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Low-rank tensors are an established framework for the parametrization of multivariate
polynomials. We propose to extend this framework by including the concept of block-
sparsity to efficiently parametrize homogeneous, multivariate polynomials with low-rank
tensors. This provides a representation of general multivariate polynomials as a sum of
homogeneous, multivariate polynomials, represented by block-sparse, low-rank tensors.
We show that this sum can be concisely represented by a single block-sparse, low-rank
tensor.

We further prove cases, where low-rank tensors are particularly well suited by showing that
for banded symmetric tensors of homogeneous polynomials the block sizes in the block-
sparse multivariate polynomial space can be bounded independent of the number of
variables.

We showcase this format by applying it to high-dimensional least squares regression
problems where it demonstrates improved computational resource utilization and sample
efficiency.

Keywords: sample efficiency, homogeneous polynomials, sparse tensor networks, alternating least square,
empirical L2 approximation

1 INTRODUCTION

An important problem inmany applications is the identification of a function frommeasurements or
random samples. For this problem to be well-posed, some prior information about the function has
to be assumed and a common requirement is that the function can be approximated in a finite
dimensional ansatz space. For the purpose of extracting governing equations the most famous
approach in recent years has been SINDy [1]. However, the applicability of SINDy to high-
dimensional problems is limited since truly high-dimensional problems require a nonlinear
parameterization of the ansatz space. One particular reparametrization that has proven itself in
many applications are tensor networks. These allow for a straight-forward extension of SINDy [2]
but can also encode additional structure as presented in [3]. The compressive capabilities of tensor
networks originate from this ability to exploit additional structure like smoothness, locality or self-
similarity and have hence been used in solving high-dimensional equations [4–7]. In the context of
optimal control tensor train networks have been utilized for solving the Hamilton–Jacobi–Bellman
equation in [8,9], for solving backward stochastic differential equations in [10] and for the
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calculation of stock options prices in [11,12]. In the context of
uncertainty quantification they are used in [13–15] and in the
context of image classification they are used in [16,17].

A common thread in these publications is the parametrization of
a high-dimensional ansatz space by a tensor train network which is
then optimized. In most cases this means that the least-squares error
of the parametrized function to the data is minimized. There exist
many methods to perform this minimization. A well-known
algorithm in the mathematics community is the alternating least-
squares (ALS) [18,19], which is related to the famousDMRGmethod
[20] for solving the Schrödinger equation in quantum physics.
Although, not directly suitable for recovery tasks, it became
apparent that DMRG and ALS can be adapted to work in this
context. Two of these extensions to the ALS algorithm are the
stablilized ALS approximation (SALSA) [21] and the block
alternating steepest descent for Recovery (bASD) algorithm [13].
Both adapt the tensor network ranks and are better suited to the
problem of data identification. Since the set of tensor trains of fixed
rank forms a manifold [22] it is also possible to perform gradient
based optimization schemes [48]. This however is not a path that we
pursue in this work. Our contribution extends the ALS (and SALSA)
algorithm and we believe that it can be applied to many of the fields
stated above.

In this work we consider ansatz spaces of homogeneous
polynomials of fixed degree and their extension to polynomials of
bounded degree. We introduce the concept of block-sparsity as an
efficient way to parametrize homogeneous polynomials with low
rank tensors. Although, this is not the first instance in which sparsity
is used in the context of low-rank tensors (see [24–26]), we believe,
that this is the first time where block-sparsity is used to parametrize
homogeneous polynomials. The sparsity used in the previous works
is substantially different to the block-sparsity discussed in this work.
Block-sparsity is preserved under most tensor network operations
such as summation, orthogonalization and rounding and the
parametrization of tangent spaces which is not the case for
standard sparsity. This is important since orthogonalization is an
essential part of numerically stable and efficient optimization
schemes and means that most of the existing tensor methods,
like HSVD (see [27]), ALS, SALSA or Riemannian optimization
can be performed in this format.We also show that, if the symmetric
tensor of a homogeneous polynomial is banded, it can be represented
very efficiently in the tensor train format, since the sizes of the non-
zero blocks can be bounded independently of the number of
variables. In physics this property can be associated with the
property of locality, which can be used to identify cases where
tensor trains work exceptionally well.

Quantum physicists have used the concept of block-sparsity for at
least a decade [28] but it was introduced to the mathematics
community only recently in [29]. In the language of quantum
mechanics one would say that there exists an operator for which
the coefficient tensor of any homogeneous polynomial is an
eigenvector. This encodes a symmetry, where the eigenvalue of this
eigenvector is the degree of the homogeneous polynomial, which acts
as a quantum number and corresponds to the particle number of
bosons and fermions.

The presented approach is very versatile and can be combined
with many polynomial approximation strategies like the use of

Taylor’s theorem in [30] and there exist many approximation
theoretic results that ensure a good approximation with a low
degree polynomial for many classes of functions (see e.g. [31]).

In addition to the approximation theoretic results, we can
motivate these polynomial spaces by thinking about the sample
complexity for successful recovery in the case of regression
problems. In [32] it was shown that for tensor networks the
sample complexity, meaning the number of data points needed, is
related to the dimension of the high-dimensional ansatz space.
But, these huge sample sizes are not needed in most practical
examples [14]. This suggests that the regularity of the sought
function must have a strong influence on the number of samples
that are required. However, for most practical applications,
suitable regularity guarantees cannot be made — neither for
the best approximation nor for the initial guess, nor any
iterate of the optimization process. By restricting ourselves to
spaces of homogeneous polynomials, the gap between observed
sample complexity and proven worst-case bound is reduced.

In the regression setting, this means that we kill two birds with
one stone. By applying block-sparsity to the coefficient tensor we
can restrict the ansatz space to well-behaved functions which can
be identified with a reasonable sample size. At the same time we
reduce the number of parameters and speed up the least-squares
minimization task. Finally, note that this parametrization allows
practitioners to devise algorithms that are adaptive in the degree
of the polynomial, thereby increasing the computational resource
utilization even further. This solves a real problem in practical
applications where the additional and unnecessary degrees of
freedom of conventional low-rank tensor formats cause many
optimization algorithms to get stuck in local minima.

The remainder of this work is structured as follows. Notation
introduces basic tensor notation, the different parametrizations of
polynomials that are used in this work and then formulates the
associated least-squares problems. In Theoretical Foundation we
state the known results on sampling complexity and block
sparsity. Furthermore, we set the two results in relation and
argue why this leads to more favorable ansatz spaces. This
includes a proof of rank-bounds for a class of homogeneous
polynomials which can be represented particularly efficient as
tensor trains. Method Description derives two parametrizations
from the results of Theoretical Foundation and presents the
algorithms that are used to solve the associated least-squares
problems. Finally,Numerical Results gives some numerical results
for different classes of problems focusing on the comparison of
the sample complexity for the full- and sub-spaces. Most notably,
the recovery of a quantity of interest for a parametric PDE, where
our approach achieves successful recovery with relatively few
parameters and samples. We observed that for suitable problems
the number of parameters can be reduced by a factor of almost 10.

2 NOTATION

In our opinion, using a graphical notation for the involved
contractions in a tensor network drastically simplifies the
expressions making the whole setup more approachable. This
section introduces this graphical notation for tensor networks, the
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spaces that will be used in the remainder of this work and the
regression framework.

2.1 Tensors and Indices
Definition 2.1. Let d ∈ N. Then n � (n1, . . . , nd) ∈ Nd is called a
dimension tuple of order d and x ∈ Rn1×/×nd �: Rn is called a
tensor of order d and dimension n. LetNn � {1, . . . , n} then a tuple
(l1, . . . , ld) ∈ Nn1 ×/ × Nnd � : Nn is called amulti-index and the
corresponding entry of x is denoted by x (l1, . . ., ld). The positions
1, . . ., d of the indices l1, . . ., ld in the expression x (l1, . . ., ld) are
called modes of x.

To define further operations on tensors it is often useful to
associate each mode with a symbolic index.

Definition 2.2.A symbolic index i of dimension n is a placeholder
for an arbitrary but fixed natural number between 1 and n. For a
dimension tuple n of order d and a tensor x ∈ Rn we may write x (i1,
. . ., id) and tacitly assume that ik are indices of dimension nk for each
k � 1, . . ., d. When standing for itself this notation means
x(i1, . . . , id) � x ∈ Rn and may be used to slice the tensor

x i1, l2, . . . , ld( ) ∈ Rn1

where lk ∈ Nnk are fixed indices for all k � 2, . . ., d. For any
dimension tuple n of order d we define the symbolic multi-index
in � (i1, . . ., id) of dimension n where ik is a symbolic index of
dimension nk for all k � 1, . . ., d.

Remark 2.3. We use the letters i and j (with appropriate
subscripts) for symbolic indices while reserving the letters k, l and
m for ordinary indices.

Example 2.4. Let x be an order 2 tensor with mode
dimensions n1 and n2, i.e. an n1-by-n2 matrix. Then x (ℓ1, j)
denotes the ℓ1-th row of x and x (i, ℓ2) denotes the ℓ2-th
column of x.

Inspired by Einstein notation we use the concept of symbolic
indices to define different operations on tensors.

Definition 2.5. Let i1 and i2 be (symbolic) indices of
dimension n1 and n2, respectively and let φ be a bijection

φ: Nn1 × Nn2 →Nn1n2.

We then define the product of indices with respect to φ as
j � φ(i1, i2) where j is a (symbolic) index of dimension n1n2. In
most cases the choice of bijection is not important and we will
write i1 · i2dφ(i1, i2) for an arbitrary but fixed bijection φ. For a
tensor x of dimension (n1, n2) the expression

y i1 · i2( ) � x i1, i2( )
defines the tensor y of dimension (n1n2) while the expression

x i1, i2( ) � y i1 · i2( )
defines x ∈ Rn1×n2 from y ∈ Rn1n2 .

Definition 2.6. Consider the tensors x ∈ Rn1×a×n2 and
y ∈ Rn3×b×n4 . Then the expression

z in1 , in2 , j1, j2, i
n3 , in4( ) � x in1 , j1, i

n2( ) · y in3 , j2, i
n4( ) (1)

defines the tensor z ∈ Rn1×n2×a×b×n3×n4 in the obvious way.
Similary, for a � b the expression

z in1 , in2 , j, in3 , in4( ) � x in1 , j, in2( ) · y in3 , j, in4( ) (2)

defines the tensor z ∈ Rn1×n2×a×n3×n4 . Finally, also for a � b the
expression

z in1 , in2 , in3 , in4( ) � x in1 , j, in2( ) · y in3 , j, in4( ) (3)

defines the tensor z ∈ Rn1×n2×n3×n4 as

z in1 , in2 , in3 , in4( ) �∑a
k�1

x in1 , k, in2( ) · y in3 , k, in4( ).

We choose this description mainly because of its simplicity
and how it relates to the implementation of these operations in
the numeric libraries numpy [33] and xerus [34].

2.2 Graphical Notation and Tensor
Networks
This section will introduce the concept of tensor networks [35] and a
graphical notation for certain operationswhichwill simplify working
with these structures. To this end we reformulate the operations
introduced in the last section in terms of nodes, edges and half-edges.

Definition 2.7. For a dimension tuple n of order d and a tensor
x ∈ Rn the graphical representation of x is given by.

where the node represents the tensor and the half-edges represent
the d different modes of the tensor illustrated by the symbolic
indices i1, . . ., id.

With this definition we can write the reshapings of Defintion
2.5 simply as

and also simplify the binary operations of Definition 2.6.
Definition 2.8. Let x ∈ Rn1×a×n2 and y ∈ Rn3×b×n4 be two

tensors. Then Operation Eq. 1 is represented by

and defines z ∈ R/×a×b×/. For a � b Operation Eq. 2 is
represented by
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and defines z ∈ R/×a×/ and Operation Eq. 3 defines
z ∈ R/×/ by.

With these definitions we can compose entire networks of
multiple tensors which are called tensor networks.

2.3 The Tensor Train Format
A prominent example of a tensor network is the tensor train
(TT) [19,36], which is the main tensor network used
throughout this work. This network is discussed in the
following subsection.

Definition 2.9. Let n be an dimensional tuple of order-d.
The TT format decomposes an order d tensor x ∈ Rn into d
component tensors xk ∈ Rrk−1×nk×rk for k � 1, . . ., d with r0 � rd � 1.
This can be written in tensor network formula notation as

x i1,/, id( ) � x1 i1, j1( ) · x2 j1, i2, j2( )/xd jd−1, id( ).
The tuple (r1, . . ., rd−1) is called the representation rank of this

representation.
In graphical notation it looks like this.

Remark 2.10. Note that this representation is not unique. For
any pair of matrices (A, B) that satisfies AB � Id we can replace xk
by xk (i1, i2, j) · A (j, i3) and xk+1 by B (i1, j) · x (j, i2, i3) without
changing the tensor x.

The representation rank of x is therefore dependent on the
specific representation of x as a TT, hence the name.
Analogous to the concept of matrix rank we can define a
minimal necessary rank that is required to represent a tensor
x in the TT format.

Definition 2.11. The tensor train rank of a tensor x ∈ Rn with
tensor train components x1 ∈ Rn1×r1 , xk ∈ Rrk−1×nk×rk for k � 2, . . .,
d − 1 and xd ∈ Rrd−1×nd is the set

TT − rank(x) � r1, . . . , rd( )
of minimal rk’s such that the xk compose x.

In [[22], Theorem 1a] it is shown that the TT-rank can be
computed by simple matrix operations. Namely, rk can be
computed by joining the first k indices and the remaining d − k
indices and computing the rank of the resulting matrix. At last,
we need to introduce the concept of left and right orthogonality
for the tensor train format.

Definition 2.12. Let x ∈ Rm×n be a tensor of order d + 1. We
call x left orthogonal if

x im, j1( ) · x im, j2( ) � Id j1, j2( ).

Similarly, we call a tensor x ∈ Rm×n of order d + 1 right
orthogonal if

x i1, j
n( ) · x i2, j

n( ) � Id i1, i2( ).
A tensor train is left orthogonal if all component tensors x1, . . .,

xd−1 are left orthogonal. It is right orthogonal if all component
tensors x2, . . ., xd are right orthogonal.

Lemma 2.1 [36]. For every tensor x ∈ Rn of order d we can find
left and right orthogonal decompositions.

For technical purposes it is also useful to define the so-called
interface tensors, which are based on left and right orthogonal
decompositions.

Definition 2.13. Let x be a tensor train of order d with rank
tuple r.

For every k � 1, . . ., d and ℓ � 1, . . ., rk, the ℓ-th left interface
vector is given by

τ≤k,ℓ(x) i1, i2, . . . , ik( ) � x1 i1, j1( ) . . . xk jk−1, ik, ℓ( )
where x is assumed to be left orthogonal. The ℓ-th right interface
vector is given by

τ≥k+1,ℓ(x) ik+1, . . . , id( ) � xk+1 ℓ, ik+1, jk+1( ) . . . xd jd−1, id( )
where x is assumed to be right orthogonal.

2.4 Sets of Polynomials
In this section we specify the setup for our method and define the
majority of the different sets of polynomials that are used. We
start by defining dictionaries of one dimensional functions which
we then use to construct the different sets of high-dimensional
functions.

Definition 2.14. Let p ∈ N be given. A function dictionary of
size p is a vector valued function Ψ � (Ψ1, . . . ,Ψp): R→Rp.

Example 2.15. Two simple examples of a function dictionary
that we use in this work are given by the monomial basis of
dimension p, i.e.

Ψmonomial(x) � 1 x x2 . . . xp−1( )T (4)

and by the basis of the first p Legendre polynomials, i.e.

ΨLegendre(x) � 1 x
1
2

3x2 − 1( ) 1
2

5x3 − 3x( ) . . .( )T . (5)

Using function dictionaries we can define the following
high-dimensional space of multivariate functions. Let Ψ be
a function dictionary of size p ∈ N. The d-th order product
space that corresponds to the function dictionary Ψ is the
linear span

Vd
p d〈 ⊗d

k�1Ψmk
: m ∈ Nd

p〉. (6)

This means that every function u ∈ Vd
p can be written as

u x1, . . . , xd( ) � c i1, . . . , id( )∏d
k�1

Ψ xk( ) ik( ) (7)

with a coefficient tensor c ∈ Rp where p � (p, . . ., p) is a dimension
tuple of order d. Note that equation Eq. 7 uses the index notation
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from Definition 2.6 with arbitrary but fixed xk’s. Since R
p is an

intractably large space, it makes sense for numerical purposes to
consider the subset

Tr Vd
p( )d u ∈ Vd

p : TT − rank(c)≤ r{ } (8)

where the TT rank of the coefficient is bounded. Every u ∈ Tr(Vd
p)

can thus be represented graphically as

where the Ck’s are the components of the tensor
train representation of the coefficient tensor c ∈ Rp of
u ∈ Vd

p .
Remark 2.16. In this way every tensor c ∈ Rp (in the

tensor train format) corresponds one to one to a function
u ∈ Vd

p .
An important subspace of Vd

p is the space of homogeneous
polynomials. For the purpose of this paper we define the
subspace of homogeneous polynomials of degree g as the
space

Wd
gd〈⊗d

k�1Ψmk : m ∈ Nd
p and ∑d

k�1
mk � d + g〉, (10)

where again 〈•〉 is the linear span. From this definition it is easy
to see that a homogeneous polynomial of degree g can be
represented as an element of Vd

p where the coefficient tensor c
satisfies

c m1, . . . ,md( ) � 0, if ∑d
k�1

mk ≠ d + g.

In Theoretical Foundation we will introduce an efficient
representation of such coefficient tensors c in a block sparse
tensor format.

Using Wd
g we can also define the space of polynomials of

degree at most g by

Sdg � ⊕g
̃g�0W

d
̃g . (11)

Based on this characterization we will define a block-sparse
tensor train version of this space in Theoretical Foundation.

2.5 Parametrizing Homogeneous
Polynomials by Symmetric Tensors
In algebraic geometry the spaceWd

g is considered classically only
for the dictionary Ψmonomial of monomials and is typically
parameterized by a symmetric tensor

u(x) � B i1, · · ·, ig( ) · x i1( ) · · · x ig( ), x ∈ Rd (12)

where d � (d, . . ., d) is a dimension tuple of order g and B ∈ Rd

satisfies B (m1, . . .,mg) � B (σ(m1, . . .,mg)) for every permutation
σ in the symmetric group Sg. We conclude this section by showing
how the representation Eq. 7 can be calculated from the

symmetric tensor representation Eq. 12, and vice versa. By
equating coefficients we find that for every (m1, . . . ,md) ∈ Nd

p
either m1 + / + md ≠ d + g and c (m1, . . ., md) � 0 or

c m1, . . . ,md( ) � ∑
σ(n) : σ∈Sg{ }

B σ n1, . . . , ng( )( ) where n1, . . . , ng( )
� ( 1, . . . , 1︸


︷︷


︸

m1−1 times

, 2, . . . , 2︸


︷︷


︸
m2−1 times

, . . . , ) ∈ N
g
d.

Since B is symmetric the sum simplifies to

∑
σ(n) : σ∈Sg{ }

B σ n1, . . . , ng( )( ) � g
m1 − 1, . . . ,md − 1( )B n1, . . . , ng( ).

From this follows that for (n1, . . . , ng) ∈ N
g
d

B n1, . . . , ng( ) � 1
g

m1 − 1, . . . ,md − 1( ) c m1, . . . ,md( ) where

mk � 1 +∑g
ℓ�1

δk,nℓ for all k � 1, . . . , d

and δk,ℓ denotes the Kronecker delta. This demonstrates how our
approach can alleviate the difficulties that arise when symmetric
tensors are represented in the hierarchical tucker format [37] in a
very simple fashion.

2.6 Least Squares
Let in the following Vd

p be the product space of a function
dictionary Ψ such that Vd

p 4 L2(Ω). Consider a high-
dimensional function f ∈ L2(Ω) on some domain Ω ⊂ Rd and
assume that the point-wise evaluation f(x) is well-defined for
x ∈ Ω. In practice it is often possible to choose Ω as a product
domain Ω � Ω1 × Ω2 ×/ Ωd by extending f accordingly. To find
the best approximation uW of f in the spaceW4Vd

p we then need
to solve the problem

uW � argminu∈W‖f − u‖2L2(Ω). (13)

A practical problem that often arises when computing uW is
that computing the L2(Ω)-norm is intractable for large d. Instead of
using classical quadrature rules one often resorts to a Monte Carlo
estimation of the high-dimensional integral. This means one draws
M random samples {x(m)}m�1,...,M from Ω and estimates

‖f − u‖2L2(Ω) ≈
1
M

∑M
m�1

‖f x(m)( ) − u x(m)( )‖2F,
where ‖·‖F is the Frobenius norm. With this approximation we
can define an empirical version of uW as

uW,M � argmin
u∈W

1
M

∑M
m�1

‖f x(m)( ) − u x(m)( )‖2F. (14)

For a linear space W, computing uW,M amounts to solving a
linear system and does not pose an algorithmic problem. We
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use the remainder of this section to comment on the
minimization problem Eq. 14 when a set of tensor trains is
used instead.

Given samples (x(m))m�1,...,M we can evaluate u ∈ Vd
p for each

x(m) � (x(m)1 , . . . , x(m)d ) using Eq. 7 If the coefficient tensor c of u
can be represented in the TT format then we can use Eq. 9 to
perform this evaluation efficiently for all samples (x(m))m�1,...,M at
once. For this we introduce for each k � 1, . . ., d the matrix

Ξk � Ψ x(1)k( ) . . . Ψ x(M)
k( )( ) ∈ Rp×M . (15)

Then theM-dimensional vector of evaluations of u at all given
sample points is given by.

where we use Operation Eq. 2 to join the differentM-dimensional
indices.

The alternating least-squares algorithm cyclically updates each
component tensor Ck by minimizing the residual corresponding
to this contraction. To formalize this we define the operator
Φk ∈ RM×rk−1×nk×rk as

.

(16)

Then the update for Ck is given by a minimal residual solution
of the linear system

Ck � argmin
C∈Rrk−1×nk×rk

‖Φk j, i1, i2, i3( ) · C i1, i2, i3( ) − F(j)‖2F

where F(m)dy(m)df (x(m)) and i1, i2, i3, j are symbolic indices of
dimensions rk−1, nk, rk, M, respectively. The particular algorithm
that is used for this minimization may be adapted to the problem at
hand. These contractions are the basis for our algorithms inMethod
Description. We refer to [19] for more details on the ALS algorithm.

Note that it is possible to reuse parts of the contractions in Φk

through so called stacks. In this way not the entire contraction has
to be computed for every k. The dashed boxes mark the parts of

the contraction that can be reused. Details on that can be found
in [38].

3 THEORETICAL FOUNDATION

3.1 Sample Complexity for Polynomials
The accuracy of the solution uW,M of Eq. 14 in relation to uW is
subject to tremendous interest on the part of the mathematics
community. Two particular papers that consider this problem are
[32,39]. While the former provides sharper error bounds for the
case of linear ansatz spaces the latter generalizes the work and is
applicable to tensor network spaces. We now recall the relevant
result for convenience.

Proposition 3.1. For any set W 4 L2(Ω) ∩ L∞(Ω), define the
variation constant

K(W)d sup
v∈W\ 0{ }

‖v‖2L∞(Ω)
‖v‖2L2(Ω)

.

Let δ ∈ (0, 2−1/2). If W is a subset of a finite dimensional linear
space and kdmax{K ({f − uW}), K ({uW}−W)} <∞ it holds that

P ‖f − uW,M‖L2(Ω) ≤ (3 + 4δ)‖f − uW‖L2(Ω)[ ]≥ 1 − q

where q decreases exponentially with a rate
of ln (q) ∈ O( −Mδ2k−2).

Proof. Since k <∞, Theorems 2.7 and 2.12 in [32] ensure that

‖f − uW,M‖L2(Ω) ≤ 1 + 2

����
1 + δ

1 − δ

√⎛⎝ ⎞⎠‖f − uW‖L2(Ω).

holds with a probability of at least 1 − 2C exp ( − 1
2Mδ2k−2). The

constant C is independent ofM and, sinceW is a subset of a finite
dimensional linear space, depends only polynomially on δ and

k−1. For δ ∈ (0, 2−1/2) it holds that
���
1+δ
1−δ

√
≤ 1 + 2δ. This concludes

the proof.
Note that the value of k depends only on f and on the setW

but not on the particular choice of representation of W.
However, the variation constant of spaces like Vd

p still
depends on the underlying dictionary Ψ. Although the
proposition indicates that a low value of k is necessary to
achieve a fast convergence, the tensor product spaces Vd

p
considered thus far does not exhibit a small variation
constant. The consequence of Proposition 3.1 is that
elements of this space are hard to learn in general and
may require an infeasible number of samples. To see this
consider Ω � [−1,1]d and the function dictionary ΨLegendre of
Legendre polynomials Eq. 5. Let L4Nd

p and define
Pℓ(x)d∏d

k�1
������
2ℓk − 1

√
(ΨLegendre(xk))ℓk for all ℓ ∈ L. Then,

{Pℓ}ℓ∈L is an L2-orthonormal basis for the linear subspace
Vd〈Pℓ: ℓ ∈ L〉4Vd

p and one can show that

K(V) � sup
x∈Ω

∑
ℓ∈L

Pℓ(x)2 �∑
ℓ∈L

∏d
k�1

2ℓk − 1( ), (17)

by using techniques from [[32], Sample Complexity for Polynomials]
and the fact that each Pℓ attains its maximum at 1. If L � Nd

p , we can
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interchange the sum and product in Eq. 17 and can conclude that
K(Vd

p) � p2d . This means that we have to restrict the space Vd
p to

obtain an admissible variation constant.We propose to use the space
Wd

g of homogeneous polynomials of degree g. Employing Eq. 17
with L � {ℓ : |ℓ| � d + g} we obtain the upper bound

K Wd
g( )≤(d − 1 + g

d − 1
) max

|ℓ|�d+g
∏d
k�1

2ℓk − 1( )

≤(d − 1 + g
d − 1

) 2⌊g
d
⌋ + 3( )g mod d

2⌊g
d
⌋ + 1( )d−g mod d

where the maximum is estimated by observing that (2 (ℓ1 + 1) −
1) (2ℓ2 − 1) ≤ (2ℓ1 − 1) (2 (ℓ2 + 1) − 1) 5 ℓ2 ≤ ℓ1. For g ≤ d this
results in the simplified bound K(Wd

g )≤ (3e
d−1+g

g )g , where e is the
Euler number. This improves the variation constant substantially
compared to the bound K(Vd

p)≤ p
2d , when g ≪ d. A similar

bound for the dictionary of monomials Ψmonomial is more
involved but can theoretically be computed in the same way.

In this work, we focus on the case where the samples are drawn
according to a probability measure on Ω. This however is not a
necessity and it is indeed beneficial to draw the samples from an
adapted samplingmeasure. Doing so, the theory in [32] ensures that
K(V) � dim(V) for all linear spaces V — independent of the
underlying dictionary Ψ. This in turn leads to the bounds K(Vd

p) �
pd and K(Wd

g ) � (d−1+gd−1)≤(e d−1+g
g )g for g ≤ d. These optimally

weighted least-squares methods however, are not the focus of this
work and we refer the interested reader to the works [39,40].

3.2 Block Sparse Tensor Trains
Now that we have seen that it is advantageous to restrict ourselves
to the spaceWd

g we need to find a way to do so without loosing the
advantages of the tensor train format. In [29] it was rediscovered
from the physics community (see [28]) that if a tensor train is an
eigenvector of certain Laplace-like operators it admits a block
sparse structure. This means for a tensor train c the components
Ck have zero blocks. Furthermore, this block sparse structure is
preserved under key operations, like e.g. the TT-SVD. One
possible operator which introduces such a structure is the
Laplace-like operator

L �∑d
k�1

⊗
k−1
ℓ�1Ip( )⊗ diag(0, 1, . . . , p − 1)⊗ ⊗

d

ℓ�k+1Ip( ). (18)

This is the operator mentioned in the introduction encoding a
quantum symmetry. In the context of quantum mechanics this
operator is known as the bosonic particle number operator but we
simply call it the degree operator. The reason for this is that for the
function dictionary of monomials Ψmonomial the eigenspaces of L for
eigenvalue g are associated with homogeneous polynomials of degreee
g. Simply put, if the coefficient tensor c for the multivariate polynomial
u ∈ Vd

p is an eigenvector ofLwith eigenvalue g, thenu is homogeneous
and the degree of u is g. In general there are polynomials in Vd

p with
degree up to (p − 1)d. To state the results on the block-sparse
representation of the coefficient tensor we need the partial operators

L≤k � ∑k
m�1

⊗
m−1
ℓ�1Ip( )⊗ diag(0, 1, . . . , p − 1)⊗ ⊗

k

ℓ�m+1Ip( )
L≥k+1 � ∑d

m�k+1
⊗
m−1
ℓ�k+1

Ip( )⊗ diag(0, 1, . . . , p − 1)⊗ ⊗
d

ℓ�m+1Ip( ),
for which we have

L � L≤
k ⊗ ⊗

d

ℓ�k+1Ip + ⊗
k

l�1Ip ⊗ L
≥
k+1.

In the following we adopt the notation x � Lc to abbreviate the
equation

x i1, . . . , id( ) � L i1, . . . , id , j1, . . . , jd( )c j1, . . . , jd( )
where L is a tensor operator acting on a tensor c with result x.

Recall that by Remark 2.16 every TT corresponds to a
polynomial by multiplying function dictionaries onto the
cores. This means that for every ℓ � 1, . . ., r the TT τ≤k,ℓ(c)
corresponds to a polynomial in the variables x1, . . ., xk and the TT
τ≥k+1,ℓ(c) corresponds to a polynomial in the variables xk+1, . . ., xd.
In general these polynomials are not homogeneous, i.e. they are
not eigenvectors of the degree operators L≤k and L≥k+1. But since
TTs are not uniquely defined (cf. Remark 2.10) it is possible to
find transformations of the component tensors Ck and Ck+1 that
do not change the tensor c or the rank r but result in a
representation where each τ≤k,ℓ(c) and each τ≥k+1,ℓ(c) correspond
to a homogeneous polynomial. Thus, if c represents a
homogeneous polynomial of degree g and τ≤k,ℓ(c) is
homogeneous with deg(τ≤k,ℓ(c)) � ̃g then τ≥k+1,ℓ(c) must be
homogeneous with deg(τ≥k,ℓ(c)) � g − ̃g.

This is put rigorously in the first assertion in the subsequent
Theorem 3.2. There Sk, ̃g contains all the indices ℓ for which the
reduced basis polynomials satisfy deg(τ≤k,ℓ(c)) � ̃g. Equivalently, it
groups the basis functions τ≥k+1,ℓ(c) into functions of order g − ̃g.
The second assertion in Theorem 3.2 states that we can only
obtain a homogeneous polynomial of degree ̃g +m in the
variables x1, . . ., xk by multiplying a homogeneous polynomial
of degree ̃g in the variables x1, . . ., xk−1 with a univariate
polynomial of degree m in the variable xk. This provides a
constructive argument for the proof and can be used to ensure
block-sparsity in the implementation. Note that this condition
forces entire blocks in the component tensor Ck in equation (20)
to be zero and thus decreases the degrees of freedom.

Theorem 3.2 [[29], Theorem 3.2]. Let p � (p, . . ., p) be a
dimension tuple of size d and c ∈ Rp {0}, be a tensor train of rank
r � (r1, . . ., rd−1). Then Lc � gc if and only if c has a representation
with component tensors Ck ∈ Rrk−1×p×rk that satisfies the following
two properties.

1. For all ̃g ∈ {0, 1, . . . , g} there exist Sk, ̃g4{1, . . . , rk} such that
the left and right unfoldings satsify

L≤
kτ

≤
k,ℓ(c) � ̃gτ≤k,ℓ(c)

L≥
k+1τ

≥
k+1,ℓ(c) �(g − ̃g)τ≥k+1,ℓ(c) (19)

for ℓ ∈ Sk, ̃g .
2. The component tensors satisfy a block structure in the sets

Sk, ̃g for m � 1, . . ., p

Ck ℓ1,m, ℓ2( )≠ 0 0 ∃ 0≤ ̃g ≤ g −(m − 1):
ℓ1 ∈ Sk−1, ̃g∧ℓ2 ∈ Sk, ̃g+(m−1) (20)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org September 2021 | Volume 7 | Article 7024867

Götte et al. A Block-Sparse Tensor Train Format

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


where we set S0,0 � Sd,g � {1}.
Note that this generalizes to other dictionaries and is not

restricted to monomials.
Although, block sparsity also appears for g + 1 ≠ p we restrict

ourselves to the case g + 1 � p in this work. Note that then the
eigenspace of L for the eigenvalue g has a dimension equal to the
dimension of the space of homogeneous polynomials, namely(d − 1 + g
d − 1 ) . Defining ρk, ̃gd|Sk, ̃g |, we can derive the following

rank bounds.
Lemma 3.3 [[29], Lemma 3.6]. Let p � (p, . . ., p) be a

dimension tuple of size d and c ∈ Rp {0}, with Lc � gc. Assume
that g + 1 � p then the block sizes ρk, ̃g from Theorem 3.2 are
bounded by

ρk, ̃g ≤ min (k + g ̃ − 1
k − 1

),(d − k + g − g ̃ − 1
d − 1

){ } (21)

for all k � 1, . . ., d − 1 and ̃g � 0, . . . , g and ρk,0 � ρk,g � 1.
The proof of this lemma is based on a simple combinatorial

argument. For every k consider the size of the groups ρk−1, ̄g for
̄g ≤ ̃g. Then ρk, ̄g can not exceed the sum of these sizes. Similarly,
ρk, ̄g can not exceed ∑ ̄g≤ ̃gρk+1, ̄g . Solving these recurrence relations
yields the bound.

Example 3.1 (Block Sparsity). Let p � 4 and g � 3 be given
and let c be a tensor train such that Lc � gc. Then for k � 2, . . .,
d − 1 the component tensors Ck of c exhibit the following
block sparsity (up to permutation). For indices i of order rk−1
and j of order rk

Ck(i, 1, j) �
* 0 0 0
0 * 0 0
0 0 * 0
0 0 0 *

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ Ck(i, 2, j) �
0 * 0 0
0 0 * 0
0 0 0 *
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Ck(i, 3, j) �

0 0 * 0
0 0 0 *
0 0 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ Ck(i, 4, j) �
0 0 0 *
0 0 0 0
0 0 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

This block structure results from sorting the indices i and j in
such a way that maxSk,g ̃ + 1 � minSk,g ̃+1 for every ̃g.

The maximal block sizes ρk,g ̃ for k � 1, . . ., d − 1 are given by

ρk,0 � 1, ρk,1 � min k, d − k{ }, ρk,2 � min k, d − k{ },
ρk,3 � 1.

As one can see by Lemma 3.3 the block sizes ρk,g ̃ can still be
quite high.

The expressive power of tensor train parametrizations
can be understood by different concepts, such as locality or
self similarity. We use the remainder of this section to
provide d-independent rank bounds in the context of
locality.

Definition 3.2. Let u ∈ Wd
g be a homogeneous polynomial and

B be the symmetric coefficient tensor introduced in
Parametrizing homogeneous polynomials by symmetric tensors
We say that u has a variable locality of Kloc if B (ℓ1, . . ., ℓg) � 0 for
all (ℓ1, . . . , ℓg) ∈ N

g
d with

max |ℓm1 − ℓm2| : m1,m2 � 1, . . . , g{ }>Kloc.

Example 3.3. Let u be a homogeneous polynomial of
degree 2 with variable locality Kloc. Then the symmetric
matrix B (cf. Eq. 12) is Kloc-banded. For Kloc � 0 this means
that B is diagonal and that u takes the form

u(x) �∑d
ℓ�1

Bℓℓx
2
ℓ
.

This shows that variable locality removes mixed terms.
Remark 3.4. The locality condition in the following

Theorem 3.4 is a sufficient, but in no way necessary,
condition for a low rank. But since locality is a prominent
feature of many physical phenomena, this condition allows us
to identify an entire class of highly relevant functions which
can be approximated very efficiently.

Consider, for example, a many-body system in one dimension,
where each body is described by position and velocity coordinates. If
the influence of neighboring bodies is much higher than the
influence of more distant ones, the coefficients of the polynomial
parts that depend on multiple variables often can be neglected. The
forces in this system then exhibit a locality structure. An example of
this is given in equationEq. 6 in [3], where this structure is exhibited
by the force that acts on the bodies. A similar structure also appears
in the microscopic traffic models in Notation of [41].

Another example is given by the polynomial chaos expansion
of the stochastic process

Xt ξ1, . . . , ξt( )dc i1, . . . , it( )∏t
k�1

Ψ ξk( ) ik( )

for t ∈ N, whereΨ is the function dictionary of Hermite polynomials.
Inmany applications, it is justified to assume that themagnitude of the
covariance Cov(Xt1,Xt2) decays with the distance of the indices |t1− t2|
If the covariance decays fast enough, the coefficient tensor exhibits
approximate locality, i.e. it can be well approximated by a coefficient
tensor that satisfies the locality condition. Examples of this areGaussian
processes with a Matérn kernel [42,43] or Markov processes.

Theorem 3.4. Let p � (p, . . ., p) be a dimension tuple of size d
and c ∈ Rp {0} correspond to a homogeneous polynomial of degree
g + 1 � p (i.e. Lc � gc) with variable locality Kloc. Then the block
sizes ρk, ̃g are bounded by

ρk, ̃g ≤ ∑Kloc

ℓ�1
min

⎧⎨⎩ Kloc − ℓ + 1 + ̃g − 2
Kloc − ℓ

⎞⎠, ℓ + g − ̃g − 2
ℓ − 1

( )⎫⎬⎭⎛⎝ (22)

for all k � 1, . . ., d − 1 and ̃g � 1, . . . , g − 1 as well as ρk,0 � ρk,g � 1.
Proof. For fixed g > 0 and a fixed componentCk recall that for each

l the tensor τ≤k,l(c) corresponds to a reduced basis function vl in the
variables x1, . . ., xk and that for each l the tensor τ≥k+1,l(c) corresponds
to a reduced basis function wl in the variables xk+1, . . ., xd. Further
recall that the sets Sk, ̃g group these vl and wl. For all l ∈ Sk, ̃g it holds
that deg(vl) � ̃g and deg(wl) � g − ̃g. For ̃g � 0 and ̃g � g we know
from Lemma 3.3 that ρk, ̃g � 1. Now fix any 0< ̃g < g and arrange all
the polynomials vl of degree ̃g in a vector v and all polynomials wl of
degree g − ̃g in a vector w. Then every polynomial of the form vuQw
for some matrix Q satisfies the degree constraint and the maximal
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possible rank of Q provides an upper bound for the block size ρk, ̃g .
However, due to the locality constraint we know that certain entries of
Q have to be zero. We denote a variable of a polynomial as inactive if
the polynomial is constant with respect to changes in this variable and
active otherwise. Assume that the polynomials in v are ordered
(ascendingly) according to the smallest index of their active
variables and that the polynomials in w are ordered (ascendingly)
according to the largest index of their active variables. With this
ordering Q takes the form

Q �

0
Q1

* Q2

* * Q3

« « « 1
* * * / QKloc

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

This means that for ℓ � 1, . . ., Kloc each block Qℓ matches a
polynomial vl of degree ̃g in the variables xk−Kloc+ℓ, . . . , xk with a
polynomial wl of degree g − ̃g in the variables xk+1, . . ., xk+ℓ.

Observe that the number of rows in Qℓ decreases while the
number columns increases with ℓ. This means that we can
subdivide Q as

Q �
0 0 0
QC 0 0
* QR 0

⎛⎜⎝ ⎞⎟⎠,

where QC contains the blocks Qℓ with more rows than columns (i.e.
full column rank) and QR contains the blocks Qℓ with more columns
than rows (i.e. full row rank). So QC is a tall-and-skinny matrix while
QR is a short-and-wide matrix and the rank for general Q is bounded
by the sumover the column sizes of theQℓ inQC plus the sumover the
row sizes of the Qℓ in QR i.e.

rank(Q) � ∑Kloc

ℓ�1
rank Qℓ( ).

To conclude the proof it remains to compute the row and
column sizes of Qℓ. Recall that the number of rows of Qℓ equals
the number of polynomials u of degree ̃g in the variables
xk−Kloc+ℓ, . . . , xk that can be represented as
u(xk−Kloc+ℓ, . . . , xk) � xk−Kloc+ℓũ(xk−Kloc+ℓ, . . . , xk). This corresponds
to all possible ũ of degree ̃g − 1 in the Kloc − ℓ + 1 variables
xk−Kloc+ℓ, . . . , xk. This means that

#rows Qℓ( )≤ Kloc − ℓ + 1 + ̃g − 2
Kloc − ℓ

⎞⎠⎛⎝
and a similar argument yields

#columns Qℓ( )≤ ℓ + g − ̃g − 2
ℓ − 1

( ).
This concludes the proof.
This lemma demonstrates how the combination of the model

space Wd
g with a tensor network space can reduce the space

complexity by incorporating locality.
Remark 3.5. The rank bound in Theorem 3.4 is only sharp for

the highest possible rank. The precise bounds can be much

smaller, especially for the first and last ranks, but are quite
technical to write down. For this reason, we do not provide them.

One sees that the bound only depends on g and Kloc and is
therefore d-independent.

Remark 3.6. The rank bounds presented in this section do not
only hold for the monomial dictionary Ψmonomial but for all
polynomial dictionaries Ψ that satisfy deg(Ψk) � k − 1 for all
k � 1, . . ., p. When we speak of polynomials of degree g, we mean
the space Wd

g � {v ∈ Vd
p : deg(v) � g}. For the dictionary of

monomials Ψmonomial the space Wd
g contains only homogeneous

polynomials in the classical sense. However, when the basis of
Legendre polynomialsΨLegendre is used one obtains a space in which
the functions are not homogeneous in the classical sense. Note that
we use polynomials since they have been applied successfully in
practice, but other function dictionaries can be used as well. Also
note that the theory is much more general as shown in [29] and is
not restricted to the degree counting operator.

With Theorem 3.4 one sees that tensor trains are well suited to
parametrize homogeneous polynomials of fixed degree where the
symmetric coefficient tensor B (cf. Eq. 12) is approximately banded
(see also Example 3.3). This means, that there exist an Kloc such that
the error for a best approximation of B by a tensor B

̃
with variable

locality Kloc is small. However, Kloc is not known precisely in practice
but can only be assumed by physical understanding of the problem at
hand. Therefore, we still rely on rank adaptive schemes to find
appropriate rank and block sizes. Moreover, the locality property
heavily depends on the ordering of the modes. This ordering can be
optimized, for example, by using entropymeasures for the correlation
of different modes, as it is done in quantum chemistry (cf. [[44],
Remark 4.2]) or by model selection methods (cf. [25,27,45,46]).

4 METHOD DESCRIPTION

In this section we utilize the insights of Theoretical Foundation to
refine the approximation spaces Wd

g and Sdg and adapt the
alternating least-squares (ALS) method to solve the related
least-squares problems. First, we define the subset

Bρ Wd
g( )d{u ∈ Wd

g : c is block−sparse with ρk, ̃g ≤ ρ for

0≤ ̃g ≤ g, k � 1, . . . , d} (23)

and provide an algorithm for the related least-squares problem in
Algorithm 1 which is a slightly modified version of the classical
ALS [19].1 With this definition a straight-forward application of
the concept of block-sparsity to the space Sdg is given by

Sdg,ρ � ⊗
g

̃g�0
Bρ Wd

̃g( ). (24)

This means that every polynomial in Sdg,ρ can be represented by
a sum of orthogonal coefficient tensors2

1It is possible to include rank adaptivity as in SALSA [21] or bASD [13] and we
have noted this in the relevant places.
2The orthogonality comes from the symmetry of L which results in orthogonal
eigenspaces.
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∑g
̃g�0
c( ̃g) where Lc( ̃g) � ̃gc( ̃g). (25)

There is however another, more compact, way to represent this
function. Instead of storing g + 1 different tensor trains c(0), . . ., c(g) of
order d, we can merge them into a single tensor c of order d + 1 such
that c(id , ̃g

̃
) � c( ̃g)(id). The summation over ̃g can thenbe represented

by a contraction of a vector of 1’s to the (d + 1)-th mode. To retain the
block-sparse representationwe can view the (d+1)-th component as an
artificial component representing a shadow variable xd+1.

Remark 4.1. The introduction of the shadow variable xd+1
contradicts the locality assumptions of Theorem 3.4 and implies
that the worst case rank bounds must increase. This can be
problematic since the block size contributes quadratically to the
number of parameters. However, a proof similar to that of
Theorem 3.4 can be made in this setting and one can show
that the bounds remain independent of d

ρk, ̃g ≤ 1+ ∑Kloc

ℓ�1
min Kloc − ℓ + 1 + ̃g − 2

Kloc − ℓ
( ), ℓ +1 + g − ̃g − 2

ℓ +1 − 1
⎛⎝ ⎞⎠⎧⎨⎩ ⎫⎬⎭

(26)

where the changes to Eq. 22 are underlined. This is crucial, since
in practice one can assume locality by physical understanding of
the problem at hand. With this statement, we can guarantee that
the ranks are only slightly changed by the auxiliary contraction
and the locality property is not destroyed.

We denote the set of polynomials that results from this
augmented block-sparse tensor train representation as

Sd,augg,ρ (27)

where again ρ provides a bound for the block-size in the representation.
Since Sd,augg,ρ is defined analogously to Bρ(Wd

g ) we can use
Algorithm 1 to solve the related least-squares problem by
changing the contraction Eq. 16 to

. (28)

To optimize the coefficient tensors c(0), . . ., c(g) in the space Sdg,ρ
we resort to an alternating scheme. Since the coefficient tensors

are mutually orthogonal we propose to optimize each c( ̃g)

individually while keeping the other summands {c(k)}k≠ ̃g fixed.
This means that we solve the problem

u( ̃g) � argmin
u∈Wd

̃g

1
M

∑M
m�1

‖f x(m)( ) − ∑g
k�0
k≠ ̃g

u(k) x(m)( ) − u x(m)( )‖2F (29)

which can be solved usingAlgorithm1. The original problemEq. 14 is
then solved by alternating over g

̃
until a suitable convergence criterion

is met. The complete algorithm is summarized in Algorithm 2.
The proposed representation has several advantages. The

optimization with the tensor train structure is computationally less
demanding than solving directly in Sdg . Let D � dim(Sdg ) � ( d

d+g).
Then a reconstruction on Sdg requires to solve a linear system of size
M × D while a microstep in an ALS sweep only requires the solution
of systems of size less thanMpr2 (depending on the block sizes ρk, ̃g).
Moreover, the stack contractions as shown in Least Squares also
benefit from the block sparse structure. This also means that the
number of parameters of a full rank r tensor train can bemuch higher
than the number of parameters of several c(m)’s which individually
have ranks that are even larger than r.

Remark 4.2. Let us comment on the practical pondering behind
choosing Sd,augg,ρ or Sdg,ρ by stating some pros and cons of [1]these
parametrizations.We expect that solving the least-squares problem for
Sd,augg,ρ will be faster than for Sdg,ρ since it is computationalmore efficient
to optimize all polynomials simultaneously than every degree
individually in an alternating fashion. On the other hand, the
hierarchical scheme of the summation approach may allow one to
utilizemulti-levelMonte Carlo approaches. Together with the fact that
every degree g

̃
possesses a different optimal sampling density thismay

result in a drastically improved best case sample efficiency for the
direct method. Additionally, with Sdg,ρ it is easy to extend the ansatz
space simply by increasing gwhich is not so straight-forward for Sd,augg,ρ .
Which approach is superior depends on the problem at hand.

Algorithm 1 | Extended ALS (SALSA) for the least-squares problem on Bρ(W
d
g )

input: Data pairs (x(m) , y(m)) ∈ Rd × R form � 1, . . .,M, a function dictionaryΨ,
a maximal degree g, and a maximal block size ρ.

output: Coefficent tensor c of a function u ∈ B(Wd
g ) that approximates the data.

For k � 1, . . ., d compute Ξk according to Eq. 15;
Initialize the coefficient tensor c for u ∈ B(Wd

g );
Initialize SALSA parameters;
while not converged do

Right orthogonalize c;
for k � 1, . . ., d do

Compute Φk according to Eq. 16;
Compute the index set I of the non-zeros components in Ck according to
Eq. 20;
Update Ck by solving the SALSA-regularized version of Φk (j, i

3) · Ck(i
3) � y(j)

restricted to i3 ∈ I ;
Left orthogonalize Ck and adapt the kth rank while respecting block size
bounds ρ and Eq. 21;

end
Update SALSA parameters;

end
return c
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5 NUMERICAL RESULTS

In this section we illustrate the numerical viability of the proposed
framework on some simple but common problems. We estimate
the relative errors on test sets with respect to the sought function f
and are interested in the required number of samples leading to
recovery. Our implementation is meant only as a proof of concept
and does not lay any emphasis on efficiency. The rank is chosen a
priori, the stopping criteria are naïvely implemented and rank
adaptivity, as would be provided by SALSA, is missing all
together.3 For this reason we only compare the methods in
terms of degrees of freedom and accuracy and not in terms of
computing time. These are relevant quantities nonetheless, since
the degrees of freedom are often the limiting factor in high
dimensions and the computing time is directly related to the
number of degrees of freedom.

In the following we always assume p � g + 1. We also restrict
the group sizes to be bounded by the parameter ρmax. In our
experiments we choose ρmax without any particular strategy but
ideally, ρmax would be determined adaptively by the use of SALSA,
which we did not do in this work. For every sample size the error
plots show the distribution of the errors between the 0.15 and 0.85
quantile. The code for all experiments has been made publicly
available at https://github.com/ptrunschke/block_sparse_tt.

5.1 Riccati Equation
In this section we consider the closed-loop linear quadratic
optimal control problem

minimize
u

‖y‖2L2([0,∞] ×[−1,1]) + λ‖u‖2L2([0,∞])
subject to zty � z2xy + u(t)χ[−0.4,0.4],

(t, x) ∈ [0,∞] ×[−1, 1]
y(0, x) � y0(x), x ∈ [−1, 1]
zxy(t,−1) � zxy(t, 1) � 0

After a spatial discretization of the heat equation with finite
differences we obtain a d-dimensional system of the form

minimize
u

∫∞

0
y(t)uQy(t) + λu(t)2 dt subject to _y

� Ay + Bu and y(0) � y0.

It is well known [47] that the value function for this problem
takes the form v(y0) � yu0 Py0 where P can be computed by

solving the algebraic Riccati equation (ARE). It is therefore a
homogeneous polynomial of degree 2. This function is a perfect
example of a function that can be well-approximated in the space
Wd

2 . We approximate the value function on the domain Ω �
[−1,1]d for d � 8 with the parameters g � 2 and ρmax � 4.

In this experiment we use the dictionary of monomials Ψ �
Ψmonomial (cf. Eq. 4) and compare the ansatz spaces W8

2,
B4(W8

2), T6(V8
3) and V8

3. Since the function v(x) is a general
polynomial we use Lemma 3.3 to calculate the maximal block
size 4. This guarantees perfect reconstruction since
B4(W8

2) � W8
2. The rank bound 6 is chosen s.t.

B4(W8
2)4T6(V8

3). The degrees of freedom of all used spaces
are listed in Table 1. In Figure 1 we compare the relative
error of the respective ansatz spaces. It can be seen that the
block sparse ansatz space recovers almost as well as the sparse
approach. As expected, the dense TT format is less favorable
with respect to the sample size.

A clever change of basis, given by the diagonalization ofQ, can
reduce the required block size from 4 to 1. This allows to extend
the presented approach to higher dimensional problems. The
advantage over the classical Riccati approach becomes clear when
considering non-linear versions of the control problem that do
not exhibit a Riccati solution. This is done in [8,9] using the dense
TT-format Tr(Vd

p).

5.2 Gaussian Density
As a second example we consider the reconstruction of an
unnormalized Gaussian density

f (x) � exp −‖x‖22( ).

Algorithm 2 | Alternating extended ALS (SALSA) for the least-squares problem
on Sd

g,ρ

input: Data pairs (x(m) , y(m) ) ∈ Rd × R for m � 1, . . ., M, a function dictionary Ψ, a
maximal degree g, and a maximal block size ρ.

output: Coefficent tensors c(0), . . ., c(g) of a function u ∈ Sd
g,ρ that approximates the

data.
Initialize the coefficient tensors c( ̃g ) of u( ̃g ) ∈ Bρ(W

d
̃g ) for g̃ � 0, . . . , g;

while not converged do
for g̃ � 0, . . . , g do

Compute z(m)dy(m) −∑k≠ ̃gu
(k)(x(m) ) for m � 1, . . ., M;

Update c( ̃g ) by using Algorithm 1 on the data pairs (x
(m)
, z

(m)
) form � 1, . . .,M;

end
end
return c( ̃g ) for g̃ � 0, . . . , g

TABLE 1 | Degrees of freedom for the full spaceWd
g of homogeneous polynomials

of degree g �2, the TT variant Bρmax
(Wd

g ) with maximal block size ρmax �4, the
space Tr (V

d
p ) with TT rank bounded by r �6, and the full space Vd

p for
completeness.

W8
2 B4(W8

2) T6 (V8
3) V8

3

36 94 390 6561

FIGURE 1 | 0.15–0.85 quantiles for the recovery error in W8
2 (blue),

B4(W
8
2) (orange), and T6(V

8
3) (green). The relative error is computed with

respect to the L2-norm using a Monte Carlo estimation with 106 samples.
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again on the domain Ω � [−1,1]d with d � 6. For the dictionary
Ψ � ΨLegendre [cf. Eq. 5] we chose g � 7, ρmax � 1 and r � 8 and
compare the reconstruction w.r.t. Sdg , S

d
g,ρmax

and Tr(Vd
p), defined

in (11), (24) and (8). The degrees of freedom resulting from these
different discretizations are compared in Table 2. This example is
interesting because here the roles of the spaces are reversed. The
function has product structure

f (x) � exp −x21( ) . . . exp −x2d( )
and can therefore be well approximated as a rank 1 tensor train with
each component Ck just being a best approximation for exp (−x2k) in
the used function dictionary. Therefore, we expect the higher degree
polynomials to be important. A comparison of the relative errors to
the exact solution are depicted inFigure 2. This example demonstrates
the limitations of the ansatz space S67 which is not able to exploit the
low-rank structure of the function f. Using S67,1 can partially remedy
this problem as can be seen by the improved sample efficiency. But
since S67,14S67 the final approximation error of S67,1 can not deceed
that of S67. One can see that the dense formatT1(V6

8) produces the best
results but is quite unstable compared to the other ansatz classes. This
instability is a result of the non-convexity of the set Tr(Vd

p) and we
observe that the chance of getting stuck in a local minimum increases
when the rank r is reduced from 8 to 1. Finally, we want to address the
peaks that are observable at M ≈ 500 samples for T8(V6

8) and M ≈
1716 samples for S67. For this recall that the approximation in S67
amounts to solving a linear systemwhich is underdetermined forM <
1716 samples and overdetermined for M > 1716 samples. In the
underdetermined case we compute the minimum norm solution
and in the overdetermined case we compute the least-squares

solution. It is well-known that the solution to such a
reconstruction problem is particularly unstable in the area of
this transition [39]. Although the set S67,1 is non-linear we take
the peak at M ≈ 500 as evidence for a similar effect which is
produced by the similar linear systems that are solved in the micro
steps in the ALS.

5.3 Quantities of Interest
The next considered problem often arises when computing
quantities of interest from random partial differential
equations. We consider the stationary diffusion equation

∇xa(x, y)∇xu(x, y) � f (x) x ∈ D
u(x, y) � 0 x ∈ zD

on D � [−1,1]2. This equation is parametric in y ∈ [−1,1]d. The
randomness is introduced by the uniformly distributed random
variable y ∼ U([−1, 1]d) that enters the diffusion coefficient

a(x, y)d1 + 6
π2
∑d
k�1

k−2 sin ϖ̂kx1( )sin ϖ̌kx2( )yk
with ϖ̂k � π⌊k2⌋ and ϖ̌k � π⌈k2⌉. The solution u often measures the

concentration of some substance in the domain Ω and one is
interested in the total amount of this substance in the entire domain

M(y)d∫
Ω
u(x, y) dx.

An important result proven in [31] ensures the ℓp summability, for
some 0 < p ≤ 1, of the polynomial coefficients of the solution of
this equation in the dictionary of Chebyshev polynomials.
This means that the function is very regular and we presume
that it can be well approximated in Sdg for the dictionary of
Legendre polynomials ΨLegendre. For our numerical
experiments we chose d � 10, g � 5 and ρmax � 3 and
again compare the reconstruction w.r.t. Sdg , the block-
sparse TT representations of Sdg,ρmax

and Sd,augg,ρmax
and a dense

FIGURE 2 | 0.15–0.85 quantiles for the recovery error in S6
7 (blue), S

6
7,1 (orange), T1(V

6
8) (green), and T8(V

6
8) (red). The relative error is computed with respect to the

L2-norm using a Monte Carlo estimation with 106 samples.

TABLE 2 | Degrees of freedom for the full space Sd
g , the TT variant Sd

g,ρmax
with

maximal block size ρmax �1, the space Tr (V
d
p ) with TT rank bounded by r �1,

the space Tr (V
d
p ) with TT rank bounded by r �8, and the full space Vd

p for
completeness.

S6
7 S6

7,1 T1(V6
8 ) T8(V6

8 ) V6
8

1716 552 48 2,176 262,144
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TT representation of Tr(Vd
p) with rank r ≤ 14. Admittedly, the

choice d � 10 is relatively small for this problem but was
necessary since the computation on Sdg took prohibitively long
for larger values. A comparison of the degrees of freedom for the
different ansatz spaces is given in Table 3 the relative errors to the
exact solution are depicted in Figure 3. In this plot we can
recognize the general pattern that a lower number of parameters
can be associated with an improved sample efficiency. However, we
also observe that for small M the relative error for Sdg,ρ is smaller
than for Sd,augg,ρ . We interpret this as a consequence of the regularity
of u since the alternating scheme for the optimization in Sdg,ρ favors
lower degree polynomials by construction. In spite of this success,
we have to point out that optimizing over Sdg,ρ took about 10 times
longer than optimizing over Sd,augg,ρ . Finally, we observe that the
recovery in T14(V10

6 ) produces unexpectedly large relative errors
when compared to previous results in [13]. This suggests that the
rank-adaptive algorithm from [13] has a strong regularizing effect
that improves the sample efficiency.

6 CONCLUSION

We introduce block sparsity [28,29] as an efficient tool to
parametrize, multivariate polynomials of bounded degree.
We discuss how to extend this to general multivariate
polynomials of bounded degree and prove bounds for the
block sizes for certain polynomials. As an application we

discuss the problem of function identification from data for
tensor train based ansatz spaces and give some insights into
when these ansatz spaces can be used efficiently. For this we
motivate the usage of low degree multivariate polynomials by
approximation results (e.g. [30,31]) and recent results on
sample complexity [32]. This leads to a novel algorithm for
the problem at hand. We then demonstrate the applicability
of this algorithm to different problems. Up until now block
sparse tensor trains are not used for these recovery tasks. The
numerical examples, however, demonstrate that at least dense
tensor trains can not compete with our novel block-sparse
approach. We observe that the sample complexity can be much
more favorable for successful system identification with block
sparse tensor trains than with dense tensor trains or purely
sparse representations. We expect that the inclusion of rank-
adaptivity using techniques from SALSA or bASD is straight
forward, which we therefore consider an interesting direction
from an applied point of view for forthcoming papers. We
expect, that this would improve the numerical results even
further. The introduction of rank-adaptivity would moreover
alleviate the problem of having to choose a block size a-priori.
Finally, we want to reiterate that the spaces of polynomials with
bounded degree are predestined for the application of least-squares
recovery with an optimal sampling density (cf [39]) which holds
opportunities for further improvement of the sample efficiency. This
leads us to the strong believe that the proposed algorithm can be
applied successfully to other high dimensional problems in which
the sought function exhibits sufficient regularity.
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FIGURE 3 | 0.15–0.85 quantiles for the recovery error in S10
5 (blue), S10

5,3

(orange), S10,aug
5,3 (green), and T14(V

10
6 ) (red). The relative error is computed with

respect to the L2-norm using a Monte Carlo estimation with 106 samples. The
experiment for T14(V

10
6 ) was stopped early at M �1,200 due to its prohibitive

computational demand and because the expected behaviour is already observable.

TABLE 3 | Degrees of freedom for the full space Sd
g , the TT variant Sd

g,ρmax
with

maximal block size ρmax �3, the space Tr (V
d
p ) with TT rank bounded by r �14,

and the full space Vd
p for completeness.

S10
5 S10

5,3 S10,aug
5,3 T14(V10

6 ) V10
6

3,003 1726 803 7,896 60,466,176
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