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This work introduces a methodology for studying synchronization in adaptive networks
with heterogeneous plasticity (adaptation) rules. As a paradigmatic model, we consider a
network of adaptively coupled phase oscillators with distance-dependent adaptations. For
this system, we extend the master stability function approach to adaptive networks with
heterogeneous adaptation. Our method allows for separating the contributions of network
structure, local node dynamics, and heterogeneous adaptation in determining
synchronization. Utilizing our proposed methodology, we explain mechanisms leading
to synchronization or desynchronization by enhanced long-range connections in
nonlocally coupled ring networks and networks with Gaussian distance-dependent
coupling weights equipped with a biologically motivated plasticity rule.
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1 INTRODUCTION

In nature and technology, complex networks serve as a ubiquitous paradigm with a broad range of
applications from physics, chemistry, biology, neuroscience, socioeconomic, and other systems [1].
Dynamical networks consist of interacting dynamical units, such as neurons or lasers. Collective
behavior in dynamical networks has attracted much attention in recent decades. Depending on the
network and the specific dynamical system, various synchronization patterns with increasing
complexity were explored [2–5]. Even in simple models of coupled oscillators, patterns such as
complete synchronization [6, 7], cluster synchronization [8–11], and various forms of partial
synchronization have been found, such as frequency clusters [12], solitary [13–15], or chimera
states [16–20]. In particular, synchronization is believed to play a crucial role in brain networks, for
example, under normal conditions in the context of cognition and learning [21, 22], and under
pathological conditions, such as Parkinson’s disease [23–25], epilepsy [26–29], tinnitus [30, 31],
schizophrenia, to name a few [32].

The powerful methodology of master stability function [33] has been a milestone for the
analysis of synchronization phenomena. This method allows for the separation of dynamic
and structural features in dynamical networks. It greatly simplifies the problem by reducing
the dimension and unifying the synchronization study for different networks. Since its
introduction, the master stability approach has been extended and refined for various
complex systems [34–42], and methods beyond the local stability analysis have been
developed [43–47]. More recently, the master stability approach has been extended to
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another class of oscillator networks with high application
potential, namely adaptive networks [48].

Adaptive networks are commonly used models for various
systems from nature and technology [49–57]. A prominent
example are neuronal networks with spike-timing dependent
plasticity, in which the synaptic coupling between neurons
changes depending on their relative spiking times [58–61].
There are a large number of studies investigating the dynamic
properties induced by this form of synaptic plasticity [62].
However, analysis is usually limited to only one or two forms
of spike timing-dependent plasticity within a neuronal
population. On the other hand, experimental studies indicate
that different forms of spike timing-dependent plasticity may be
present within a neuronal population, where the form depends on
the connection structure between the axons and dendrites [63].
Among all structural aspects, an important factor for the specific
form of the plasticity rule is the distance between neurons
[64–66]. More specifically, it has been found that the plasticity
rule between proximal or distal neurons, respectively, can change
from Hebbian-like to anti-Hebbian-like [67, 68].

This work introduces a methodology to study synchronization
in adaptive networks with heterogeneous plasticity (adaptation)
rules. As a paradigmatic system, we consider an adaptively
coupled phase oscillator network [69–75], which is proven to
be useful for predicting and describing phenomena occurring in
more realistic and detailed models [76–79]. More specifically, in
the spirit of the master stability function approach, we consider
the synchronization problem as the interplay between network
structure and a heterogeneous adaptation rule arising from
distance- (or location-)dependent synaptic plasticity. For a
given heterogeneous adaptation rule, our master stability
function provides synchronization criteria for any coupling
configuration. As illustrative examples, we consider a
nonlocally coupled ring with biologically motivated plasticity
rule, and a network with a Gaussian distance-dependent
coupling weights. We explained such intriguing effects as
synchronization or desynchronization by enhancement of
long-distance links.

We introduce the model in Section 2. Building on findings
from [48], we develop a master stability approach in Section 3
that takes a heterogeneous adaptation rule in account. In Section
4.1, we provide an approximation of the structural eigenvalues
that determine the stability of the synchronous state. We then
consider two different setups: a nonlocally coupled ring in
Section 4.2 and a weighted network with Gaussian distance
distribution of coupling weights in Section 4.3. Both systems
are equipped with a biologically motivated plasticity rule. In
Section 5, we summarize the results.

2 MODEL

In this work, we study the synchronization on networks with
adaptive coupling weights, where the adaptation (plasticity) rule
depends on the distance between oscillators (neurons). We
consider the model of adaptively coupled phase oscillators,
which has proven to be useful for understanding dynamics in

neuronal systems with spike timing-dependent plasticity [77, 79,
48]. The model reads as follows:

d
dt
ϕi � ω +∑

j�1

N

aijκijg(ϕi − ϕj), (1)

d
dt
κij � −ϵ(κij + hij(ϕi − ϕj)), (2)

where ϕi ∈ S1 � R/2πZ (i � 1, . . . ,N) is the phase of the ith
oscillator, κij (i, j � 1, . . . ,N) is the dynamical coupling weight
from oscillator j to i, ω denotes the natural frequency of each
oscillator, and aij ∈ [0, 1] are the entries of the weighted
adjacency matrix A describing the network connectivity. The
time scales of the “fast” phase oscillators and “slow” coupling
weights are separated by the parameter ϵ, which we assume to be
small 0< ϵ≪ 1. The functions g and hij denote the coupling and
the N2 plasticity functions, respectively. For illustrative purposes,
the coupling function is set throughout the paper to g(ϕ) �
−sin(ϕ + α)/N with the phase lag parameter α [80]. Such a
phase lag can account for a small synaptic propagation delay
[81, 48]. For formal derivations, however, a generic coupling
function is used. Note that the system Eqs. 1, 2 is shift-symmetric,
i.e., invariant under the transformation ϕi 1ϕi + ψ for any
ψ ∈ S1. This allows us to restrict our consideration to the case
ω � 0 by introducing a new “co-rotating” coordinate system
ϕi,new � ψi − ωt.

The main difference of system Eqs. 1, 2 from the models
considered previously in the literature [40, 70, 71, 74, 82], is that
the plasticity functions hij can be different for each network
connection j→ i.

A solution to Eqs. 1, 2 is called phase-locked if, for all
i � 1, . . . ,N , the phases evolve as ϕi � Ωt + ϑi with some
collective frequency Ω ∈ R and ϑi ∈ S1. If ϑi � ϑ for all
i � 1, . . . ,N , the phase-locked state is called in-phase
synchronous or, short, synchronous state.

In the case of in-phase synchronous state, we can set ϑi � 0 for
each oscillator due to the shift symmetry of Eqs. 1, 2. The in-
phase synchronous state is given as

ϕs(t) � −wg(0)t, (3)

κsij � −hij(0), (4)

where we assume that the weighted row sum w � ∑N
j�1aijhij(0) is

constant for all. Such an assumption of constant row sum is
necessary for the existence of the synchronous state. Moreover, it
is satisfied for commonly considered cases of global or nonlocal
shift-invariant coupling.

In the following section, we show how the stability of the
synchronous state is determined in a master-stability-like
approach.

3 MASTER STABILITY APPROACH

In Section 2, we have introduced a general class of models
and the synchronous state, that are considered throughout
this paper. In this section, we derive a framework for the local
stability analysis of the synchronous states. We note that the
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master stability approach for homogeneous adaptations hij � h
was introduced in [48, 83]. Here we extend the methodology to
heterogeneous adaptation rules.

To describe the local stability, we introduce the variations ξi �
ϕi − ϕs and χij � κij − κsij. The linearized equations for these
variations can be written in the following matrix form

d
dt

( ξ
χ
) � J( ξ

χ
) � (Dg(0)Lh g(0)B

−ϵC −ϵIN2
)( ξ

χ
), (5)

where ξ � (ξ1, . . . , ξN)T is N-dimensional vector containing the
perturbations ξi � δϕi of the phases and χ � (χ11, χ12, . . . , χNN)T
areN2- dimensional vectorized perturbations of coupling weights
χ � vec[δκij], respectively. The N × N weighted Laplacian matrix
Lh has the following elements

lhij �
⎧⎨⎩ −∑N

m�1,m≠ i
aimhim(0), i � j,

aijhij(0), i≠ j.
(6)

The time-independent matrices B and C are

B � ⎛⎜⎝ a1
1

aN

⎞⎟⎠,

C � ⎛⎜⎜⎜⎝ (Dh)T1
1

(Dh)TN
⎞⎟⎟⎟⎠ −⎛⎜⎝ diag (Dh)1

«
diag (Dh)N

⎞⎟⎠,

where ai � (ai1, . . . , aiN), (Dh)i � (Dhi1(0), . . . ,DhiN(0)), and

diag (Dh(0))i � ⎛⎜⎝Dhi1(0)
1

DhiN(0)
⎞⎟⎠.

Note that due to the shift symmetry of Eqs. 1, 2, the Jacobian J
in Eq. 5 is time independent. Therefore, the real parts of the
N(N + 1) eigenvalues λ of J are the Lyapunov exponents of the
synchronous state and hence determine its local stability. In the
following proposition, we exploit the fact that J contains a large
diagonal block −ϵIN2 to reduce the dimension of the eigenvalue
problem for J.

PROPOSITION 1. Suppose ϕi � Ωt is an in-phase synchronous
state of Eqs. 1, 2. Then its linear stability is determined by the
2N-dimensional linear system

d
dt

v � (Dg(0)Lh g(0)IN
ϵLDh −ϵIN )v, (7)

where Dg(0) and Lh are as in Eq. 5 and the N × N weighted
Laplacian matrix LDh possesses the following elements

lDhij � ⎧⎨⎩ −∑N

m�1,m≠ i
aimDhim(0), i � j,

aijDhij(0), i≠ j.
(8)

PROOF. We remind that system Eq. 5 determines the spectrum
(Lyapunov exponents) of the synchronous state. The Jacobian
matrix in Eq. 5 is sparse with a large N2 × N2 block given by the
simple diagonal matrix −ϵIN2 . This implies that Eq. 5 possess
N2 − N stable directions with Lyapunov exponents −ϵ. To find

these directions, we substitute (ξ, χ) � e−ϵt(ξ0, χ0) into Eq. 5 and
obtain the linear system

(Dg(0)Lh + ϵIN g(0)B
−ϵC 0

)( ξ0
χ0

) � 0. (9)

This system has at leastN2 − N linearly independent solutions, since
thematrix in Eq. 9 is degenerate due to the largeN2 × N2 zero block.
The structure of the invariant subspaces in system Eq. 5 allows for
introducing new coordinates, which separate the N2 − N stable
directions (corresponding to the eigenvalues −ϵ) from the
remaining 2N directions. Explicitly, this transformation is given by

( ξ
χ
) � R( ξ

χ̂
), R � ( IN 0 0

0 (1/r)BT K
)

with (N2 + N) × (N2 + N) matrix R. Here K is an (N2 − N) ×
(N2 − N) orthogonal matrix with BK � 0. Applying this
transformation, we obtain the following system

d
dt

⎛⎜⎜⎝ ξ
χN

χN2−N

⎞⎟⎟⎠ � ⎛⎜⎜⎝Dg(0)Lh g(0)IN 0
ϵLDh −ϵIN 0

−ϵKTC 0 −ϵIN2−N

⎞⎟⎟⎠⎛⎜⎜⎝ ξ
χN

χN2−N

⎞⎟⎟⎠,

(10)

where (ξ, χN , χN2−N)T � (ξ, χ̂)T , with χN and χN2−N are an N and
N2 − N-dimensional vectors, respectively, and theN × N weighted
Laplacian matrix LDh as given in Eq. 8. For more details on the
transformation, we refer the reader to [48, 83]. We observe that the
variables (ξ, χN ) are independent on χN2−N . Hence, separating the
master from the slave system, the resulting coupled differential
equations that determine the stability of the synchronous state are
given by system Eq. 7. This concludes the proof.

Proposition 1 reduces the problem’s dimension significantly
fromN(N + 1) to 2N . In the spirit of the master stability approach
[33], we aim for further decomposition of the 2N- dimensional
coupled system Eq. 7 into dynamically independent blocks of
dimension 2. For this, we restrict our consideration to the case
when Lh can be diagonalized Sh � Q−1LhQ by a nonsingular
complex-valued matrix Q. Note that the eigenvalues μi of L

h lie
on the diagonal of Sh. In general, the matrices Lh and LDh do not
commute. Therefore, Q−1LDhQ is not necessarily of upper
triangular shape. Regardless of this fact, the following
proposition provides an explicit form for the eigenvalues of J in
Eq. 5 in the limit of slow adaptation, i.e., ϵ≪ 1.

PROPOSITION 2. Assume that Lh is diagonalizable, with Sh �
Q−1LhQ being the associated diagonal matrix and Q the
corresponding transformation. Let ϕi � Ωt be an in-phase
synchronous state of Eqs. 1, 2 Then, the local stability of this state
is determined by the solutions of N quadratic equations, which are
given up to the first order in ϵ as

λ2 + (ϵ − Dg(0)μi)λ − ϵ(Dg(0)μi + g(0)]i) � 0, i � 1, . . . ,N ,

(11)

where μi are the eigenvalues of L
h located on the diagonal of Sh and ]i

are the corresponding diagonal elements of Q−1LDhQ. If Lh and LDh

commute, then Eq. 11 is exact, and ]i are the eigenvalues of LDh.
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PROOF. Due to Proposition 1, the eigenvalues of the Jacobian in
Eq. 5 are given by

det(Dg(0)Lh − λIN g(0)IN
ϵLDh −(ϵ + λ)IN )

� det(Dg(0)Sh − λIN g(0)IN
ϵQ−1LDhQ −(ϵ + λ)IN ) � 0,

where we have used the transformation Q that brings Lh to the
diagonal form Sh � Q−1LhQ. Making further use of the Schur
complement [84], we obtain

det(Dg(0)Sh − λIN g(0)IN
ϵQ−1LDhQ −(ϵ + λ)IN )

� det( (λ + ϵ)(λIN − Dg(0)Sh) − ϵg(0)Q−1LDhQ ) � 0. (12)

The latter equation is almost diagonal. The only off-diagonal
components remain from Q−1LDhQ and scale with ϵ. Let
us consider the Leibniz formula for the determinant of an
N × N matrix F with entries fij, that reads
det(F) � ∑σ∈Perm(N)sgn(σ)∏N

i�1 fiσ(i). In the latter expression
Perm(N) denotes the set of all permutations σ of the
integer numbers 1, . . . ,N and sgn(σ) ∈ {−1, 1} is the sign
of the permutation. Since all off-diagonal terms of the
matrix considered in Eq. 12 scale with ϵ, for any but
the identical permutation each term ∏N

i�1 fiσ(i) scales with ϵ2
or higher. Hence, we are left with det(F) � ∏N

i�1 fii +O(ϵ2)
and find

det ((λ + ϵ)(λIN − Dg(0)Sh) − ϵg(0)Q−1LDhQ )
� ∏

i�1
(λ2 + (ϵ − Dg(0)μi)λ − ϵ(Dg(0)μi + g(0)]i)) +O(ϵ2)

� 0,

(13)

where μi are the eigenvalues of L
h, ]i are the diagonal elements

of Q−1LDhQ and O(ϵ2) denotes higher order terms (ϵm,m> 1).
If Lh and LDh commute, both matrices share the same set of
eigenvectors and hence they can be brought to the diagonal
form with the same transformation Q. In this case, the
diagonal elements ]i are the eigenvalues of LDh and the
higher order terms O(ϵ2) in Eq. 13 vanish.

The 2N solutions λi of the N Eq. 11 determine the stability
of the synchronous state. More precisely, the real parts of
theses solutions determine the Lyapunov exponents. If
Λ � maxiRe(λi)< 0, then the synchronous state is locally
stable, while for Λ> 0 it is locally unstable. The case Λ � 0
provides the stability boundary.

Note that for a fixed time scale parameter ϵ≪ 1, the Eq. 11
and hence its solutions depend on the coupling function g,
the connectivity, and the adaptation structure. This
dependence, however, is only encoded in the two complex
parameters Dg(0)μ and g(0)]. Therefore, we define the master
stability function Λ : C2 →R with Λ(Dg(0)μ, g(0)]) �

maxiRe(λi(Dg(0)μ, g(0)])) that maps each pair of
parameters (Dg(0)μ, g(0)]) to the corresponding Lyapunov
exponent.

For an illustration, we consider a cross-section of
(Dg(0)μ, g(0)])- space by setting Im(μ) � 0 and Im(]) � 0.
This cross-section is of particular interest in cases of symmetric
matrices Lh and LDh since their eigenvalues are real. In Figure 1, we
present the master stability function for the coupling function
g(ϕ) � −sin(ϕ + α)/N and different values of the parameter α. In
case of real μ and ], we obtain two explicit stability conditions from
Eq. 11: The synchronous state is locally stable (Λ< 0) if

c1(α, μ) � cos(α)μ> − ϵ, (14)

c2(α, μ, ]) � cos(α)μ + sin(α)]> 0. (15)

These conditions agree with the black dashed lines in Figure 1
and are used subsequently to describe stability for certain
network models.

4 SYNCHRONIZATION ON NETWORKS
WITHDISTANCE-DEPENDENTPLASTICITY

In the previous section, we established a generic analytic tool for
studying stability of synchronous states. In this section, we focus
on the application of the tool to certain network models. For the
rest of the work, we restrict our attention to the following
generalization of the Kuramoto-Sakaguchi system with
distance-dependent synaptic plasticity

d
dt
ϕi � ω − 1

N
∑
j�1

N

aijκijsin(ϕi − ϕj + α), (16)

d
dt
κij � −ϵ(κij + h(ϕi − ϕj, dij)). (17)

The plasticity function h depends on the phase differenceϕi − ϕj and
on thedistancedij. In thiswork,we associate the distance to the difference
of indices by dij �

∣∣∣∣j − i
∣∣∣∣. For the plasticity function, we consider

hij(ϕ) � h(ϕ, dij
N
) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ĥ(ϕ, dij

N
) dij ≤N/2,

ĥ(ϕ, 1 − dij
N
) dij >N/2. (18)

With this form of the adaptation function, we have a
symmetric hij(ϕ) � hji(ϕ) and a circulant hi+l,j+l(ϕ) � hij(ϕ)
structure of the corresponding matrix with entries hij.
Particularly, for the numerical analysis, we use

ĥ(ϕ, dij/N) � sin(ϕ + β(dij/N)), (19)

where the distance dependence is encoded in the phase shift function

β(dij
N
) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
( 2
N
dij − 1)π, N even,

( 2

(N + 1)dij − 1)π, N odd.
(20)
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In Figure 2A, we illustrate the distance-dependent plasticity
function Eqs. 18–20 for a network of N � 12 nodes. The
illustration shows the different plasticity functions depending
on the distance between the nodes dij. The plasticity function
changes from a Hebbian to anti-Hebbian rule for proximal and
distal node, respectively. This change, particularly in the
proximity of ϕ � 0, is in qualitative agreement with the
experimental findings in [67]. Note the symmetry of the
plasticity function that renders the matrix with elements hij
circulant.

If not indicated differently, we consider the coupling structure
given by

aij � a(dij/N), (21)

where a : [0, 1]→ [0, 1] is a bounded and piece-wise continuous
function. This corresponds to a distant-dependent coupling, and
it results to a dihedral symmetry in the coupling structure (ring-
like).

In the following section, we provide an approximation for the
eigenvalues of Lh and LDh for large networks with circulant

FIGURE 1 | The master stability function Λ(Dg(0)μ, g(0)]) for the coupling function g(ϕ) � −sin(ϕ + α)/N and real μ and ν (Im(μ) � 0, Im(]) � 0). The values of the
master stability function are color-coded in all panels (A–E). The dashed black line describes the border between regions corresponding to local stability and instability,
respectively. Parameters: ϵ � 0.01, (A) α � −0.8π, (B) α � −0.4π, (C) α � 0, (D) α � 0.4π, and (E) α � 0.8π.

FIGURE 2 | Panel (A) shows the plasticity function h1j given in Eqs. 18–20 depending on the distance d1j exemplified for node i � 1 in a network withN � 12 nodes.
Note that the colors of the links in the network (left) correspond to the colors of the depicted plasticity function (right). Panel (B) displays the connectivity structure of a
nonlocally coupled ring network with N � 12 nodes and a coupling range P � 3. Panel (C) displays the weighted connectivity structure of a network with N � 12 nodes
(left) with distance-dependent Gaussian weight distribution (right). Note that the colors of the links in the network (left) correspond to the colors of the bars in the
weight distribution (right).
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connectivity and plasticity structure. Using this approximation,
we subsequently analyze the stability of the synchronous state on
nonlocally coupled networks and on isotropic networks with
Gaussian weight distribution.

4.1 Approximation of the Eigenvalues for
Large Systems With Circulant Structure
In the previous part, we have defined the plasticity functions hij in
such a way that the structures of Lh and LDh inherit important
properties from the underlying network structure a(dij/N). In
particular, assuming that the adjacency matrix is circulant,
renders Lh and LDh to be circulant, as well.

In this section, we briefly recall how one can derive the
eigenvalues μk and ]k (k � 0, . . . ,N − 1) in case of a circulant
structure. It is well-known that for a circulant matrix the
eigenvalues are determined by applying a discrete Fourier
approach [85]. More precisely, suppose L is a circulant N × N
matrix where the elements of the first row are given by the entries
lj with j � 1, . . . ,N . Then the kth eigenvalue is explicitly given by

μk � l1 +∑
j�2

N

lj exp(i 2πN (j − 1)k).
For the case of Lh as in Eq. 6, aij and hij as in Eqs. 18 and 21, we

obtain

Re(μk) � Re(lh11) + 1
N
∑
j�2

N

a(xj)h(0, xj)cos(2πxjk), (22)

with xj � d1j/N and Re(lh11) � − 1
N ∑N

j�2a(xj)h(0, xj). Since the
adjacency matrix A is assumed to be symmetric, the
eigenvalues of Lh are real. Therefore, we omit considering the
imaginary part of μk. Eq. 22 provides exact expressions for the
eigenvalues. However, the values depend on the total number of
oscillators N that makes it harder to study the influence of other
system properties, such as the coupling structure or the plasticity
function. To remove this N-dependence, we consider the
continuum limit N→∞ (compare with [86]) and obtain

Re(μk) � Re(lh11) + ∫1

0
a(x)h(0, x)cos(2πxk)dx,

Due to the definition of h and the symmetry of a(x), we find

Re(μk) � 2∫1/2

0
a(x)h(0, x)(cos(2πxk) − 1)dx (23)

for any k. This explicit expression allows studying the distribution
of the eigenvalues μk for a given plasticity function h and coupling
structure a. Note that a similar expression as (23) can be
analogously derived for the eigenvalues of LDh and reads

Re(]k) � 2∫1/2

0
a(x)Dh(0, x)(cos(2πxk) − 1)dx. (24)

We note that μ0 � ]0 � 0 due to the Laplacian structure of Lh

and LDh.
The results from Eqs. 23 and 24 are applied in the next

sections to analyze different networks.

4.2 Synchronization on Nonlocally Coupled
Ring Networks
In this section, we analyze the effect of long distance
connections on the stability of synchronous states in
nonlocally coupled ring networks. We consider the coupling
structure given by

aij � a(dij/N) � ⎧⎪⎨⎪⎩ 1 for 0< dij ≤ P,
1 for 0<N − dij ≤ P,
0 otherwise.

(25)

This means that any two oscillators are coupled if they are
separated at most by the coupling range P. The coupling Eq. 25
defines a nonlocal ring structure with coupling range p to each
side and two special limiting cases: local ring for P � 1 and
globally coupled network for P � N/2 (if N is even, else
P � (N + 1)/2). The matrix of the form Eq. 25 is circulant
[85] and has constant row sum, i.e., ∑N

j�1aij � 2P for all
i � 1, . . . ,N . An illustration for N � 12 adn P � 3 is presented
in Figure 2B.

In order to study the influence of the coupling range, we use
the approximations for the eigenvalues μk and ]k derived in
Section 4.1. The nonlocally coupled ring structure is expressed by
the piecewise continuous function a(x) � 0 for p< x < 1 − p and
a(x) � 1 otherwise with relative coupling range p � P/N . Thus,
for a nonlocally coupled ring Eq. 25 and plasticity function Eqs.
18–20, we find

Re(μk) � −2∫p

0
sin(2πx)(cos(2πkx) − 1)dx

� (1 − cos(2πp))
π

+ 1
π

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2
(cos2(2πp) − 1) k � 1

1

(1 − k2) (k sin(2πp)sin(2πkp) + cos(2πp)cos(2πkp) − 1) k≠ 1

(26)

for the eigenvalues μk of Lh. Analogously, we obtain

Re(]k) � −2∫p

0
cos(2πx)(cos(2πkx) − 1)dx

� sin(2πp)
π

− 1
π

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pπ + sin(4πp)

4
k � 1

1

(1 − k2) (sin(2πp)cos(2πkp) − k cos(2πp)sin(2πkp)) k≠ 1

(27)

for ]k of LDh.
In Figure 3A, we provide an error analysis of

the approximations Eqs. 26 and 27 compared to the
exact eigenvalues given by Eq. 22. As expected, the errors
tend to zero as the number of oscillators increases.
Additionally in Figures 3B,C, we display μk and ]k for
several values of k depending on the relative coupling
range p. We observe that μk ≥ 0 for all k. This is due to
given plasticity function Eqs. 18–20, for which the update is
positive (or equal to zero) for all distances at ϕ � 0,
i.e., h(0, dij)≥ 0 for all dij.

It is important to note, that our choice of the circulant
adaptation functions imply that the matrices Lh and LDh are
diagonalizable and commute. Hence, Proposition 2 holds with the
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master stability Eq. 11 being exact. Therefore, the stability
criterium Eq. 14 is also exact.

Combining the fact μk ≥ 0 with the stability criterium Eq. 14, we
find cos(α)> 0 as a necessary condition for the stability of the
synchronous state for ϵ→ 0. This yields, that the synchronous state
can be stable only for α ∈ (−π/2, π/2). In contrast to Lh, the LDh is
in general neither positive nor negative definite, hence the
eigenvalues ]k may take positive or negative values. This is due
to the fact that the plasticity functionmay change sign at the origin,
i.e., Dhij may change signs depending on the distance dij. In
particular, we find that only the eigenvalue ]1 changes the sign,
see Figure 3C. This change may lead to a destabilization of the
synchronous states as we show in the subsequent analysis. Finally,
note that there exist μ∞ � (1 − cos(2πp))/π and ]∞ �
−sin(2πp)/π to which the eigenvalues converge for large values
of k. These limits are displayed in Figures 3B,C as black lines.

In Figure 4, we show different scenarios for the stability of the
synchronous state depending on the phase lag parameter α and the
coupling range p. Due to the necessary condition cos(α)> 0 as
ϵ→ 0, we consider α ∈ (−π/2, π, 2) only. Figures 4A,B show that
for −π/2< α< 0, the second stability condition Eq. 15 is only fulfilled
for p larger than a critical value of the coupling range pc(α). In these
cases, a higher coupling range stabilizes the synchronous state. Note
that pc(α)→ 0 as α→ 0 with α< 0. The results seen in Figures 4A,B
are in agreement with the results for a network of N � 200 coupled
phase oscillators. For this network, we calculate the Laplacian
eigenvalues and plot them along with the master stability
function in Figures 4E,F. The outcomes from numerical
simulations are presented in Figures 4I,J.

The situation changes for 0< α< π/2, as shown in Figures 4C,D.
Here, for a large range of α, all nonlocally coupled networks lead to a
stable synchronous state. However, closer to π/2, long distance
connections destabilize the synchronous state. In particular, this
destabilization can be traced back to the single negative eigenvalue ]1
of the Laplacian LDh, see Figure 4H. Hence, the unstablemanifold of
the synchronous state is only one-dimensional. This finding is in
agreement with the example of N � 200 phase oscillators presented

in Figures 4G,H,K, L. Particularly in Figure 4L, the low dimension
of the unstable manifold manifests itself as follows: The black
trajectory first tends to the synchronous state along the N(N + 1) −
1 stable directions before it is repelled along the direction
corresponding to ]1.

We have shown that long distance interactions may stabilize
or destabilize the synchronous state depending on the phase lag
parameter α. In this section, all links have the same weight
independent of the corresponding distance. In the next
section, we analyze a network with a more realistic structure
with a distance-dependent distribution of weights.

4.3 Synchronization on Isotropic and
Homogeneous Network With Gaussian
Distance Distribution
In the previous section, we used the prototypical example of a
nonlocally coupled rings to study the effects of long-range
interaction on synchronization. In this setup, however, all
links are equally weighted. In realistic systems, in contrast,
the number of links with a certain distance are distributed,
see [67] for details. To incorporate this into our network model,
we weight the links with respect to a distance distribution.
Measurements suggest that the distance distribution can be
estimated by a mean and a distribution width [67]. The
Gaussian distributions is a paradigmatic distribution that
allows for studying effects emanating from the mean and the
distribution width. For the remainder of the section, we consider
the link distance distribution given by a Gaussian distribution,
and weight the links of the network connectivity structure A
accordingly, i.e.

aij(dij/N) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

e−
(dij/N−ξ)2

2σ2 dij ≤N/2,

e−
(1−dij/N−ξ)2

2σ2 dij >N/2.
(28)

FIGURE 3 | Panel (A) shows the errors e(μ) (black) and e(]) (blue) with e(c) �
������������∑ ​ N−1

k�0 (cexactk −ck )2
N

√
of the approximations Eqs. 26, 27, respectively, where cexactk are the

exact eigenvalues derived by a discrete Fourier transformation, see Eq. 22. The errors are displayed in dependence of the system size N (number of oscillators). The
relative coupling range is set to p � 0.1. Panel (B) and (C) show the approximated eigenvalues given by Eqs. 26, 27, respectively, depending on the relative coupling
range p for different values of k.
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where ξ and σ are the mean value and the standard
deviation, respectively. Note that the standard deviation
characterizes the width of the distribution. For the numerical
simulations, we normalize each row of A by ∑N

j�1aij. Here, we
further make the assumption that the network is
homogeneous and isotropic. This means that in any direction
from a node and at each node the network looks the same. Hence,
we obtain a circulant connectivity structure. An illustration of the
weight distribution for N � 12 is presented in Figure 2C.

As we know from Eqs. 14 and 15, for ϵ≪ 1, the values of
c2(α, μk, ]k) determine the stability of the synchronous state. In
particular, the synchronous state is stable if cmin �
mink∈1,N−1c2(α, μk, ]k)> 0 for a given N and unstable
otherwise. In Figure 5A, we display cmin for α � −0.4π and
different mean values ξ and standard deviations σ of the
weight distribution. In agreement with the finding in Section
4.2, the synchronized state stabilizes due to an increase of long
distance interaction expressed by an increase of σ.

Complementing the finding in Section 4.2, here, we note that
the stability can be also achieved by distributions with peaks at
long distance links alone. In this case, the width of the distribution
is not important. Figure 5B shows how the boundary between
regions corresponding to stable and unstable synchronization
change for different values of α. As in the case of nonlocally
coupled ring networks, with α→ 0 (with α< 0) the boundary
tends to the limiting point (σ, ξ) � (0, 0). On the contrary, if
α→ − π/2 (with α> − π/2), the width of the distribution has to
increase to have stable synchronization for small values of the
mean ξ.

An opposite scenario is shown in Figure 5C for α � 0.4π.
Here, an increase of the weights for long distance links
destabilizes the synchronous state, as in Figures 4D,H,L. We
also note that for small values α, the synchronous state is stable
for almost all values of σ and ξ, see Figure 5D. Only in cases of
distribution sharply peaked at long distances, i.e., ξ close to 1/2
and σ close to 0, the synchronous state is unstable. This effect

FIGURE 4 | Stability analysis of the synchronous state of system Eqs. 16, 17 with plasticity rule Eqs. 18–20 and coupling structure Eq. 25. Panels (A–D)
show the function c2(α, μk(p), ]k(p)) for different α, see Eq. 15, calculated with the approximations Eqs. 26, 27 depending on the relative coupling range p. In each
panel, c2 is displayed for different values of k. The gray shaded regions refer to unstable synchronous states. Panels (e,f,g,h) show the master stability function
Λ(Dg(0)μ, g(0)]) for the cross-section Im(μ) � 0 and Im(]) � 0 for different values of α with color code as in Figure 1. The crosses and dots correspond to
two sets of eigenvalue pairs (μk , ]k) (k � 0, . . . ,N − 1) for relative coupling range p � 0.1 (blue crosses) and p � 0.45 (black points), respectively. Panels (I–L) show

the synchronization error E(t) �
�����������������∑N

i�1(ϕi(t) − ϕ1(t))2
√

for simulations with relative coupling range p � 0.1 (blue) and p � 0.45 (black). Each simulation is initialized at

a slightly perturbed synchronous state. Parameters: N � 200, ϵ � 0.01, (A, E, I) α � −0.4π, (B, F, J) α � −0.2π, (C, G, K) α � 0.2π, (D, H, L) α � 0.4π.
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could not be found in networks with nonlocally coupled rings, see
Section 4.2.

5 CONCLUSION

In summary, we have investigated the phenomenon of
synchronization on adaptive networks with heterogeneous
plasticity rules. In particular, we have modeled systems with
distance-dependent plasticity as they have been found in
neuronal networks experimentally [64–67] as well as
computational models [68]. For the realization, we have used
a ring-like network architecture and associated the distance of
two nodes with the distance of their placement on the ring.

In Section 3, we have developed a generalized master stability
approach for phase oscillator models that are adaptively coupled
and where each link has its own adaptation rule (plasticity). By
using an explicit splitting of the time scales between fast dynamics
of the phase oscillators and slow dynamics of the link weights,
we have established an explicit stability condition for the
synchronous state. More precisely, we found that the stability
is governed by the coupling function and the eigenvalues of two
structure matrices. These structure matrices Lh and LDh are
determined by the connectivity of the network and the
plasticity rules of the link weights. Note that for the structural
matrices, the plasticity rule needs only to be known in the vicinity
of 0, which greatly facilitates the application of the approach to
realistic forms of synaptic plasticity. Thus, we have extended
previous work on the master stability function of adaptive
networks [48, 83] and broaden the scope of potential future
applications for this methodology.

In Section 4, we applied the novel technique to a system of
adaptively coupled oscillators with distance-dependent plasticity.
Here, we have used a ring-like network structure to study
the impact of long- and short-distance connections on the
stability of synchronization. For this purpose we introduced an
approximation of the eigenvalues for the structure matrices in

Section 4.1. This approximation allows for a comprehensive
analysis of the stability as a function of various system
parameters. Moreover, it enables us to identify critical
eigenvalues that govern the stability of the synchronous state.
In Sections 4.2 and 4.3, we have brought together all
methodological findings and applied them to systems with a
nonlocally coupled ring structure and with a Gaussian
distribution of link weights. The latter structure accounts for
the fact that in realistic neuronal populations the number of links
with different distances are not uniformly distributed [67]. We
found that long-distance connections can stabilize or destabilize
the synchronous state, depending on the coupling function
between the oscillators. A remarkable fact with respect to
neuronal applications relates to the destabilization scenario.
Here we observed that the destabilization can be attributed to
the pronounced change of the plasticity rule from Hebbian to
anti-Hebbian. For more realistic connectivity structures, we
found that weight distributions of the connectivity structure
with sharp peaks at long distances lead to destabilization for a
wide range of the coupling function.

All in all, in this article, we have provided a general framework
to study the emergence of synchronization in neuronal system
with a heterogeneous plasticity rule. The developed methodology
is not limited to distance-dependent types of plasticity and can
also be used for non-symmetric setups. For the latter case, we
have provided the necessary analytical result. In this work, we
have restricted our attention to the case of phase oscillators, but
the methods can be extended to more realistic neuron models by
using techniques established, for example, in [48]. Moreover,
techniques are available that allow for further generalization
toward systems with slightly different local dynamics at each
node [87]. On the one hand, the master stability approach offers a
great tool to study the stability of the synchronous state
depending on the networks structure. On the other hand, this
approach allows for characterizing the network structures that
are, in some sense, optimal for synchronization [88, 89]. In this
regard, it remains an open question as to how plasticity optimizes

FIGURE 5 | Stability analysis of the synchronous state of system Eqs. 16, 17with plasticity rule Eqs. 18–20 and coupling structure Eq. 28. Panels (A, C) show the
minimum over all k ≠0<N of c2, seEq. 15, for two different values of α depending on themean value ξ and the standard deviation σ of the weight distribution. The minima
are displayed in color code. Panels (B, D) show the boundaries between stable and unstable regions in (σ, ξ)- plane for different values of α as given in the figure.
Parameters: (A) N � 400, α � −0.4π, (C) N � 400, α � 0.4π, (B, C) N � 200.
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the synchronizability of the network in a self-organized way. In
addition, recent studies have shown that there is a great interest in
synchronization phenomena to understand diseases such as
Parkinson’s disease [90–92] or epilepsy [29, 93] for the
development of proper therapeutic treatments. We believe that
our work provides an important step toward understanding
synchronization under realistic conditions.
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