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The specific structure of the extracellular matrix (ECM), and in particular the density and
orientation of collagen fibres, plays an important role in the evolution of solid cancers. While
many experimental studies discussed the role of ECM in individual and collective cell
migration, there are still unanswered questions about the impact of nonlocal cell sensing of
other cells on the overall shape of tumour aggregation and its migration type. There are also
unanswered questions about the migration and spread of tumour that arises at the
boundary between different tissues with different collagen fibre orientations. To address
these questions, in this study we develop a hybrid multi-scale model that considers the
cells as individual entities and ECM as a continuous field. The numerical simulations
obtained through this model match experimental observations, confirming that tumour
aggregations are not moving if the ECM fibres are distributed randomly, and they only
move when the ECM fibres are highly aligned. Moreover, the stationary tumour
aggregations can have circular shapes or irregular shapes (with finger-like protrusions),
while the moving tumour aggregations have elongate shapes (resembling to clusters,
strands or files). We also show that the cell sensing radius impacts tumour shape only
when there is a low ratio of fibre to non-fibre ECM components. Finally, we investigate the
impact of different ECM fibre orientations corresponding to different tissues, on the overall
tumour invasion of these neighbouring tissues.

Keywords: cell migration, multi-scale hybrid mathematical model, agent based discrete cell-cell interactions,
continuous cell-extracellular matrix interactions, orientation of extracellular matrix fibres, numerical simulations

INTRODUCTION

A large proportion of cancer research is currently focused on the role of tumour microenvironment
on cancer progression, and in this context particular attention has been given to the interactions
between the cancer cells and the extracellular matrix (ECM) and its components [1]. The ECM is
composed of water, minerals, proteoglycans and fibrous proteins secreted by various cells, and these
components appear in specific percentages in each organ in the body, according to the needs of the
tissues [1]. Collagen is the most abundant fibrous protein in the ECM, and its importance is not only
given by its role in the ECM architecture [1], but also by its role on tumour tissue stiffness, in
promoting tumour metastasis and in the regulation of tumour immunity [2]. Different tissues have
different levels of collagen [3]: from ≈ 75.4μg/ mg tissue in pancreas, to ≈ 90μg/ mg tissue in lung.
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Moreover, the orientation of collagen fibres plays a very
important role in the mechanical properties of tissues, as well
as in their physiological and biochemical functions [4]. In
different tissues these fibres have different orientations
addressing different functional needs [4, 5]: e.g., they are
arranged in parallel in the tendons [5], or in concentric rings
in the bone [6], or in orthogonal grids in the cornea [7] or
hypertrophied myocardium [8].

Diseases can lead to a loss of orientation of collagen fibres as
well, which adopt a more random distribution; this was observed,
for example, in liver fibrosis [9], in heart diseases [8], or in
denervated bones with reducedmechanical stress [6]. Cancer cells
are also involved in the re-orientation of collagen fibres around
tumours, by changing the typical tangled and disorganised
collagen fibres that can be found within the stroma, towards
thickened collagen fibres that are aligned perpendicularly to the
boundary of the invading tumour [1, 10]. The density and
orientation of collagen fibres inside the ECM plays an
important role also in the evolution of cancer, as cancer cells
not only move along collagen fibres [1, 10], but they also remodel
the ECM through degradation [e.g., via matrix metalloproteases
(MMPs)] and deposition of new matrix proteins [11], which
interfere with cell-cell and cell-ECM adhesion, as well as cell
polarity [1].

Despite all this wealth of information regarding the role of
ECM in cancer progression, there is still a poor understanding of
the roles of collagen fibre orientation on the individual and
collective migration of cancer cells (and the non-local
interactions between cells via these stiffened fibres), how the
cells remodel the ECM, and how these complex cell-fibre
interactions impact the overall tumour shape and invasion
pattern. In a seminal paper, Friedl and Alexander [12] have
reviewed the different mechanisms of individual and collective
cancer cell migration: from single cells amoeboid and
mesenchymal migration, to multicellular amoeboid and
mesenchymal streaming, and various types of collective cell
migration (clusters, strands, or files). Friedl and Alexander
[12] also mentioned the spatially-expanding tumours that
undergo growth and thus passively move by pushing the
surrounding tissue. In contrast to the cancer cells that actively
move in a collective manner along collagen fibres, the spatially-
expanding tumours can be found within a capsule of ECM
formed of aligned collagen fibres that are circularly disposed
around this growing tumour. The different modes of migration
are unstable and can change upon variations in cell-cell and cell-
ECM adhesion [12].

While many studies [12] discuss the various types of
invasion of tumour aggregations (as a result of single cell
interactions with other cells or with the ECM), it is still not
fully understood how cells perceive other cells further away
(although it seems that they can mechanically sense and react
to the presence of other cells up to 100 µm away [13]), and how
this perception can impact the overall tumour shape.
Moreover, it is still not fully understood how the various
tissue types can impact the migration of tumour cells and
tumour aggregations (as tumours can develop at the
boundaries of different tissues with different characteristics).

The goal of this study is to investigate migration cell patterns
in various tissues with different levels of ECM fibres and
different alignment levels, as we vary: 1) cells sensing radius,
2) cell-cell and cell-ECM adhesion strengths, 3) the orientation
of ECM fibres and the ratio of fibres to non-fibres ECM
components, 4) the structure of the domain, with various
tissue patches that have different fibre orientations. To this
end, we consider a hybrid multi-scale modelling approach where
cells are modeled as discrete entities while the ECM (with its two
phases: fibrous and non-fibrous) is continuous. We show that
this hybrid model can reproduce a variety of cell migration types
(e.g., cluster, strand or files) as well as a variety of tumour
shapes: circular, elongated or irregular (with finger-like
protrusions). We also show that cell sensing radius has an
impact on tumour shape and migration pattern only when
the ratio of fibres to non-fibres ECM components is
increased from lower to higher ratios. Finally, we show that
the evolution of tumours that arise at the boundaries of different
tissues with different fibre orientations is influenced by the
directionality of these fibres.

The paper is structured as follows. In The Multi-Scale Hybrid
Model section we describe the multi-scale hybrid model for cell-
cell and cell-ECM interactions. In Results section we discuss
variety of numerical simulations obtained with this model, as
we vary the above mentioned parameters. We conclude in
Summary and Discussion section with a summary and a
discussion of the importance of these results.

THE MULTI-SCALE HYBRID MODEL

There are two main types of models that are often used to capture
the dynamics of tumour development, namely discrete and
continuous models. Both have advantages and drawbacks over
the other [14] and to minimise these disadvantages, recent
extensive efforts have been made to combine these models
into hybrid ones [15].

We employ here a hybrid modeling framework [15] that
combines the off-lattice agent based model MultiCell-LF
[16–18] to represent the cells, and a multi-scale continuous
framework [19–23] to represent the microenvironment. To
facilitate the description of this multi-scale hybrid model, let us
first introduce some useful notations from both frameworks. The
model is defined within a maximal tissue cube Y ∈ Rd with d � 2
and time interval [0,T]. The state of an arbitrary individual cell
is described by Ci(t) � {Xi(t),Ci

rad(t),Ci
age(t),Ci

mat ,Ci
neigh(t)},

where Xi(t) denotes the position of the cell center, Ci
rad(t) the

cell radius, Ci
age(t) the current cell age, Ci

mat the cell maturation
age (i.e., the age when the cell is ready for divisionwhich is assigned
at birth and so it is independent of time) and Ci

neigh(t) denotes the
number of neighbouring cancer cells at time t. Here,
i ∈ {1, . . . ,M(t)} where M(t) is the number of cancer cells at
time t ∈ [0,T].

To connect the discrete model to the continuous one, we first
need to generate a cancer cell density by using the individual cell
properties. For this, let us first observe that such density can be
determined by using the fraction of unit space that is occupied by
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the cancer cells. Therefore, at any macro-scale spatio-temporal
position (x, t) ∈ Y × [0,T] the density of the cancer cell
population in a square neighbourhood B(x, cΔx) is given by

c(x, t) :� 1
λ(B(x, cΔx)) · ∫

B(x,cΔx)
IP(z) dz,

withP :� { ∪
M(t)
i � 1

B‖·‖2(Xi(t),Crad
i (t))}

(1)

where λ(·) is the Lebesgue measure in Rd , I(·)(·) is
the usual indicator function, and B‖·‖2(Xi(t),Crad

i (t)) :�
{z ∈ Y | ‖ Xi − z‖2 ≤Crad

i } describes the spatial region occupied
by the body of an individual cell Ci within the neighbourhood
B(x, cΔx) :� {z ∈ Y | ‖ x − z‖∞ ≤ cΔx} that is given by a ‖ ·‖∞−ball
of an appropriately chosen radius cΔx > 0 (which is proportional to
the spatial step-size of the discretised computational domain Y).

Besides the discrete cancer cell population, here, also we
consider the dynamics of a continuous multi-scale two-phase
ECM. Specifically, we consider a fibre ECM phase, accounting for
all major fibres (for instance collagen and fibronectin) whose
macro-scale density and spatial bias are denoted by F(x, t) and
θf (x, t), respectively (for further details see Fibre Representation
and Fibre Rearrangement Process). On the other hand, the ECM
also consist of several other macromolecules such as non-fibrous
proteins (for example amyloid fibrils), minerals, various enzymes,
proteoglycans and polysaccharides. Hence, to capture the ECM as
a whole, we bundle the rest of these non-fibres ECM constituents
(i.e., everything that is not considered to be fibrous proteins) into
the second phase that we refer to as the non-fibre ECM phase and
denote it by l(x, t).

Finally, for compact notation we denote by ρ(u) the total space
occupied at position x, i.e.,

ρ(u) :� c(x, t) + F(x, t) + l(x, t),
where u represents the global three-dimensional tumour vector

u :� (c(x, t), F(x, t), l(x, t))u.

The MultiCell-LF Model
For each single cell in the MultiCell-LF (Multi-Cell Lattice-Free)
model, several individually-regulated life processes are included,
such as cell ageing, cell growth, cell division, cell-cell and cell-
ECM interactions, and cell contact inhibition.

The Cell Cycle
The lifespan of each cell is traced with the current cell age Cage

i (t)
that progresses at the same rate as time, and cell maturation age
Cmat
i that is assigned at the cell birth and varies slightly between

the cells to avoid synchronization of cell divisions. The cell cycle is
divided into the usual four phases [24]: the G1 phase (gap 1)
during which the cells are growing in size, the S phase (synthesis)
when biological cells replicate their DNA, the G2 phase (gap 2) in
which cells complete the growth and replication processes in
preparation for the M phase (mitosis) in which cells physically
divide into two daughter cells. Following ours and others previous
work, the length of the cell cycle is divided as follows: G1 (45% of

the whole cell cycle), S (35%), G2 (15%), andM (5%), respectively
[16, 17, 25]. Within the figures, we indicate the phase of an
individual cell by different colours, i.e., we use white for the G1
phase, yellow for the S phase, orange for the G2 phase, red for the
M phase and black for cells that are both in M phase and contact
inhibited.

Cell Growth and Division
The radius Crad

i (t) of a growing cell is increasing linearly until it
reaches the size of the mature cell Rmax. The radius increment has
been chosen to assure that the process of cell growth is completed
before the M phase. Once the cell current age reaches its division
age (i.e., Cage

i (t) � Cmat
i ), it will divide into two daughter cells that

are placed symmetrically around the mother cell’s nucleus Xi (t)
within a distance equal to the half of the cell maximal radius
[16, 17]:

Xi1(t) � Xi(t) + 1
2
Rmax(cos(ϕ), sin(ϕ)),

Xi2(t) � Xi(t) − 1
2
Rmax(cos(ϕ), sin(ϕ)),

(2)

where ϕ is an angle randomly chosen from [0, 2π], Xi(t) is the
position of the mother cell, and Rmax is the maximal cell radius.
The initial ages of the two new cells are set to zero
(Cage

i1 (t) � Cage
i2 (t) � 0), and their respective maturation ages

Cmat
i1 and Cmat

i2 are inherited from the mother cell maturation
age with a small noise term ϵmat to avoid cell cycle
synchronisation between the cells [17, 26]:

Cmat
i1

� Cmat
i (1 + ϵmat), Cmat

i2
� Cmat

i (1 + ϵmat),
where ϵmat is a small number drawn from a uniform distribution
[−0.05, 0.05] and Cmat

i is the division age of the mother cell.
Finally, both initial radii of the daughter cells are set to 0.65Rmax

(i.e., Crad
i1 (t) � Crad

i2 (t) � 0.65Rmax) and as a result initially the two
daughter cells are overlapping Eq. 2. Therefore, right after the cell
division, both daughter cells experience repulsive forces between
each other, as well as with other nearby cells. These forces will
push the cells apart until they reach an equilibrium and are no
longer overlapping (see The Hybrid Cell Movement).

Cell Contact Inhibition
Once the whole cell colony grows in size, individual cells may
become overcrowded and growth-arrested due to the contact
inhibition signals from the neighbouring cells. The overcrowding
condition is modelled by counting the number of cells Cneigh

i (t) in
the specified neighbourhood of radius Rneigh � 4.5Rmax:

Cneigh
i (t) � ∑M(t)

j�1
I SSi(Xj(t)),

where I(·)(·) again denotes the indicator function and SSi is the
set of all cancer cells that are close to the cell Ci(t), i.e.,

SSi � {X ∈ {Xk(t)}k�1,...,M(t)|‖X − Xi(t)‖2≤Rneigh}∖{Xi(t)}.
When the number of neighbouring cells reaches a specified

threshold Nneigh (i.e., Cneigh
i (t)≥Nneigh), the cell Ci (t) is
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considered overcrowded and growth-arrested. However, such an
arrested cell remains metabolically active [27], and can resume its
active cell cycle when the contact inhibition conditions change.
The time spent in the growth-arrested state does count toward the
length of the active cell cycle.

The Hybrid Cell Movement
To model cancer cell passive relocation (due to cell-cell
interactions) and active migration (due to cell-ECM
interactions), we combine both discrete and continuous
approaches. While for cell-cell interactions (both repulsive
and adhesive forces) we use the agent-based approach, the
cell- ECM (both fibre-based and non-fibre adhesions)
are modelled by using a continuous technique. Ultimately,
these forces collectively influence the direction of motion
of each individual cell, leading to complex tumour
dynamics and to the emergence of various tumour
morphologies.

Discrete Cell-Cell Repulsive Interactions
The repulsive forces between nearby cells are introduced to
maintain cell volume and to avoid cell overlapping during its
movement or division (see Cell Growth and Division). Following
our previous work [17, 18], these forces are modelled as linear
Hookean springs. Hence, considering two arbitrary but distinct
cells Ci(t) and Cj(t) (with i≠ j), the repulsive force between them
is given by:

F
rep
i,j �

⎧⎪⎪⎨⎪⎪⎩
Frep((Cradi (t) + Cradj (t)) − ‖Xi(t) − Xj(t)‖2) Xi(t) − Xj(t)

‖Xi(t) − Xj(t)‖2
, if ‖Xi(t) − Xj(t)‖2 <

Crad
i (t)+Crad

j (t),

0, otherwise,

where Frep > 0 is the constant spring stiffness and the spring
resting length is set be equal to the sum of the two cells’
radii, i.e., to Crad

i (t) + Crad
j (t). Taking into consideration now

the whole cancer cell population, the overall repulsive force
that acts on the cell Ci(t) is given by the sum of all repulsive
forces between the cell Ci(t) and any other overlapping cell
Cj(t), with j ∈ {1, . . . ,M(t)}\{i}. This cumulative force is
given by

F rep
i :� ∑

j

Frep
i,j , j ∈ {1, . . . ,M(t)}\{i}. (3)

Discrete Cell-Cell Adhesive Interactions
The adhesive forces are activated between non-overlapping but
nearby cells in order to keep the cell cluster compact. These forces
are modelled using Hooke’s law with a constant spring stiffness
Fadh > 0 and resting length of 2 Rmax[17]. Hence, such forces are
activated between cells separated by the distance larger than 2Rmax,
but not exceeding 2.25Rmax. This prevents from over-activation of
the cell-cell adhesion between cells that are located far off each
other. Therefore, considering two arbitrary cells Ci(t) and Cj(t)
(with i≠ j), the cell-cell adhesion force acting between them is
given by

Fadh
i,j :� { Fadh(2Rmax −

����Xi(t) − Xj(t)
����2) Xi(t) − Xj(t)����Xi(t) − Xj(t)

����2, if
����Xi(t) − Xj(t)

����2 ∈ (2Rmax , 2.25Rmax)

0, otherwise.

Similarly to the repulsive forces, each cell can be subjected to
multiple adhesive forces, thus the cumulative adhesive force
which acts on cell Ci(t) is given by

F adh
i :� ∑

j

Fadh
i,j , j ∈ {1, . . . ,M(t)}∖{i}. (4)

Continuous Cell-ECM Adhesive Interactions
Besides the cell-cell interactions described above, of particular
importance, are the cell-ECM adhesions [28–31] that we
explore here through a cell-non-fibre ECM adhesion
[32–35] as well as a cell-fibre ECM adhesion [36, 37]. In the
existing literature [19–23, 38–42], this type of interaction is
usually modelled by a non-local adhesion integral with a
sensing region B(0,R) of radius R. Since in our hybrid
model the two phase ECM is modelled in a continuous
manner using densities, we can adopt this approach to
describe the present cell-ECM interactions. To this end, let
us define the cell-ECM adhesion force/velocity for an arbitrary
cell Ci as

F ECM
i :� 1

R
∫

B(0,R)
K(∣∣∣∣∣∣∣∣y∣∣∣∣∣∣∣∣2)[n(y)Scl l(Xi + y, t)

+ n̂(y, θf (Xi + y, t))ScFF(Xi + y, t)] · [1 − ρ(u)]+dy,
(5)

where R represents the maximum range within which a cell
Ci can establish adhesive bonds with the surrounding ECM
constituents, i.e., within B(0,R) and Scl > 0 and ScF > 0 are
assumed to be the constant cell-non-fibre ECM and cell-
fibre ECM adhesion strengths, respectively. Furthermore, in
Eq. 5 n(·) is the unit radial vector

n(y) :�
⎧⎪⎪⎨⎪⎪⎩

y∣∣∣∣∣∣∣∣y∣∣∣∣∣∣∣∣2 if y ∈ B(0,R)∖{0},

0 if y � 0.

and similarly n̂(·, ·) is the unit radial vector biased by the
orientation of the fibres, i.e., it is given by

n̂(y, θf ) :�
⎧⎪⎪⎨⎪⎪⎩

y + θf (x + y, t)
||y + θf (x + y, t)||2 if y ∈ B(0,R)∖{0},

0 if y � 0,

where θf (x, t) is the macro-scale orientation of the fibres. For
further details about the fibre orientations see Fibre
Representation section. Also, in Eq. 5 to account for the
gradual weakening of these adhesive bonds as we move
away from the centre of the cell Xi within the sensing
region B(0,R), we simply use a radially symmetric kernel
K(·) which is given by
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K(y) � ψ(y
R
), ∀y ∈ B(0,R),

where ψ(·) is the standard mollifier defined as

ψ(x) :�

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

exp( −1
1 − ||x||22

)
∫

B(0,1)
exp( −1

1 − ||y||22
)dz

if x ∈ B(0, 1),

0 if x ∉ B(0, 1).
Finally, in Eq. 5 [1 − ρ(u)]+ :� max(0, 1 − ρ(u)) ensures that

any overcrowded space within the sensing region B(0,R) does not
influence the overall cell-ECM adhesion.

For completeness, here we also briefly discuss the numerical
approach for the cell-ECM adhesion integralF ECM

i given in Eq. 5.
To this end, we adopt the partitioning of the sensing region
B(0,R) from Shuttleworth and Trucu [19], and so we divide
B(0,R) into Ns annulus sectors shown in Figures 1C,D.

Thus, as shown in Figure 1C, the sensing region B(0,R) is split
into s annuli and then each of these annuli is further split into
2m+(k−1) uniformly distributed sectors, i.e., the number of annulus
sectors is given by

Ns :� ∑s
k�1

2m+(k−1).

Further, let us now denote these annulus sectors by S], with
] � 1, . . . ,Ns, and their corresponding off-grid barycentres by
bS], as shown in Figure 1D. Then, by using simple bi-linear
shape functions, on each annulus sector S] we are able to
approximate the mean-values of the non-fibres ECM, the
fibres ECM, as well as their associated macro-scale
orientations. Ultimately, this enables us to appropriately
construct the integral of the step functions associated
with each annulus sector S] whose value is given by a
linear combination of the mean-values. Finally, these mean
values are used to obtain the numerical approximation for
F ECM

i by following the numerical steps described in full in
[19, 22, 23].

The Overall Direction of Cell Movement
Ultimately, the overall movement direction of a cell Ci(t)
depends on each of the forces discussed above (repulsion, cell-
cell adhesion and cell-ECM adhesion). To this end, the spatial
dynamics of a cell Ci(t) is based on Newton’s second law of
motion where we assume that each cell returns to its equilibrium
without oscillations. Further, the overall force acting on a cell
Ci(t) is assumed to be proportional to the velocity of the cell and
so the dynamics is given by [16–18].

η
dXi

dt
� F rep

i + F adh
i + F ECM

i , (6)

FIGURE 1 | (A) Schematics of themulti-scale fibre dynamics, including the bottom-up and top-down links between themacro-scale and the fibremicro-scale (with:
the green lines within δY(x) portraying the micro-distribution of micro-fibres; and the orange shaded area on the right tumour macro-domain representing the net cancer
progression with respect to the previous time-step). (B) Schematic of the reallocation of the micro-fibre at position z to its new position zp which located in a neighbouring
micro-domain δY(x + Δx). (C) Partitioning of the sensing region B(0,R) into Ns annulus sectors S] with barycentres bS] (red stars). (D) Illustration of the top-right
quarter of (C) overlaid on top of the macroscopic background mesh (grey grid). Here, we highlight an annulus sector S] (blue highlighted area), its corresponding off-grid
barycentre bS] (red star) and four of its macro-nodes (green dots).
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where η is the damping coefficient and F rep
i , F adh

i and F ECM
i

are defined in Eqs 3–5, respectively. To solve the spatial
dynamics Eq. 6 of the cell Ci(t), we use the classical
forward Euler method. We illustrate the overall travelling
direction of a cell in Figure 2.

The Continuous Multi-Scale ECM
Tumour development is a complex and multi-scale phenomena
where the macro-scale events are accompanied by several
related micro-scale processes. One of the most important
of these processes is the re-distribution of the fibres ECM
micro-constituents triggered by various cell-generated forces.
Hence, here we first describe the macro-scale dynamics of the
continuous two-phase ECM and then we detail its micro-scale
dynamics.

Similarly to the cancer cell density, to achieve connection
between the discrete and continuous parts of the model, we first
need to appropriately approximate the generated cell forces (F rep

i ,
F adh

i and F ECM
i defined in Eqs 3–5, respectively) on the macro-

scale. For this, let us use the average of the collective contribution
of all cell generated forces within a cΔx neighbourhood of the
macro-node x. This leads to the following continuous cancer
cell flux:

F(x, t) :�∫
B(x,cΔx)

∑
Xi ∈B(x,cΔx)

(F rep
i + F adh

i + F ECM
i ) · IB(Xi ,Crad

i )(z) dz

λ(B(x, cΔx)) · ∑M(t)

i�1
IB(x,cΔx)(Xi)

, (7)

where again λ(·) is the Lebesgue measure in Rd , B(x, cΔx) is the
‖ ·‖∞ ball used also in Eq. 1, I(·)(·) denotes the indicator
function.

The Two-phase ECM
Besides the cancer cells, in this work we also take into account
the dynamics of a two-phase ECM to capture not only the
fibrous proteins in the fibres ECM, but also every other ECM
constituents which are collected into the non-fibre ECM phase.
It is well-known that MMPs are responsible for degrading the
fibrous ECM proteins [43, 44], and since cancer cell do
produce several types of MMPs [45, 46], here we consider
the fibres ECM to be degraded by the cancer cell population at
a constant rate βF > 0. However, existing biological evidence
also suggest that besides the fibrous proteins, components of
the non-fibre ECM phase can also be degraded by several

FIGURE 2 | Illustration of the sensing region B(0,R) of radius R around a cancer cell, highlighted by the white circle. Within the zoomed-in areas (on the left), the red
arrows show the oriented ECM fibre field and the green arrow on the central cancer cell shows the overall travelling direction of that particular cancer cell which is the
solution of Eq. 6. On the right, we show the individual cancer cells with the micro-fibres, the non-fibre ECM densities and the oriented ECM fibre fields (for illustrative
purposes these are coarsened four-fold). (A) Cancer cell placed within a random fibre environment, identical to Figure 7C. (B) Cancer cell placed within an aligned
fibre environment, identical to Figure 7A9.
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classes of MMPs (for instance amyloid fibrils [47, 48]). Hence,
we can assume a constant non-fibre ECM degradation rate
βl > 0 by the cancer cells. The non-dimensional macro-scale
dynamics of both fibre and non-fibre ECM phases are
mathematically formalised as

zF
zt

� −βFcF,
zl
zt

� −βlcl. (8)

Here, we used the macro-scale density of the cancer cell
population c(x, t) (see Eq. 1), which was derived using the
properties of the individual cells provided by the agent-based
part of our hybrid model.

Fibre Representation
Let us now focus our attention to the two macro-scale
representations of the fibres ECM, namely its amount
F(x, t) and spatial bias θf (x, t). Considering a micro-scale
distribution of the micro-fibres f (z, t) on a cell-scale micro-
domain δY(x) :� x + δY of appropriate micro-scale size δ > 0,
we observe that both of these two characteristics of the fibres
ECM can be captured through a vector field representation
θf (x, t) of the fibres. This captures the naturally emerging
macro-scale orientation of the ECM fibres that is induced
by the distribution of micro-fibres constituents f (z, t) at
micro-scale (on δY(x)), and represents the spatial bias of
the ECM fibres distributed at x to withstand incoming
spatial cell fluxes generated by the collective cell migration.
Following Shuttleworth and Trucu [19], this vector field
representation of the ECM fibre phase is given by

θf (x, t) :� 1
λ(δY(x)) ∫

δY(x)
f (z, t)dz · θx,δY(x)(x, t)

||θx,δY(x)(x, t)||2,

where θx,δY(x)(x, t) is the Bochner-mean-value [49] of the vector-
valued function δY(x) ∋ z1z − x ∈ Rd with respect to the
measure f (z, t)λ(·) and represents the uniquely emerging
revolving barycentral orientation (which was originally derived
and justified in detail in Shuttleworth and Trucu [19]) induced by
the micro-fibre distribution f (z, t) on δY(x), this being given by

θf ,δY(x)(x, t) :�
∫
δY(x) f (z, t)(z − x) dz
∫
δY(x) f (z, t) dz

. (9)

In this context, the second characteristic of the fibres ECM,
i.e., its amount F(x, t) is precisely given by the Euclidean norm of
the vector field θf (x, t), namely

F(x, t) :� ||θf (x, t)||2,
which in fact represents the mean-value of the micro-fibre
distribution on the micro-domain δY(x). Since both of these
macro-scale fibre ECM representations are derived by using the
micro-scale distribution of the micro-fibres f (z, t), there is an
emerging link between the two scales which we refer to as the fibre
bottom-up link and illustrate it in Figure 1A. Furthermore, the
detailed micro-scale rearrangement process is illustrated in full in
Figure 1B.

Fibre Rearrangement Process
As the individual cancer cells move and invade, they
interact with the micro-fibre structure and thereby push
them in the direction of travelling, ultimately resulting in
the rearrangement of the micro-fibres. Following
Shuttleworth and Trucu [19], here we consider this
complex process to be initiated by the spatial flux of
the cancer cell population F(x, t) that was defined in
Eq. 7. Then, such flux that acts uniformly on δY(x)
naturally gets regulated in a weighted manner by the
orientation of the fibres θf (x, t), resulting in a micro-fibres
rearrangement vector

r(δY(x), t) :� ω(x, t)F(x, t) + (1 − ω(x, t))θf (x, t), (10)

where the weight ω(x, t) is the appropriate mass fraction of the
cancer cells and fibres ECM given by

ω(x, t) :� c(x, t)
c(x, t) + F(x, t).

Ultimately, the new position z* of each micro-fibre z ∈ δY(x)
is calculated by using a reallocation vector ]δY(x)(z, t) which
accounts not only for the rearrangement vector r(δY(x), t) in
Eq. 10 but also upon the degree of alignment between r(δY(x), t)
and the barycentral position vector xdir(z) :� z − x as well as it
utilises the level of micro-fibres at position z. Hence, this
reallocation vector is given by

]δY(x)(z, t) :�[xdir(x) + r(δY(x),t)] · f (z,t)[fmax − f (z,t)]
f *+||r(δY(x),t) − xdir(x)||2 · χ{f (z,t)> 0} ,

(11)

where fmax > 0 is the maximum possible level of fibres at any
micro-point z, f p :� f (z, t)/fmax is the fibres saturation level and
χ{f (z,t)> 0} is the characteristic function of the micro-fibres
support. Therefore, by using Eq. 11 the new position z* is
given by

z* :� z + ]δY(x)(z, t),
and the amount of fibres that is reallocated from z to z* is
determined by a movement probability

pmove :� max(0, 1 − f (z*, t)
fmax

),
which tracks the free space available at the new position z*. Thus,
the level of fibres that gets moved to z* is given by pmove · f (z, t)
and the rest of the fibres, i.e., (1 − pmove) · f (z, t) remain at the
current position z. In Figure 1B we illustrate the reallocation of a
micro-fibre using a typical example of the rearrangement
r(δY(x), t) and reallocation vectors ]δY(x)(z, t) defined in Eqs.
10, 11, respectively.

Finally, since this rearrangement process that redistributes
the fibres ECM micro constituents is initiated by the macro-
scale cancer cell flux F(x, t), the macro and micro-scales are
connected via a top-down link which is also illustrated in
Figure 1A.
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For a diagrammatic description of the full hybrid model, with
the exact stages where the agent-based model of the cells connects
with the continuous model of the ECM, please see Figure 15 in
Appendix B.

RESULTS

In the context of the above described multi-scale hybrid
framework, here we present some numerical simulations of the
model, which highlight different migration cell patterns in
various tissues with different levels of ECM fibres and
different alignment levels. To this end, we start each
simulation with a single cancer cell with well defined
properties located at a point (x01 , x02) (that will be defined for
each simulations) of the computational domain
Y � [−1280mm, 1280mm] × [−1280mm, 1280mm], and any
alteration from this will be stated accordingly. Then, this
single cancer cell is considered to be embedded within the
following (scaled) non-fibre ECM environment [19–23]:

l(x, 0) :� 1
2
+ 1
4
sin(7π (x1 + 1280)

640
(x2 + 1280)

640
)3

· sin(7π x2 + 1280
x1 + 1280

),
which can be seen in Figure 3A that is in-silico representation
of the heterogeneous distribution of the non-fibre ECM.
For illustrative purposes, in Figure 3 (as well as throughout
the rest of this Section) we present the non-fibre ECM
initial conditions only on the domain of
[−1000mm, 1000mm] × [−1000mm, 1000mm]. Moreover, for
both Figures 3A,B (as well as for all other figures in this
Section), the units of the x and y axes are in ‘mm’. Finally to
highlight the phase of each individual cell, we use five colours.
Specifically, we colour the cells that are in the G1 phase white,
those in the S phase yellow, those in the G2 phase orange, those in
M phase red, and the ones that are both growth-arrested (due to

contact inhibition) and in the M phase are coloured black in all
simulations.

To shed some light on the importance of ECM characteristics
on cancer invasion, throughout this section we investigate
numerically the type of cancer migration and invasion patterns
obtained when we consider different cell sensing radii. We note
here that the sensing radius is determined not only by the length of
cell membrane protrusions called pseudopodia (which have
lengths greater than 2 µm [50, 51]), but also by the long-range
cell sensing due to stress transmission via aligned ECM fibres
(which allows cells to sense other cells up to 100 µm away [13]).
Throughout this study we investigate the impact of two sensing
radii, R � 30μm or R � 50μm, on tumour shape and invasion
pattern. We also investigate the impact of different fibres to non-
fibres ECM ratios (i.e., 10: 90%, 20: 80%, or 30: 70%), different
ECM fibre distribution (i.e., random, aligned, or mixed), and
different cell-cell and cell-ECM interaction strengths.

Simulations Without Cell-ECM Adhesions in
a Random Fibrous Environment
We start our numerical investigation of this hybrid multi-scale
model by showing some baseline simulations for the case without
cell-ECM adhesions, as we vary the fibre ECM density
(i.e., 10 − 30% fibres), for two different sensing radii: R �
30μm in Figure 4, and R � 50μm in Figure 5.

By comparing the numerical results in Figures 4, 5 we can
conclude that in the absence of any cell-ECM adhesion, the
tumour colonies have an almost circular shape, and they are
stationary (i.e., they do not move through the domain).
Moreover, the larger cell sensing radius does not seem to have
a significant impact on tumour structure.

Simulations With Cell-ECM Adhesions in a
Random Fibrous Environment
Next, we consider cell-ECM adhesion forces (Scl � 0.01,
ScF � 1.8), and investigate again the effect of changes in fibre

FIGURE 3 | Initial ECM conditions used for the numerical simulations. (A) The macro-scale non-fibres ECM density. (B)One aligned micro-fibres domain δY which
is repeated for all macro-node x.
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FIGURE 4 | Simulation results at final time T � 28 days with random fibres, sensing radius R � 30μm, repulsion Frep � 0.45 × 10mg/μm ·min2, cell-cell adhesion
Fadh � 0.12 × 10mg/μm ·min2, cell-non-fibre ECM adhesion Scl � 0, cell-fibre ECM adhesion ScF � 0 and with (A) 10% : 90%, (B) 20% : 80%, (C) 30% : 70% fibres and
non-fibres ECM ratios. For illustrative purposes, all oriented ECM fibre fields are coarsened four-fold. Initial cell position was: (A–C) (0,0).

FIGURE 5 | Simulation results at final time T � 28 days with random fibres, sensing radius R � 50μm, repulsion Frep � 0.45 × 10mg/μm ·min2, cell-cell adhesion
Fadh � 0.12 × 10mg/μm ·min2, cell-non-fibre ECM adhesion Scl � 0, cell-fibre ECM adhesion ScF � 0 and with (A) 10% : 90%, (B) 20% : 80%, (C) 30% : 70% fibres and
non-fibres ECM ratios. For illustrative purposes, all oriented ECM fibre fields are coarsened four-fold. Initial cell position was: (A–C) (0,0).

FIGURE 6 | Simulation results with random and aligned fibres, sensing radius R � 30μm, repulsion Frep � 0.9 × 10mg/μm ·min2, cell-cell adhesion
Fadh � 0.12 × 10mg/μm ·min2, cell-non-fibre ECM adhesion Scl � 0.01, cell-fibre ECM adhesion ScF � 1.8 and with (A–A9) 10% : 90%, (B–B9) 20% : 80%, (C–C9)
30% : 70% fibres and non-fibres ECM ratios. In (A–C) the fibre orientation field is set to be random and in (A9–C9) it is set to be aligned. Moreover the final simulation times
are (A–C) T � 28 days, (A′) T � 14294 minutes, (B′) T � 10761 minutes and (C′) T � 4169 minutes. For illustrative purposes, all oriented ECM fibre fields are
coarsened four-fold. Initial cell position was: (A–C) (0,0), (A′–,C′) (900, −900).
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ECM density (i.e., 10–30–% fibres), for two different sensing
radii: R � 30μm in Figure 6, and R � 50μm in Figure 7. Since
now we consider cell-ECM interactions, in these two figures we
also show model dynamics when the ECM environment is
described by random fibres [sub-panels (A)-(C)] or by aligned
fibres [sub-panels (A’)-(C’)].

First, we see that cell-ECM interactions can lead to irregular-
shaped tumour aggregations as well as elongated tumour
aggregations. The random fibres are associated with
stationary cell aggregations [sub-panels (A)-(C)], while the
aligned fibres are associated with moving cell aggregations
[sub-panels (A’)–(C’)].

FIGURE 7 | Simulation results with random and aligned fibres, sensing radius R � 50μm, repulsion Frep � 0.9 × 10mg/μm ·min2, cell-cell adhesion
Fadh � 0.12 × 10mg/μm ·min2, cell-non-fibre ECM adhesion Scl � 0.01, cell-fibre ECM adhesion ScF � 1.8 and with (A−A9) 10% : 90%, (B−B9) 20% : 80%, (C−C9)
30% : 70% fibres and non-fibres ECM ratios. In (A−C) the fibre orientation field is set to be random and in (A9–C9) it is set to be aligned. Moreover the final simulation times
are (A–C) T � 28 days, (A9) T � 28470 minutes, (B9) T � 9260 minutes and (C9) T � 6351 minutes. For illustrative purposes, all oriented ECM fibre fields are
coarsened four-fold. Initial cell position was: (A–C) (0,0), (A9–C9) (900, −900).

FIGURE 8 | Simulation results with random and aligned fibres, sensing radius R � 30μm, repulsion Frep � 0.9 × 10mg/μm ·min2, cell-cell adhesion
Fadh � 0.04 × 10mg/μm ·min2, cell-non-fibre ECM adhesion Scl � 0.01, cell-fibre ECM adhesion ScF � 1.8 and with (A–A9) 10% : 90%, (B–B9) 20% : 80%, (C–C9)
30% : 70% fibres and non-fibres ECM ratios. In (A–C) the fibre orientation field is set to be random and in (A9–C9) it is set to be aligned. Moreover the final simulation times
are (A–C) T � 28 days, (A9) T � 11860 min, (B9) T � 6822 min and (C9) T � 3378 min. For illustrative purposes, all oriented ECM fibre fields are coarsened four-fold.
Initial cell position was: (A–C) (0,0), (A9–C9) (900,−900).
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The increase in sensing region (from R � 30 in Figure 6 to
R � 50 in Figure 7) leads to an important difference. Even though
we have now introduced the cell-ECM adhesion, in a lower fibre
ECM density (10–20%) the tumour still kept its more round
shape due to the increase of the sensing region. One possible
explanation for this is that by increasing the sensing region in a
random ECM environment, the different forces that emerge from

the fibre orientations, cancel each other out and so the cancer cells
are not subject to a strong leading force.

Finally, the increase in cell sensing radius to R � 50 in an
aligned fibrous environment, leads to a more compact tumour
aggregation for the case of 10: 90% fibres: non-fibres ECM ratios.
For higher ratios, the tumour is extremely elongated and the
sensing radius has almost no impact.

FIGURE 9 | Simulation results with random and aligned fibres, sensing radius R � 50μm, repulsion Frep � 0.9 × 10mg/μm ·min2, cell-cell adhesion
Fadh � 0.04 × 10mg/μm ·min2, cell-non-fibre ECM adhesion Scl � 0.01, cell-fibre ECM adhesion ScF � 1.8 and with (A–A9) 10% : 90%, (B–B9) 20% : 80%, (C–C9)
30% : 70% fibres and non-fibres ECM ratios. In (A–C) the fibre orientation field is set to be random and in (A9–C9) it is set to be aligned. Moreover the final simulation times
are (A–C) T � 28 days, (A9) T � 21400 min, (B9) T � 6551 min and (C9) T � 4305 minutes. For illustrative purposes, all oriented ECM fibre fields are coarsened four-
fold. Initial cell position was: (A–C) (0,0), (A9–C9) (900,−900).

FIGURE 10 | Simulation results with random and aligned fibres, sensing radius R � 30μm, repulsion Frep � 0.75 × 10mg/μm ·min2, cell-cell adhesion
Fadh � 0.04 × 10mg/μm ·min2, cell-non-fibre ECM adhesion Scl � 0.01, cell-fibre ECM adhesion ScF � 1.2 and with (A–A9) 10% : 90%, (B–B9) 20% : 80%, (C–C9)
30% : 70% fibres and non-fibres ECM ratios. In (A–C) the fibre orientation field is set to be random and in (A9–C9) it is set to be aligned. Moreover the final simulation times
are (A–C) T � 28 days, (A9) T � 20183 min, (B9) T � 12268 min and (C9) T � 7589 minutes. For illustrative purposes, all oriented ECM fibre fields are coarsened four-
fold. Initial cell position was: (A–C) (0,0), (A9–C9) (900,−900).
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Decreasing the Cell-Cell Adhesion Strength
Previous simulations were performed with a relatively high cell-cell
adhesion strength (Fadh � 0.12), which impacts the overall shape of
tumour aggregations. Let us now decrease the cell-cell adhesion
strength and consider Fadh � 0.04 (while keeping all other
parameters as before). In Figures 8, 9 we can see that a decrease
in cell-cell adhesion causes more irregularly-shaped tumour
aggregations. This is counterbalanced a bit by an increase in the

sensing radius to R � 50 which, as before, tends to favorise more
round-shaped tumour aggregations.

Decreasing the Cell-Fibre ECM Adhesion
Strength
Since the previous simulations had low cell-cell adhesion but high
cell-fibre ECM adhesion, next we investigate tumour invasion

FIGURE 11 | Simulation results with random and aligned fibres, sensing radius R � 50μm, repulsion F rep � 0.75 × 10mg/μm ·min2, cell-cell adhesion
Fadh � 0.04 × 10mg/μm ·min2, cell-non-fibre ECM adhesion Scl � 0.01, cell-fibre ECM adhesion ScF � 1.2 and with (A–A9) 10% : 90%, (B–B9) 20% : 80%, (C–C9)
30% : 70% fibres and non-fibres ECM ratios. In (A–C) the fibre orientation field is set to be random and in (A9–C9) it is set to be aligned. Moreover the final simulation times
are (A–C) T � 28 days, (A9) T � 37517 min, (B9) T � 14220 min and (C9) T � 9982 min. For illustrative purposes, all oriented ECM fibre fields are coarsened four-fold.
Initial cell position was: (A–C) (0,0), (A9–C9) (900,−900).

FIGURE 12 | Simulation results with random and aligned fibres, sensing radius R � 30μm, repulsion Frep � 0.5 × 10mg/μm ·min2, cell-cell adhesion
Fadh � 0.12 × 10mg/μm ·min2, cell-non-fibre ECM adhesion Scl � 0.01, cell-fibre ECM adhesion ScF � 0.3 and with (A–A9) 10% : 90%, (B–B9) 20% : 80%, (C–C9)
30% : 70% fibres and non-fibres ECM ratios. In (A–C) the fibre orientation field is set to be random and in (A9–C9) it is set to be aligned. Moreover the final simulation times
are (A, A9, B, C) T � 28 days, (B9) T � 34707 min and (C9) T � 25801 min. For illustrative purposes, all oriented ECM fibre fields are coarsened four-fold. Initial cell
position was: (A–C9) (0,0).
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patterns when we lower the cell-fibre adhesion strength to ScF � 1.2
(while keeping Fadh � 0.04). In Figures 10, 11 we see that lowering
cell-fibre adhesion leads to a highly-irregular tumour shape,
especially for the case of 30% : 70% fibres to non-fibres ECM ratios.

Consider now an even lower cell-ECM adhesion strength,
ScF � 0.3, and at the same time a lower cell repulsion Frep � 0.5. In
Figures 12, 13 we see that tumour aggregations have recovered
their circular shape when the ECM fibres are distributed
randomly, and have either circular or slightly elongated
structures when the ECM fibres are aligned.

We emphasise that the simulations in sub-panels (B’)–(C’) in
the above figures were ran for shorter times, since for longer times
the cells leave the domain.

Different Tissues With Different Fibre
Orientations
Finally, we investigate numerically what happens with tumour
shape and its invasion pattern when the ECM domain is formed
of patches of random and aligned fibres, corresponding to
different types of tissues (see the discussion in the
Introduction). For this we start with a cluster of cells (e.g., 19
cells, for illustration purposes) instead of just one cell. Moreover,
we consider here again the parameter values used for the results in
Figures 6C–C9, namely: R � 30μm, Frep � 0.9, Fadh � 0.12,
Scl � 0.01, ScF � 1.8, and 30% : 70% fibres and non-fibres
ECM ratios. In Figure 14 we present six scenarios
corresponding to different regions of random and aligned
ECM fibres. In sub-panels (A)–(C) we plot the distribution of
cancer cells and the ECM degradation pattern at a single time
snapshot [i.e., (A) T � 5283 min, (B) T � 4601 min, (C) T �
9518 min]. In panels (D)–(F) we plot the distribution of cancer
cells and the ECM degradation patterns at three different times (T

� 9500 min, T � 15000 min, T � 20000 min), to illustrate the
time-evolution of the system.

The simulations in Figure 14 show that the initial position of
the cluster of tumour cells, together with the ECM alignment in
that region, influences the direction of migration of these cells. In
sub-panels (A)–(B) the cells migrate in the direction of fibre
alignment, while in sub-panel (C) the cells migrate along the
boundary between two regions with opposite alignment. A
similar migration pattern is observed in sub-panel (D). Finally,
in sub-panels (E) and (F) we observe that when the original
tumour cell cluster is positioned in an area surrounded by
different ECM alignment, the tumour tends to stay in that
area and to very slowly invade the neighbouring tissues (with
different ECM orientations). All these different tumour invasive
patterns are consistent with the experimental results in [10, 52],
which showed that aligned collagen fibres perpendicular to
tumour boundary are associated with tumour invasion along
those fibres, and the experiments in [52] which showed that
aligned collagen fibres parallel to tumour boundary impede
invasion.

SUMMARY AND DISCUSSION

The composition and structural characteristics of the extracellular
matrix (ECM) are known to vary widely among different tissues
[11], and this has a significant impact on the evolution of cancer.
Since there is an increasing need for understanding the spatio-
temporal changes in ECM and their roles in cancer progression,
in this study we introduced a new multi-scale hybrid
mathematical model for cell-cell and cell-ECM interactions,
and used it to investigate numerically the impact of ECM fibre
orientation and fibre density on cancer cell invasion patterns. To

FIGURE 13 | Simulation results with random and aligned fibres, sensing radius R � 50μm, repulsion Frep � 0.5 × 10mg/μm ·min2, cell-cell adhesion
Fadh � 0.12 × 10mg/μm ·min2, cell-non-fibre ECM adhesion Scl � 0.01, cell-fibre ECM adhesion ScF � 0.3 and with (A–A9) 10% : 90%, (B–B9) 20% : 80%, (C–C9)
30% : 70% fibres and non-fibres ECM ratios. In (A,B–C) the fibre orientation field is set to be random and in (A9–C9) it is set to be aligned. Moreover the final simulation
times are (A, A9, B, C) T � 28 days, (B9) T � 31873 min and (C9) T � 31506 minutes. For illustrative purposes, all oriented ECM fibre fields are coarsened four-fold.
Initial cell position was: (A–C9) (0,0).
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FIGURE 14 | Simulation results with different aligned fibre structures, sensing radius R � 30μm, repulsion Frep � 0.9 × 10mg/μm ·min2, cell-cell adhesion
Fadh � 0.12 × 10mg/μm ·min2, cell-non-fibre ECM adhesion Scl � 0.01, cell-fibre ECM adhesion ScF � 1.8 and with 30% : 70% fibres and non-fibres ECM ratios. In the
first row of each panel (A–F), we present the four-fold coarsened initial oriented ECM fibre field and the purple lines represent the dividing lines between the regions with
different tissue alignments. In panel (A) we plot a single result at time T � 5283 min, in (B) at time T � 4601 min and in (C) at time T � 9518. In panels (D–F) we plot
the results at three different times to illustrate the evolution of the tumour, specifically, we use T � 9500, T � 15000, T � 20000 minutes, respectively. The oriented ECM
fibres fields are coarsened four-fold for illustration purposes. Initial center of cell cluster position was: (A–E) (0,0), (F) (−400, −200).
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TABLE 1 | Summary of numerical results obtained for a cell sensing radius of R � 30 μm.

Figures Tumour
type

Description R Fadh Scl ScF Frep Fibre
ratio

Fibre
orientation

Figure 4A Circular Stationary 30 0.12 0 0 0.45 10% Random
Figure 4B Circular Stationary 30 0.12 0 0 0.45 20% Random
Figure 4C Circular Stationary 30 0.12 0 0 0.45 30% Random
Figure 6A Irregular Stationary 30 0.12 0.01 1.8 0.9 10% Random
Figure 6A9 Elongated Moving 30 0.12 0.01 1.8 0.9 10% Oriented
Figure 6B Irregular Stationary 30 0.12 0.01 1.8 0.9 20% Random
Figure 6B9 Elongated Moving 30 0.12 0.01 1.8 0.9 20% Oriented
Figure 6C Irregular Stationary 30 0.12 0.01 1.8 0.9 30% Random
Figure 6C9 Elongated Moving 30 0.12 0.01 1.8 0.9 30% Oriented
Figure 8A Circular Stationary 30 0.04 0.01 1.8 0.9 10% Random
Figure 8A9 Elongated Moving 30 0.04 0.01 1.8 0.9 10% Oriented
Figure 8B Irregular Stationary 30 0.04 0.01 1.8 0.9 20% Random
Figure 8B9 Elongated Moving 30 0.04 0.01 1.8 0.9 20% Oriented
Figure 8C Irregular Stationary 30 0.04 0.01 1.8 0.9 30% Random
Figure 8C9 Elongated Moving 30 0.04 0.01 1.8 0.9 30% Oriented
Figure 10A9 Elongated Moving 30 0.04 0.01 1.2 0.75 10% Oriented
Figure 10B Circular Stationary 30 0.04 0.01 1.2 0.75 20% Random
Figure 10B9 Elongated Moving 30 0.04 0.01 1.2 0.75 20% Oriented
Figure 10C Irregular Stationary 30 0.04 0.01 1.2 0.75 30% Random
Figure 12A Circular Stationary 30 0.12 0.01 0.3 0.5 10% Random
Figure 12A9 Circular Moving 30 0.12 0.01 0.3 0.5 10% Oriented
Figure 12B Circular Stationary 30 0.12 0.01 0.3 0.5 20% Random
Figure 12B9 Elongated Moving 30 0.12 0.01 0.3 0.5 20% Oriented
Figure 12C Circular Stationary 30 0.12 0.01 0.3 0.5 30% Random
Figure 12C9 Elongated Moving 30 0.12 0.01 0.3 0.5 30% Oriented

TABLE 2 | Summary of numerical results obtained for a cell sensing radius of R � 50μm.

Figure Tumour
type

Description R Fadh Scl ScF Frep Fibre
ratio

Fibre
orientation

Figure 5A Circular Stationary 50 0.12 0 0 0.45 10% Random
Figure 5B Circular Stationary 50 0.12 0 0 0.45 20% Random
Figure 5C Circular Stationary 50 0.12 0 0 0.45 30% Random
Figure 7A Circular Stationary 50 0.12 0.01 1.8 0.9 10% Random
Figure 7A9 Elongated Moving 50 0.12 0.01 1.8 0.9 10% Oriented
Figure 7B Circular Stationary 50 0.12 0.01 1.8 0.9 20% Random
Figure 7B9 Elongated Moving 50 0.12 0.01 1.8 0.9 20% Oriented
Figure 7C Irregular Stationary 50 0.12 0.01 1.8 0.9 30% Random
Figure 7C9 Elongated Moving 50 0.12 0.01 1.8 0.9 30% Oriented
Figure 9A Circular Stationary 50 0.04 0.01 1.8 0.9 10% Random
Figure 9A9 Elongated Moving 50 0.04 0.01 1.8 0.9 10% Oriented
Figure 9B Irregular Stationary 50 0.04 0.01 1.8 0.9 20% Random
Figure 9B9 Elongated Moving 50 0.04 0.01 1.8 0.9 20% Oriented
Figure 9C Irregular Stationary 50 0.04 0.01 1.8 0.9 30% Random
Figure 9C9 Elongated Moving 50 0.04 0.01 1.8 0.9 30% Oriented
Figure 11A Circular Stationary 50 0.04 0.01 1.2 0.75 10% Random
Figure 11A9 Elongated Moving 50 0.04 0.01 1.2 0.75 10% Oriented
Figure 11B Irregular Stationary 50 0.04 0.01 1.2 0.75 20% Random
Figure 11B9 Elongated Moving 50 0.04 0.01 1.2 0.75 20% Oriented
Figure 11C Irregular Stationary 50 0.04 0.01 1.2 0.75 30% Random
Figure 11C9 Elongated Moving 50 0.04 0.01 1.2 0.75 30% Oriented
Figure 13A Circular Stationary 50 0.12 0.01 0.3 0.5 10% Random
Figure 13A9 Circular Moving 50 0.12 0.01 0.3 0.5 10% Oriented
Figure 13B Circular Stationary 50 0.12 0.01 0.3 0.5 20% Random
Figure 13B9 Elongated Moving 50 0.12 0.01 0.3 0.5 20% Oriented
Figure 13C Circular Stationary 50 0.12 0.01 0.3 0.5 30% Random
Figure 13C9 Elongated Moving 50 0.12 0.01 0.3 0.5 30% Oriented
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this end, we varied a number of parameters associated with the
cell-cell interactions (e.g., cell sensing radius R, cell-cell adhesion
stiffness Fadh, cell-cell repulsion stiffness Frep), and parameters
associated with cell-ECM interactions (i.e., cell-fibre adhesion
coefficient ScF , and cell-non-fibre adhesion coefficient Scl), as well
as we varied the random or aligned distribution of fibres. This
enables us to explore their impact on the formation of cell
aggregations and their collective dynamics.

Through numerical simulations, we tested a variety of
scenarios: from the impact of smaller/larger cell sensing radius
on tumour aggregations, to the impact of random vs. aligned
fibres on the migration and invasion of cancer cells into nearby
tissues, the role of different fibre orientation in the
neighbourhood of initial tumour, and the roles of cell-cell and
cell-ECM strengths on the shape of solid tumours. We summarise
all these numerical results in Table 1 (for the case R � 30μm) and
Table 2 (for the case R � 50μm). By comparing the 3rd column
(Description) with the 10th column (Fibre orientation) it is clear
that a random ECM fibre distribution leads to stationary tumour
aggregations, while an oriented fibre distribution leads to moving
tumour aggregations. These numerical results are consistent with
experimental results showing that oriented collagen fibres direct
tumour invasion, with the alignment of collagen fibres coinciding
with the cell invasive direction [10, 53]. Moreover, our numerical
results in Figure 14 showed that collagen fibres that are relatively
parallel to tumour boundary (and create a capsule-like
orientation) can limit tumour invasion. These results are
consistent with a recent note by Friedl [54], as well as the
experiments in [52], about to the importance of ECM
orientation relative to the tumour (see also Figure 1 in [54]).

The results in Figure 14 suggest that if we could know the
orientation of collagen fibres surrounding the tumour (which
may be spanning different tissues with different ECM structures)
we could predict the fast or slow evolution of the solid tumour, as
well as potential cell migration directions. Since collagen can be
easily visualised in standard histopathology slides through second
harmonic generation microscopy [10] or via multiphoton
tomography [55], such predictions on the evolution of
tumours might help treatment decisions, e.g., by deciding to
resect more surrounding tissue if the imaging shows collagen
fibres aligned perpendicular to tumour boundary in a certain
area, or by deciding to preserve more surrounding tissue if the
imaging shows collagen fibres parallel to tumour boundary.
Intraoperative visualisation of tumour microenvironment,
including collagen alignment in resected tissues [56], could be
further combined with mathematical simulations in 2D (and even

in 3D, although this is expected to carry a considerably higher
computational cost) to improve such treatment decisions.

Finally, our numerical simulations suggest that the sensing
radius R (determined by the length of membrane protrusions
called pseudopodia [50, 51], as well as by the long-range sensing
due to stress transmission via aligned ECM fibres [13]) impacts
the shape of tumour colonies in an aligned fibrous ECM
environment with relatively low ratios of fibres to non-fibres.
More precisely, when the ECM ratio of fibres to non-fibres is 10%:
90%, larger R leads to more compact tumor cell colonies
(compare with the cluster invasion pattern in [12]). For higher
fibres: non-fibres ratios this sensing radius has almost no impact,
the tumour being extremely elongated as the cells move quickly
along the collagen fibres (compare with the strands and files
patterns in [12]).

Overall, this study not only confirmed some of the previous
experimental results on the importance of alignement of ECM
collagen fibres on tumour invasion [10, 52], but also proposed
new hypotheses on the biological mechanisms involved in the
shape of the tumour colonies (e.g., the roles of sensing radius vs.
fibres to non-fibres ratios; the roles of sensing radius vs. cell-cell
and cell-ECM mechanical forces). Moreover, this multi-scale
hybrid modelling, which incorporates ECM remodelling and
fibre rearrangement in the direction of cell travelling (via cell
flux F(x, t)), can be further applied to understand various other
fibrotic diseases characterised by ECM remodelling [57].
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APPENDIX A: PARAMETER SET
In Table 3 we summarise the parameter values (and parameter ranges) used throughout the numerical simulations performed in this study.

APPENDIX B: DESCRIPTION OF THE CONNECTION BETWEEN THE INDIVIDUAL-CELLS
DYNAMICS AND CONTINUUM ECM DYNAMICS

TABLE 3 | Parameter set used for the numerical simulations presented in this study.

Variable Value Description References

Δt 1minute Temporal time-step Estimated
T 28 days Simulation time length Estimated
Rmax 10 μm Maximal radius of any cell [58, 59]
F rep 0.45 − 0.9 × 10mg/(μm ·min2) Repulsion spring stiffness [60, 61]
Fadh 0 − 0.12 × 10mg/(μm ·min2) Cell-cell adhesion spring stiffness [60, 61]
η 1 × 10mg/(μm ·min) Medium viscosity [62]
Cmat
1 18 hours Baseline maturation age for the first cell [58, 59]

Nneigh 10 Overcrowding threshold Estimated
Scl 0.01 × 10mg/min2 Cell-non-fibre adhesion coefficient Estimated
ScF 0 − 1.8 × 10mg/min2 Cell-fibre adhesion coefficient Estimated
βF 1.5 Non-dimensional degradation coefficient for fibre ECM due to the tumour [19–21]
βl 2 Non-dimensional degradation coefficient for non-fibre ECM due to the tumour [19–21]
R 30 − 50 μm Sensing radius Estimated
Δx 20 μm Macro-scale spatial step-size Estimated
δ 20 μm Size of the fibre micro-domain δY(x) Estimated
cΔx Δx/2 Radius of the square neighbourhood B(x, cΔx) Estimated
fmax 0.636 Maximum of micro-fibre density at any point [19–21]

FIGURE 15 | Diagrammatic description of the agent-based modelling of cells, the continuous modelling of the ECM and the connection of the two models at the
specific stages of the numerical simulations.
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