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Structured expert judgement (SEJ) is a suite of techniques used to elicit expert predictions,
e.g. probability predictions of the occurrence of events, for situations in which data are too
expensive or impossible to obtain. The quality of expert predictions can be assessed using
Brier scores and calibration questions. In practice, these scores are computed from data
that may have a correlation structure due to sharing the effects of the same levels of
grouping factors of the experimental design. For example, asking common questions from
experts may result in correlated probability predictions due to sharing common question
effects. Furthermore, experts commonly fail to answer all the needed questions. Here, we
focus on (i) improving the computation of standard error estimates of expert Brier scores by
using mixed-effects models that support design-based correlation structures of
observations, and (ii) imputation of missing probability predictions in computing expert
Brier scores to enhance the comparability of the prediction accuracy of experts. We show
that the accuracy of estimating standard errors of expert Brier scores can be improved by
incorporating the within-question correlations due to asking common questions. We
recommend the use of multiple imputation to correct for missing data in expert
elicitation exercises. We also discuss the implications of adopting a formal
experimental design approach for SEJ exercises.

Keywords: hierarchical data, mixed-effects models, random effects, within-question correlations, imputation,
experimental design, structured expert judgement

1 INTRODUCTION

Expert elicitation refers to employing formal procedures for obtaining and combining expert
judgments when data are missing, sparse, or of very poor quality, and decisions are imminent.
Experts can be asked to predict the outcome and/or likelihood of future events, or to estimate
unknown quantities which may be related to the consequences of such events. In both cases experts
are often required to express their uncertainty numerically, either through probabilities of event
occurrence, or through estimates on a continuous scale that can characterise potential ranges of
unknown variables.

Even though expert judgements can be very useful when data are absent, they can be prone to
contextual biases that can lead to poor judgements and consequently poor decisions. Structured
protocols aim to mitigate these biases and to treat expert data collection as much as possible as any
experimental data collection process, that is rigorous, transparent and following scientific principles.
By doing so, they aim to increase the accuracy of the resulting judgements when compared to
unstructured, informal expert elicitations.
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One of the many important steps in a structure expert
judgement (SEJ) elicitation protocol is the formulation of
questions for experts. Several formats proved to be intuitive
and are thought to mitigate biases. In this research we are
interested in the elicitation of probabilities of future events
(using a SEJ protocol), and their evaluation.

Obtaining the best possible predictions for future events is a
relevant topic in any application area, but the latest developments
arise from extensive research in the intelligence analysis field.
Several massive projects were undertaken recently, for example
the Good Judgment project and the Cosmic Bazaar described in
the [1].

In order to evaluate/validate elicited probabilities, a validation
dataset is necessary. This validation dataset consists of calibration
questions, which are questions for which the answers are known,
or will become known soon after the elicitation. Using such
questions will allow the analysts to check the quality of the expert
predictions against the truth. Several measures of quality can be
used (e.g., calibration, informativeness, accuracy), but in this
research and in the context of eliciting the probability of
events occurrences, we focus on the accuracy measure. We
define the accuracy of an expert prediction in terms of the
Brier score.

1.1 Brier Scores
The Brier score was always one of the most popular measures of
performance used to evaluate experts’ probabilistic predictions. It is
extensively used in themost recent research on the topic aswell, see e.g.,
[2–4]. In the above mentioned piece from the Economist, someone
who trains British intelligence analysts mentions that experts become
“obsessed with their Brier scores.” A reason for this obsession may be
that constant feedback may improve long term performance, and in
turn, this improvement is visible on the Brier scores.

We now detail the mathematical formulation of the score.
Assume several experts predict N events. For each expert we can
calculate their accuracy per question, or their long term accuracy
calculated based on all their N predictions. This long term
accuracy can be calculated using the average Brier score.
Average Brier scores are typically computed by obtaining
average squared deviations between the predicted probabilities
of the event occurrence and their outcomes. Eq. 1 provides the
originally defined Brier score as an average measure of prediction
accuracy over a set ofN events, each with n possible outcomes [5].

BS � 1
N

∑
N

h�1
∑
n

i�1
(phi − dhi)2, (1)

where phi is the probability prediction of the occurrence of the ith

outcome of the hth event and dhi takes value 1 if the ith outcome of
the hth event occurs, and 0 otherwise.

An alternative definition for binary events is given in Eq. 2 [6].

BS � 1
N

∑
N

h�1
(ph − dh)2. (2)

Here, ph is the predicted probability of occurrence of the hth event,
and dh is either 1 or 0 depending on whether event hth has
occurred or not.

Even though Brier scores are calculated as single/point values,
it is important to acknowledge their variability when calculated
from different sets of calibration questions. The scores depend on
the number of questions answered, and also on question
difficulty, question base rate, and any other source of inherent
uncertainty.

To robustly compare expert performance (here, prediction
quality), ideally, the same set of questions should be answered by
all experts in the comparison. In reality, very often experts only
answer a subset of questions that they feel comfortable answering.
Moreover, in certain settings, experts are only presented with
subsets from a larger set of questions, to distribute the work and
decrease the elicitation burden. This practice however renders the
comparison of their accuracy scores less reliable. To mitigate this
lack of reliability, Brier scores are often presented together with
standard errors or confidence intervals [7,8], both calculated
based on the (faulty) assumption that the observations are
independent.

1.2 Independence of Observations
Experts’ predicted probabilities are not independent, because they
answer overlapping sets of questions. This induces a potential
dependence/correlation structure between answers which should
be taken into account in ongoing analysis. Ignoring this potential
dependence is not atypical in the analysis of elicited data; we label
this the stand-alone approach.

Evenmore dependence between answers is introduced in cases
when the questions are perceived as easy or hard to more than
one expert. In this situation their errors might be correlated to
one another. Furthermore, cognitive frailties that are known to
introduce bias, such as the halo effect1will likely introduce bias to
more than one expert, which increases dependence. The
consequence of these correlation structures is that the
estimates of the standard errors do not have the intended
statistical properties.

To fix ideas, suppose standard errors of expert Brier scores are
estimated in an experiment by asking 20 calibration questions to
each of 10 experts. The stand-alone approach pretends that there
are 200 questions, that is, 20 for each expert, and ignores the
potential correlation structure that is induced in the probability
predictions by asking all experts the same questions. The
assumption of independent errors will be violated if we apply
standard statistical methods ignoring potential correlations
between observations. It will result in obtaining inaccurate
experiment-level standard error estimates of model
parameters [9].

Therefore, in this analysis we focus on improving the accuracy
of the estimated standard errors of expert Brier scores by
incorporating the correlations between probability predictions
that are due to the effects of common questions. The above
discussed issue of the impact of correlated observations on the
accuracy of the standard error estimates has been discussed under

1According to [34], the halo effect can be generally defined as a psychological
phenomenon that leads to extrapolate from a general impression to unknown
attributes.
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the “design effect” of cluster sampling in [10]. According to that
the design effect can be large if the units belong to a same group
are highly similar as implied by obtaining a higher intra-class
correlation coefficient. Furthermore, standard error estimates can
be substantially distorted even for a relatively small intra-class
correlation.

As a candidate correction to assess the likely magnitude, note
that the structure of the experiment as described is analogous to a
cluster sample, where the calibration questions are the clusters.
[11] discussed a correction procedure for the standard error
estimates through the computation of effective sample sizes in
two-stage cluster sampling as

neff � n/[1 + (nclus − 1)ρ],
where neff is the effective sample size, n is the total sample size, nclus is
the cluster size, and ρ indicates the intra-class correlation. This
formula assumes equal number of cluster sizes, which is not always
realistic. [11] explains that the effective sample size can be
considerably reduced and the standard error estimates can be
substantially increased even for a small intra-class correlation.
Therefore, it is important to obtain corrected standard error
estimates using effective sample sizes in cluster sampling.
However, as [11] pointed out, applying standard error correction
procedures can be difficult in general multilevel data with different
design effects. Therefore, a more flexible approach is to use a suitable
multilevel model in which different kinds of dependencies can be
accounted through the model. We propose to do this here.

1.3 Experimental Design
The original definition in Eq. 1 implies that the Brier scores can
be computed for events with multiple outcomes if the
probabilities of the occurrence of each outcome are predicted.
In this study we restrict our attention to binary events (that either
occur or not).

Hence, we derive Brier scores similar using Eq. 2. We employ a
statistical model based approach to compute expert Brier scores
in which the observations of the model are defined by considering
both the experts and the questions. Thus, pij denotes the
probability of the jth event occurrence predicted by the ith

expert and dj represents the outcome of the jth event; where 1
indicates “occurrence” and 0 indicates “non-occurrence”.
Further, we define Yij � (pij − dj)2 as the squared deviation
between pij and dj. Observe that Yij’s are grouped in a one-
way ANOVA-style classification because they are classified
according to a single characteristic-the expert making the
predictions. According to [21], data from a one-way
classification can be analysed either with a fixed-effects model
or a random-effects model. We intend to estimate the Brier scores
of those particular levels of experts that are used in the
experiment but not to make inferences about the population
from which the experts are drawn. Therefore we fit the following
linear fixed-effects model.

Yij � μi + εij, i � 1, 2, 3, . . . , I, j � 1, 2, 3, . . . , J , (3)

where μi indicates the mean squared deviation between the
predictions of the ith expert and the outcomes and, the errors

εij are assumed to be independently distributed as N(0, σ2). The
underlying theoretical background for using the above discussed
linear fixed effect model for computing Brier scores has been
discussed in [12], where the authors have pointed out the
separation of Brier score into calibration and refinement
scores is mathematically equivalent to the usual analysis of
variance (ANOVA) partition of a total sum of squares (TSS)
into sums of squares between groups (SSB) and within groups
(SSW). Here, the groups imply separate experts in the analysis.
Even though discussed from a theoretical point of view, and in the
context of human predictors, such rigorous statistical
interpretations are seldom discussed when evaluating Brier
scores in order to measure experts’ performance in real life
problems.

The above model can generally be fitted in situations where the
observations of a certain response variable of interest are obtained
under different conditions in different treatment groups. The
population means of responses are to be estimated in each
treatment group and they are estimated by the corresponding
sample means within groups. It is not necessary to have an equal
number of responses in each treatment group. The treatment
groups in our context are the experts and the squared deviations
between the predicted probabilities and the outcomes of events
are the responses of interest. Obtaining the sample means of
responses is equivalent to computing experts’ Brier scores using
the Eq. 2. Hence, the above linear model gives mean estimates
that are identical to the typical experts’ Brier scores irrespective of
whether the experts have predicted all the events or not.

As mentioned above, the typical computation of expert
Brier scores fails to capture the potential correlation
structure that is induced in the probability predictions by
asking common questions. The independence assumption of
εij in the model given in Eq. 3 may be violated if non-zero
correlations exist. The standard errors of fixed effects
parameters are estimated in linear models by assuming the
independence of errors. Therefore, if the independence
assumption of errors does not hold, then the estimated
standard errors of expert Brier scores from the above model
are not accurate. We discuss how the mixed-effects models can
be used to improve the computation of the standard errors of
experts’ Brier scores in Section 2.2. To the best of the authors
knowledge, this is the first formal, documented use of mixed-
effects models in the context of experts’ performance
evaluation.

1.4 Missing Data
Human judges (even experts) may prefer to assess only the
subsets of events of which they feel comfortable to offer
coherent predictions in practice [13]. If expert Brier scores are
computed using the probability predictions of different subsets of
events, then the comparison of the prediction accuracy of experts
using Brier scores can be challenging and perhaps may be less
meaningful [14,15]. Hence, in order to enhance the comparability
of experts’ Brier scores, it is important to compute Brier scores by
adjusting for the missing probability predictions of events by
experts. From a statistical point of view, ignoring missing values
causes to obtain biased estimates of parameters and increase their

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org June 2021 | Volume 7 | Article 6695463

Dharmarathne et al. Improving Brier Scores for SEJ

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


standard error estimates in general. In addition to that, the
statistical power of tests can be decreased and the
generalizability of results can be weakened [16].

Missing data are traditionally treated by listwise deletion, a
method that simply ignores cases with missing values for any of
the variables and analyses the remaining data. This approach is
also known as the complete case (or available case) analysis [17].
It is applied in the typical computation of experts Brier scores by
ignoring missing predictions. [14,15] have discussed the
drawbacks of comparing experts’ Brier scores computed from
different sets of questions and suggested that missing data should
not be discarded lightly in computing these scores. Adopting a
modeling framework, such as mixed-effects model, provides a
basis for imputation, which is a statistical correction for missing
values. Hence, in this paper, we focus on assessing the
effectiveness of employing mixed-effect models to impute
missing probability predictions in computing experts’ Brier
scores. The description of the selected imputation methods
can be found in Section 2.4.

2 METHODS

2.1 Motivating Example: The Intelligence
Game Data
The Intelligence Advanced Research Projects Activity (IARPA) is
an organization within the Office of the Director of National
Intelligence in United States of America (United States). IARPA
is responsible for leading research to overcome difficult
challenges relevant to the United States Intelligence
Community. In 2010, IARPA announced a program called the
Aggregative Contingent Estimation (ACE) which aimed to
“dramatically enhance the accuracy, precision and timelines of
forecasts for a broad range of events types, through the
development of advanced techniques that elicit, weight and
combine the judgements of many intelligence analysts” [7].
The program was designed as a four year forecasting
tournament to predict the probabilities of the occurrence of
global events on geopolitical, economic, and military sectors.
Five collaborative research teams were involved in a competition.
This forecasting tournament was called the “Intelligence Game.”

The Australian Centre of Excellence for Risk Analysis
(ACERA) at the University of Melbourne has contributed to
one of the teams led by the members at the George Mason
University in United States. Members of the two institutes formed
a joint team called the Decomposition-Based Elicitation and
Aggregation (DAGGRE). ACERA’s role was to elicit
predictions from groups of participants in United States and
Australia using a SEJ protocol.

The following details about the intelligence game and the
ACERA’s elicitation protocol are due to [7]. Each month IARPA
released a list of questions asking to predict the probabilities of
the occurrence of global events relevant to the time period
concerned. Participants of the teams submitted their
probability predictions using the 3-step question format. That
is to say that for each probability (expressed as a percentage scale)
three numbers were elicited as follows:

1) The highest plausible probability of event occurrence: (please
answer with a percentage 0–100).

2) The lowest plausible probability of event occurrence: (please
answer with a percentage 0–100).

3) The best guess probability of event occurrence: (please answer
with a percentage 0–100) [7].

This format is meant as a debiasing technique, by encouraging
counter-factual thinking. More research is needed, but the
conjecture is that asking experts to think about an upper and
lower bound first, improves the accuracy of the best estimate.

Each expert made these initial estimates individually and
without seeing any other estimates from their peers. After a
fixed time period, feedback on other participants’ estimates was
provided, and a discussion was facilitated. After discussion
participants could chose to change their initial estimates in an
anonymous and individual second round. The outcome of each
event was classified as “occurred” or “not occurred” and the Brier
score was used to measure the prediction accuracy of the
participants.

The data collected by ACERA in the first and the third years of
the tournament are used for the analyses of this paper.

We analysed only the first-round best guess probabilities of
event occurrence data of the above tournament. The second-
round probability predictions were made by the participants after
feedback and discussion within groups. Therefore, the probability
predictions may be correlated due to the common group effects as
well. Our goal was to assess the impact of incorporating the
potential correlations between probability predictions due to the
effects of common questions on the estimated standard errors of
experts’ Brier scores in this analysis. Therefore, we considered the
first round predictions to avoid the potential correlations due to
the effects of groups from the analysis.

We intend to show that incorporating the correlation structure
induced by common questions can improve the standard error
estimates of expert Brier scores. Therefore, a complete subset of
probability predictions made by the participants was selected for
the analysis to have consistent Brier score estimates between
models in order to focus on comparing the standard error
estimates of Brier scores between models. Therefore, the
classical SEJ experiment as laid out here can be thought of as
a randomized block design as each participant has answered all
the intended questions in the analysis. Thus, participants can be
considered as blocks and questions can be considered as the
treatments within blocks.

The selected data include probability predictions on 12
questions by all the selected 16 participants. There are four
variables in the data as given below:

QuestionId–identification number of a question,
ParticipantId–identification number of a participant,
Bestguess–first round best guess probability of an event
occurrence, and
Outcome–outcome of the event/question.

We note that Brier scores and their standard error estimates
would be more robust if we were to select more questions for the
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analysis. However, we could not readily identify a complete subset
of predictions of which a selected set of participants answered a
larger number of questions. A data filtering approach was used to
select a complete subset of predictions (where all participants
answered all questions) for this analysis. The original data set that
was used to obtain a sample of complete set of predictions is
available on request, due to the ethics restrictions of the project.
An excerpt of the complete data set is tabulated in Table 1.

2.2 Embed Brier Scores into Mixed-Effects
Models
Multilevel models are also known as hierarchical models and they
are fitted to multilevel or hierarchical data structures [18].
Multilevel or hierarchical data structures consist of multiple
units of analysis that are ordered hierarchically, and they exist
in general when some units of analysis can be considered as
subsets of others in a hierarchy [19]. The observations between
levels in a hierarchical structure are considered independent, but
dependent within levels as they belong to the same subpopulation
[20]. If we consider the above discussed experiment where several
experts are predicting probabilities of multiple events, the expert
data represents a hierarchical data structure with two levels for
the experts and questions. Therefore, the probability predictions
can be correlated due to the common grouping effects of experts
and questions.

Mixed-effects models can represent potential covariance or
correlation structures induced due to the groupings of data by
associating common random effects to observations that share
the same levels of grouping factors { [21], chap. 1}. Random
effects impose observations that share the same levels of grouping
to have the same intercept and/or slope [22]. Therefore, we intend
to compute expert Brier scores using a mixed-effects model that
includes question effects as random effects. Hence, the estimated
standard errors of expert Brier scores from the fitted mixed-
effects models can be expected to be more accurate than the
typically computed standard error estimates ignoring potential
correlated probability predictions due to the effects of common
questions.

It is important to note that linear mixed-effects models
generalize best when they include the maximal random effects
structure justified by the design [23]. Here, we only applies
random intercepts to incorporate questions’ effects assuming
that effects of questions’ difficulty on predictions is same for
all the participants in the analysis. If the differential impact of

questions’ difficulty on the predictions of different participants
can be assessed, then the random slopes for questions’ effects
together with random intercepts can also be introduced into the
model to enhance the accuracy of standard error estimates in
future analyses.

The correlations between probability predictions due to the
question effects can be included into the above model either as
fixed effects or as random effects. If we include them as fixed effects,
themodel needs to estimate the effects of each and every level of the
questions as separate parameters in the model. These parameters
will behave as nuisance parameters and avoid estimating μi’s
directly as expert Brier scores in the model. If we include the
question effects as random effects, then the expert Brier scores can
directly be estimated as μi ’s from the model with improved
standard error estimates. The inclusion of question effects as
random effects leads to the following linear mixed-effects model.

Yij � μi + δj + εij, (4)

where δj represents the effect of the jth level of the random effect
for the questions. It is assumed that δj ∼ N(0, σ2q) and
εij ∼ N(0, σ2). Note that σ2q and σ2 indicate the between
question variation and the random error variation respectively.
Similar to the case of linear fixed-effects model (Eq. 3) above, we
begin with assuming both δj and the εij as independent, constant
variance, normally distributed random variables with mean zero.
The above described linear fixed-effects and mixed-effects models
in Eqs 3, 4 were fitted on the data obtained from the “Intelligence
Game” forecasting tournament and the results are summarized in
Section 2.3 below.

2.3 The Analysis of Standard Errors
It follows from the discussion in Section 1.3 that the typical and
linear fixed-effects model (Eq. 3) based Brier scores will be identical
for the participants (we verified this claim for our data, not shown
here). If we consider the estimation of standard errors of Brier
scores, then potential correlations between probability predictions
due to the effects of common questions have not been considered in
both methods. Therefore, the independence assumption of random
errors εij in the linear fixed-effects model may be violated and
inaccurate standard error estimates of Brier scores may result.
Furthermore, the constant variance assumption of random
errors εij in the model assumes that variances of responses are
equal for the participants. Therefore, the individual variance
estimates of random errors within participants will be pooled
together to estimate the overall variance of random errors that
will be used to compute the standard error estimates of participants’
Brier scores. If we consider the context of a complete set of
predictions we are working on, the standard errors will be
estimated as being equal for all the participants as they all have
answered an equal number of questions.

Pinheiro and Bates [21] discussed fitting linear fixed-effects
models with both constant and non-constant within-group errors
using the generalized least squares estimation method. Therefore,
we considered fitting the above discussed linear fixed-effects
model together with the following extended linear fixed-effects
model with non-constant variances of within-participant errors.

TABLE 1 | Excerpt of the complete data set.

QuestionId ParticipantId Bestguess Outcome

11 61 0.1 0
11 62 0.2 0
11 63 0.15 0
11 64 0.15 0
21 34 0.9 1
21 37 0.9 1
21 32 0.65 1
21 38 0.75 1
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Yij � μi + εij, (5)

where the difference from the model in Eq. 3 is to assume that
εij ∼ N(0, σ2i ) have non-constant variances within participants;
i � 1, 2, 3, . . . , I. We refer to the linear fixed-effects model (Eq. 3)
with constant variance assumption of errors as Linear_c model
and to the linear fixed-effects model (Eq. 5) with non-constant
variance assumption of errors as Linear_nc model in the analysis.

We used the “gls (generalized least squares)” function of the
“nlme (Linear and Nonlinear Mixed Effects Models)” package
[24] of the R software package to fit the above two linear models.
We observed that the standard error estimates of Brier scores
from the Linear_nc model are identical to the corresponding
typically computed estimates. Furthermore, the constant variance
assumption of errors in Linear_c model resulted in equal
standard error estimates of Brier scores due to the pooled
variance estimation discussed above. Therefore, we consider
the practical importance of identifying a model that produces
Brier scores and their standard error estimates that are similar to
the corresponding estimates from the typical computation of
Brier scores and focus on possible improvements afterward.
Linear_nc model produces similar estimates of Brier scores
and their standard errors to the typically computed values.

The reason for choosing the generalized least squares (GLS)
estimation method in the model in Eq. 5 over the ordinary least
squares (OLS) estimation method in the model in Eq. 3 was
discussed above. It is a well-known fact that the maximum
likelihood and ANOVA based OLS estimates are equivalent
under the assumptions of the linear regression models. Even
though, we are moving from the OLS estimation to the GLS
estimation under the non-constant error variances within
participants, the diagonal covariance structure assumption still
remains. According to [25], altering the covariance structure of a
parametric model alters the estimated standard errors of the
model’s estimated parameters. Therefore, the maximum
likelihood estimates of the standard errors of individual
participants’ Brier scores obtained from the typical
computation based on the deviations of observations Yij from
the estimated mean Yi. should be mathematically equivalent to
the corresponding standard error estimates from the GLS model
in Eq. 5 in general, irrespective of whether equal or unequal
number of predictions are obtained from each participant.
Following the discussion in [25], it can further be pointed out
that the inclusion of random effects to incorporate the need of
different participants requiring different covariance structures in
the model in Eq. 7 will alter the standard error estimates of Brier
scores.

2.4 Imputation
We now briefly describe candidate imputation methods. The
mean imputation method is one of the default methods used in
major statistical packages together with the case deletion method
[26]. The mean imputation method imputes missing values by
substituting the missing values of a given variable by the mean
value of the observed values of that variable [17]. According to
[27], the mean imputation method needs to satisfy the MCAR
(Missing Completely at Random) assumption to obtain unbiased

results. We consider the mean imputation as one of the
imputation methods in this analysis.

Next, we consider regression imputation [26]. This method fits
a regression equation considering the observed values of a given
variable with missing values as the response variable and all the
other relevant variables in the data set as predictor variables.
Then, the predicted values from the fitted regression equation are
used to impute missing values [27]. According to [28], this
method provides a sound basis for many of the modern
missing value estimating methods. The results are unbiased if
the MCAR or MAR (Missing at Random) conditions hold [27].
As mentioned in Section 1.4, we intend to make statistical
corrections for missing values using mixed-effects models.
Mixed-effects models will be useful to better reflect the data
by incorporating potential correlations between probability
predictions. Hence, the resulting imputed values for the
missing probability predictions can be more accurate. Thus,
we will use an appropriate mixed-effects models as the
imputation model in regression imputation.

The above discussed imputation methods only perform single
imputations of missing values [29] discussed the importance of
considering the uncertainty of an imputation process by
repeating the process multiple times. Therefore, it is also of
interest to apply suitable advanced missing-value estimation
methods that employ iterative procedures to take into account
the underlying uncertainty of the imputation process. [16,28]
noted that multiple imputation, full information maximum
likelihood, and EM (Expectation-Maximization) algorithm are
commonly used advanced missing-value estimation methods.

Furthermore, the Markov-chain imputation method is also
used in practice [27]. However, the Markov-chain imputation
method is usually applied to longitudinal (or repeated measures)
data [27] which does not fit our context of computing experts’
Brier scores. The full information maximum likelihood is a
model-based missing data estimation method commonly
applied in structural equation modeling [16]. It is a general
and convenient framework to conduct statistical analyses in
several multivariate procedures including factor analysis,
multivariate regression analysis, discriminant analysis,
canonical analysis, and so on [30]. Therefore, this method is
also not applicable in our context.

Even though the EM algorithm can be applied in this context,
we found no applications of the EM in the context of estimating
parameters of fixed effects of linear mixed-effects models with
missing values.

Hence, in this study, we restricted our attention to a hand-full
of methods to impute missing probability predictions in
computing experts’ Brier scores: the mean imputation, the
regression imputation, and the multiple imputation with
mixed-effects models.

The same intelligence game data set was used (as in the
previous section of the analysis) and a complete subset of
predictions without missing values was selected from the third
year data of the forecasting tournament (Section 2.1). A
simulation study was performed by randomly introducing
some selected percentages of missing values into the
“Bestguess” variable of probability predictions. Once the
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missing values are estimated using the selected imputation
methods, Brier scores were recomputed with the imputed
missing values. The analysis was repeated 1,000 times at each
percentage of missing values and the mean error of computing

Brier scores over 1,000 repeats;
ΣI
i�1(Oi − Ei)2

1000 , was used for
necessary comparisons between Brier scores with and without
estimating missing values in the analysis. Here, Oi indicates the
Brier score of the ith selected participant; i � 1, 2, 3, . . . I, from the
original data without introducing missing values and Ei indicate
the corresponding Brier score estimate with or without estimating
the randomly introduced missing values. This measure allows the
comparisons of participants’ Brier scores with imputed missing
values with the typically computed Brier scores that ignore
missing predictions.

The exact missing data mechanism of that contributes to
missing predictions is unknown in the context of computing
expert Brier scores. Therefore, we assumed two scenarios, i)
missing data occur completely at random and ii) missing data
occurring with probability conditional on the levels of difficulty of
questions. We also considered two different ways of introducing
the selected percentages of missing values into the probability
predictions made by participants in the analysis. In the first case,
we introduced the selected percentages of missing values directly
into the overall set of predictions made by participants to
represent a context in which different participants may have
different numbers of missing predictions (unbalanced
missingness). Secondly, we introduced the selected percentages
of missing values equally into the predictions made by each
participant individually (balanced missingness). The results of
the analysis are summarized in Section 3.2 below.

The original data set of the third year second round best guess
probability predictions that was used to obtain a sample of
complete set of predictions follows the same structure as
shown in the above analysis of computing standard errors of
Brier scores in Table 2. The selected subset includes data from six
participants answering 31 questions each. Therefore, the data

contain a total of 186 probability predictions. Considering the
total number of 186 predictions for introducing random missing
values directly into the overall set of predictions made by
participants and 31 predictions for introducing random
missing values for each individual participant, we considered
10% as a reasonably small percentage of missing values and 25%
as a reasonably large percentage of missing values. Therefore, we
reduced the scope of the analysis to introduce 10 and 25%missing
values.

The purpose of using the third year second round data of the
intelligence game was to consider the possibility of incorporating
potential correlations between probability predictions due to the
effects of not only the common questions but also the common
groupings of participants into the analysis. It was observed that
the standard error estimates of participants’ Brier scores of the
selected complete set of predictions were not varied considerably
between participants as in the analysis of the previous section.
Therefore, we relaxed the need of using non-constant within
group variances of predictions for participants and looked into
fitting a mixed-effects model with non-nested random effects for
both questions and groups in the analysis.

However, fitted mixed-effects models with random effects for
groups and questions produced singular fits. There is no
theoretical reason to always obtain singular fits for this model
with an additional random effects for groups. It should have
observed due to specific characteristics of this particular data set
used in the analysis. Insufficient number of groups and
inadequate number of participants within groups of the
selected data can be suggested as potential reasons for this
observation. In response to this issue, regression imputation
and multiple imputation were carried out using the following
imputation model with questions as the only random effect.

Bestguessij � μi + δj + εij, i � 1, 2, 3, . . . , 6, j � 1, 2, 3, . . . , 31.

(6)

Here, Bestguessij indicates the best guess probability prediction
of the jth question by the ith participant, μi indicates the mean level
probability predictions by the ith participant, and δj indicates the
effect of the jth level of the questions. Furthermore, εij represents
the random error of probability predictions due to unknown
sources of variation.

3 RESULTS

3.1 Modeling Framework and Standard
Errors
Figure 1 plots the Brier scores and standard errors using the
standard and linear-model approach, and confirms that for these
data, the estimates are indistinguishable, as suggested by the
development of the model.

It is important to note that potential correlations between
probability predictions due to the effects of common questions
has not been incorporated to the analysis yet in the model
discussed above. Therefore, we next consider fitting the linear
mixed-effects model in Eq. 4 with question effects as random

TABLE 2 | Standard error estimates of participants’ Brier scores.

ParticipantId Linear_nc model Mixed_q model

3 0.07384 0.06164
4 0.09081 0.06898
5 0.05157 0.06007
20 0.03818 0.03982
21 0.03704 0.04913
22 0.02768 0.04790
23 0.02795 0.04116
27 0.08302 0.07093
28 0.03567 0.05215
29 0.04513 0.05810
33 0.09252 0.07763
34 0.08843 0.06665
35 0.06480 0.05209
36 0.07492 0.06122
38 0.07538 0.05664
61 0.05413 0.04993
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effects. The random effects for questions will accommodate
potential correlations between probability predictions due to
the common questions in the model. It follows from above
that we assume non-constant variances for random errors
within participants. [21] also discussed the possibility of
extending linear mixed-effects models to allow heteroscedastic
or non-constant variances for within-group errors of a given
stratification variable. Furthermore, there is no restriction on the
grouping factor to be a fixed-effect or a random-effect in the
model. Therefore, we considered participants as the stratification
variable of the model. It leads to fit the following adjusted linear
mixed-effects model with non-constant variances of errors within
participants.

Yij � μi + δj + εij, (7)

where the difference from the model four is to assume that
εij ∼ N(0, σ2i ) have non-constant variances within participants;
i � 1, 2, 3, . . . , I. We refer to this model as Mixed_q as it includes
questions’ effects as random effects. The “nlme” package was used
to fit this model as well.

We expected that participant Brier scores similar to the typical
computation will also be obtained from Mixed_q model for this
complete set of predictions. However, we expect to improve the
accuracy of the estimated standard errors of participant Brier
scores from Mixed_q model. The effective sample size (neff ) of
this analysis (using the Hox correction mentioned in Section 1.2
above) can be computed approximately equal to 22 following a
linear mixed-effects model with random effects for questions
without assuming the non-constant within group errors for the
participants. Here, n � 192, nclus � 16, and the inter-cluster
correlation coefficient (ρ) can be computed equal to 0.53247 as
a ratio of the between-cluster variance to the total variance. Inter-
cluster correlation coefficient was computed using the outcome of
the fitted linear mixed-effects model using the “lmer” function of
the “lme4: Linear Mixed-Effects Models using “Eigen” and S4”
package of the R software package as shown in the enclosed R

codes as a Supplementary Material. This simply shows the
magnitude of the inter-question correlation and its impact on
the analysis emphasizing the importance of considering the
hierarchical structure of the data through a mixed-effects
model even though assuming constant within group errors for
participants is not quite right for this design. Hence, it is
reasonable to assume that the fitted Mixed_q model will
improve the accuracy of the estimated standard errors of
participant Brier scores.

The likelihood ratio test with a very small p-value and the
lower AIC and BIC values of the Mixed_q model suggest that
Mixed_q model better reflects the data than the Linear_nc model
as indicates in Table 3. Therefore, we conclude that the accuracy
of the estimated standard errors of participants’ Brier scores are
improved from the Mixed_q model compared to the typical
computation of Brier scores. Figure 2 indicates that
participant Brier scores are similar but the standard error
estimates are different between the typical and mixed-effects
model based computations, as expected. The enclosed R codes
(as a Supplementary Material) show the computation procedure
and the computed values of the Brier scores and their standard
errors in the analysis.

3.2 The Analysis of Missing-Value
Imputation
We now present the results of the imputation simulation exercise.

Figure 3 shows the estimated mean errors of computing Brier
scores with 95% confidence intervals (assuming estimated errors
of computing Brier scores follow normal distributions with
unknown means and variances) for the mean imputed, the
regression imputed, the multiple imputed and the typically
computed Brier scores (ignoring missing values) under 10%
overall missing values of predictions introduced completely at
random. According to Figure 3, the mean error of computing
Brier scores with multiple imputed missing values is the lowest

FIGURE 1 | The scatter plots of Brier scores and standard error estimates from typical and Linear_nc model based computations.
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and statistically different to mean error of computing Brier scores
using the other imputation methods. It can also be seen that
confidence intervals of other three methods overlap, implying
that mean errors of computing Brier scores are not statistically
different under 0.05 level of significance.

The regression imputation method with a single imputation
seems to have slightly higher sample mean error, when compared
to the typically computed Brier scores (ignoring missing values).
We note that there is an underlying uncertainty of generating
random values for imputing missing values using the suggested
mixed-effects model in the regression imputation method. We

take this uncertainty into account by using multiple generated
values. Also note that the mean imputation method of using
participants’ effect to estimate missing values can reduce the
sample mean error (to some extent) when compared to that of the
typically computed Brier scores. However, it failed to achieve a
significant difference. Figure 4 has almost similar interpretation
of results for the case of 10% individual missing values of
predictions introduced completely at random.

We do not focus much on the individual differences between
mean errors of the mean imputation, the regression imputation,
the multiple imputation, and the typical computation of missing

TABLE 3 | Comparison of the adequacy of linear and mixed-effects models.

Model Df AIC BIC logLik Test L.Ratio p-value

Linear_nc 1 32.00 −40.76 63.48 52.38
Mixed_q 2 33.00 −122.09 −14.59 94.04 1 vs. 2 83.33 0.00

FIGURE 2 | The scatter plots of Brier scores and standard error estimates from typical and Mixed_q model based computations.

FIGURE 3 | Estimated mean errors with 95% confidence intervals for
computing Brier scores with 10% overall missing values introduced
completely at random.

FIGURE 4 | Estimated mean errors with 95% confidence intervals for
computing Brier scores with 10% individual missing values introduced
completely at random.
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values in this analysis. We just emphasize the fact that the mean
error of multiple imputed missing values is lowest and statistically
different from the mean errors calculated using the other
methods. The same property holds in the case of 25% overall
and individual missing values introduced completely at random.

Next, we consider introducing missing predictions not at
random but conditional on the levels of difficulty of questions.
Therefore, we introduced missing values with probabilities
proportional to the questions’ Brier scores, representing the
scenario that more difficult questions could be more likely to be
skipped by participants, generating missing values. Therefore,
the missing data mechanism would satisfy the not missing at
random (NMAR) condition that is generally based on a non-
testable assumption [29]. The use of mixed-effects models in
both the regression and the multiple imputation methods with
random effects for questions will incorporate the potential
correlations between probability predictions caused by
underlying differences between the levels of difficulty of
questions into the imputation of missing values. Therefore, it
may reduce (but not completely eliminate) the impact of
ignoring the potential NMAR condition on the results of
mean imputation method in the analysis.

Similar analysis as in the previous section has been carried out.
Here, we report the result of the analysis for introducing 25%
overall and individual missing predictions. Figures 5, 6 show that
the mean errors of multiple imputed missing values are the lowest
and statistically different from the mean errors produced by the
other methods for computing Brier scores with 25% overall and
individual missing values. We observed the same overall pattern
of result when introducing 10% overall and individual missing
predictions.

4 DISCUSSION AND CONCLUSION

We have shown that adoption of an analysis approach that
reflects the experimental design has material impacts on the
outcomes of the analysis. Mixed-effects models allow the

analyst to match hierarchical structures in the data-generating
process, which results in a more accurate analysis.

Standard errors are key to understanding the amount of
uncertainty inherent in interpreting random variables.
Traditionally, standard errors have been computed for Brier
scores in what amounts to a completely randomised design
framework, that is, as though each expert is presented their
own unique set of calibration questions. We do not know of
any SEJ setup in which this assumption would be true. The
implication is that the expert data reflect a hierarchical structure
that is ignored in the analysis, which means that estimates may be
biased and inefficient, especially if the data are unbalanced. The
remedy is simple: either apply post-hoc corrections, or as we have
here, adopt a model paradigm that matches the experimental
design. This also allows for the possibility of estimating the
magnitude of the correlation structure, via estimates of the
random effects, and even (should it be of interest) formally
testing the fidelity of the data to the simpler design, as we
have in Table 3.

The challenge of missing data is very common in SEJ. The
most popular solution seems to be case-wise deletion, which
creates statistical inefficiencies and possibly biases depending
on the missingness mechanism, in other words the systemic
aspects of the experimental setup that lead to data
missingness. Here we have demonstrated the use of several
different imputation approaches to try to obtain full value
from the data. There are many other possible approaches
involving a range of modeling infrastructure, for example
random forests, and it is easy to become bewildered. We
firmly believe that doing something is better than doing
nothing.

Imputation is particularly useful when expert opinions are
inserted into a higher-level simulation model, pairwise or in
higher dimension. As a trivial example, imagine an SEJ exercise
to elicit from six experts proficient in statistics, the slope β1 and
intercept β0 of a simple linear regression line for the purposes of
making predictions at a given value of x, for example:

FIGURE 5 | Estimated mean errors with 95% confidence intervals for
computing Brier scores with 25% overall missing values introduced not at
random.

FIGURE 6 | Estimated mean errors with 95% confidence intervals for
computing Brier scores with 25% individual missing values introduced not at
random.
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ŷ � 1
6
∑
6

i�1
β0i + β1ix. (8)

Now, imagine that expert six provides only the intercept, so
that β16 is missing. Under case-wise deletion, this expert’s
intercept must be deleted, which is wasteful. Under
imputation, a candidate value (or multiple candidate values)
can be applied (In any case, the analyst should avoid the
temptation to use aggregated estimates of the slope and
intercept in the prediction equation, because doing so ignore
the within-expert correlation between the estimates).

The deployment of imputation should be handled with
considerable care and with careful scrutiny, because startling
results may ensue and indeed degrade the quality of the
experiment. So although we recommend the unflinching
deployment of mixed-effects models methods for the analysis
of SEJ experiments, our support of imputation is more nuanced.

We note that this study was performed based on a specific data
set. Therefore, there is a possibility that some specific
characteristics of the data set may have caused mixed-effects
models or multiple imputation to work well. We did not focus on
performing a simulation study to theoretically prove the ability of
multiple imputation with a given mixed-effects model to perform
better than the other considered methods in some specific
conditions. Such an exercise would just repeat existing
simulation exercises that demonstrate the importance of
imputation [31–33] in general conditions.

The final consideration that arises from applying an
experimental-design lens to SEJ is that of the potential
efficiencies that can arise from deploying carefully designed
experiments. Treating an SEJ exercise as though it had been a
designed experiment yields some efficiencies, as explored in this
paper, but not to the extent that would accrue from designing the
SEJ experiment from the start. Experimental design as a discipline
has paid considerable attention to the problem of how to most
efficiently establish information within setups that reflect frail
experimental units. For example, balanced incomplete block
designs could present a specially selected subset of questions
to a group of experts that would result in reduced effort but at a
marginal cost, and indeed if expert fatigue comes into

consideration it is not hard to imagine scenarios in which
asking a smaller number of questions is downright advantageous.

To sum up, adoption of appropriate experimental design
protocols does three things for SEJ, namely.

1) Provides better estimates of quantities of interest.
2) Provides a framework for imputation, leading to better

analysis outcomes; and
3) Provides a framework for considering more efficient design of

experiments, obtaining the same quality of information with
less effort.
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