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Oil and gas field development optimization, which involves the determination of the optimal
number of wells, their drilling sequence and locations while satisfying operational and
economic constraints, represents a challenging computational problem. In this work, we
present a deep-reinforcement-learning-based artificial intelligence agent that could
provide optimized development plans given a basic description of the reservoir and
rock/fluid properties with minimal computational cost. This artificial intelligence agent,
comprising of a convolutional neural network, provides a mapping from a given state of the
reservoir model, constraints, and economic condition to the optimal decision (drill/do not
drill and well location) to be taken in the next stage of the defined sequential field
development planning process. The state of the reservoir model is defined using
parameters that appear in the governing equations of the two-phase flow (such as well
index, transmissibility, fluid mobility, and accumulation, etc.,). A feedback loop training
process referred to as deep reinforcement learning is used to train an artificial intelligence
agent with such a capability. The training entails millions of flow simulations with varying
reservoir model descriptions (structural, rock and fluid properties), operational constraints
(maximum liquid production, drilling duration, and water-cut limit), and economic
conditions. The parameters that define the reservoir model, operational constraints,
and economic conditions are randomly sampled from a defined range of applicability.
Several algorithmic treatments are introduced to enhance the training of the artificial
intelligence agent. After appropriate training, the artificial intelligence agent provides an
optimized field development plan instantly for new scenarios within the defined range of
applicability. This approach has advantages over traditional optimization algorithms (e.g.,
particle swarm optimization, genetic algorithm) that are generally used to find a solution for
a specific field development scenario and typically not generalizable to different scenarios.
The performance of the artificial intelligence agents for two- and three-dimensional
subsurface flow are compared to well-pattern agents. Optimization results using the
new procedure are shown to significantly outperform those from the well pattern agents.
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1 INTRODUCTION

Field development decisions such as the number of wells to drill,
their location and drilling sequence need to be made optimally to
maximize the value realized from a petroleum asset. Optimization
algorithms such as evolutionary strategies are, in recent times,
widely applied to the field development optimization problem
[1,2]. However, the application of these optimization algorithms
is challenging due to the very large number of computationally
expensive flow simulations required to obtain optimal (or near
optimal) solutions. In addition, the field development
optimization problem is typically solved separately for each
petroleum field due to the variation in geological model,
constraints to be considered or even the economic condition.
Thus, the large number of computationally expensive flow
simulations needs to be run for each field under consideration.
This suggests the field development optimization problem will
benefit from strategies that would allow for the generalization of
the optimization process to several petroleum fields.

In our recent work He et al. [3], we developed a deep
reinforcement learning technique for the field development
optimization in two-dimensional subsurface single-phase flow
settings. The deep reinforcement learning technique allows for
the training of an artificial intelligence agent that provides a
mapping from the current state of a two-dimensional reservoir
model to the optimal decision (drill/do not drill and well location)
in the next step of the development plan. Our goal in this work is
to extend the procedures in He et al. [3] for the field development
optimization, in the presence of operational constraints, in both
two- and three-dimensional subsurface two-phase flow. Once
properly trained, the artificial intelligence agent should learn the
field development logic and provide optimized field development
plans instantly for different field development scenarios. Besides
the described extensions to more complex simulation models,
several algorithmic treatments are also introduced in this work to
enhance the training of the artificial intelligence agent under the
deep reinforcement learning framework.

In the literature of oil and gas field development and
production optimization, different optimization algorithms
have been applied to solve different aspects of the
optimization problem. The well control or production
optimization problem in which the time-varying operational
settings of existing wells are optimized has been efficiently
solved with gradient-based methods [4–7], ensemble-based
methods [8,9] or with efficient proxies like reduced-order
models [10,11]. For the well placement optimization, popular
algorithms such as the genetic algorithms and the particle swarm
optimization algorithms [1,2,12–14], typically entail thousands of
simulation runs to get improved result with no guarantee of
global optimality. The joint well placement and production
optimization problems have also been considered [1,2,15–17],
which typically require even larger numbers of simulations. In
addition, while the approaches considered in these studies may
provide satisfactory results for the field development
optimization problem, the solution obtained in each case is
tied to a specific field development scenario. If the economic
conditions or geological models used in the optimization change,

the optimization process needs to be repeated. In other words, the
solution from traditional optimization methods lacks the ability
to generalize when the underlying scenario changes. It should be
noted that the ability to generalize that is discussed here is
different from the robust optimization as studied in Chen
et al. [18,19], in which the optimization is performed under
uncertainty. While the solutions from robust optimization
accounts for the uncertainty in the model parameters, they
still don’t generalize when the ranges of those uncertainties
change.

In this work, we consider the reinforcement learning
technique in which a general AI (in the form of a deep neural
network) can be applied to optimize field development planning
for a range of different scenarios (e.g., different reservoir, different
economics, different operational constraints) once it is trained.
The reinforcement learning technique considered in this work for
the field development optimization problem has shown great
promise in other fields. Google DeepMind trained an artificial
intelligence agent AlphaGo [20] using reinforcement learning
with a database of human expert games. AlphaGo beat the human
world champion player in the game of Go. AlphaGo Zero [21]
which is a variant of AlphaGo was trained through self-play
without any human knowledge. AlphaGo Zero defeated AlphaGo
in the game of Go. In AlphaGo and AlphaGo Zero, the AI takes in
a description of the current state of the Go game and chooses an
action to take for the next step. The choice of action is optimized
in the sense that it maximizes the overall probability of winning
the game. The success of AlphaGo and AlphaGo Zero suggests
the possibility of training an AI for field development that takes in
a description of the current state of the reservoir and chooses the
development options (e.g., drilling actions) for the next step,
without prior reservoir engineering knowledge.

In the petroleum engineering literature, deep learning
algorithms have seen much success recently for constructing
proxies for reservoir simulation models [22–24].
Reinforcement learning algorithms have been applied to solve
the production optimization problem for both steam injection in
steam-assisted gravity drainage (SAGD) recovery process [25]
and waterflooding [26]. Deep reinforcement learning (in which
the artificial intelligence agent is represented by a deep neural
network) has also been applied to the production optimization
problem [27,28]. Ma et al. [27] evaluated the performance of
different deep reinforcement learning algorithms on the well
control optimization problem with fully connected neural
networks (FCNN). The state of the reservoir model defined by
two-dimensional maps are flattened and used as input to the
FCNN and thus do not retain the spatial information inherent in
the data. An FCNN-based artificial intelligence agent was also
trained in Miftakhov et al. [28]. It should be noted that in the
studies discussed here, the reinforcement learning process is used
as a replacement for traditional optimization algorithms (such as
particle swarm optimization, genetic algorithm) to optimize a
predefined field development scenario.

He et al. [3] applied the deep reinforcement learning technique
to the more challenging field development optimization problem
in which the decisions to be made include the number of wells to
drill, their locations, and drilling sequence. In contrast to the
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previous studies discussed, He et al. [3] used DRL to develop
artificial intelligence which could provide optimized field
development plans given any reservoir description within a
predefined range of applicability. In addition, unlike in
previous studies [27,28] in which the artificial intelligence
agent is represented by fully connected neural networks, He
et al. [3] utilized a convolutional neural network to represent
the agent which allows for better processing of spatial
information. The field development optimization problem in
He et al. [3], however, considers a single-phase flow in two-
dimensional reservoir models.

In this paper, we build upon He et al. [3] and formulate deep
reinforcement learning-based artificial intelligence agents that
could provide optimized field development plans instantaneously
based on the description of a two- or three-dimensional
subsurface two-phase flow in the presence of operational
constraints. The sequence of actions to take during the field
development process is made by the artificial intelligence agent
after processing the state of the reservoir model, the prescribed
constraints and economic condition. The state of the reservoir
model in this work is defined using parameters that appear in the
governing equations of the two-phase flow (such as pressure,
saturation, well index, transmissibility, fluid mobility, and
accumulation). We also propose a dual-action probability
distribution parameterization and an improved convolutional
neural network architecture to enhance the training efficiency
of the artificial intelligence agents for the field development
optimization problem.

Compared to prior work on this topic such as He et al. [3], the
novelties in this work include: 1) extended the problem
description from single-phase flow to two-phase flow, and
thus allowing for handling of reservoirs with strong aquifers
and waterflooding problems. 2) redesigned deep network neural
network architecture for better performance. 3) extended to
handle operational constraints such as maximum liquid
production, drilling duration and water-cut limit. 4) extended
to three-dimensional reservoir model.

This paper proceeds as follows. In Section 2, we present the
governing equations for the two-phase flow and discuss the
different field development optimization approaches–traditional
and reinforcement learning-based field development optimization.
In Section 3, we present the deep reinforcement learning
field development approach which includes the state and action
representation, the proximal policy algorithm and the deep neural
network used to represent the policy and value functions of the
agent. Computational results demonstrating the performance of
the deep reinforcement learning agents, for both 2D and 3D
problems, are presented in Section 4. We conclude in Section 5
with a summary and suggestions for future work.

2 GOVERNING EQUATIONS AND FIELD
DEVELOPMENT OPTIMIZATION
APPROACHES

In this section, we first briefly discuss the governing equations for
the two-phase flow. We then describe the traditional and

reinforcement learning-based field development optimization
approaches.

2.1 Governing Equations
In this work, we consider the isothermal immiscible oil-water
flow problem with gravitational effects. Combining Darcy’s law
for multiphase flow and the mass conservation equation while
neglecting capillary pressure, the flow of each phase in the
reservoir can be described using:

∇ · kρlλl ∇p − cl∇D( )[ ] � z

zt
ϕρlSl( ) + ql, (1)

where the subscript l represents the phase (l � o for oil and l � w
for water), k is the permeability tensor, ρl is the phase density,
λl � kr,l/μl is the phase mobility, with kr,l the phase relative
permeability and μl the phase viscosity, p is the pressure (with
p � po � pw since capillary pressure is neglected), cl � ρlg is the
phase specific weight, with g the gravitational acceleration, D is
the depth, ϕ is the porosity, Sl is the phase saturation and ql is the
mass sink term. The phase flow rate for a production well w in
well-block i is defined by the Peaceman well model [29]:

qwl( )i � WIi λlρl( )i(pi − pw), (2)

where WIi is the well-block well index which is a function of the
well radius, well block geometry and permeability, pi denotes the
well block pressure and pw denotes the well bottomhole pressure.

The discretized form of Eq. (1) given in Eq. (3) is solved for
each grid block i, in time, using the fully implicit method.

(ct)lϕVSl
Bl

[ ]
i

pn+1i − pni
Δt � ∑

k

Γkl ΔΨk,n+1
l + (ql)i, (3)

where pi the pressure of grid block i, n and n + 1 indicate the time
levels, V is the volume of the grid block, (ct)l denotes the total
phase compressibility of the grid block, Bl is the phase formation
volume factor of the grid block, k represents an interface
connected to grid block i, ΔΨk

l is the difference in phase
potential over the interface k, Γkl � Γkλkl is the phase
transmissibility over the interface k, with Γk the rock
transmissibility which is a function of the permeability and
geometry of the grid blocks connected by interface k.

2.2 Optimization Problem Formulation and
Traditional Approaches
The aim in the field development optimization problem in this
work is to determine the number of wells to drill in a greenfield,
alongside their locations and drilling sequence. Only the primary
depletion mechanism is considered, thus only production wells
are drilled. The constraints imposed on the field development
include the maximum liquid production rate, drilling duration
for each well, the allowable water cut limit, and minimum inter-
well spacing.

Mathematically, the field development optimization problem
can be written as follows:

max
x∈X

J(x), subject to c(x)≤ 0, (4)
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where J is the objective function to be optimized, the decision
vector x ∈ X defines the number of wells to drill, their locations,
and drilling sequence. The space X defines the feasible region
(upper and lower bounds) for the decision variables. The vector c
defines optimization constraints that should be satisfied.
Interested readers can refer to Isebor et al. [1,2], for possible
ways of parameterizing the decision vector x for the field
development optimization problem.

The net present value (NPV) is typically considered as the
objective function to be maximized in the field development
optimization. Thus, J in Eq. (4) can be specified as the NPV. The
NPV for primary depletion (only production wells) can be
computed as follows:

NPV(x) � ∑Nt

n�1
ctn Δtn ∑Nw

i�1
po − copex( ) qio,n − cpw qiw,n( ) − In cw⎡⎣ ⎤⎦,

(5)

Here Nt is the number of time steps in the flow simulation, Nw is
the number of production wells, tn and Δtn are the normalized
time and time step size at time step n, and po, copex and cpw
represent the oil price, operating cost and the cost of produced
water, respectively. The variables cw and c represent the well
drilling cost and annual discount rate, respectively. The indicator
function In is one if a well is drilled at time step n and zero
otherwise. The rates of oil and water production for well i at time
step n are, respectively, qio,n and qiw,n.

In the traditional approach of solving the field development
optimization problem, the field development scenario of interest
is first defined. These include the reservoir model definition
(structural, rock, and fluid properties), the specific constraints
and the economic condition to be considered. Afterward, the
optimization variables that define the number of well, location,
and drilling sequence are parameterized to obtain a formulation of
x. Finally, an optimizer (e.g. particle swarm optimization or genetic
algorithm) iteratively proposes sets of decision variables (that
represent field development plans and are evaluated with a
reservoir simulator) in order to maximize an economic metric of
interest. The optimized set of decision variables is tied to a particular
field development scenario predefined before the flow simulation.

In the traditional approach, the evaluation of Eq. (5) for each
field development plan requires performing the two-phase flow
simulation which involves solving Eq. (3). From those
simulations, the only information used by the traditional
optimization approach is the corresponding NPV. The
reservoir states at each time step, which contain a lot of useful
information, are discarded.

Different from the traditional optimization approach,
Reinforcement learning makes use of the intermediate states
generated from the simulator and provides optimized policy
applicable to a range of different scenarios.

2.3 Reinforcement Learning-Based Field
Development Optimization
Reinforcement learning is a sub-field of machine learning
concerned with teaching an artificial intelligence agent how to

make decisions so as to maximize the expected cumulative
reward. The training and the decision making process of the
AI agent follows a feedback paradigm as shown in Figure 1.

The reinforcement learning problem can be expressed as a
system consisting of an agent and an environment. The agent and
the environment interact and exchange signals. These signals are
utilized by the agent to maximize a given objective. The
exchanged signals, also referred to as experience, are (st, at, rt),
which denotes the state, action, and reward respectively. Here, t
defines the decision stage in which the experience occurred. At a
given stage t of the decision-making process, with the
environment (which represents where the action is taken) at
state st, the agent takes an action or decision at. The quality of the
action at is quantified and signaled to the agent through the
reward rt. The environment then transits to a new state st+1 which
indicates the effect of action at on the environment. The
transition from st to st+1 in reinforcement learning is
formulated as a Markov decision process (MDP)—which
assumes the transition to the next state st+1 only depends on
the previous state st and the current action at. This assumption is
referred to as the Markov property [31]. The feedback loop
terminates at a terminal state or a maximum time step t � T.
The time horizon from t � 0 to when the environment terminates
is referred to as an episode.

The choice of the action to take at stage t by the agent depends
on the observation ot which is a function of st. If ot contains all the
information in st, then the decision making process is referred to
as fully observable MDP. Otherwise, it is referred to a partially
observable MDP (POMDP). The agent’s action-producing
function is referred to as a policy. Given a state st (relayed to
the agent through ot), the policy produces the action at. This
mapping operation is mathematically represented as π (at | ot, θ),
where θ are the parameters that define the policy function. The
reinforcement learning problem is now essentially an
optimization problem with the goal of finding the optimal
policy parameters (θopt) that maximizes an expected
cumulative reward. This optimization problem is posed as:

θopt � arg max
θ

E ∑T
t�0

ctrt⎡⎣ ⎤⎦, (6)

where the reward at time t, rt � R(st , at , st+1) depends on the
reward function R and c ∈ (0, 1) is the discount factor that
accounts for the temporal value of rewards. The expectation
accounts for the stochasticity that may exist in the action and

FIGURE 1 | The reinforcement learning feedback loop (adapted
from [30]).
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environment. If the parameters of the policy function are the
weights of a deep neural network, then the optimization problem
is referred to as a deep reinforcement learning (described in
details later).

In the context of field development optimization, our goal is to
determine the policy function that maximizes the expected NPV.
At each drilling stage, the agent defines the action to be taken,
which includes whether to drill a producer or not and, if drill, the
optimal well location. The environment, which is the reservoir
simulator, advances the flow simulation to the next drilling stage
by solving the governing equation for the immiscible oil-water
system given in Eq. (1). The discounted reward function ctR for
the reinforcement learning-based field development optimization
problem is given by the NPV (Eq. (5)), where the discounted
reward (ctrt) for a drilling stage t is given by NPVt � NPV (st, at,
st+1). Here, NPV (st, at, st+1) defines the NPV obtained if the flow
simulation starts from state st (including all wells drilled from s0
to st) and ends at state st+1.

The formulation of the RL-based field development
optimization in this work allows the exploitation of the
problem states (st) generated during the simulation and is thus
a more efficient use of the information from the potentially
expensive simulation runs. In addition, the output of the RL-
based approach is not the optimal actions itself, but the optimal
policy, a mapping from the states to the optimal actions π (at|ot,
θ), which can be used obtain the optimal actions under various
different scenarios. This is distinctively different from the use of
RL in Ma et al. [27]; Miftakhov et al. [28], where the goal was the
optimal actions rather than the policy.

3 DEEP REINFORCEMENT LEARNING FOR
FIELD DEVELOPMENT OPTIMIZATION

In this section, we present the deep reinforcement learning
approach for field development optimization where the
parameters (θ) of the policy function are defined by the
weight of a convolutional neural network. We first describe
the action and state representation for the field development
optimization problem. Finally, the training procedure of the agent
using the proximal policy optimization algorithm [32] and the
convolutional neural network architecture are described.

3.1 Action Representation
The action representation is important because it affects the
computational complexity of the learning process. At each
drilling stage, the agent needs to decide to drill a well at a
certain location or not drill at all. We introduce two variables
to make these decisions. The drill or do not drill decision at
drilling stage t is represented by a binary categorical variable wt ∈
{0, 1} where 0 represents the decision not to drill a well and 1 the
decision to drill. The second variable (active only when the agent
decides to drill a well, i.e. wt � 1) defines where the well should be
drilled and is represented by the well location variable ut, which is
chosen from the possible drilling locations denoted by u ∈ ZNxNy

(the 2D grid flattened into 1D), where Nx and Ny represents the
number of grid blocks in the areal x and y directions of the

reservoir model. Each index in u maps to a grid block in the
reservoir model. Thus, at each drilling stage t, the action at is
defined by at � [wt, ut], where ut is only considered if wt � 1.

The action representation used in this work differs from that
used in He et al. [3]. Specifically, in He et al. [3] a single variable of
dimension Nx × Ny + 1 is used to define the possible actions at each
drilling stage, where the additional index represents the do-not-drill
decision. Such an action parameterization means the action at at
each drilling stage is sampled from a single probability distribution
of cardinality Nx × Ny + 1. Thus, the do-not-drill decision depends
on the number of possible well locations (Nx ×Ny). As the size of the
reservoir model increases, it becomes increasingly difficult for the
agent to learn when not to drill a well due to the cardinality of the
probability distribution dominated by possible drilling locations.
This is in contrast to the approach used in this work where the
variables wt and ut are sampled from two different probability
distributions of cardinality 2 and Nx × Ny, respectively. Hence, the
drill or do-not-drill action is independent of the size of the reservoir
model. The parameterization used in this work can be naturally
extended to other field development cases. For example, for
waterflooding, the decision on the well type can be incorporated
in wt as wt ∈ {−1, 0, 1}, where -1 represents the decision to drill an
injector, 0 to not drill a well, and 1 to drill a producer.

Given the vector u, drilling in some grid blocks may lead to an
unacceptable field development plan from an engineering
standpoint. These include field development plans where more
than one well is to be drilled in the same location, violation of
minimum inter-well distance constraint (acceptable spacing
between wells) and/or drilling in inactive regions of the
reservoir. At any given drilling stage, an action mask of the
same dimension with u defines acceptable drilling locations that
the agent could choose from. Specifically, the action mask contain
binary values (0 or 1) and the probability of sampling an invalid
drilling location (where the values of the action mask are 0) in u is
set to zero. This action masking technique [33,34] have been
proven to be an effective strategy to improve the convergence of
the policy optimization and also ensures the agent only takes valid
action. The action masking technique was used in He et al. [3] for
the field development optimization problem to ensure only
feasible drilling locations are proposed by the agent.

3.2 State Representation
The definition of the state of the environment for the field
development optimization problem depends on the model
physics. For example, the state would include pressure for
single-phase flow and, additionally, saturation for two-phase
flow. The definition of the state also depends on the kind of
generalization capability that we want the AI to have. For
example, if we want the AI to provide different optimal
solutions for different geological models, geological structures
and properties such as permeability, porosity should also be
included in the state definition. If we want the AI to be able
to provide different optimal solutions under different oil prices,
the oil price should also be part of the state.

Our goal in this work is to develop an AI for two-phase flow
that can provide optimal solutions for different field development
optimization scenarios with variable reservoir models,
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operational constraints, and economic conditions within a
predefined range. Thus, this variation in the scenarios should
be captured in the state representation.

In this work, the field development optimization scenarios
considered are characterized by parameters following the
distributions listed in Table 1. Each scenario defines a given
geological structure, rock and fluid properties, operational
constraints, and economic conditions. This includes the grid
size, the spatial distribution of the grid thickness obtained
through Sequential Gaussian simulation (SGS) with a fixed
mean, standard deviation, and variogram ranges. The porosity
fields which are also generated using SGS have a variable
variogram structure and azimuth. A cloud transform of the
porosity field is used to generate the permeability and initial
saturation fields. Although the DRL framework can handle
temporally-varying economic parameters, they remain fixed
for each field development scenario in this work and thus do
not vary in time. After appropriate training, the AI agent is
expected to provide an optimized field development plan for an

optimization scenario randomly sampled from this defined range
of parameters. The generalization and applicability of the
resulting AI agent will depend on the optimization problem
parameters and their distributions. The number of learnable
parameters of the neural network and computational
complexity of the training process of the AI increases as more
parameters and larger distributions are considered.

As pointed out in He et al. [3], the parameters listed in Table 1
do no affect the model independently. Using them directly as
input to the deep neural network increase the complexity and the
ill-conditioning of the problem. Therefore, we define the state of
the environment using parameter groups that aid in reducing the
number of input channels provided to the artificial intelligence
agent. These input channels include parameter groups that
appear in the discretized form of the oil-water immiscible flow
problem (Eq. 3) and the reward. Additional input channels are
also included to define the operational constraints imposed on the
field development. The constraints considered include the drilling
duration per well, watercut limit and the maximum well liquid

TABLE 1 | Distribution of parameters for 2D and 3D oil-water system field development optimization.U (a, b) denotes uniform distribution over the range of (a, b). {a1, a2, . . . , an}
indicate uniform probability distribution over the n discrete options.

Number Variable Symbol Distribution

1 Grid size in x-direction (ft) dx U (500, 700)
2 Grid size in y-direction (ft) dy U (500, 700)
3 Grid thickness (ft) dz SGS 1000, 100, 30, 60)
4 Variogram azimuth (0) ang U (0, 90)
5 Variogram structure struct (Gaussian, exponential)
6 Porosity ϕ SGS [U (0.15, 0.25),U (0.01, 0.07), 2, 8]
7 Permeability (md) k Cloud transform from ϕ

8 Vertical to horizontal permeability ratio (3D) kvkh logUnif (0.001, 0.1)
9 Active cell indicator active Random elliptical
10 Datum depth (ft) ddatum U (5,000, 36,000)
11 Depth from datum (ft) D SGS (1000, 1000, 30, 60)
12 Pressure gradient (psi/ft) pgrad U (0.7, 1)
13 Initial water saturation Swinit Cloud transform from ϕ

14 Oil references formation volume factor Bo,ref U (1, 1.5)
15 Water references formation volume factor Bw,ref U (1, 1.5)
16 Oil compressibility (psi−1) co U (1e-6, 4e-6)
17 Water compressibility (psi−1) cw U (2e-6, 5e-6)
18 Oil specific gravity co U (0.8, 1)
19 Water density (lbs/ft3) ρw U (62, 68)
20 Oil references viscosity (cp) μo,ref U (2, 15)
21 Water references viscosity (cp) μw,ref U (0.5, 1)
22 Residual oil saturation Sor U (0.05, 0.2)
23 Connate water saturation Swc U (0.05, 0.2)
24 Oil relative permeability endpoint kroe U (0.75, 0.95)
25 Water relative permeability endpoint krwe U (0.75, 0.95)
26 Corey oil exponent no U (2, 4)
27 Corey water exponent nw U (2, 4)
28 Producer BHP (% pressure at datum) pw U (0.3, 0.7)
29 Producer skin s U (0, 2)
30 Oil price per bbl ($) po U (40, 60)
31 Water production cost (% oil price) cwp U (0, 0.02)
32 Operating cost per bbl ($) copex U (8, 15)
33 Drilling cost per well ($) ccapex U (1e8, 5e8)
34 Discount rate (%) c U (89, 91)
35 Drilling time per well (days) dtime (90, 120, 180, 240)
36 Project duration (years) ptime U (15, 20)
37 Watercut limit (%) wclimit U (60, 98)
38 Max. well liquid production rate (bbl/day) ql,max U (1e4, 2.5e4)
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production rate. The list of input channels used to define the state
of the environment are given in Table 2.

There are 17 input channels considered for the 2D subsurface
system while 18 (including the z-directional tramsmissibility) are
used for the 3D system. The observation at any given drilling
stage (ot) is represented by ot ∈ RNx×Ny×Nc , where Nc defines the
number of channels. For the 2D case Nc � 17, where each scalar
property (such as the drilling time or water cut constraint) is
converted to a 2D map of constant value. Out of the 18 input
channels for the 3D system, 10 (e.g. pressure, saturation, well
index, e. t.c) vary spatially and thus the values for each layer of the
reservoir model is included in the input channel. This means in
the 3D case,Nc � 10Nz + 8, whereNz is the number of layers in the
3D reservoir model.

Once an optimization scenario is defined during training, the
static input channels are computed and saved. After advancing
the flow simulation to any given drilling stage, the dynamic
properties are extracted and stacked with the static properties.
This stacked input channels are then provided to the agent as the
state of the environment at that given drilling stage. In order to
improve the efficiency of the training process, all the input
channels (except for the well location mask that is zero
everywhere and one only at regions where wells are located)
are normalized to be very close to 0 to one range. Due to the
highly skewed distribution of the transmissibilities and well
index, they are scaled with a nonlinear scaling function as
done in He et al. [3]. Other input channels are scaled using
the linear min-max scaling function.

3.3 Proximal Policy Optimization
Our goal is to determine the learnable parameters (defined by the
weights of a neural network) of the policy function that maximizes
the expected cumulative reward as posed in the optimization
problem given in Eq. (6). In this work, we use a policy gradient
method in which the expected cumulative reward is maximized by
performing gradient descent on the parameters of the policy. The

vanilla policy gradient method is susceptible to performance
deterioration due to the instability that may be introduced by
the update step during gradient descent. Several variants of the
policy gradient method have been proposed to improve the
stability of the optimization. Some variants of the policy
gradient method include the trust region policy optimization
(TRPO) [35] and proximal policy optimization (PPO) [32].

The PPO algorithm proposes a surrogate objective that
improves the policy optimization by guaranteeing monotonic
policy improvement. Following He et al. [3], we now briefly
describe the implementation of PPO used in this work.

The PPO loss or objective function given in Eq. (7) contains
four components: the surrogate policy loss (Lπ), the
Kullback–Leibler (KL) divergence penalty (Lkl), the value
function loss (Lvf ), and the entropy penalty (Lent).

LPPO � Lπ + cklL
kl + cvf L

vf + centL
ent (7)

where ckl, cvf and cent are user-defined weighting factors for the KL
divergence, value function and entropy terms, respectively.

The surrogate policy loss (Lπ) that directly maximizes the
expected cumulative reward is given by:

Lπ � Et[min(rt(θ)At , clip(rt(θ), 1 − ε, 1 + ε)At)] (8)

where rt (θ) quantifies the policy change and it is defined as the
ratio of the old policy π (at|st, θold) to the new policy π (at|st, θ).
The term clip (rt(θ), 1 −ε, 1 + ε) removes the incentive to change
the policy beyond a pre-defined step size limit ε. This prevents
large updates of the parameters that could lead to deterioration of
the policy. The advantage function At defines how good an action
is for a specific state relative to a baseline. Following the
generalized advantage estimation (GAE) framework proposed
by Schulman et al. [36], At is defined by:

AGAE(c,λ)
t (t) � ∑T

l�t
cλ( )l−t rl + cVπ(sl+1) − Vπ(sl)( ) (9)

where c and λ are hyperparameters that control the bias and
variance introduced by the various terms in the summation. The
value function Vπ (st), given in Eq. (10), represents the expected
total reward of being in state st and then following the current
policy π. The value function is parameterized by the weights of a
neural network ψ.

Vπ(st) � E ∑T
l�t

rl⎡⎣ ⎤⎦ (10)

The value function is learned by minimizing the value-function
loss Lvf which is given by:

Lvf � Et max Vψ(st) − Vtarget(st)( )2, Vψold
+ clip(Vψ(st)(([

−Vψold
(st),−η, η) − Vtarget(st))2)], (11)

where the Vtarget (st) is the computed value function from the
training samples, Vψold

is the value function using the current

TABLE 2 | List of the input channels used to define the state for 2D and 3D oil-
water system field development optimization.

Number Input channel Static/Dynamic

1 Pressure Dynamic
2 Water saturation Dynamic
3 x-directional transmissibility Static
4 y-directional transmissibility Static
5 z-directional transmissibility (3D) Static
6 Oil accumulation Dynamic
7 Water mobility Dynamic
8 Oil mobility Dynamic
9 Well index Static
10 Producer drawdown Dynamic
11 Well location mask Dynamic
12 Well cost to net oil price ratio Static
13 Water production cost Static
14 Current discount rate Dynamic
15 Remaining production time Dynamic
16 Max. liquid production rate Static
17 Drilling time Static
18 Water cut constraint Static
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parameters of the value function ψold. Eq. (11) essentially tries to
minimize the mismatch between the computed and predicted
value of the sampled states. The hyperparameter η has same effect
as ε in Eq. 8 and is used to ensure large updates of the value
parameters ψ are not allowed.

The KL divergence penalty (Lkl) serves as an additional term to
avoid large policy update and it is given by:

LKL � Et DKL(π(at |st , θ)|π(at |st , θold))[ ], (12)

where DKL [π(at|st, θ)|π(at|st, θold)] is the Kullback–Leibler
divergence [37] that measures the difference between the old
and new policy.

3.4 Policy and Value Function
Representation
We now describe the representation of the policy function π (a|s,
θ) and the value function Vπ (st) with a deep neural network. In
our previous work [3], the policy and value networks are
represented by different neural networks. Thus the parameters
θ and ψ are independent. In this work, we use the approach in
AlphaGo Zero [38] where the value and policy networks share
some layers. In this case, there is an overlap in the parameters θ
and ψ. The neural network architecture used in this work is
shown in Figure 2. The shared layers in the neural network are
used to learn features from the state that are relevant to both the
policy and the value network. This reduces the computational
cost that will otherwise be expensive during training if the policy
and value network are represented by different neural networks.

Given the scaled state at any given drilling stage, the shared
layers process the state through a series of convolutional
operation. The shared layer comprises a “conv” block and six
residual blocks [39]. The “conv” block is essentially a
convolutional neural network (CNN) layer [40] followed by a
rectified linear unit (ReLU) activation function [41]. Interested
readers may refer to He et al. [3] for a brief description of CNN
layers and ReLU activation functions. Each residual block
contains two “conv” blocks as shown in Figure 2. The
convolutional operations in the shared layers are performed
with 64 kernels of size 3 × 3 for the two-dimensional
subsurface system. The agent for the three-dimensional
system, however, uses 128 kernels for the “conv” blocks in the
shared layers. This is primarily because the size of the input
channels in the three-dimensional subsurface system is larger
than that of the two-dimensional case.

The learned features from the shared layers serves as input to
the policy and value arms of the network. These features are
further processed with two “conv” blocks in the individual arms.
The first and second conv blocks consist of 128 and two kernels,
respectively, of size 1 × 1. The high dimensional output after the
convolutional operations are reduced in dimension with an
embedding layer [3,42] which consist of a fully connected
(FC) layer with Ne units. Here, Ne is set to 50. The learned
embeddings from the policy arm of the network serves as input
to an additional fully connected layer which predicts the
probability of all actions. The embeddings from the value
arm, however, predicts the value of the state which is a scalar
quantity.

FIGURE 2 | The neural network architecture that defines the policy and value functions. The “conv” block represents a convolutional neural network (CNN) layer
followed by rectified linear unit (ReLU). FC (Ne) represents a fully connected layer with Ne neurons.
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4 COMPUTATIONAL RESULTS

In this section, we evaluate the performance of the artificial
intelligence agents for field development optimization in two-
and three-dimensional subsurface systems. The 2D reservoir
model is of dimension 50 × 50, while that of the 3D case is
40 × 40 × 3. A maximum of 20 production wells are considered
for the field development with one well drilled per drilling stage.
The number of drilling stages for each specific field development
scenario depends on the total production period and drilling
duration sampled from Table 1. Wells operate at the sampled
bottom-hole pressures unless a maximum (sampled) water cut is
reached, at which point the well is shut in. Porosity fields for three
random training scenarios of the 2D and 3Dmodels are shown in
Figures 3A–C and Figure 3D–F, respectively. Note that other
variables (such as the constraints, economics and fluid properties)
for these training scenarios are, in general, different.

The simulations in both cases are performed using Delft
Advanced Research Terra Simulator (DARTS) with operator-
based linearization [43,44]. The simulator has a python interface
that allows for easy coupling with the deep reinforcement
learning framework. The light weight nature of the simulator
makes it suitable for running millions of simulations with
minimal overhead. The overhead is significantly reduced due
to the absence of redundant input/output processing. In our
implementation, the simulator was further extended to handle
dynamic addition of wells between drilling stages.

The training process utilizes 151 CPU cores for the 2D case
and 239 CPU cores for the 3D case. The CPU cores are used to

run the simulations in parallel. The training data generated are
then passed to four GPU cores used for training the deep neural
network. The weighting factors for the terms in the loss function
are defined based on those proposed in He et al. [3]. Accordingly,
ckl, cvf and cent in Eq. (7) are set to 0.2, 0.1, 0.001. A linear learning
rate decay schedule is used for the gradient descent with an initial
learning rate of 1e−3 and a final learning rate of 5e−6 (at 15 million
training samples). It should be noted that each combination of at,
st and rt generated in each drilling stage represents a single
training sample. A mini-batch size of 256 and 5 epochs are
used for the gradient descent.

For the 2D case, we first compare the performance of the
action parameterization used in our previous work He et al. [3],
with the one proposed in this work. We then benchmark the
performance of the 2D artificial intelligence agent with well-
pattern drilling agents. The 3D artificial intelligence agent is also
compared with the well-pattern drilling agents.

4.1 Case 1: Two-Dimensional System
We now present results for the 2D case. Figure 4 shows the
evolution of some performance indicators for the training process
in which the dual-action probability distribution is used. At each
of the training iteration, each of the 151 CPUs runs amaximum of
two simulations. The set of training data generated (used to train
the agent in that specific iteration) are used to compute the
performance indicators reported. The training of the agent
involves approximately two million simulations, which
corresponds to approximately 7,100 equivalent simulations or
training iterations.

FIGURE 3 | Porosity fields for random training scenarios of the 2D and 3D models sampled from the parameter distributions given in Table 1.
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From Figure 4A, it is evident that the average NPV of the
field development scenarios, in general, increases as the training
progresses. Starting from a random policy (randomly initiated
weights of the deep neural network) which results in negative
average NPV, the average NPV increased to more than $2
billion. The fluctuation in the average NPV is due to the fact
that the ease of developing the various field development
scenarios, which are randomly generated, varies from iteration
to another.

Figure 4B shows the minimum NPV of the field development
scenarios generated at each iteration. Theoretically, the agent
should have a minimum NPV of zero as it could choose not to
drill any well. However, it should be noted that during the
generation of the training data, the action to be taken is
sampled from the action distribution of the policy. While this
aids in exploring the action space (the entropy loss also
encourages exploration) and improves the training
performance, it also means the policy is not strictly followed
during training. This leads to some fluctuation in the minimum
NPV in Figure 4B, but overall the minimum NPV approaches

zero. During the application of the agent (after training), the
action with the maximum probability is taken. Results for the case
in which the policy is followed strictly are presented later.

FIGURE 4 | Evolution of training performance metrics for the dual-action probability distributions for the 2D case.

FIGURE 5 | Evolution of the average NPV using the single-action
probability distribution for the 2D case.
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The PPO total loss, given in Eq. (7), is shown in Figure 4C.
The loss, in general, decreases as the optimization progresses. The
value function loss, entropy and policy loss are shown in
Figure 4D–F, respectively. From the figures, we can see that
the total loss is dominated by the value function loss. From our
limited experimentation, there was no noticeable advantage in the
reduction of the weighting factor for the value function loss. The
entropy loss which indicates the convergence of the policy can be
seen to be decreasing. It is observed that the weight for the
entropy term needs to be small enough for the optimization to

proceed smoothly. The policy loss, on the other hand, oscillates
and does not show any clear trend. This is a common behaviour
in PPO [32] because the definition of the policy loss varies from
one iteration to another (due to variation in the value function
which the advantage function depends on).

We now compare the performance of the single-action
probability distribution used in He et al. [3] with the dual-
action probability distribution. Figure 5 shows the evolution
of the average NPV for the single-action probability
distribution. In general, the average NPV increases as the
training progresses. However, when compared to Figure 4A,
the use of a single-action probability distribution leads to a slow
learning in the initial training phase. The result shown here is the
best found after several trials. Depending on the initial policy, the
learning could be significantly slower than the case shown here.
This slow learning is mainly because the learning of the decision
not to drill a well is very slow since the action probability
distribution is dominated by possible drilling locations. This
slow learning increases the computational cost of the training
because the timing of the simulation generally increases with
number of wells. The timing for the first 100,000 simulations
when the single-action probability distribution is used is 11.8 h.
This is in contrast to 7.6 h for the dual-action probability
distribution case, leading to a computational cost saving of
approximately 4 h for the initial 100,000 simulations.

As noted earlier, during training, there is an exploratory aspect
to the agent’s policy and the field development scenarios are
randomly generated. For this reason, we generate 150 random
field descriptions, fluid properties, economics and constraints

FIGURE 6 | Evolution of the average NPV for the single and dual-action
probability distributions.

FIGURE 7 | Illustration of the 4-, 5-, 9- and 16-spot well pattern with the background as the porosity field of a specific test scenario.
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which are used for consistent comparison of the training
performance of the single and dual action distributions.
Figure 6 shows the evolution of the average NPV for the 150
field development scenarios. The agent after every 100 training
iteration is applied for the development of the 150 scenarios.
Clearly, the use of dual-action probability distribution
outperforms the single-action probability distribution.

Once the AI agent is trained, it can be used to generate
optimized field development plans for any new scenarios
within the range of applicability without additional
simulations. Its extremely low cost in optimization for new
scenarios makes it distinctively different from the traditional

optimization methods, which for any new scenario would
require hundreds or thousands of simulations.

The performance of the best AI agent found using the dual-
action probability distribution is now compared to reference well-
pattern agents. The best artificial intelligence agent is taken to be
the agent with the maximum average NPV of the 150 field
development scenarios previously considered. The reference
well patterns considered include the 4-, 5-, 9- and 16-spot
patterns which are illustrated in Figure 7. Note that these
patterns are made up of only production wells and the wells
are equally spaced.Wells that fall in the inactive region (dark-blue
region) of the reservoir are not considered in the field

FIGURE 8 |Comparison of the best artificial intelligence (AI) agent trained using the dual-action probability representation with the reference well-pattern agents for
the 2D case.
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development. For example, wells P3 and P9 in the 9-spot pattern
(Figure 7C) and wells P4 and P16 in the 16-spot pattern
(Figure 7D) are removed from the development plan.

Figures 8A–D shows the performance of the artificial
intelligence agent against the 4-, 5-, 9- and 16-spot reference
well patterns, respectively. In all four cases, the artificial
intelligence agent outperforms the reference well patterns in at
least 96% of the 150 field development scenarios considered.

Figure 8E shows the comparison of the NPV obtained from
the artificial intelligence agent with the maximum NPV obtained
from the four well-pattern agents for each of the 150 field
development scenarios. In this case, the artificial intelligent
agent outperforms the maximum from all well-pattern agents
in approximately 92% of the field development scenarios. The
minimum NPV obtained by the artificial intelligence agent in the
150 field development scenarios is zero NPV. For a significant
proportion of these cases, the drilling of wells using the well-
pattern agents leads to negative NPV, while the AI agent simply
recommended not to develop the field. The results demonstrate
the ability of the artificial intelligence agent to identify
unfavorable field development scenarios.

We note that the solutions from the DRL AI is not guaranteed
to be mathematically optimal. It also does not necessarily
outperform solution from traditional optimization methods
such as GA and PSO (any comparison would likely be setup
and scenario dependent). The value of the DRL AI is that, once it
is trained, it can be used for different fields and different
scenarios, while solutions from traditional methods are tied to
a specific field and scenario. In addition, a trained DRL AI
generate the solution for a new field in seconds, while GA and
PSO may take thousands of runs. We further note that the
solution of the DRL agent could be used as an initial guess for
traditional optimization algorithm to further refine the solution,
which should lead to reduction in computational cost compared
to the use of a random initial solution.

The positioning of wells by the artificial intelligence agent for
three random cases out of the 150 field development scenarios are
shown in Figure 9. These cases entails field development plans
with six, five, and nine production wells, in scenario 1, 2, and 3,
respectively. All wells in the three scenarios are drilled early. For
example, in scenario 1, the six wells are drilled in the first six
drilling stages with well P1 drilled in the first drilling stage and P6

FIGURE 9 | Well configuration proposed by the best artificial intelligence agent for three random 2D field development scenarios. The well numbers indicate the
drilling stage in which the wells are drilled.
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in the sixth drilling stage. The wells are strategically placed in
regions of the reservoir with high productivity (Figure 9A,D,G)
and oil accumulation (Figure 9B,E,H). The pressure
distributions for the scenarios are shown in Figure 9C,F,I.
The wells are also properly spaced resulting in a good
coverage of the producing region.

4.2 Case 2: Three-Dimensional System
Results from the training of the agent for the 3D subsurface
system is now presented. For the 3D case, the wells are
assumed to be always vertical and fully penetrate all layers
of the reservoir in this work. The procedures discussed in this
work can, however, be readily extended to horizontal wells
with varying completion strategies. Compared to that of the
2D case, a larger neural network (in terms of number of
learnable parameters) is used to represent the policy for the
3D case. This is because the size of the input channels to the
agent is larger than that of the 2D case. The vertical
heterogeneity in the reservoir models is captured by

including the transmissibility in the Z-direction in the state
representation.

Figure 10 shows the evolution of the performance indicators
for the training process using the dual-action probability
distribution for the 3D case. The training entails
approximately two million simulations. From Figure 10A it
can be seen that the average NPV generally increases as the
training progresses. This demonstrates the artificial intelligence
agent can learn the field development logic for the even more
complicated three-dimensional system. Consistent with the
behaviour of the agent for the two-dimensional case when the
dual-action probability distribution is used, we see a rapid
increase in average NPV during the initial phase of the
training. As observed in the 2D case, the total loss
(Figure 10C), value function loss (Figure 10D), and entropy
loss (Figure 10E) decrease as the training progresses.

The performance of the best artificial intelligence agent is also
compared with the four reference well-pattern agents for a set of
random field development scenarios. The performance of the

FIGURE 10 | Evolution of training performance metrics for the dual-action probability distributions for the 3D case.
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artificial intelligence agent against the maximum NPV obtained
from the four well-pattern agents (same as those considered in the
2D case) is shown in Figure 11. The artificial intelligence agent
outperforms the well-pattern agents in approximately 88% of the
cases considered.

Figure 12 shows the well configurations proposed by the best
AI agent for three random field development scenarios. The
field development plans involves eight, four and five production
wells.

5 CONCLUDING REMARKS

In this work, we developed an AI agent for constrained field
development optimization for two- and three-dimensional
subsurface two-phase flow models. The training of the agent
utilizes the concept of deep reinforcement learning where a
feedback paradigm is used to continuously improve the

performance of the agent through experience. The experience
includes the action or decision taken by the agent, how this
action affects the state of the environment (on which the action
is taken), and the corresponding reward which indicates
the quality of the action. The training efficiency is enhanced
using a dual-action probability distribution parameterization
and a convolutional neural network architecture with shared
layers for the policy and value functions of the agent. After
appropriate training, the agent instantaneously provides
optimized field development plan, which includes the
number of wells to drill, their location, and drilling sequence
for different field development scenarios within a predefined
range of applicability.

Example cases involving 2D and 3D subsurface systems are
used to assess the performance of the training procedure and the
resulting artificial intelligence agent. The use of the dual-action
probability distribution shows clear advantage over the single-
action probability distribution for the training of the artificial
intelligence agent. The trained artificial intelligence agents for
the 2D and 3D case are shown to outperform four reference
well-pattern agents. For the 2D case, the artificial intelligence
agent found a better field development plan than the reference
agents in approximately 92% of 150 random field development
scenarios. The trained agent for the 3D case outperformed the
reference well-pattern agents in approximately 88% of a set of
random field development scenarios. The results demonstrated
the ability of the trained agents to avoid developing unfavorable
field development scenarios and strategically place wells in
regions of high productivity.

In future work, the performance of other deep reinforcement
learning algorithms, such as soft actor critic (SAC) [45],
importance weighted actor-learner architectures (IMPALA)
[46] (and PPO variant of IMPALA), that have demonstrated
great sample and computational efficiency in other domains
should be evaluated for the field development optimization
problem. Although the use of distributed computing led to
reduction of the computational cost of the training from
millions of simulations to an order of thousands of
equivalent simulations, the use of surrogate models should be
investigated to further reduce the computational cost. The
proposed procedure should also be extended to the joint

FIGURE 11 | Comparison of the best artificial intelligence (AI) agent
trained using the dual-action probability representation with the maximum
NPV from the reference well-pattern agents for the 3D case.

FIGURE 12 | Well configuration proposed by the best artificial intelligence agent for three random 3D field development scenarios.
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optimization of well locations and operational settings. This
would require an additional variable in the action to represent
the operation settings of each well. Finally, the deep
reinforcement learning framework should be extended to
other field development cases such as waterflooding and
optimization under uncertainty where multiple realizations of
the geological model are used to represent geological
uncertainty.
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