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With large amounts of simultaneous data, like inverted seismic data in reservoir modeling,
negative effects of Monte Carlo errors in straightforward ensemble-based data assimilation
(DA) are enhanced, typically resulting in underestimation of parameter uncertainties.
Utilization of lower fidelity reservoir simulations reduces the computational cost per
ensemble member, thereby rendering the possibility of increasing the ensemble size
without increasing the total computational cost. Increasing the ensemble size will reduce
Monte Carlo errors and therefore benefit DA results. The use of lower fidelity reservoir
models will however introduce modeling errors in addition to those already present in
conventional fidelity simulation results. Multilevel simulations utilize a selection of models for
the same entity that constitute hierarchies both in fidelities and computational costs. In this
work, we estimate and approximately account for the multilevel modeling error (MLME),
that is, the part of the total modeling error that is caused by using a multilevel model
hierarchy, instead of a single conventional model to calculate model forecasts. To this end,
four computationally inexpensive approximate MLME correction schemes are considered,
and their abilities to correct themultilevel model forecasts for reservoir models with different
types of MLME are assessed. The numerical results show a consistent ranking of the
MLME correction schemes. Additionally, we assess the performances of the different
MLME-corrected model forecasts in assimilation of inverted seismic data. The posterior
parameter estimates from multilevel DA with and without MLME correction are compared
to results obtained from conventional single-level DA with localization. It is found that
multilevel DA (MLDA) with and without MLME correction outperforms conventional DA with
localization. The use of all four MLME correction schemes results in posterior parameter
estimates with similar quality. Results obtained with MLDA without any MLME correction
were also of similar quality, indicating some robustness of MLDA toward MLME.
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1 INTRODUCTION

Sound decision-making in petroleum reservoir management depends on provision of reliable
production forecasts from petroleum reservoir models, including provision of the uncertainty
in the forecasts. The reliability is increased by utilization of available data for calibration
of the models. Ensemble-based data assimilation (DA) methods, using statistically correct
formulations, have accordingly become popular for automated reservoir history
matching [1–4].
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Monte Carlo approximations play crucial roles in ensemble-
based DA. Due to computational cost limitations, the ensemble
size is limited to roughly one hundred. Using straightforward
ensemble-based DA, the degrees of freedom of the problem
would equal the ensemble size, and such an approach would
result in significant Monte Carlo errors. The negative effects of
Monte Carlo errors are enlarged in the presence of large amounts
of data to be assimilated simultaneously, for example, inverted
seismic data, resulting in underestimation of variance of the
unknown parameters and, in more severe cases, even in
ensemble collapse.

The most widely used treatment for Monte Carlo errors is
distance-based localization. The basic assumption underlying this
method is that true correlations between a parameter and a datum
decrease when the distance between their respective locations
increases, and disappear if the distance exceeds a critical distance.
This assumption may not always hold for subsurface problems.
Different correlation functions and their utilization in DA can be
found in References [5–7]. A proper choice of correlation
function, as well as the critical distance in particular, depends
on parameter and data types as well as on other problem settings.
This reduces the robustness of distance-based localization, also
for problems where its basic assumption does hold.

Simply increasing the ensemble size will, of course, reduce
Monte Carlo errors, but it will also increase computational cost.
Utilization of a lower cost and lower fidelity model renders the
possibility of increasing the ensemble size without increasing the
total computational cost. The use of a lower fidelity reservoir
model will however introduce modeling errors in addition to
those already present in conventional fidelity simulation results.
The underlying assumption when applying lower fidelity models
in DA is therefore that the gain in reducing Monte Carlo errors is
larger than the loss in numerical simulation accuracy. If the
abovementioned additional modeling errors could be
approximately accounted for, utilization of lower fidelity
models would be even more attractive. DA using various types
of lower fidelity models has been applied to several inverse
problems, for example, within petroleum reservoir modeling
[8–10] and atmospheric science [11]. Note that since lower
fidelity simulations are applied to the forecast step and
localization is applied to the analysis step, the two techniques
can be combined, if desired.

Multilevel simulations utilize a selection of models for the
same entity that constitute hierarchies in both fidelities and
computational costs (multilevel models). The idea is to
decrease Monte Carlo errors without increasing numerical
errors too much. There are a number of ways to realize
multilevel models. We choose to construct them by spatial
coarsening of the conventional simulation grid to several levels
of coarseness and correspondingly upscale the associated grid-
based parameter functions. Multilevel data assimilation (MLDA)
[12–16] utilizes multilevel simulations in the forecast step. Since
inverted seismic data are given on the conventional grid (denoted
as the fine grid from now on), MLDA with such data must be able
to handle differences in grid levels between data and model
forecasts.

Modeling errors are ubiquitous in all numerical simulations in
the geosciences. In the context of a coarse-grid numerical model,
three types of modeling errors can be envisioned: Type 1: the
discrepancy between the physical reality and the solution
obtained with a mathematical model attempting to model the
physical reality; Type 2: the discrepancy between the solution
obtained with that mathematical model and the model forecast
from a numerical model resulting from discretization of the
mathematical model; and Type 3: the discrepancy between the
model forecast from that numerical model and the model forecast
from a numerical model with a coarser simulation grid.

Assuming a normal distribution for the errors, a Bayesian
framework for jointly accounting for Type 1 and Type 2modeling
errors in DAwas presented in Reference [17]. The effect of Type 2
modeling errors on the solution to linear Gaussian inverse
problems was analyzed in Reference [18]. (Neither Ref. [17]
nor Ref. [18] were concerned with Type 3 modeling errors.)
In this study, we quantify and approximately account for Type 3
modeling errors for each level in multilevel assimilation of
spatially distributed data, such as inverted seismic data. (We
will use the term multilevel modeling error (MLME) to denote
this error from now on.) To this end, three computationally
inexpensive approximate MLME correction schemes are
developed, and their abilities to correct multilevel model
forecasts for reservoir models with different types of MLME
are assessed and compared to a previously proposed (also
computationally inexpensive) MLME correction scheme.
Additionally, we assess the performances of the different
MLME-corrected model forecasts in assimilation of bulk
impedance data. The posterior parameter estimates from
MLDA with and without MLME correction are compared to
results obtained from conventional single-level DA with
localization.

The rest of this article is framed as follows. Section 2 is devoted
to explaining MLDA and introducing a recently devised
algorithm for it. Section 3 introduces MLME and the four
proposed schemes for addressing it. Section 4 explains the
reservoir models used for assessment of the performance of
MLME correction schemes in MLDA. In Section 5, we
describe the numerical investigations, which are followed by
their results in Section 6. Finally, in Section 7, we summarize
and conclude the study.

FIGURE 1 | Representation of MLDA algorithms.
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2 MULTILEVEL DATA ASSIMILATION

The forecast step in ensemble-based DA takes the initial states
and parameters as input and generates the model forecasts. In this
work, the forecast step of MLDA is performed using a hierarchy
of nested forward models, {Ml}Ll�0. After sampling from the prior
distribution, the ensemble of prior state vectors is divided into L
sub-ensembles. Hence, each of the sub-ensembles are modeled
using corresponding forwardmodels, as seen in Figure 1, where Z
is the random vector of parameters and subscripts denote the sub-
ensemble number.

In order to give a description for a full cycle of MLDA of
spatially distributed data, multilevel models should be discussed.
Additionally, since the MLDA uses the ensemble approximations
of the mean and covariance of the model forecasts, which are in
different resolutions for different levels, a robust transformation
scheme should be devised for converting themodel forecasts from
one resolution to another. These two topics will be discussed in
Sections 2.1 and 2.2, respectively. They will be followed by
sections on upscaling of the observation data (Section 2.3)
and formulation of multilevel statistics for mean and
covariance of the model forecasts (Section 2.4). Afterward, a
description of a recently devised method for MLDA of spatially
distributed data, which will be used in our numerical
experiments, is given in Section 2.5.

2.1 Multilevel Models
Let {Ml}Ll�0 be a set of deterministic models, where the accuracy
and computational cost increase with an increase in l.
Accordingly, they will form hierarchies of both accuracy and
cost. One can think of several schemes to devise the hierarchy
including but not limited to coarsening the spatial grid of the
forward model together with upscaling the associated parameters,
coarsening the temporal grid of the forward model, and relaxing
the convergence criteria in the iterative linear solvers. All of these
methods reduce the computational cost of the models and
increase their numerical error. Coarsening the spatial grid and
upscaling the associated parameters are chosen for the current
work. The techniques presented in this work are however robust
enough so that with minor manipulations, they can be used for
other lower fidelity models.

As for coarsening the grid of the forward models, the authors
of Reference [15] proposed a robust technique, which was also
used in Reference [16]. This technique occurs in a sequence of
steps. In each step, neighboring cells of the grid at the previous

step are merged into a coarser cell, unless they are to be kept fine
deliberately. A representation of the grid coarsening process for
an 8 × 8 sample grid can be found in Figure 2. As it can be seen in
the figure, coarsening has occurred in a uniform manner across
both directions, except for the vicinity of two opposite corners,
where the grid cells are kept in fine scale to boost the local
numerical accuracy around the two wells, producer (P) and
injector (I).

The parameters associated with the grid are upscaled in such a
way that the physics of the problem do not change drastically.
Upscaling of the parameters will be further discussed in Section 4.

2.2 Transformation of Model Forecasts
The discrepancy in coarseness of the multilevel grids results in the
spatially distributed model forecasts to be in different resolutions
for different levels. Therefore, in order to be able to compute the
multilevel sample statistics of the model forecast, a robust
transformation scheme should be devised for converting a
model forecast from the resolution at one level to another.

In the problem at hand, transformation of the model forecast
requires either upscaling or downscaling. To this end, a standard
volume-weighted arithmetic averaging technique is used.
Accordingly, we define a set of linear transformations,
{Uq

p : RSp1RSq
∣∣∣∣1≤ p, q≤ L}, where Sp and Sq denote the

dimension of the model forecast vector at arbitrary levels p
and q, respectively, and Uq

p transforms the model forecast
vector from level p to be compatible with level q.

Figure 3 gives two examples of transformation of a spatially
distributed model forecast, one from a coarser grid to a finer grid
and one vice versa. Each model forecast component is
represented in its corresponding spatial grid cell.

As can be seen in Figure 3, in the upscaling procedure, the
arbitrarily named model forecast components {ai}4i�1 in the
northwest zone from the finer grid (p) are averaged to form
their corresponding model forecast component, a, in the
coarsened grid. Similar procedure has been performed for the
rest of model forecast components, shown by *. In the
downscaling procedure, on the other hand, the model forecast
components in the coarse grid are simply copied to their
corresponding components of the finer grid.

2.3 Upscaling of Observation Data
As part of the DA process, the mismatch between the model
forecasts and observation data is to be calculated. Here, it is
assumed that inverted seismic data are given in the resolution of

FIGURE 2 | Grid coarsening proposed by [15] performed on an 8 × 8 grid (A) finest level and (B, C) coarser levels.
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the finest simulation grid. Accordingly, for each of the levels,
either the observation data should be upscaled to the resolution of
model forecast or the model forecast should be downscaled to the
resolution of the observation data. In this study, we take the
former approach. Since the observation data are in the resolution
of the finest model, using the same transformation functions as
those designed for model forecasts on the fine observation data
will result in upscaling of observation data into the preferred
resolution.

2.4 Multilevel Statistics
Assuming we have approximations of the model forecasts, Y,
being a function of the unknown parameter vector Z in several
levels, a statistically correct scheme for approximation of
multilevel statistics for Y is required. As for MLDA, the first
two central moments of the model forecast are of foremost
interest. Accordingly, formulations for these multilevel
statistics are proposed.

Assuming the model with the highest fidelity,ML, to be exact,
the authors of Reference [13] proposed an unbiased formulation
for approximation of multilevel statistics for DA under certain
conditions. Under these sets of conditions, the proposed method
outperformed its alternatives [12]. For reservoir problems,
however these conditions typically do not hold, and another
formulation based on Bayesian model averaging (BMA) was
proposed [12]. In this formulation, the statistics are computed
based on reliability weights wl for each of the levels l. This

formulation is, by definition, a biased scheme for computation
of multilevel moments; however, it will be a useful technique for
problems in which variance error dominates bias, which is often
the case for petroleum reservoir problems [12]. Using this
formulation and transformations of the forecast, the authors of
Reference [16] proposed a formulation of multilevel statistics for
spatially distributed model forecasts, which is used in the current
work. According to this scheme, the multilevel mean of the model
forecast at level l is given as follows:

EML(Yl) � ∑L
k�1

wkU
l
kE(Yk), (1)

where E(Yk) denotes the sample mean of the model forecast at
level k. Using the law of total variance, the multilevel
approximation of covariance of the model forecast at level l is
formulated as follows:

CML(Yl) � ∑L
k�1

wk{C(Ul
kYk) + (E(Ul

kYk)
− EML(Yl))(E(Ul

kYk) − EML(Yl))T}. (2)

In addition, the parameter forecast cross-covariance can be
written as follows:

CML(Z,Yl) � ∑L
k�1

wkC (Zk,U
l
kYk) . (3)

FIGURE 3 | Transformation of model forecast between two levels p (finer) and q (coarser) (A) model forecast in resolution of level p, (B) transformation of model
forecast from resolution of level p to the resolution of level q, (C)model forecast in resolution of level q, and (D) transformation of model forecast from resolution of level q
to the resolution of level p.
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Using these ML moments enables us to utilize the classic DA
formulations for updating the ensemble as will be presented in
Section 2.5.

2.5 Multilevel Hybrid Ensemble Smoother
Utilizing statistics given by Eqs. 1–3, the authors of Reference
[16] formulated anMLDA algorithm that rendered the possibility
of assimilation of spatially distributed data, for example, inverted
seismic data, in a multilevel manner. This DA algorithm was
called multilevel hybrid ensemble smoother (MLHES). In this
work, we briefly explain MLHES and utilize it in our numerical
experiments. An iterative version of MLHES has also been
developed1.

Initially, a total of Nt realizations from the prior random
parameter vector Zpr are generated and divided into L sub-
ensembles, that is, Zpr

l , 1≤ l ≤ L. Note that, regardless of l, all
Zpr
l are on the fine scale and the subscript denotes the model

where they are used. Accordingly, prior realization j in sub-
ensemble l, where 1≤ j≤Nl and 1≤ l ≤ L, is called zprl,j . Hence,
there are Nl ensemble members in sub-ensemble l. Likewise, the
model forecast pertaining to simulation of zprl,j by the forward
model Ml is named ŷl,j and is given by

ŷl,j � Ml (zprl,j ). (4)

The correction for MLME then would be performed as

yl,j � ŷl,j + εl,× (zprl,j ), (5)

where yl,j is the model forecast ŷl,j corrected for its MLME and εl,×
is the generic term for correction of MLME. In Reference [16], the
authors utilized the mean bias correction for addressing the
MLME. This correction scheme is one of the MLME
correction schemes investigated in this work and will be
explained and discussed in more detail in Section 3.

After MLME correction, there will be a separate analysis step
for each of the levels. The updated parameter vector of an
arbitrary ensemble member is given by

zal,j � zprl,j + Kl(dl,j − yl,j), (6)

where the observation data realization, dl,j, is a random pick from
N(Ul

LμD,U
l
LCDUlT

L ), and μD and CD are the original observation
data mean and observation data error covariance in the finest
level, respectively. The level-specific Kalman gain, Kl , is then
given as

Kl � CML(Z,Yl)(CML(Yl) + Ul
LCD(Ul

L)T)− 1

, (7)

where the multilevel statistics CML(Yl) and CML(Z,Yl) are given
by Eqs. 2 and 3, respectively.

After the analysis step, the estimates of mean and covariance of
the posterior parameter field are computed based on a pool
composed of all realizations zal,j at all the levels as follows:

E(Za) � 1
Nt

∑L
l�1

∑Nl

j�1
zal,j (8)

C(Za) � 1
Nt − 1

∑L
l�1

∑Nl

j�1
(zal,j − E(Za))(zal,j − E(Za))T (9)

A pseudo-code of MLHES is presented in Appendix 1.

3 MULTILEVEL MODELING ERROR

Let R denote some spatially varying physical property, and let W
denote the forecast of a mathematical model attempting to model
R. Furthermore, let Wl denote the forecast of that mathematical
model discretized at an arbitrarily selected level, l, and let xl,n
denote the location of an arbitrarily selected point in the
simulation grid at that level. The total modeling error in
Wl(xl,n) when attempting to model R(xl,n) is then

ϕl(xl,n) � R(xl,n) −Wl(xl,n), (10)

which can be rewritten as

ϕl(xl,n) � (R(xl,n) −W(xl,n)) + (W(xl,n) −WL(xl,n))
+ (WL(xl,n) −Wl(xl,n)). (11)

The first term on the right-hand side of Eq. 11 represents the
error in the mathematical model’s forecast of physical reality, and
the second term represents the discretization error when
simulating with a numerical model on the fine grid. We will
consider the last term, which represents the error due to
numerical simulation on the level-l grid, instead of on the fine grid.

The expression WL(xl,n) is precise only if xl,n coincides with a
point in the simulation grid at level L, which will not be the case for
the grid-coarsening procedure applied in the current work. Tomake
this expression precise, we utilize the linear transformations defined
in Section 2.2, and let WL(xl,n) �def (Ul

LWL(xL))n. We then define
component n of the multilevel modeling error (MLME) as

ζ l,n � (Ul
LWL(xL))n −Wl(xl,n), (12)

and develop techniques for estimating ζ l � (ζ l,1 . . . ζ l,Gl
)T in

model forecasts and approximately correcting for the MLME
before assimilating data.

3.1 Multilevel Modeling Error Correction
Assuming fine model forecasts to be sufficiently accurate, ideally,
the model forecasts at each level should be upscaled fine model
forecasts to the resolution of that level, that is, the correction in
Eq. 5 should be εl,× � ζ l , but due to computational limits, this is
not a possibility. Accordingly, we try to approximate ζ l using the
discrepancies between the model forecasts at level l and the finest
level, L. This will be done using the ensemble itself without any
additional simulations.

The techniques developed here are therefore computationally
cheap adjunctions which can be added to many MLDA
algorithms with minor modifications. The four schemes
formulated and investigated in this work are named as mean

1Nezhadali, M., Bhakta, T., Fossum, K., and Mannseth, T. Iterative multilevel
assimilation of inverted seismic data. Submitted
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bias correction (MB), stochastic correction (ST), deterministic
correction (DE), and telescopic correction (TE).

Figure 4A depicts general formation of the sub-ensembles
from the prior ensemble for Z. The realizations in each sub-
ensemble are put in the same line as the forward model that is
used for their simulation; consider each of the unit cells in the
rows as a realization of the prior and each row as a sub-ensemble.
Figures 4B–D describe the requirements on prior realizations for
different MLME correction schemes; if parts of two sub-
ensembles are of the same color, those realizations are shared
between those sub-ensembles and are to be simulated using both
corresponding forward models.

3.1.1 Mean Bias Correction
This technique was used in Reference [12] for correction of the
production data for their mean bias. There, the correction was
formulated as

εl,MB,P � E(YL) − E(Yl), (13)

where εl,MB,P is the mean bias correction term for production data.
Here, we generalize this correction to be used also for spatially
distributed data. Accordingly, εl,MB is defined as

εl,MB � Ul
LE(YL) − E(Yl), (14)

where E(YL) and E(Yl) are sample means of the model forecasts at
levels L and l, respectively. Using this correction, the mean of the
corrected forecast at every level would be equal to the upscaled
mean of the forecast given by the most accurate (finest) model.

As can be seen in Figure 4B, in mean bias correction, as
opposed to the rest of MLME correction schemes, the prior
realizations are run on each of the forward models without
any requirement to be run by other forward models.

3.1.2 Stochastic Correction
Simulating the sub-ensemble {zprl,j }NL

j�1 using all the forward
models, we can calculate ζ l for those realizations as follows:

ζ l(zprl,j ) � Ul
LML(zprl,j ) −Ml(zprl,j ). (15)

In the stochastic formulation, assuming a normal distribution
for ζ l , the realization of correction term is formulated as

εl,ST ∼ N (E(ζ l),C(ζ l)) , (16)

where E(ζ l) and C(ζ l) are the sample mean and covariance of
realizations of ζ l , respectively. As the ensemble size is often
relatively small in comparison to the parameter vector size, the
distribution defined in Eq. 16 would not cover the full span of the
probability space for ζ l . The realizations of εl,ST , accordingly,

would be in the sub-space spanned by the ensemble {ζ l(zprl,j )}NL

j�1
As seen in Figure 4C and Eq. 15, this correction scheme

requires the realizations at sub-ensemble L to be simulated using
all the forward models.

3.1.3 Deterministic Correction
Assume that ζ l is a continuous function of Z. Furthermore, we
assume local linearity for ζ l and write the first two terms of its
Taylor expansion around the population expectation of the
parameter vector, E(Z) as

ζ l(Z) ≈ ζ l(E(Z)) + zζ l
zZ E(Z)(Z − E(Z)) .∣∣∣∣ (17)

Under linearity assumption, we would have

ζ l(E(Z)) ≈ E(ζ l(Z)) . (18)

To calculate the Jacobian of ζ l , we use another approximation.
Writing Stein’s lemma gives,

C(ζ l,Z) � E(zζ l
zZ

)C(Z) , (19)

where C(Z) and C(ζ l,Z) are covariance of Z and cross-
covariance between ζ l and Z, respectively. Rearranging gives

FIGURE 4 | (A) Division of the prior ensemble for Z into L sub-ensembles, (B)mean bias Correction prior setting, (C) stochastic and deterministic corrections prior
settings, and (D) telescopic correction prior setting.
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E(zζ l
zZ

) � C(ζ l,Z)C(Z)− 1 , (20)

and the local linearity assumption gives the approximation

zζ l
zZ E(Z) ≈ E(zζ l

zZ
) .

∣∣∣∣∣∣∣∣ (21)

We would then use the ensemble for approximation of both
mean and Jacobian of ζ l and use them for formulating the
deterministic correction as follows:

εl,DE(E(Z)) ≈ E(ζ l) , (22)

zεl,DE
zZ E(Z) ≈ C(ζ l,Z)C(Z)+,

∣∣∣∣ (23)

εl,DE(Z) � εl,DE(E(Z)) + zεl ,DE
zZ E(Z)(Z − E(Z)),∣∣∣∣ (24)

where the superscript + in Eq. 23 denotes the Moore–Penrose
pseudo-inverse. As shown in Figure 4C, in deterministic
correction, as in stochastic correction, the realizations in the
sub-ensemble L are to be simulated using all the forward models.

3.1.4 Telescopic Correction
This scheme utilizes the idea in deterministic correction in a
telescopic manner so that it can benefit from the multilevel
structure of the problem. The MLME can be written as

ζ l(Z) � Ul
LML(Z) −Ml(Z) � ∑L−1

k�l
Ul

k(Uk
k+1Mk+1(Z) −Mk(Z)),

(25)

and Eq. 25 holds because all the transformations are linear and
from a finer level to a coarser level. Accordingly, we can write

ζ l(Z) � ∑L−1
k�l

U l
kek, (26)

where

ek(Z) � Uk
k+1Mk+1(Z) −Mk(Z). (27)

This reformulation of the error term renders the possibility to
approximate ζ l via a summation of smaller error terms, which are
approximated based on bigger ensembles. Hence, using the idea
in deterministic correction for level-wise errors, ek, one can write

ek(Z) ≈ E(ek) + C(ek,Zk)C(Zk)+(Z − E(Zk)), (28)

where E(ek) is the sample mean of the partial error, C(ek,Zk) is
the sample cross-covariance of ζ l and Z, C(Zk) is the sample
covariance of the parameter vector, and E(Zk) is the sample mean
of the parameter vector, all based on the realizations in sub-
ensemble k. The telescopic correction term then is

εl,TE(Z) � ∑L−1
k�l

Ul
k(E(ek) + C(ek,Zk)C(Zk)+(Z − E(Zk))). (29)

The idea here is that even though the errors in approximation
aggregate in the summation in Eq. 26, the increase in the
ensemble size would reduce Monte Carlo errors and the

approximation of ζ l would be more accurate, and overall, it
would help to account better for the MLME.

In order to be able to perform this correction, a nested
structure in the prior realizations is necessary. In other words,
as seen in Figure 4D, all the realizations simulated by a forward
model should also be computed using all the less accurate forward
models than that model.

4 TEST MODELS

We are interested in assessing the quality of MLME correction
schemes in reservoir history matching of inverted seismic data
using MLHES. In accordance with it, three different reservoir
models are considered. These reservoir models have some shared
properties. They are two-dimensional, with 64 × 64 Cartesian
grids, two wells in the opposite corners, an injector in the
northeast corner, and a producer in the southwest corner.
Compressible two-phase flow (oil and water), no-flow
boundary conditions, and standard equations for capillary
pressure and relative permeability are considered. A
description of the other shared general properties of the
reservoir models is given in Table 1. As the seismic vintages
are different in each experiment, they are discussed separately in
Sections 5.1–5.3.

In each of the reservoir models used in this work, the general
structure is modified with the aim of increasing theMLME. These
reservoir models are explained separately in Sections 4.1–4.3,
and samples from the prior distribution of Z for each of the
reservoir models can be found in Figure 5.

The forward models used for forecast {M}Ll�1 each consists of
two segments. A reservoir flow model is used to predict the state
variables in time, and a petro-elastic model is utilized for
computing the elastic rock properties from parameters and
predicted state variables.

The flow segment of the forward models is performed using
Eclipse 100 [19]. Coarsening the grid is done by using the Eclipse
keyword COARSEN, which merges groups of predefined
neighboring cells to form a coarser grid. The upscaling of
permeabilities is performed using pore-volume–weighted
arithmetic averaging, and transmissibilities between two
neighboring coarse cells in each direction are calculated based
on harmonic averaging in that direction and summing it in other
directions [19]. As for the petro-elastic segment of the forward
model, an in-house model based on standard rock physics [20],
[21, Report 1] was used.

4.1 Reservoir Model I
A nonpermeable fault has been added to the field with its normal
vector pointing north, its eastern most point 4 grid cells away

TABLE 1 | Shared properties of the reservoir models.

Fine cell dimension 30 × 30 × 30 (m3) Porosity 0.2
Initial oil saturation 0.85 Injector (I) P.C. (275 bar)
Initial pressure 200 bar Producer (P) P.C. (100 bar)

P.C., pressure-controlled.
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FIGURE 5 | Samples from the prior distributions for log permeability for the three experiments, (A)–(C) Experiment I, (D)–(F) Experiment II, and (G)–(I)
Experiment III.

FIGURE 6 | Approximation of the fault for simulations, (A) original fault and (B–D) approximations at coarser levels.
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from the east side of the field, and its western most point 4 grid
cells away from the west side of the field. From Figures 5A–C, it is
clear that flow from the injector to the producer has to pass
through one of the narrow openings at the ends of the fault.
Hence, there will be strong variations in the solution variables in
these regions. Grid coarsening is therefore expected to produce
stronger MLME for this example than for a similar example, but
where no fault was present.

4.2 Reservoir Model II
An oblique fault stretching from 8 grid cells away from the
northwest corner to 8 grid cells away from the southeast
corner is added to the general reservoir model structure. In
addition to the complexities similar to those associated with
Reservoir Model I, as can be seen in Figure 6, the coarsening
scheme in the presence of such a fault, which will be discussed in
Section 5.2, results in some permeability values that are located
on one side of the fault in the fine grid to contribute to an
upscaled permeability value located on the other side of the fault
in the coarsened grid. This introduces another type of MLME to
the model.

4.3 Reservoir Model III
This reservoir model uses the general structure of the models
without addition of faults and is used for investigation of a

different type of MLME, which is formed by simplifying the
grid coarsening scheme.

5 NUMERICAL INVESTIGATION

In order to assess the quality of the MLME correction schemes
presented in this work, three experiments are conducted. The
experiments are performed on the reservoir models discussed in
Section 4.

The observation data are two sets of time-lapse bulk
impedance data taken based on a baseline (day zero of
production) and two vintages, which are different for each
experiment and will be mentioned separately. These
observation data are generated using the results of simulation
from a random draw of the prior distribution. As the inverted
seismic data are spatially correlated, we use a correlated
covariance matrix for the data error. In doing so, a variogram
with the specifications given in Table 2 is considered. The
marginal standard deviation of each observation value is given as

σ � rmax {|D|,T}, (30)

where r � 0.1, D is the value of observation data at a certain
location, and T is a threshold put to avoid too much certainty in
the observation data whose absolute value is very small. This
threshold is defined as the 1st smallest percentile of the absolute
value of the observation data.

TABLE 2 | Variogram used for observation data error; the unit for range is
grid cells.

Variogram type Range Mean Anisotropy ratio

Spherical 5 0 1

TABLE 3 | Specific characterizations of variograms of the prior distribution, the
unit for range is grid cells.

Range Anisotropy ratio Anisotropy angle

Experiment I 20 0.7 −30
Experiment II 30 0.5 −20
Experiment III 25 0.7 −30

TABLE 4 | Summary of resource allocation for the algorithms in Experiment I.

Level 1 Level 2 Level 3 Level 4 Level 5

G1 = 82 G2 = 124 G3 = 310 G4 = 1060 G5 = 4096

N1 N2 N3 N4 N5

MLHES-NO 1,510 864 501 143 46
MLHES-MB 1,510 864 501 143 46
MLHES-ST 1,510 864 501 143 46
MLHES-DE 1,510 864 501 143 46
MLHES-TE 1,510 864 501 143 46
MLHES-EX 1,510 864 501 143 46
ES-LOC – – – – 100
ES-REF – – – – 10,000

TABLE 5 | Summary of resource allocation for the algorithms in Experiment II.

Level 1 Level 2 Level 3 Level 4

G1 = 124 G2 = 310 G3 = 1060 G4 = 4096

N1 N2 N3 N4

MLHES-NO 1,404 652 170 40
MLHES-MB 1,404 652 170 40
MLHES-ST 1,404 652 170 40
MLHES-DE 1,404 652 170 40
MLHES-TE 1,404 652 170 40
MLHES-EX 1,404 652 170 40
ES-LOC – – – 100
ES-REF – – – 10,000

TABLE 6 | Summary of resource allocation for the algorithms in Experiment III.

Level 1 Level 2 Level 3 Level 4

G1 = 64 G2 = 256 G3 = 1024 G4 = 4096

N1 N2 N3 N4

MLHES-NO 1,524 703 252 38
MLHES-MB 1,524 703 252 38
MLHES-ST 1,524 703 252 38
MLHES-DE 1,524 703 252 38
MLHES-TE 1,524 703 252 38
MLHES-EX 1,524 703 252 38
ES-LOC – – – 100
ES-REF – – – 10,000
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For each numerical experiment, we will compare plots of
results (mean and variance fields) obtained with five versions
of the MLHES to those obtained with ES with distance-based
localization (ES-LOC). The five versions are MLHES with mean
bias correction (MLHES-MB), MLHES with stochastic correction
(MLHES-ST), MLHES with deterministic correction (MLHES-
DE), MLHES with telescopic correction (MLHES-TE), and
MLHES with no correction (MLHES-NO).

The gold standard (reference solution) for the comparison will
be results obtained using ES with 10,000 ensemble members (ES-
REF). By utilizing such an unrealistically large ensemble, we

obtain results that are visually indistinguishable from the best
results that can be achieved using ES.

Furthermore, we will show plots of results obtained with a
scheme with exact correction for the MLME (MLHES-EX). These
results are obtained by running fine-scale simulations with the
same total ensemble size as for the multilevel simulations and
thereafter upscaling model forecasts (with the appropriate sub-
ensemble sizes) to the respective levels. Obviously, MLHES-EX is
computationally much costlier than the rest of the MLHES
variants, and it is included only to assess the effect of
completely removing the MLME on posterior results. Finally,
we will show plots of the log permeability realization used when
generating the synthetic data (“truth”).

A fixed computational power is considered for all runs (except
for ES-REF and MLHES-EX). As the dominant cost of the DA
process is pertaining to simulations of forward models, where
iterative linear solvers dominate the computational costs for large
problems, the computational cost pertaining to each ensemble
member to be simulated using the forward modelMl is assumed
to be proportional toGc

l , whereGl is the number of the active grid
cells in the forward model at level l and c ∈ [1.25, 1.5] [22]. Here,
we take c � 1.35. Additionally, as usual for large-scale cases, the

TABLE 7 | Experiment I: Mean of the elements of the median vector of NCRl for
different correction schemes.

Level 1 Level 2 Level 3 Level 4

G1 = 82 G2 = 124 G3 = 310 G4 = 1060

Mean bias 0.4256 0.9151 1.2069 2.5229
Stochastic 0.3503 0.4406 0.5384 0.4320
Deterministic 0.3395 0.4451 0.5473 0.4124
Telescopic 0.1240 0.2405 0.4097 0.4124

FIGURE 7 | Experiment I: Mean of posterior logarithmic permeability field.
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ensemble size for standard single-level DA algorithms is set to be
100. Using this basis for calculations, the computational power
allocated for all the runs would be equal if the following equation
holds for all of them,

100G1.35
L � ∑L

l�1
NlG

1.35
l . (31)

Considering this equation, we set Nl for different levels of the
MLHES. There exist L − 1 degrees of freedom for specification of
the {Nl}Ll�1. No optimization was performed for this specification;
the only aim pursued was to keep the size of sub-ensembles
ascending with a decrease in model fidelity. Several other similar
settings that were tried resulted in similar DA outcomes.

For ES with distance-based localization, the tapering function
for localization is based on Reference [23]. As for the MLHES,
regarding weights of the hybrid mean and covariance matrices,
{wl}Ll�1 in Eqs. 1–3, there is a possibility to improve the results by
tuning the weights for specific cases, but here, we use the simplest
choice—weights being all equal.

The unknown parameter vector in all the experiments is the
logarithmic permeability field. The prior fields are based on three
spherical variograms, all having mean 5 and variance 1, and
specific characterizations given in Table 3. Samples from the
prior distributions are given in Figure 5.

5.1 Experiment I
This experiment is conducted on Reservoir Model I with five
levels corresponding to 82, 124, 310, 1,060, and 4,096 grid cells,
respectively. A summary of the resource allocation for the
different runs carried out in this experiment can be found in
Table 4. The observation data for this experiment are generated
based on seismic vintages at 4,000 and 8,000 days after
production starts.

5.2 Experiment II
This experiment is conducted on Reservoir Model II. In this
experiment, the presence of the oblique fault in the field interferes
with coarsening the model. One way to handle this issue would be
to avoid coarsening the grid around the fault area; however, this

FIGURE 8 | Experiment I: Variance of posterior logarithmic permeability field.

TABLE 8 | Experiment II: Mean of the elements of the median vector of NCRl for
different correction schemes.

Level 1 Level 2 Level 3

G1 = 124 G2 = 310 G3 = 1060

Mean bias 0.4097 0.7580 0.8284
Stochastic 0.3980 0.4622 0.4769
Deterministic 0.3716 0.4750 0.4381
Telescopic 0.1952 0.3461 0.4381
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would reduce the computational advantage of the multilevel
scheme. In order to keep the grid coarsening as it is, the fault
is approximated with bigger “zigzags,” as depicted in Figure 6, for
one realization of the logarithmic permeability field at different
levels of coarseness. This makes the experiment to be more
challenging than Experiment I, since in addition to coarsening
the grid and upscaling the parameters, a structural
characterization of the field (the fault) is also approximated.

MLHES is run with four levels corresponding to 124, 310,
1,060 and 4,096 grid cells, respectively. A summary of the
resource allocation for the different algorithms carried out in
this experiment can be found in Table 5. The observation data are
generated based on seismic vintages at 5,000 and 10,000 days after
beginning of production.

5.3 Experiment III
This experiment is conducted on Reservoir Model III. The
coarsening of the grid is performed uniformly, so that also the
regions near the wells are coarsened. Hence, a different type of
MLME is generated. The number of grid cells is now complete
powers of 2. Forming four levels of coarseness, the number of grid
cells are 64, 256, 1,024, and 4,096. A summary of the resource
allocation for the different algorithms carried out in this
experiment can be found in Table 6. The observation data are

generated based on seismic vintages at 4,000 and 8,000 days after
production starts.

6 NUMERICAL RESULTS

The numerical results are assessed in two ways. First, we perform
a quantitative analysis of the MLME-corrected model forecasts.
Second, we perform a qualitative analysis of the results obtained
when using the MLME-corrected forecasts in MLDA.

As for a quantitative analysis of success of MLME correction
schemes, the normalized correction ratio for model forecasts at
level l, NCRl , defined as

NCRl(Z) �
∣∣∣∣∣(Yl − Ul

LYL)/ (Ŷ l − Ul
LYL)∣∣∣∣∣ � ∣∣∣∣(εl,× − ζ l)/ ζ l

∣∣∣∣, (32)
is considered. Here, / is the Hadamard division and |*| is the
element-wise absolute value operator. If the correction
scheme does not do any correction on a single element of
NCRl, it would result in that element to be equal to unity.
Reduction in the error would result in the element moving
toward zero, and an increase in the error would move that
element toward infinity; hence, NCRl is an indicator of the
success of MLME correction schemes.

FIGURE 9 | Experiment II: Mean of posterior logarithmic permeability field.
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NCRl is different for different realizations. In order to assess
the success of each of the correction schemes jointly for all
realizations, the sample median of each of the elements of
NCRl is computed. The median is chosen since the mean of
NCRl is not a good indicator of success (NCRl has a lower bound
at zero but has no upper bound, and outliers would affect it
disproportionately). Then, the mean of the elements of the
sample median of NCRl are reported for different levels in all
MLME correction schemes for the three experiments.

As for the qualitative assessment of the DA results, the mean and
the variance of the posterior unknown parameters are compared
between different algorithms. We have not considered any specific
formulation for computation of the final multilevel statistics.
Accordingly, the simplest formulation is chosen, that is, reuniting
all the sub-ensembles and treating them as one ensemble for
computation of a posteriori mean and variance fields. ES-LOC
was tested with several ranges for localization (critical distances),
and the best results are presented for each of the experiments.

6.1 Results of Experiment I
As can be seen in Table 7, NCRl is smaller in coarser models for all
correction schemes. For a class of problems (including the problem
considered here) where the model forecast can be seen as a spatially
integrated response to a spatially varying parameter field, there exists a
correlation between small-scale oscillations in the parameter domain

and the nonlinearity strength of the mapping from parameter field to
model forecast (see, e.g., [24, 25]). This correlation is such that
coarsening the simulation grid and upscaling the associated
parameters will generally result in weaker nonlinearity in the
coarser forward models than the finer ones. The comparatively
lower NCRl in coarser levels than finer ones can be due to this
decrease in nonlinearity by a decrease in l and also due to omission of
localfluctuations in coarsermodel forecasts. In the case of the telescopic
scheme, this can also be attributed to an increase in the ensemble size,
which reduces theMonte Carlo errors associatedwith estimation of the
MLME errors. All the schemes, except formean bias correction, are, on
average, successful in reduction of MLME. Telescopic correction for
level 4 (level L − 1 in general) reduces to deterministic correction, but
in coarser levels, it has performed better than deterministic correction,
which, in turn, performs slightly better than stochastic correction.

FIGURE 10 | Experiment II: Variance of posterior logarithmic permeability field.

TABLE 9 | Experiment III: Mean of the elements of the median vector of NCRl for
different correction schemes.

Level 1 Level 2 Level 3

G1 = 124 G2 = 310 G3 = 1060

Mean bias 0.6973 1.2892 2.7182
Stochastic 0.6112 0.6968 0.7517
Deterministic 0.7178 0.8782 0.8651
Telescopic 0.4268 0.6190 0.8651
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Visual analysis of the mean permeability fields, given in Figure 7,
shows that all MLHES variants are reasonably similar and more
similar to ES-REF than ES-LOC is. This can be further confirmed by
comparison of the variance fields given in Figure 8. The ES-LOC
results presented here are based on the localization range of 40 grid
cells. Additionally, no superiority of someMLME correction schemes
over others is evident in visual assessment of the posterior mean and
variance fields. The results from all MLHES variants are reasonably
similar to the MLHES-EX results.

6.2 Results of Experiment II
Based on the trends in NCRl , as can be seen in Table 8, the
performance of the correction schemes has the same rank order as
those of Experiment I, with telescopic correction showing the best
performance, followed by deterministic, stochastic, and mean bias
corrections. Visual analysis of the mean permeability fields, given in
Figure 9, shows that all MLHES variants are reasonably similar and
more similar to ES-REF than ES-LOC is. This can be further
confirmed by comparison of the variance fields given in Figure 10.
The ES-LOC results presented here are based on the localization range
of 50 grid cells. Additionally, no superiority of someMLME correction
schemes over others is evident in visual assessment of the posterior
mean and variance fields. The results from all MLHES variants are
reasonably similar to the MLHES-EX results.

6.3 Results of Experiment III
From Table 9, it is seen that NCRl is comparatively higher in this
experiment than the previous two experiments. The rank order of
the performances stays the same, but the quality of correction has
deteriorated for all the MLME correction schemes, except for the
mean bias correction which has slightly improved.

Visual analysis of the mean permeability fields, given in Figure 11,
shows that allMLHES variants are reasonably similar andmore similar to
ES-REF than ES-LOC. This can be further confirmed by comparison of
the variance fields given in Figure 12. The ES-LOC results presented here
are based on the localization range of 40 grid cells. Additionally, no
superiority of some MLME correction schemes over others is evident in
visual assessment of the posterior mean and variance fields. The results
fromallMLHESvariants are reasonably similar to theMLHES-EX results.

7 SUMMARY AND CONCLUSION

With large amounts of simultaneous data, like inverted seismic data in
reservoir modeling, negative effects of Monte Carlo errors in
straightforward ensemble-based data assimilation (DA) are
enhanced, typically resulting in underestimation of parameter
uncertainties. Multilevel simulations utilize a selection of models for
the same entity that constitute hierarchies both in fidelities and

FIGURE 11 | Experiment III: Mean of posterior logarithmic permeability field.
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computational costs. Multilevel data assimilation (MLDA) utilizes
multilevel simulations in the forecast step. MLDA therefore renders
the possibility of decreasing Monte Carlo errors without increasing the
total computational cost, but MLDA will also introduce multilevel
modeling errors (MLME) that are not present in conventional
simulation results. The underlying assumption is therefore that the
gain in reducing the Monte Carlo error is larger than the loss in
introducing the MLME. If the MLME could be approximately
accounted for, however MLDA performance could be further
improved.

We have estimated and approximately accounted for the MLME.
Four computationally inexpensive approximate MLME correction
schemes have been considered. We have denoted these schemes
mean bias correction, stochastic correction, deterministic correction,
and telescopic correction. The three latter schemes have been
developed in this work. The abilities of the four schemes to correct
for the MLME have been assessed in two ways, utilizing numerical
experiments with three selected reservoir models.

First, statistics for the normalized correction ratios for model
forecasts at each level were compared. The results showed that the
correction schemes were capable of reducing the MLME, but the
amount of reduction depended on the case and on the level. In general,
the MLME correction schemes were more successful in correcting the
MLME in the coarser levels than the finer ones, with telescopic

correction showing the best performance followed by deterministic
correction, stochastic correction, and mean bias correction.

Second, we assessed the performances of the different MLME-
corrected model forecasts in assimilation of inverted seismic data,
using the multilevel hybrid ensemble smoother (MLHES). The
resulting posterior mean and variance fields with and without
MLME correction were visually compared to results obtained
from conventional ensemble smoother (ES) with localization,
utilizing results obtained with conventional ES with an
unrealistically large ensemble size as the gold standard. It was
found that MLHES with and without MLME correction
outperformed conventional ES with localization.

The use of all four MLME correction schemes, and in fact also
MLDA without MLME correction, mostly resulted in posterior
parameter estimates with similar quality. For each example, we also
ran a computationally much more costly MLDA variant where the
MLME had been exactly accounted for in the model forecasts (termed
MLHES-EX in Sections 5–6). No differences in quality between results
obtained with MLHES-EX and results obtained with several of the
computationally inexpensive MLDA variants were found in all three
examples.We have run several examples in addition to those presented
in the article. In none of these examples did the computationally
inexpensive MLDA variants produce poor results, and straightforward
MLHES (i.e., without any MLME correction) produced results of

FIGURE 12 | Experiment III: Variance of posterior logarithmic permeability field.
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similar quality. Altogether, these results indicate that the MLHES is
reasonably robust toward MLMEs.

Further investigation concerning the robustness of MLHES
with and without MLME correction can be conducted for
additional reservoir models with different types of MLMEs
than those considered here. On the other hand, the MLME
correction techniques can be further developed. Their current
versions address the MLME of spatially distributed data on their
associated grid cells independently, that is, spatial correlations of
the MLME are not considered. It would be interesting to consider
spatial correlation of the MLME in future work.
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APPENDIX A: MLHES PSEUDO-CODE

Algorithm 1: MLHES Algorithm

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org June 2021 | Volume 7 | Article 67307717

Nezhadali et al. Correction for Multilevel Modeling Error

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	Multilevel Assimilation of Inverted Seismic Data With Correction for Multilevel Modeling Error
	1 Introduction
	2 Multilevel Data Assimilation
	2.1 Multilevel Models
	2.2 Transformation of Model Forecasts
	2.3 Upscaling of Observation Data
	2.4 Multilevel Statistics
	2.5 Multilevel Hybrid Ensemble Smoother

	3 Multilevel Modeling Error
	3.1 Multilevel Modeling Error Correction
	3.1.1 Mean Bias Correction
	3.1.2 Stochastic Correction
	3.1.3 Deterministic Correction
	3.1.4 Telescopic Correction


	4 Test Models
	4.1 Reservoir Model I
	4.2 Reservoir Model II
	4.3 Reservoir Model III

	5 Numerical Investigation
	5.1 Experiment I
	5.2 Experiment II
	5.3 Experiment III

	6 Numerical Results
	6.1 Results of Experiment I
	6.2 Results of Experiment II
	6.3 Results of Experiment III

	7 Summary and Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References
	Appendix A: MLHES pseudo-code


