SEJ process for assessing the risk of
multidrug resistance. A structured process provides robust
assessments as it aims to ensure several underpinning
principles (see [38]). These include transparency of elicitation

results (they can be reviewed by everyone, including people not
involved in an assessment), fairness (experts are not pre-judged)
and neutrality (elicitation methods do not bias results).

As outlined in the Introduction, our methodological
contribution is the combined application of several methods
which address different aspects of a dependence elicitation. In
this paper, the main foci are on eliciting the resistance rates’
marginal distributions (Section 3.1), structuring the experts’
knowledge about the dependencies between resistance rates
(Section 3.2.2) and eliciting dependence assessments together
with combining these (Section 3.2.3 and Section 3.2.4).

3.1 Eliciting the Marginal Distributions of
Antibacterial Resistance Rates
Before we elicit dependence information from experts, we first
specify the marginal distributions of our variables of interest,
i.e., the individual (univariate) resistance rates of the chosen bug-
drug combinations. While in some cases we can quantify
marginal distributions through relevant historical data, in our
case we need to obtain this information from subject matter
experts. This is due to the predictive nature and lack of validated
predictive models for the marginal uncertainties given that we
were concerned with (at the time of the elicitations) future
resistance rates of bug-drug combinations, such as Klebsiella
pneumonia and Escherichia coli isolates resistant to
Carbapenems and third generation Cephalosporins, in the
United Kingdom in the year 2021.

The elicitation method used for eliciting the marginal
distributions is the Classical model (see [38,39]). Briefly, in
this method the experts are asked to provide their uncertainty
assessments about continuous quantities. Rather than only
providing a single point estimate, they give a number of
quantiles in order to capture the quantities’ uncertainty
distributions. For that, the ith quantile for X is that value
qx(i), such that P(X≤ qx(i)) � i. For the marginal
antibacterial resistance rates, these were the 5th, 25th, 50th,
75th, and 95th quantiles. The 5th quantile is the number for
which the expert thinks that there is a 5% probability that the
true value is below this value and a 95% probability that it is
above. We can interpret the quantile assessments similarly so that
for instance for the 50th quantile there is a 50% probability for the
true value to be below the assessment and a 50% to be above it.
Usually, we start the elicitation by asking first for the 5th and 95th

quantiles before eliciting more central quantiles. This might
mitigate the anchoring effect of subsequent assessments
around some more central, previously assessed values, such as
the median [40,41].

We ask the experts to assess two types of questions. The first
are calibration (or seed) questions and the second are the actual
target questions. The former assessments are used for combining
the experts through linear pooling in which each expert’s weight
is performance-based. Thus, the answer for each calibration
question is known to the analyst or will be known within the
time frame of the study, but it is not known to the experts at the
moment of the elicitation. An expert is regarded as a good
probability assessor if the provided assessments for the
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calibration questions capture the true values with the correct
expected relative frequencies (statistical accuracy) while the given
distributions are relatively narrow (informativeness). For
example, perfect statistical accuracy means that across the
calibration questions half of the true values fall above the
median quantiles and half fall below. 90% of the true values
fall within the given 90% interval (from the 5th to the 95th

quantile) and 50% of true values between the 25th and 75th

quantiles. The degree of statistical accuracy is measured using
a Chi-square distribution. Informativeness on the other hand
takes into account how concentrated the given distributions are
with respect to a chosen background distribution. For
determining the overall weighting scheme, statistical accuracy
is more important than informativeness, i.e., non-informative but
statistically accurate assessments are still useful as this result
might entail an important message regarding the overall
uncertainty in the field.

As such, the Classical model produces a single distribution by
taking a weighted combination of expert distributions, where the
weights are performance-based.

3.2 Eliciting and Modelling the Dependence
Between Antibacterial Resistance Rates
With the marginal distributions of the individual resistance rates
specified, we can now elicit and then model the drug-bug pair
dependencies.

Eliciting probabilistic dependencies through expert judgement
has been done previously for quantifying different models in
various application areas. [9,42] provide extensive overviews on
common dependence models and on eliciting dependence
information for these in form of several association measures.

As mentioned in the introduction, in this paper we apply a
method to elicit dependence information for choosing parametric
copula forms that fit the experts’ assessments suitably well (we
introduce copula theory in more detail in the Section 3.2.1). This is
different to other methods eliciting information for modelling with
copulas. For instance [43]. [44] and. [45] present modelling and
elicitation approaches for minimum information copulas which do
not assume a specific parametric copula form. Similarly, [46]
introduce an expert judgement method for quantifying Diagonal
Band copulas. Some papers, which also consider the specification
of parametric copulas through expert judgement, are: [47]
assessing the fit of experts’ judgements to a Gumbel and
Gaussian copula (with a given rank correlation) resulting from
historical data in the context of analysing extreme precipitation;
[48] eliciting a Gaussian copula as a prior distribution to specify
multinomial models while overcoming deficiencies of its common
conjugate prior distribution of a Dirichlet distribution; [49]
eliciting information from experts about possible conditions of
an engineering structure for specifying a Vine copula as prior
distribution tomultinomial models; [50] discussing both, Gaussian
and Vine copulas as priors for multinomial models; [51] using a
preliminary version of the one presented here in a financial
planning context of a higher education institution. Nevertheless,
the main part of the dependence elicitation literature is on
quantifying Bayesian Belief networks [52].

Regarding possible elicited association measures. [53] and [54]
provide comparisons and overviews of eliciting dependence
information in different forms, such as conditional and joint
probabilities or also correlation coefficients. We elicit dependence
information in the form of conditional exceedance probabilities.
These consider the assessment of the variable of interest
exceeding chosen quantiles (similar to the previous case of
eliciting the marginal distributions) however, conditional on
another variable of interest doing so for its own corresponding
distribution. Conditional exceedance probabilities have been
proposed before as a suitable way for eliciting dependence
information from experts (see [55] and references therein). In
applications. [56] and. [57] elicit conditional exceedance
probabilities (together with conditional rank correlations) to
quantify non-parametric Bayesian Belief networks [58].

Lastly, most of the above references do not include the
aggregation of multiple dependence assessments. Only [57]
and [47], with summaries presented in. [42], consider this in
more detail by introducing a dependence calibration score which
is also used later in this paper.

Before we present our method, we introduce copulas in more
detail next.

3.2.1 Probabilistic Modelling of Multidrug Resistance
Dependencies: Background on Copulas
Various ways to probabilistically model the dependence between
resistance rates can be chosen, and each offers certain modelling
conveniences and captures specific aspects of the dependence
relationships. For example, graphical models, such as Bayesian
(belief) nets [52], can allow for a high involvement even of non-
statistical experts in determining the (structural) dependence
relationships. Other dependence models, such as regression
models, explain and quantify dependencies through auxiliary
variables which can offer a way to assess dependence through
only a low number of assessments and hence (in some cases) a
convenient quantification of their uncertainties. [9,42] discuss the
applicability of dependence models in certain modelling contexts
and their influence on the expert judgement process in more detail.

In this paper, we use a copula approach to model the
dependencies in a way that captures the experts’ assessments.
We refer to [59], [60] and [61] for an introduction to copula
theory and advanced discussions. Briefly, recall that (in two
dimensions) FX(x) is the cumulative distribution function
(CDF) of continuous random variable X and FY(y) is the
CDF of continuous random variable Y. There exists a copula,
C(.) such that FXY(x, y) � C(FX(x), FY(y)). It is the bivariate
CDF defined on the unit square with two standard uniformly
distributed marginals, U and V. Thus, for u � FX(x) and v �
FY(y)with u, v ∈ [0, 1], the copulaC(u, v) is defined asC(u, v) �
FXY(x, y) � FXY[F−1

X (u), F−1
Y (v)] with F−1 denoting the inverse

CDF. That way, through transforming the marginals to standard
uniform distributions, we can obtain a copula for any marginal
distributions. In our context, the variablesX and Y correspond to
the rates of resistance for different bug-drug pairs, e.g. Klebsiella
pneumonia isolates resistant to third generation Cephalosporins
(X) and Klebsiella pneumonia isolates to Carbapenems (Y) in the
United Kingdom in the year 2021.
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As mentioned in the introduction, a main reason for choosing
a copula approach is the possibility of explicitly accounting for
upper and lower tail dependencies. For a pair of random
variables, tail dependence measures their joint movement in
the distribution tails [60]. Formally, upper tail dependence (for
the later chosen parametric forms which are of interest in this
paper) is defined as:

λUpper(X,Y) � lim
i→1−

P(Y>F−1
Y (i)|X>F−1

X (i)) (1)

when a limit λUpper ∈ [0, 1] exists. Thus, λUpper > 0 indicates
upper tail dependence whereas for λUpper � 0 the distribution
tails are independent. Loosely formulated, in our context, in the
case of upper tail dependence it is more likely to observe
(extremely) high resistance rates for Y given high resistance
rates for X which is why these are particularly interesting for
modelling future multidrug resistance rates. Following from Eq.
1, we introduce the tail dependence coefficient for upper
distribution tails (see e.g., [60]):

λUpper � lim
i→1−

(1 − 2i + C(i, i))
(1 − i) (2)

We use it later to distinguish our different copula choices.
Several common parametric copulas can be grouped either

into the Elliptical copula class or the Archimedean one. Copulas
in the former class are radially symmetric. Copulas in the latter
class can capture upper and lower tail dependence explicitly [7].
The case of multidrug antibacterial resistance (Section 2)
highlights the importance of identifying especially potential
asymmetric, upper tail dependencies as the spread and
increase of resistance affecting multiple drugs shows a possibly
prevalent systemic risk.

Next, we briefly introduce and define the parametric copula
forms that are chosen later in the case study based on a good fit to
the experts’ assessments and for comparison.

A common Elliptical parametric copula choice, for which a
main property is tail independence, is the Gaussian copula,
defined as:

CGauss
ρ (u, v) � Φρ(Φ−1(u),Φ−1(v)), ρ ∈ [−1, 1]

Here, Φ−1 is the univariate inverse CDF of a standard normal
distribution while Φρ is the CDF of a bivariate standard normal
distribution with product moment correlation coefficient ρ. We
use this parametric formmainly for comparison given that a good
fit to it would indicate an expert’s assessment of tail
independence.

Another Elliptical copula chosen in the case study is the
Student-t copula:

CStudent−t
v,R (u, v) � tv,R(t−1v (u), t−1v (v))

with tv denoting the standard univariate t distribution with
v degrees of freedom and tv,R is the joint standard Student-t
distribution parameterized by v and correlation
matrix R. In contrast to the Gaussian copula, the t
copula can exhibit symmetric, lower and upper, tail
dependence.

A common Archimedean parametric copula relevant for our
case study, which exhibits asymmetric, upper tail dependence, is
the Gumbel copula. It is defined as:

CGumbel
θ (u,v) � exp

⎧⎪⎨⎪⎩ − ((−log(u))θ +(−log(v))θ)1
θ
⎫⎪⎬⎪⎭,θ ∈[1,∞)

and parameterized by θ.
Another one of our Archimedean parametric

copula choices with asymmetric, upper tail
dependence is the survival Clayton copula. For this,
note first that for a copula C(u, v), its survival copula is
defined as:

Ĉ(u, v) � u + v − 1 + C(1 − u, 1 − v)
These types of copulas do not model different dependence

characteristics, but rather are flipped functions of other copulas.
Hence, the Clayton copula (with possible lower tail dependence)
is defined as:

CClayton
θ (u, v) � ⎡⎢⎢⎢⎢⎢⎢⎢⎣max(u−θ + v−θ − 1)−1

θ⎤⎥⎥⎥⎥⎥⎥⎥⎦, θ ∈ [−1,∞)\{0}

which leads to the corresponding closed form of
the survival Clayton copula with possibly upper tail
dependence of:

Ĉ
Clayton

θ (u, v) � u + v − 1 + ((1 − u)−θ + (1 − v)−θ − 1)−1
θ

Other choices considered in our case study are the Joe copula:

CJoe
θ (u, v) � 1 − [(1 − u)θ + (1 − v)θ − (1 − u)θ(1 − v)θ]1θ , θ ∈[1,∞)

which again offers the option to model (asymmetric) tail
dependence explicitly and the Frank copula, defined as:

CFrank
θ (u, v)

� −1
θ
log[1 + (exp(−θu) − 1)(exp(−θv) − 1)

exp(−θ) − 1
], θ ∈ R\{0}

which is an Archimedean copula offering a symmetric
dependence structure with possible tail dependence.

3.2.2 Structuring Experts’ Knowledge About
Resistance Rate Dependencies Through Conditional
Scenarios
In the later case study, all assessments are made in a
conditional probability form as we regard it as more
intuitive than eliciting other dependence parameters. For
instance, joint probabilities are cognitively difficult to
conceptualise and understand by experts [53] while
correlation coefficients are only reliably assessed directly
for dependence relationships in which experts get frequent
feedback [62]. Nevertheless, assessing dependencies in the
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form of conditional probabilities that then serve as inputs for
a copula, can be cognitively challenging for experts. For
instance. [45] present an application of refining
conditional probability assessments in the form of
P(Y> qy(0.5)|X> qx(0.5)) to any quantile, such as
P(Y> qy(0.95)|X> qx(0.5)) and
P(Y> qy(0.95)|X> qx(0.95)), and discuss the potential
cognitive complexities for experts. As a result, experts
might be prone to cognitive fallacies or, more generally,
they can struggle to incorporate their knowledge on
complex dependence relationships in a quantitative
assessment. In order to mitigate cognitive fallacies,
enhance the understanding of the elicited dependencies
and allow for structuring and sharing knowledge, we use a
method for mapping conditional scenarios [51] prior to the
quantitative assessments.

Before presenting this method, we briefly explain which
cognitive fallacies are common when assessing conditional
probabilities, the assessment form chosen in the illustrative
case study.

While it is common to conceptualise probabilistic dependence
through conditionality (see e.g., [9]), studies show that not only
specific cognitive fallacies can easily occur by using that form, but
that understanding and interpreting conditionality is (still) a
challenge in today’s statistics and probability education [63].

Some specific cognitive fallacies, which are of particular
relevance for conditional probabilities, are confusion of the
inverse [64–66], confusion of joint and conditional probabilities
[67] and the causality heuristic [68,69]. An extensive introduction
to these and other cognitive fallacies for assessing dependencies
can be found in. [42]. Briefly, these fallacies can affect dependence
judgements as follows.

The confusion of the inverse states that experts might confuse an
elicited conditional probability P(X|Y) with its inverse P(Y|X). In
our case, this can happen if experts might be unsure (or disagree)
about the order in which the first- and second-line drugs are used, or
if they find it easier to condition on the resistance rate of a second-
line drug being above a certain threshold.

The confusion of joint and conditional probabilities is often
explained by the semantic misinterpretation of “and”. It might be
interpreted by some experts as an indicator of temporal order
instead of the intersection of two events. As such, they might
assess a joint probability instead of an elicited conditional one or
just experience confusion more generally. In the case of
dependent resistance rates, (unwillingly) assessing the joint
probability between two bug-drug combinations instead of a
conditional probability can result in a severe underestimation
of the multidrug resistance risk as an expert would typically assess
a joint extreme event with a very small probability while, in a
conditional scenario, systemic risks actually increase the extreme
event’s probability.

Lastly, the causality heuristic refers to experts’mental (causal)
models about dependence relationships and how a preference for
seeking causal explanations, reasoning from causes to effects, can
affect a conditional probability assessment. For instance, it is
problematic if non-causal information, such as a base-rate with
no causal implication, is neglected in an assessment due to such a

preference. Further, [69] shows that people assess relationships
presented as cause to effect as more probable than when
presented from effect to cause. This shows again how causal
information, presented in a specific format, might bias an
assessment in a certain way. When we discuss the results of
the elicitation together with the experts’ conditional scenarios
underlying their assessments, various causal and non-causal
rationales are given.

As a way to mitigate these cognitive fallacies and improve
experts’ understanding of the conditional judgements, we use a
conditional scenario mapping method introduced in [51] as a
step prior to making quantitative assessments. For that, we
regard scenarios as “sequences that link triggering events to
specified consequences or final states through intermediate
conditions”. We refer to [51] for a detailed definition. Thus,
the experts were first presented with the final state for the event
that we condition onto, i.e., a bug’s resistance to third
generation Cephalosporins being higher than either its 50th

quantile or 95thquantile. Then, they reasoned through
backwards logic (from the future to the present) what the
different reasons for this final state are, taking into account
events considered relevant from the (then future) year 2021
back to the time of the elicitation (in summer 2017). The events
that were already happening and hence observable at the time
of the elicitation were then classified as trigger events and
imported into the probability space of the conditional
distribution, i.e. a bug’s resistance to Carbapenems being
above either its 50th or 95th quantile. From these trigger
events, the experts then reasoned in forwards logic (from
the present to the future) how the conditional scenarios
evolve from the time of the elicitation up to the (then
future) year 2021. In their assessment they then determine
the conditional probability based on the number of relevant,
shared trigger events for both the unconditional and
conditional probability space. The conditional scenarios,
which are shown in Section 4, allow experts to reflect on
their knowledge about the dependence relationships, clarify
the inverses and any causal versus non-causal factors, and can
be shared to challenge each expert’s previous understanding of
the assessments. The idea of sharing knowledge among experts
to then reflect and, if desired, adjust their assessment is
similarly applied in the IDEA expert judgment protocol
[40,70].

3.2.3 Eliciting Dependence Between the Resistance
Rates
The following elicitation process might be regarded as a
pragmatic approach to modelling dependence as the final
copula model is only based on a low number of assessments.
Nevertheless, we argue that the following elicitation method and
the resulting model offer a good balance between assessing
detailed dependence information on the one hand, e.g., it
includes the behaviour of the random variables in the extreme
parts (tails) of their joint distribution, and on the other hand
ensuring a low cognitive complexity for experts. Further, it can be
easily extended if we felt necessary to include more quantile
assessments for finding a fitting copula.
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The part of the elicitation process that focuses on eliciting
the target variables is briefly described in the following steps.
In addition to presenting the elicited conditional
probabilities together with the framing of their elicitation
questions, Figure 1 shows the elicited part of the distribution
schematically. On the left, the elicitation of the conditional
median is shown while on the right of Figure 1 the elicitation
of the conditional 95th quantile is displayed. The light and
dark grey areas combined show the unconditional
distribution parts while the dark grey areas give the
conditional distribution.

The complete elicitation protocol, including all elicitation
questions and training material given to experts, can be found
in the Supplementary Material.

1) First, we elicit the conditional median in the form of
P(Y > qy(0.5)|X > qx(0.5)) for the variables of interest X
and Y. For our exemplary bug-drug pair this can be framed as:

“For the year 2021, given that in the United Kingdom the rate
of Escherichia coli isolates resistant to third generation
Cephalosporins is higher than 16.21% [50th quantile], what is
the probability that the rate of resistance of Escherichia coli
isolates to Carbapenems is higher than 1.996% [50th

quantile]?” (see Figure 1 on the left).
The quantile values come from the previous elicitation of the

marginal distributions (Section 3.1) and correspond to the
resulting DM combinations. Thus, all experts condition onto
the same quantile values and their assessed conditional
probabilities are comparable. A prerequisite is that the experts
agree on the resulting marginal distributions (from the DM
combination). Therefore, as preparation to the dependence
elicitation, it is important to introduce experts to the marginal
distributions, explain how they are derived and clarify any
questions on agreement to these. As we elaborate later on in

more detail, in our case the experts were also included in eliciting
the marginal distributions, so we reminded them about these
results and how they were obtained. Note that the process - first
combining expert judgements to obtain single marginal
distributions for each unknown quantity and then asking for
further judgements about dependency—ensures that we can
sensibly aggregate the expert assessments [42].

2) As an intermediate step, we then vary the conditional
variables, typically to explore a single distribution tail,
i.e., the more extreme scenarios for one variable, more
explicitly. For that, we elicit the conditional probability of
P(Y > qy(0.5)|X > qx(0.95)). Note, this is only to provide
an easier transition with regards to assessing the joint
distribution tails next. Hence, this assessment is not
included in the final combined assessment. In our example
this is asked for by:

“For the year 2021, given that in the United Kingdom the rate
of Escherichia coli isolates resistant to third generation
Cephalosporins is higher than 38.59% [95th quantile], what is
the probability that the rate of resistance of Escherichia coli
isolates to Carbapenems is higher than 1.996% [50th quantile]?”

3) In a similar way, we now vary the other quantile, so that both
refer to their distribution tail, i.e. the joint tail dependence for
which we elicit P(Y > qy(0.95)|X > qx(0.95)). We frame the
question as:

“For the year 2021, given that in the United Kingdom the rate
of Escherichia coli isolates resistant to third generation
Cephalosporins is higher than 38.59% [95th quantile], what is
the probability that the rate of resistance of Escherichia coli
isolates to Carbapenems is higher than 17.24% [95th

quantile]?” (see Figure 1 on the right).

FIGURE 1 | Schematic representation of elicitation sequence with first assessment on the left and last on the right.
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4) With the above assessments in place, we can now compare
each expert’s judgements with different parametric copula
forms. We already stressed that we consider our method of
fitting a parametric copula to an expert’s assessments to be
pragmatic. This is due to the low number of assessments that
we base our chosen parametric copula together with its
parameters, i.e. dependence strength, onto. For instance,
here we only use the assessments of
P(Y> qy(0.5)|X> qx(0.5)) and
P(Y> qy(0.95)|X> qx(0.95)) for each expert. The steps to
identify the best fitting copula(s) are as follows:
(⁃) First, note that we can generate P(Y> qy(i)|X> qx(i)) for
any ith quantile (i≥ 0.5) of chosen parametric copulas and their
parameter(s), i.e. dependence strength, through the upper tail
dependence function (Eq. 2).
(⁃) Here, we generate the conditional probabilities for the 50th

and 95th quantiles of various chosen parametric copulas and
alter their parameter(s) using the “Vine Copula” and “Copula”
R packages ([71] and [72]). Thus, we are limited by the
parametric copulas included in these packages.
(⁃) Next, we compare an expert’s assessments for these two
conditional probabilities with the ones of the various
parametric copulas and choose the parametric copula
together with its parameter(s) for which the (absolute)
distance of the assessments to the generated points is
minimized.
(⁃) If more than one copula choice fits equally well, we either
use linear interpolation for obtaining more points between an
expert’s assessments or we elicit another quantile from an
expert and do another comparison. The latter is usually more
appropriate when experts’ assessments indicate low or no tail
dependence as for these the tail dependence function is not as
linear as it is for high tail dependence. However, including
more quantiles can result in overspecified copulas, i.e.
incoherent assessments, for which no parametric form fits.
Figures 4, 5 show the comparison of parametric copulas at the
50thand 95th quantiles for various rank correlations.

3.2.4 Aggregating Dependence Assessments From
Various Experts
Inmany expert judgement studies, it is of interest to elicit assessments
from more than one expert in order to capture a broader range of
knowledge and beliefs about the uncertainties of interest. Whenever
we elicit assessments from more than one expert, an important
question concerns how to aggregate several judgements in a sensible
way. Somemethods are based on behavioral aggregation. Proponents
of these methods advocate experts should achieve a consensus
opinion for the variable of interest. Other methods combine
experts’ judgements mathematically. French (2010) discusses
advantages and disadvantages of both approaches in detail. For
instance, for behavioural aggregation methods, group-think,
i.e., experts trying to avoid discussion and conflict about elicited
result, might be a concern. In our case study we only consider
mathematical aggregation methods. The main reasons are that, first,
our elicitations were done remotely and individually with each expert
(we present the elicitations’ details in more detail later) and
mathematical aggregation was more practical in that case. Second,

only few research results onmathematical aggregation approaches for
dependence assessments exist and we aim to contribute to this
literature. Constructing aggregations using various methods allows
for comparing the methods’ impact on the elicited assessments and
hence offers more insight on the sensitivity of the resulting copula
choices to them. This is of interest, not just for increasing
transparency for decision-makers in antibiotics’ R&D investment,
who base their decisions on the dependence models, but it also offers
a way to provide more detailed feedback to the experts of our
elicitations about how their assessments propagate to the model
output. Both points are of particular importance considering that the
topic of aggregating dependence assessments is not well explored in
the expert judgement literature.

3.2.4.1 Equal Weighting
A first way to construct a linear pool of combined assessments is
by using an equal weighting scheme. In other words, we simply
assign each expert the same weight so that the aggregated
outcome is simply the average of all assessments. In the
context of dependence elicitation, [73] show that statistical
accuracy for directly elicited correlation coefficients increased
within an equally weighted linear pool of experts as the number of
experts increased. Nevertheless, in the same study [73], it is
shown that the difference in statistical accuracy for the top
performing experts (as measured by the mean absolute error
of assessments) is yet considerably better than the equally
weighted pool, a finding which motivates further investigation
into performance-based pooling methods.

3.2.4.2 Performance-Based Weighting: Cooke’s Classical
Model
Another way of combing expert judgments is through the weights
determined by the earlier calibration questions for the marginal
distributions (Section 3.1). In other words, we assume that each
expert’s performance on the previous calibration questions
together with the resulting weights not only reflects their
ability to assess marginal probabilities, but to make accurate
probabilistic assessments more generally, also about
probabilistic dependencies. While some research [47,57]
suggests that experts who perform well with the Classical
model cannot be regarded as good dependence assessors, we
remark that these are indicative results which is why we include a
linear pool weighting scheme based on the previous marginal
probability calibration questions.

3.2.4.3 Performance-Based Weighting: Dependence
Calibration Score
The last aggregation method requires the elicitation of calibration
variables on dependence relationships in addition to the actual
target variables. This is similar to the Classical Model, even
though an information score is not derived. Experts’
assessments are then combined based on a dependence
calibration score which is introduced by [57] while an
extensive discussion of this measure is given in [47] and
[9,42]. It uses the Hellinger distance to measure the divergence
of the copula resulting from an expert’s calibration assessments to
the copula fitted from the actual values (realisations). Formally,
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the Hellinger distance [74] between the copula from the actual
realisations CC and an expert’s assessments CE is defined as:

H(CC, CE) � ∫∫
[0,1]2

�������������������������
1�
2

√ ( �������
CC(u, v)

√ − �������
CE(u, v)

√ )2√
dudv

The dependence calibration score is simply:

D � 1 −H

The score is 1 when experts’ assessments correspond exactly to
the realisations and is lower otherwise, with 0 being the worst
score. Lastly, experts’ weights are normalized and then used for a
combination similarly to the Classical Model and a cut-off level to
exclude experts with lower scores can be included in the
same way.

The data used for calibration purposes and hence for fitting a
copula from the actual realisations fC for each calibration question
comes from the European Antimicrobial Resistance Surveillance
Network (EARS-Net) [75]; [76]. In total we elicited nine dependence
calibration questions of two different types.

Our first type of calibration question is:
“Given that in the United Kingdom in 2015, the rate of resistance

for Escherichia coli isolates to third generation Cephalosporins was
above its median of 10.09% (2010–2015), what is the probability that
the rate of resistance for Escherichia coli isolates to Carbapenemswas
also above its median of 0.433%?”

This type of calibration question together with its framing is
based on the dependence over time, i.e. the median (and other
quantiles) resistance rates are obtained across the years from 2010
to 2015.

For the second type of calibration question, we ask:
“Given that the United Kingdom in 2015, the rate of resistance

was below the European (Italy, Spain, France, United Kingdom)
median of 25.43% for the rate of resistance of Escherichia coli
isolates to third generation Cephalosporins, what is the
probability that it is also below the median (1.23%) for
Escherichia coli isolates to Carbapenems?”

The second type of calibration question considers the
dependence over various countries but within the same year.
Table 1 shows all calibration results together with their fitted
copulas.

The resulting experts’ weights for D are shown in Table 2.

4 ELICITATION RESULTS OF
ILLUSTRATIVE CASE STUDY: FUTURE
MULTIDRUG RESISTANCE IN THE
UNITED KINGDOM

After having presented the main components of our dependence
elicitation process, in this section we present the corresponding
results. In accordance with the previously presented calibration
and target questions, in the following we show the results for the
dependence between invasive clinical Escherichia coli isolates’
resistance to third generation Cephalosporins and its resistance to
Carbapenems. For a complete overview of the case study results

including the other bug-drug combination of Klebsiella
pneumonia to the same drugs, which also has been considered
relevant for the United Kingdom, we refer to. [21], [77] and the
Supplementary Material.

In total, six experts participated in the elicitation of themarginal
distributions (see [21]) while four (of them) participated in the
dependence elicitation (Expert 1, 3–5). Experts were identified
initially through recommendations by colleagues in DRIVE-AB.
Identified experts were then asked for recommendations of other
experts in the area, and the process was repeated until no new
names were provided. This process is also known as snowballing
[78]. Regarding our experts’ backgrounds, relevant areas of
expertise for the elicitations include public health, epidemiology,
microbiology and (clinical) infectious diseases. Further, it is
desirable that experts understand resistance rate development
broadly and therefore have experience in antimicrobial
resistance at a macro level (instead of solely clinical or
laboratory experience). All our experts meet these expertise
requirements and desiderata. All experts have a broad subject
matter expertise ranging from clinicians with daily experience of
prescribing antibiotics and overseeing infectious disease programs
to epidemiologists and health protection specialists focused on
antibiotic resistance in the United Kingdom. Even though,
antimicrobial resistance can have environmental and veterinary
factors (see Section 2), we did not recruit experts with this expertise
but with knowledgeable in human health.

We elicited the marginal distributions and dependence from
each expert in separate expert judgement sessions. Figures 2, 3
show the elicited marginal distributions for the resistance rate in
2021 of the bug-drug pairs of Escherichia coli isolates to
Carbapenems and Escherichia coli isolates resistant to third
generation Cephalosporins accordingly. In addition to each
expert’s individual assessment, we show the performance-
based combination according to the Classical model (DM) and
the equal weight combination (EW).

We observe that for resistance to Carbapenems, all experts apart
from Expert 1 assess narrow distributions while their medians are
close to each other. This is reflected in both combinations through
similar median values. Nevertheless, the DM is much more
informative than the EW combination as Expert 1 receives less
weight in the former. For the resistance to third generation
Cephalosporins, the assessments are less in agreement and we
therefore obtain a much wider DM distribution even though it is
still more informative than the EW combination.

Based on the elicitation results for the marginal distributions,
we then elicited the dependence between both resistance rates
according to the procedure in Section 3.2.2. Figure 4 shows each
expert’s assessment on the dependence between the (at the time of

TABLE 1 | Experts’ weights from dependence calibration score.

Expert D

Expert 1 0.000057
Expert 3 0.01037
Expert 4 0.8716
Expert 5 0.11798
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FIGURE 2 | Elicited marginal distribution (5th, 25th, 50th, 75th, and 95th quantile) for the rate of resistance of Escherichia coli isolates resistant to Carbapenems in the
United Kingdom in 2021.

TABLE 2 | Provides an overview of all calibration variables together with the fitted copulas from the realisations. We used the R packages “VineCopula” [71] and “Copula” [72]
to identify the corresponding best-fitting copulas and parameters according to maximum likelihood estimation.

ID Calibration variables Elicited assessments
(first, second)

Fitted copula from
realisations and dependence

strength (in Kendall’s
tau)

Dep CQ 1 United Kingdom from 2010–2015
% Escherichia coli isolates resistant to Carbapenems (Y )
% Escherichia coli isolates to Fluoroquinolones (X )

1Y > qy(0.5)|X >qx(0.5)
2Y > qy(0.95)|X >qx(0.95)

Rotated Joe 270° (tau � −0.55)

Dep CQ 2 United Kingdom from 2010–2015
% Escherichia coli isolates to Carbapenems (Y )
% Escherichia coli isolates to third generation Cephalosporins (X )

1Y > qy(0.5)|X >qx(0.5)
2Y > qy(0.95)|X >qx(0.95)

Survival Joe (tau � 0.52)

Dep CQ 3 United Kingdom from 2010–2015
% Klebsiella pneumoniae isolates to Carbapenems (Y )
% Klebsiella pneumoniae isolates to third generation
Cephalosporins (X )

1Y > qy(0.5)|X >qx(0.5)
2Y > qy(0.95)|X >qx(0.95)

Tawn Type 1a (tau � 0.48)

Dep CQ 4 United Kingdom from 2010–2015
% Pseudomonas aeruginosa isolates to Carbapenems (Y )
% Pseudomonas aeruginosa isolates to Fluoroquinolones (X )

1Y > qy(0.5)|X >qx(0.5)
2Y > qy(0.95)|X >qx(0.95)

Rotated Tawn Type 2 Rotated 270°a (tau
� −0.44)

Dep CQ 5 United Kingdom from 2010–2015
% Streptococcus pneumoniae isolates to Macrolides (Y )
% Streptococcus pneumoniae isolates to Penicillins (X )

1Y > qy(0.5)|X >qx(0.5)
2Y > qy(0.95)|X >qx(0.95)

Rotated Joe 270° (tau � −0.81)

Dep CQ 6 Across selected countriesb

% Escherichia coli isolates to Carbapenems (Y )
% Escherichia coli isolates to Fluoroquinolones (X )

1Y < qy(0.5)|X <qx(0.5)
2Y < qy(0.05)|X <qx(0.05)

Rotated Tawn Type 2,270°a (tau � −0.52)

Dep CQ 7 Across selected countriesb

% Escherichia coli isolates to Carbapenems (Y )
% Escherichia coli isolates to third generation Cephalosporins (X )

1Y < qy(0.5)|X <qx(0.5)
2Y < qy(0.05)|X <qx(0.05)

Gaussian (tau � 0.18)

Dep CQ 8 Across selected countriesb

% Klebsiella pneumoniae isolates to Carbapenems (Y )
% Klebsiella pneumoniae isolates to third generation
Cephalosporins (X )

1Y < qy(0.5)|X <qx(0.5)
2Y < qy(0.05)|X <qx(0.05)

Gaussian (tau � 0.77)

Dep CQ 9 Across selected countriesb

% Pseudomonas aeruginosa isolates to Carbapenems (Y )
%Pseudomonas aeruginosa isolates to Fluoroquinolones (X )

1Y < qy(0.5)|X <qx(0.5)
2Y < qy(0.05)|X <qx(0.05)

Student t (tau � 0.89)

aThe Tawn copula is an extension of the Gumbel copula presented previously.
bFrance, Italy, Spain, United Kingdom.
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the elicitation) future resistance rates of the bug-drug pairs
together with some fitted parametric copula choices. Similarly,
Figure 5 presents the combined assessments (for each of the
different aggregation methods), again together with the fit of
various parametric copulas.

We observe that the experts’ assessments and resulting best
fitting copulas differ considerably. Two experts’ best fitting
copulas are symmetric, Expert 1’s assessments result in a
Frank copula with rank correlation 0.92 and Expert 5’s
assessments correspond to a Gaussian copula with a rank
correlation of 0.68 or alternatively a Student-t copula with
rank correlation 0.67 and 8 degrees of freedom. The other two
experts’ assessments fit asymmetric copulas with upper tail
dependence. Expert 3’s assessments correspond to a Joe copula

with rank correlation of 0.46 or alternatively, a Survival Clayton
copula with rank correlation of 0.47. Expert 4’s assessments
match a Gumbel copula with rank correlation of 0.44. In
contrast to these individual differences, we see that the
combined assessments for all aggregation methods result in
Archimedean copulas with upper tail dependence (Joe and
Survival Clayton copulas with rank correlations 0.44 and 0.45
accordingly for the performance-based weighting schemes and a
Gumbel copula with rank correlation of 0.54 for equal weighting).
Table 2 We observe that tail independent copulas, such as the
Gaussian copula, do not fit well. Table 3 summarises the
assessment results.

As mentioned in Section 3.2.3, this is a pragmatic way of
eliciting dependencies given the low number of quantiles used for

FIGURE 4 | Elicited conditional exceedance probabilities for the 50th and 95th quantiles (per expert) with fitted copulas through the tail dependence coefficient for u
between 0.5 and 1.

FIGURE 3 | Elicited marginal distribution (5th, 25th, 50th, 75th, and 95th quantile) for the rate of resistance of Escherichia coli isolates resistant to third generation
Cephalosporins in the United Kingdom in 2021.
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fitting copulas. While we acknowledge this, we can see that all
aggregation methods fit well with copulas exhibiting upper tail
dependence. Thus, we do not further distinguish between these
results, but rather conclude that this indicates a possible systemic
risk between our chosen bug-drug resistance rates given this
upper tail dependence.

The results of the aggregated assessments are supported by
the experts’ combined rationales. Each expert’s assessment has
been supported by the conditional scenario mapping method
presented in section 3.2.2. We then combined all rationales
and fed these back to the experts for sharing their overall
knowledge and giving them a possibility to adjust their
assessments. While no expert modified their assessments, all
agreed on the combined unconditional and conditional
scenarios for the previously discussed bug-drug
combinations shown in Figures 6, 7. We can see which
trigger events for the unconditional probability space are
impacting the conditional one together with the sub-set of
events which are still relevant for the extreme (95th quantile)
scenarios (in the red shaded areas). For instance, we observe
that a main scenario for upper tail dependence between
Escherichia coli resistance to third generation

Cephalosporins and Escherichia coli resistance to
Carbapenems is the potential emergence of a new strain. A
new strain may mean that the United Kingdom’s approach to
reduce prescribing of Carbapenems and third-generation
Cephalosporins through setting targets within the National
Health Service (NHS) is no longer sufficient to keep
prescribing levels low and prevent resistance rates from
increasing. Other scenarios supporting upper tail
dependence consider trigger events that lead to a higher
beta-lactam antibiotics’ use and bottlenecks in the raw
material supply chain. A scenario countering possible tail
dependence is that Carbapenem use might decrease until
2021 which then leads to an increase in the use of third
generation Cephalosporins.

5 CONCLUSION AND DISCUSSION ON
INFORMING THE VALUE OF FUTURE
ANTIBIOTICS’ R&D
In this paper we have addressed the challenge of using quantitative
risk assessment techniques tomodel future antibacterial resistance to

TABLE 3 | Individual and combined dependence assessment results.

>50th | > 50th >95th | > 95th Chosen copula Rank correlation

Classical Model 0.6979 0.6711 Survival Clayton 0.45
Equal Weighting 0.7875 0.63 Gumbel 0.54
Dependence Calibration 0.7295 0.6949 Joe 0.44
Expert 5 0.8 0.6 Gaussian/Student-t 0.68/0.67
Expert 4 0.7 0.55 Gumbel 0.44
Expert 3 0.7 0.7 Joe/Sur Clayton 0.46/0.47
Expert 1 0.95 0.67 Frank 0.92

FIGURE 5 | Combined conditional exceedance probabilities for the 50th and 95th quantiles (per weighting scheme) with fitted copulas through the tail dependence
coefficient for u between 0.5 and 1.
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multiple drugs. Given the lack of relevant historical data for
quantifying a probabilistic dependence model in this context, we
have presented a SEJ process for eliciting dependencies between
future resistance rates uncertainties. Proposing such prescriptive
decision-aiding methods is in line with the trend that decision
models are gaining importance and acceptance as formal
methods to inform health policy-making [79].

Before we discuss the elicitation results in the context of
antibiotics’ R&D and the potential benefits of using expert
judgement on probabilistic dependencies for informing
prioritization efforts, we briefly reflect on some learning
points from the elicitations themselves.

A first learning point is that the chosen expert judgement methods
workedwell for eliciting 1) themarginal uncertainties on the resistance
rates and 2) their probabilistic dependencies. As such, the assessed
calibration questions (for both) show that the experts were able to
make the required assessments sensibly (i.e., most experts being well-
calibrated) and for the latter that they were able to do so in form of
conditional exceedance probabilities. In addition to this empirical
validity from the calibration assessments, no expert mentioned any
difficulties withmaking the required assessments norwith interpreting
the elicitation questions. With regards to the target variables, the
resulting scenario maps (Section 4) additionally indicate that the
experts were able to address the complex uncertainties around the (at
the time of the elicitation) future resistance rates.

Nevertheless, in future elicitations it is desired to increase the
number of experts and gauge the potential benefit of including
more experts for a possibly better understanding on the complex
uncertainties around resistance rates’ development. This is despite
the general indication in the expert judgement literature that
diminishing returns to accuracy improvements for including
additional experts (after a certain number) have been reported [78].

As another learning point from the scenario maps, we observe that
mainly clinical factors have been considered for the quantitative
assessments of the resistance rates’ dependencies. While we did not
restrict or encourage our experts to specifically consider clinical factors,
it shows that in future research including experts with different

backgrounds is desirable to address and model dependencies for
multidrug resistance. This could allow for capturing the impact of
antibiotics’ use in livestock for instance in addition to clinical factors.

In the introduction, we mention that a main motivation for our
case study is to offer a method that informs decision-makers who
manage a portfolio of antibiotics and make decisions about adding
new ones to it through R&D investments. In this context, a main
result of our case study is the identification of possible upper tail
dependencies between certain bug-drug resistance rates, indicating a
potential systemic risk which negatively affects the usefulness of
some common first- and second-line drugs against their
corresponding bugs. As a learning from our illustrative case
study, we will now briefly discuss more generally how our
findings and structured dependence elicitation can be used in
medical decision-making informing policy-making in this area.

In the last decade, several countries have put forward
prioritization efforts for understanding the threat of
antibiotic resistance with regards to their national public
health relevance, such as the Public Health Agency of
Sweden in 2011, the United States Centers for Disease
Control and Prevention in 2013, the Public Health Agency of
Canada in 2015 and the World Health Organization (WHO) in
2016 [6]. From these, the WHO priority lists aim at being the
first global effort in prioritizing the R&D of new antibiotics,
including against multi-drug resistant bugs. In order to achieve
this. [6] use a multicriteria decision analysis. We propose that
SEJ elicitation on the marginal and dependent uncertainties for
future resistance rate complexities together with the resulting
dependence models can be of particular value in identifying the
risk of multidrug resistance and hence inform and support such
efforts. In that context, as mentioned in point 5 of the process
described in Section 3.2.3, note that our method can be
extended easily by including more elicited quantiles of the
upper and if desired also lower tail. That way, we can
identify more unique or also different copulas from Figures
4, 5 which currently show the tail dependence coefficient along
all upper quantiles. As such, for some bug-drug combinations
we might require the elicitation of the conditional 75th or 90th

quantiles as well.

FIGURE 6 | Combined unconditional scenario of all experts for
Escherichia coli resistance to third generation Cephalosporins in the
United Kingdom in 2021.

FIGURE 7 | Combined conditional scenario of all experts for Escherichia
coli resistance to Carbapenems in the United Kingdom in 2021.
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Furthermore, the methods we applied in this study aim at
supporting other quantitative risk assessments in the area of
antibiotic resistance risk. An example for the importance of
developing new methods that address current challenges to
understand risks, such as that of multidrug resistance, is given
by. [80]. He highlights the advantage of quantitative risk
assessments for informing policy-making on the veterinary
use of antibiotics by comparing the different outcomes of a
precautionary policy in Europe, based on qualitative
concerns, and one informed by quantitative methods in the
United States From 1996 to 2004, Europe experienced a
significant increase in foodborne illnesses after its
precautionary policy of banning several antibiotics for
animal use while at the same time the United States saw a
decrease. Similarly, and referring to the term “concern-driven
risk management”, [81] criticises the WHO for basing their
recommendations and guidance to identifying critically
important antibiotics and thus prioritising R&D activities
on qualitative levels of concern. This means that risk-based
decisions are taken if a regulatory agency “is sufficiently
concerned about risks from current human behaviours”
(such as antibiotic use) rather than considering quantitative
modelling methods. In fact, quantitative risk assessment
methods are deemed “inadequate” due to the uncertainty
and complexity in the field of antibiotic resistance. In this
case, our method provides a way of addressing such modelling
challenges and provide evidence-based decisions.
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