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The spread dynamics of long-distance-dispersed pathogens are influenced by the
dispersal characteristics of a pathogen, anisotropy due to multiple factors, and the
presence of multiple sources of inoculum. In this research, we developed a flexible
class of phenomenological spatio-temporal models that extend a modeling framework
used in plant pathology applications to account for the presence of multiple sources and
anisotropy of biological species that can govern disease gradients and spatial spread in
time. We use the cucurbit downy mildew pathosystem (caused by Pseudoperonospora
cubensis) to formulate a data-driven procedure based on the 2008 to 2010 historical
occurrence of the disease in the U.S. available from standardized sentinel plots deployed
as part of the Cucurbit Downy Mildew ipmPIPE program. This pathosystem is
characterized by annual recolonization and extinction cycles, generating annual disease
invasions at the continental scale. This data-driven procedure is amenable to fitting models
of disease spread from one or multiple sources of primary inoculum and can be specified to
provide estimates of the parameters by regression methods conditional on a function that
can accommodate anisotropy in disease occurrence data. Applying this modeling
framework to the cucurbit downy mildew data sets, we found a small but consistent
reduction in temporal prediction errors by incorporating anisotropy in disease spread.
Further, we did not find evidence of an annually occurring, alternative source of P. cubensis
in northern latitudes. However, we found a signal indicating an alternative inoculum source
on the western edge of the Gulf of Mexico. This modeling framework is tractable for
estimating the generalized location and velocity of a disease front from sparsely sampled
data with minimal data acquisition costs. These attributes make this framework applicable
and useful for a broad range of ecological data sets where multiple sources of disease may
exist and whose subsequent spread is directional.
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1 INTRODUCTION

Epidemics caused by invasive pathogens can be managed through
several approaches that include quarantine, containment,
eradication programs, and chemical control measures.
Understanding the risk of disease invasion is vital in
facilitating the planning of disease control, prediction,
prevention of epidemics, and development of mitigation
policies [1]. These needs are particularly acute for fecund
organisms capable of long-distance dispersal that are not
spatially restricted. Dispersal is a fundamental process with
many implications for invasion ecology. The characteristics
and frequency of long-distance dispersal may influence
processes such as spatial distribution of an organism, gene
flow between populations, and invasiveness [2–6]. Dispersal
characteristics of a pathogen are also central to formulating
sound policies for mitigation of ensuing epidemics, such as
predicting the first appearance of disease and timing of
intervention efforts [5].

Diverse disease organismsmay generate patterns of spread due
to long-distance dispersal that can be explained by similar models
provided that inoculum moves over long distances [7, 8]. Plant
disease epidemics, therefore, are excellent model systems for
understanding dispersal and its determinants due to the
annual occurrence of epidemics and experimental tractability
of these systems. One such disease example is cucurbit downy
mildew, caused by the oomycete Pseudoperonospora cubensis.
Cucurbit downy mildew is a major concern for growers in the
eastern U.S. due to its ability to cause substantial economic losses.
For example, in 2004 alone, the epidemic on cucumber resulted in
$16 million USD economic loss [9]. In the U.S. and central
Europe, the disease exhibits annual recolonization and extinction
cycles, generating annual disease invasions at the continental
scale because P. cubensis is aerially dispersed and sporangia can
be transported over long distances [10, 11]. Additionally, P.
cubensis is an obligate parasite that must overwinter on living
host tissue. In the U.S., this is thought to restrict overwintering
under natural conditions to frost-free areas below approximately
30-degree latitude [12, 13]. Historical data on the occurrence of
the disease is available from standardized sentinel plots deployed
as part of the Cucurbit Downy Mildew ipmPIPE program [11].
Furthermore, the disease is economically important and can
result in complete crop loss in the absence of adequate control
measures [13, 14]. Successful management also requires that
control measures be implemented just before or at the first
detection of the disease in a field or region.

Simple predictive models with analytical solutions have been
used to analyze disease spread in plant epidemics when
mechanistic models do not exist. We consider
phenomenological models with empirical support in plant
disease epidemiology as starting points for our framework. We
focus on widely used models for both the temporal and spatial
behavior of pathosystems driven by aerial dispersal. Although the
models we present are descriptive and not mechanistic, we
emphasize that the models are predictive of epidemic spread
in space and time, even with sparse data sets. In what follows we
provide a brief introduction to these common phenomenological

models; the reader may find this introduction provides useful
context, but may also opt to skip ahead, as the exposition of our
framework beginning in Section 2-1 is sufficiently detailed to
stand alone.

Infection of cucurbits by P. cubensis results in epidemics where
inoculum is produced by plants previously infected during the
same epidemic in that season. In plant disease epidemiology, such
epidemics are termed polycyclic and the logistic model is one of
the simplest in a class of models that are used to approximate the
behavior of these epidemics over time [15]. The logistic model
assumes that the rate of change (over time) of the disease intensity
y at a site is proportional to the product of the disease intensity y
and the healthy intensity 1 − y at that site,

dy

dt
� ay(1 − y) (1)

where a is the rate of disease progression. The observed disease
intensity y for an individual site that gets infected during an
epidemic is represented by the fraction Y/N, where Y represents
the disease in absolute units (such as the number of lesions,
infected leaves, or plants) at that site, and N represents the total
number of individuals or plant area that can possibly be infected
at that site. The value of y is bounded between 0 and 1, inclusively.
For an epidemic to occur, there must be contact between
inoculum and disease-free individuals. The latter is
incorporated into the model by the expression 1 − y.
Production and dispersal of inoculum from infected
individuals, infection of healthy individuals, and subsequent
production of new inoculum by the newly diseased individuals
are incorporated into the model by the rate parameter a [15]. This
model framework is widely used in plant disease epidemiology to
describe diverse pathosystems [15].

Pathogens exhibiting long-distance dispersal result in
epidemics with accelerating velocity over time that are often
difficult to control [5]; inoculum of such pathogens arises from an
initial disease focus (or multiple foci) and travels long distances
where it may cause disease far from the initial focus. The long-
distance spread of disease generates a spatial dispersal gradient
relative to the focus–the rate of decrease in inoculum density with
distance from a source [16]. For aerially dispersed pathogens,
wind is the main dispersal mechanism of inoculum. Epidemics
driven by aerial dispersal exhibit wave-like behavior in which
spatial dispersal at any given time can be accurately approximated
by a power-law [1]. The power-law model is of the form

dy

dr
� −by

r
(2)

or

dy

dr
� −by
r + λ

(3)

where r � r(t) denotes the maximum distance of the disease
front from the epicenter (the radius of the disease spread) at time
t, y � y(t) denotes the disease intensity at the disease front, b is the
spread parameter (unitless), and λ is an offset parameter
incorporated into the model to permit calculations at r � 0.
The power-law model only approximates epidemic behavior well
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on certain spatial scales; when y is large and r is small. The above
two versions of the power-law model can produce extreme values
for dy

dr, which are inconsistent with realistic dispersal behaviors, if
the values of b and λ are chosen in such a way that the model
approximates the dispersal behavior at locations farther from the
source position very well. In addition, the model implies an upper
limit to disease intensity at any given location. A simple
modification overcomes these limitations:

dy

dr
� −by(1 − y)

r + λ
(4)

Eq. 4 is known as a power-logistic model [15]. This power-
logistic model is consistent with empirical observations for
disease spread at multiple spatial scales [15] unlike the models
described in Eq. 2, and Eq. 3.

Disease epidemics are dynamic population processes
occurring in both time and space; the above phenomenological
models can jointly approximate such spatiotemporal dynamics.
For sparse observational data, it is often of interest to describe the
epidemic wavefront–the point(s) which is the farthest from the
position of the source among all points where the disease is
present. To this end, fix a reference point (not necessarily the
source of the epidemic), and let r(t) (resp. y(t)) denote the signed
distance of the wavefront from the reference point (resp. disease
intensity at the wavefront) at time t. Here and later, the signed
distance of (u, v) ∈ R2 from (w, z) ∈ R2 is

d((w, z), (u, v))

+
����������������
(u − w)2 + (v − z)2

√
if either u>w, oru � w and v> z

−
����������������
(u − w)2 + (v − z)2

√
otherwise

⎧⎪⎨⎪⎩
Then

y(t, r(t)|Θ) � f(t, r(t)|Θ)
where f (·, ·), which we would refer to as the intensity function, is a
continuous function that describes the variation of the disease
intensity at the disease wavefront over time relative to the
reference point, given a vector Θ consisting of some
population parameters. The parameter vector Θ characterizes
the spatio-temporal dynamics. For brevity, we write y(t) in place
of y (t, r(t)|Θ). Following Eq. 1, and Eq. 3, we assume that the
signed distance r(t) of the disease wavefront from the reference
point and the disease intensity y(t) at the wavefront at time t
satisfy

dy(t)
dt

� ay(t)(1 − y(t)) (5)

dy(t)
dr(t) �

−by(t)(1 − y(t))
r(t) + λ

(6)

where Θ � (a, b, λ) is the population parameter vector. Here
dy
dr � dy

dt/
dr
dt represents the rate of change of disease intensity at

the wavefront with respect to the signed distance of the
wavefront from the reference point. It can be either positive
or negative depending on the location of the reference point
relative to the epicenter of the epidemic. The combination of the

(spatial) power-logistic model and the (temporal) logistic
phenomenological model described in the above display
characterize a broad class of potentially quite complex
intensity functions f, whose partial derivatives would allow
Eq. 5, Eq. 6 to hold. We point out here that although these
models are purely phenomenological, they do produce analytic
solutions that may approximate the predictions of mechanistic
models [15]. An instantaneous measure of the epidemic velocity
v(t) with respect to the reference point can be expressed in terms
of the signed distance r(t) of the wavefront from the reference
point at time t as follows

v(t) � dr(t)
dt

� dr(t)
dy(t) ×

dy(t)
dt

� −a(r(t) + λ)
b

(7)

Note that in this formulation a positive velocity indicates that the
epidemic wavefront is moving away from (resp. towards) the
reference point when the signed distance of the wavefront from
the reference point is positive (resp. negative); whereas a negative
velocity indicates that the wavefront is moving towards (resp.
away from) the reference point when the above-mentioned signed
distance is positive (resp. negative). Ojiambo et al. [1] used this
model to estimate the spread parameter b of epidemic waves
resulting from the spread of cucurbit downy mildew in the
eastern U.S. The authors of [1] assumed that all epidemics are
first observed at the same initial distance r0 given that P. cubensis
overwinters in south Florida and the inoculum is aerially
dispersed northward when the environment is conducive [1,
13, 17].

Existing phenomenological spatio-temporal models implicitly
assume isotropic spread. (The derivatives in Eq. 5, Eq. 6 do not
involve the angular coordinate of the wavefront relative to the
source position [7, 8] or the reference point). However, dispersal
is generally anisotropic for long-distance dispersed pathogens.
Anisotropy may be due to landscape features [18], host
availability [19], and weather, of which wind is particularly
relevant for aerially dispersed organisms [16]. Various studies
have developed anisotropic dispersal kernels to describe relatively
short distance dispersal of seeds, pollen, and pathogen propagules
[20]. Inoculum dispersed in different directions from a source can
be expressed in terms of either density or distance. In terms of
density, the anisotropy is the mean number of spores deposited in
a given direction, while in distance, it is the mean distance
traversed by a spore in a given direction. An example is work
by Soubeyrand et al. [21] on yellow rust of wheat caused by
Puccinia striiformis where two functions were explored to
quantify and differentiate anisotropy in density and distance
using parametric and nonparametric approaches. The
nonparametric approach was used to determine the main
directions and the shapes of the anisotropy functions, but
without explicit linkage to covariates such as wind speed and
direction. Similarly, Rieux et al. [22] examined a range of
dispersal kernels and found that disease gradients for
ascospores and conidia of Mycosphaerella fijiensis were best
described by a fat-tailed exponential power kernel and a thin-
tailed dispersal kernel, respectively. Rieux et al. [22] further
estimated anisotropy in both density and distance and showed
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that anisotropy was correlated with averaged daily wind gust for
conidia, although wind covariate information was not used
explicitly to estimate anisotropy in disease gradients. These
modeling frameworks incorporate anisotropy into disease
gradients observed for the special case of a single pathogen
generation or dispersal event but do not consider anisotropy
in an epidemic spread in time [20–22].

Besides anisotropy, fitting and interpreting disease gradients and
dispersal are further complicated by the presence of multiple sources
of inoculum [16]. Great care usually is taken in experimental settings
to minimize background inoculum that can confound interpretation
of disease gradients [21–23]. Controlling for multiple inoculum
sources in natural epidemics is much more complicated [24].
Process-based models may be most useful in these situations for
the description and prediction of epidemics [25], but such
approaches are highly resource-intensive and few exist in
practice. A more common situation, especially with invasive
organisms, is that physical process models are not yet available
and resource limitations result in relatively sparse sampling and data.
Thus, simpler phenomenological models are needed to derive
generalized estimates of potential disease spread and probable
sources of primary inoculum [1].

Returning to the motivating example of cucurbit downy
mildew, although P. cubensis may overwinter on susceptible

hosts in temperate regions, an alternative source of inoculum
may exist in protected areas such as greenhouses [13, 14, 26] or
potentially apart from the host as dormant soilborne spores
(oospores) [27]. This hypothesis of alternative sources of
inoculum has been proposed several times but never
demonstrated conclusively. Thus, the cucurbit downy mildew
system also may be suitable for formulating models that account
for multiple sources of the initial inoculum.

In this study, we extend the work of Ojiambo et al. [1] and
Rieux et al. [22] with a modified power-logistic model that
includes anisotropy of disease in space and also consider
multiple sources of primary inoculum. We present a flexible
and generalizable framework that accounts for multiple sources
of inoculum and apply it to cucurbit downy mildew. This
framework can be extended to any pathosystem where the
special conditions of isotropic spread or a single inoculum
source may be too restrictive.

2 MATERIALS AND METHODS

2.1 Modelling Approach
Our work develops an extension and generalization of the
existing spatio-temporal model given by Eq. 5, Eq. 6 that

FIGURE 1 | In this figure, x0 denotes a source, x denotes the reference point, andw denotes the wavefront. (A). r (0) > 0 and r(t) � d (x,w) > 0. (B). r (0) > 0 and r(t) � d
(x, w) < 0. (C). r (0) < 0 and r(t) � d (x, w) < 0. (D). r (0) < 0 and r(t) � d (x, w) > 0.
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modifies the power-logistic model for spatial dynamics (Eq. 6)
by parametrizing λ as a function of angular coordinate of the
wavefront relative to the reference point, and we apply this
model framework in an analysis of cucurbit downy mildew
disease data. In this section, we first present the model
framework and discuss estimation. Following this, we
describe the data sets analyzed. We then present
application-specific details involved in our analysis. Lastly,
we present the design of a simulation study to understand the
sensitivity of the modeling framework and estimation
procedure to sample sizes, error variance, and aspects of
epidemic behavior.

2.2 Anisotropic Multi-Source Velocity Model
For the purpose of exposition, our generalization of the existing
spatio-temporal model is first presented with reference to a single
source and then extended to describe simultaneous dispersal from
multiple sources by introducing a latent factor that indicates
causal attribution to one of the sources in the model. Following a
description of the multi-source extension, we present an iterative
estimation method based on the expectation–maximization (EM)
algorithm.

2.2.1 Single Source Model
First consider a model for disease emanating from a single source
point located at x0 in the two-dimensional Cartesian spaceR2. Let
x denote the reference point. Let ϕ ∈ (−π/2, π/2] be the angle such
that x0 lies on the straight line {x + (u, u tan(ϕ)): u ∈ R}. The
wavefront in the direction ϕ at time t is the point w ∈ R2 which is
the closest to x among all points that lie on the straight line {x +
(u, u tan(ϕ)): u ∈ R} and have nonzero disease intensity at time
t. More precisely, the wavefront in the direction ϕ at time t is x +
(u*, u* tan(ϕ)), where

u*d
min{u ∈ R: x + (u, u tan(ϕ)) has disease presence at time t} if d(x, x0)> 0
max{u ∈ R: x + (u, u tan(ϕ)) has disease presence at time t} if d(x, x0)< 0{

See Figure 1 for an illustration depicting the relative positions
of the source x0, reference point x, and wavefront w for various
scenarios. Let r(t) denote the signed distance of the wavefront at
time t from x, and

y � y(t, r(t), ϕ|Θ) � f(t, r(t), ϕ|Θ) (8)

be the parametric form of the disease intensity at that wavefront.
Clearly, the Euclidean distance (which is always nonnegative)
between x0 and the wavefront at time t is

|r(t) − r(0)| � r(0) − r(t) if r(0) � d(x, x0)> 0
r(t) − r(0) if r(0) � d(x, x0)< 0{

Now let.

dy

dt
� ay(1 − y) (9)

dy

dr(t) �
−~by(1 − y)

|r(t) − r(0)| + ~g(ϕ) (10)

where ~g: (−π/2, π/2]1(0,∞) is a function of the angle ϕ
(bounded away from 0), and a and ~b are parameters of the
model. The function ~g induces spatial anisotropy by allowing
the rate of change of disease incidence at the wavefront with
respect to the signed distance of the wavefront from the
reference point to depend on the angular position of the
source relative to the reference point. Eq. 10 can be written in
the form

dy

dr(t) �
−by(1 − y)
r(t) + g(ϕ), whereg(ϕ)(resp.b)

� −~g(ϕ) − r(0)(resp. − ~b) if r(0)> 0
~g(ϕ) − r(0)(resp.~b) if r(0)< 0{ (11)

The parameters a and b can be positive or negative.
The explicit form of y (·, ·) can be obtained by integrating

the equations appearing in the last display and the boundary
condition that for the differential Eq. 9, Eq. 11 at t � t0 > 0
for each angle ϕ, y (t0, r (t0), ϕ) � y0(ϕ) and r (t0) � r0.
The value of y0(ϕ) may vary depending on the source and
the epidemic under consideration, and may include values
of 0 given anisotropy. First integrating Eq. 11 for a fixed ϕ
gives

log
y

1 − y
( ) � −b log 1 + r

g(ϕ)( ) + c1(ϕ) (12)

where c1(ϕ) is a constant of integration for fixed ϕ. Then,
integrating Eq. 9 for a fixed ϕ gives

log
y

1 − y
( ) � at + c2(ϕ) (13)

where c2(ϕ) is a constant of integration as in Eq. 12 for fixed ϕ.
Now, combining Eq. 12, Eq. 13 and taking any convex
combination of both the sides we get the generic functional form

TABLE 1 | Notations used in multi-source model. The horizontal line divides
notations for data quantities (above) from notations for model quantities
(below). In the text, subscripts i are appended to the data notations to indicate the
corresponding quantity for the ith observation. Similarly, hats are placed over the
model quantities to indicate estimates (e.g., ĉk ).

Notation Description

x(k) kth source location (Cartesian)
r(k) distance to kth source (km)
ϕ(k) angle to kth source (radians)
t time (day of year)
K number of sources

gk kth directional anisotropy function
p(k) probability that disease is caused by kth source
ck kth regression intercept
− Mk kth regression parameter for time
hk (·) normalizing function for kth regression model
ϵ(k) error term in kth regression model

σ2k error variance in kth regression model

∑bβ
(k)
b sb(·) basis function approximation for hk
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log
y

1 − y
( ) � −b′ log 1 + r

g(ϕ)( ) + a′t + c3(ϕ) (14)

that satisfies jointly the differential Eq. 9, Eq. 11. Note that, b′ and
a′ are obtained such that the right-hand side of Eq. 14 is a convex
combination of the right hand side terms in Eq. 12, Eq. 13 (one
example is given by b′ � b/2 and a′ � a/2). Algebraic
rearrangement of Eq. 14 yields that the explicit form for y (·)
up to constants of integration for fixed ϕ is

y(r, ϕ, t|Θ) � 1

1 + 1 + r(t)
g(ϕ)( )b

exp(−at)A(ϕ)
(15)

where the parameters are a, b, g (·), and A(ϕ) � 1
exp(c3(ϕ)). The above

display is a spatio-temporal process for disease intensity with spatial
kernel F(ϕ)(1 + r(t)

g(ϕ))−b for the disease wavefront in the direction ϕ.
We note that this result is a generalization of the ‘geometric’ spatial
kernel considered in Rieux et al. [22] among the candidate models for
anisotropic dispersal densities, wherein the function g that induces
anisotropy is a radial density; Rieux et al. [22] consider the VonMises
distribution for a specific functional form.

A derived model for velocity provides a description of the
movement of an epidemic wavefront relative to the
reference point. As noted in the introduction, this can be
especially useful for epidemiological data that are sparse in
space and time. From Eq. 9, Eq. 11, the velocity of the
wavefront relative to the reference point is given by

v � dr(t)
dt

� −M 1
g(ϕ) + r

( )−1
(16)

where M � a
b. Integrating Eq. 16 yields

log 1 + r(t)
g(ϕ)( ) � −Mt + h(ϕ) (17)

where h(ϕ) is a normalizing constant for fixed angle ϕ. We
note that Eq. 17 is linear in time and can be fit to obtain
estimates of M, h, and g using regression methods (as
described in detail below).

2.2.2 Multiple Source Model
We extend the velocity model (Eq. 17) above to describe
epidemics emanating from K source points. A summary of the
notations used is given in Table 1.

Let (x(1), . . ., x(K)) denote the source locations, where x(k) ∈ R2

for all k � 1, . . . , K. Now an arbitrary location (reference point)
x ∈ R2 is associated with K pairs (r(1), ϕ(1)), . . ., (r(K), ϕ(K)), where
ϕ(k) ∈ (−π/2, π/2] (resp. r(k) ∈ R) denotes the angular coordinate
(resp. signed distance) of the kth source point x(k) relative to x for
all k � 1, . . . , K. A depiction of this data representation is given in
Figure 2.

Let r(k)(t) denote the signed distance of the wavefront in the
direction ϕ(k) at time t from the reference point x. Applying the
model framework above to each set of coordinates yields the
collection of velocity models

log 1 + r(k)(t)
gk(ϕ(k))( ) � −Mkt + hk(ϕ(k)) , k � 1, . . . , K (18)

Now, if multiple sources are present, any given location could be
subject to disease exposure from as many as Kwavefronts moving
simultaneously. Yet, depending on conditions, the movement
patterns of the wavefronts, and relative distances to each
epicenter, an infection event at any particular time and
location is attributable to the different sources with different
probabilities. In other words, disease at particular locations is
more likely due to certain sources rather than others. To
accommodate this intuition, a latent process Z is introduced
that indicates causal attribution of disease to one of the K sources
with a certain probability:

Z ∼ Multinomial 1, p(1), . . . , p(K)( )( ) (19)

For example, P (Z � 1) � p(1) indicates that an infection event is
caused by source 1 with probability p(1). We then assume that a
disease occurrence is described by each of the K velocity models
given in Eq. 18 with probabilities p(1), . . ., p(K). That is, for an
arbitrary disease occurrence at time t, we posit the set of
wavefront descriptions

log 1 + r(k)(t)
gk ϕ(k)( )⎛⎝ ⎞⎠ � −Mkt + hk ϕ(k)( ) with probability

p(k) � P(Z � k) (20)

FIGURE2 |Depiction of data representation. A single location x is shown
relative to three source points x(1), x(2), and x(3), and the polar coordinates (r(1),
ϕ(1)) (r(2), ϕ(2)), and (r(3), ϕ(3)) label the distances and angles to each source.
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for k � 1, . . . , K. This framework makes the implicit assumption
that disease is caused by inoculum produced at exactly one
source. However, it will be seen that our estimation method
does not involve a hard classification rule for disease
observations–we instead specify observation weights for each
velocity model according to estimated probabilities p(1), . . ., p(K).

2.2.3 Estimation
We propose an estimation procedure wherein velocity models are
fit using regression methods conditional on gk. The functions gk
introduce anisotropy in the model by imposing directional
variation in the spatial rate of change of disease incidence via
the differential equation in Eq. 11. In many applications, known
variables drive anisotropy, so it is plausible to estimate gk from
covariate information or secondary data sources.

The velocity models Eq. 18 are fitted conditional on gk to
disease occurrence data (presence or absence) of the form
(r(1)i , ϕ(1)i ), . . . , (r(K)

i , ϕ(K)
i ), ti{ }n

i�1 indicating the locations and
times of the first observed disease case. For the purpose of
exposition, suppose one is fitting only the kth model: consider
just the data (r(k)i , ϕ(k)i , ti) and assume P (Zi � k) � 1. Now, adding
an offset ck and Gaussian error term ϵ(k)i to Eq. 18 yields the
statistical data generating model

log 1 + r(k)i

gk ϕ(k)
i( )⎛⎝ ⎞⎠ � ck −Mkti + hk ϕ(k)

i( )
+ ϵ(k)i { ϵ(k)i ∼iid N 0, σ2k( )

i � 1, . . . , n
(21)

Estimates of ck, Mk and hk are easily computed using
semiparametric regression. Let s1 (·), . . ., sB (·) denote a set of
B basis functions for the h(k) function. Now, rewriting Eq. 21 we
obtain

log 1 + r(k)i

gk ϕ(k)
i( )⎛⎝ ⎞⎠ � ck + (−Mk)ti + β(k)1 s1 ϕ(k)

i( ) +/

+ β(k)B sB ϕ(k)
i( ) + ϵ(k)i (22)

The ordinary least squares solution to Eq. 22 yields estimates of

ĉk, M̂k and ĥk � ∑bβ̂
(k)
b sb.

Finally, this estimation strategy is extended to the full
collection of K models by accounting for the latent variables
Zi that attribute each of the i data points to one of the K sources.
Formally, the joint likelihood of the data arising from Eqs. 19, 20
is maximized with respect to the parameters p(k) ∈ RN,
β(k) ∈ RB+2, and σ2k for k � 1, . . . , K. The EM algorithm is
used to iteratively update estimated multinomial probabilities
p̂(1)
i , . . . , p̂(K)

i for each data point in alternation with fitting the
regression models in Eq. 22 using the estimate p̂(k)

i as a regression
weight for the ith data point in fitting the kth model. In detail, the
iterations are given by:

1. Initiate p̂(k)
i as the weight of ith data-point to be associated

with kth source, where ∑K
k�1p̂

(k)
i � 1.

2. Compute/update the estimates (ĉk, M̂k, ĥk, σ̂
2
k)

K

k�1 by fitting
each of the models in Eq. 22 using weighted least squares
(WLS) with weights p̂(k)

i for the ith data point and the
kth model.

3. Update p̂(k)
i by

p̂(k)
i �

φ log 1 + r(k)i

gk ϕ(k)i( )( ) − ĉk + M̂kti − ĥk ϕ(k)
i( ), σ̂2k( )p̂(k)

i

∑K
k�1φ log 1 + r(k)i

gk ϕ(k)i( )( ) − ĉk + M̂kti − ĥk ϕ(k)
i( ), σ̂2

k( )p̂(k)
i

(23)

where φ(x, σ2) is the probability density function of a Gaussian
random variable with mean zero and variance σ2 evaluated at
value x.

4. Repeat steps two to three until convergence.

A simple heuristic for the initialization step is to use as p̂(k)
i the

estimated probabilities obtained by logistic regression of an
indicator of whether the kth source is closest on the variables
r(1)/ĝ1(ϕ(1)), . . . , r(K)/gk(ϕ(K)). We note that an isotropic model
with one or many sources can be recovered within this framework
as a special case by fixing gk(x) � 1/2π for x ∈ [0, 2π], with the
consequence that hk ≡ 0. The details on the derivation and
explanation of the fitting procedure is given in the Supporting
Information S1 EM Algorithm.

2.2.4 Spatial and Temporal Predictions
Estimated models—the Kmodels in Eq. 22— directly yield fitted

values for the quantity log(1 + r(k)i

gk(ϕ(k)i )). Since this quantity does

not have meaningful units, estimated times of disease occurrences
conditional on location and estimated distances of occurrences
from sources conditional on time and direction for each data
point provide more interpretable assessments of fit quality with
biological relevance. These temporal and spatial estimates are

t̂
(k)
i � 1

−M̂k

log 1 + r(k)i

gk ϕ(k)
i( )⎛⎝ ⎞⎠ − ĥk ϕ(k)

i( ) − ĉ(k)⎛⎝ ⎞⎠ (24)

r̂(k)i � gk ϕ(k)
i( ) exp ĉ(k) − M̂kti + ĥk ϕ(k)

i( ){ } − 1( ) (25)

Since the model includes estimated probabilities that the ith
data point is associated with each source (the estimates
p̂(1)
i , . . . , p̂(K)

i ), a simple heuristic for selecting a single
temporal estimate from t̂

(1)
i , . . . , t̂

(K)
i and a single spatial

estimate from r̂(1)i , . . . , r̂(K)
i is to choose the estimates t̂

(k)
i and

r̂(k)i associated with the most probable source. That is, let

(t̂i, r̂i) �def t̂
(k*)
i , r̂(k

*)
i( ) where k* � arg max

k

p̂(k)
i{ } (26)

Then, a fitted model can be evaluated according to the temporal
and spatial root mean square error (RMSE) metrics.

rmset �def
1
n
∑n
i�1

(ti − t̂i)2⎛⎝ ⎞⎠1/2

(27)
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rmser �def
1
n
∑n
i�1

(ri − r̂i)2⎛⎝ ⎞⎠1/2

(28)

As we describe below, we used RMSE for model comparison
because our interest is in prediction accuracy and RMSE is a
direct measurement of this quantity.

2.3 Cucurbit Downy Mildew Data
Epidemics of cucurbit downy mildew recorded in the U.S. from
2008 to 2016 were obtained from the data submitted to the
Cucurbit Downy Mildew ipmPIPE program (http://cdm.
ipmpipe.org). The ipmPIPE is an information and decision
support system that gathers pertinent data (disease occurrence
in cucurbit production areas), applies predictive models to the
data, incorporates expert interpretation, and communicates near-
real-time output to cucurbit growers, extension personnel, and
crop consultants [11]. Records in the system include disease
reports from a network of regularly monitored sentinel plots
as well as voluntary disease reports from non-sentinel plots
submitted by commercial growers, agricultural researchers,
and the general public. We describe below the two types of
disease reports and a subset of the data selected for analysis.

2.3.1 Sentinel Plot Reports
Sentinel plots were fixed locations planted with different cucurbit
host types for monitoring downy mildew outbreaks and were
strategically placed within specific states at locations that
collaborators could easily access. During the years 2008–2016, the
sentinel plots were located at research facilities or in commercial
fields with standard dimensions of 15 m × 61 m and were
georeferenced using the Global Positioning System. These plots
were monitored for disease symptoms weekly to biweekly by
cooperating scientists and extension specialists and were planted
with susceptible, early maturing cultivars. The cucurbit host types

grown in the sentinel plots were Cucumis sativus (cucumber cv.
Straight 8 and Poinsett 76),Cucumis melo (cantaloupe cv. Hales Best
Jumbo), Cucurbita pepo (acorn squash cv. Table Ace), Cucurbita
maxima (giant pumpkin cv. Big Max), Cucurbita moschata
(butternut squash cv. Waltham), and Citrullus lanatus
(watermelon cv. Micky Lee) [11]. The compiled data set on
sentinel plot disease reports consist of the date of first observed
occurrence of disease, the reporting date, affected host type, the
incidence of plants affected, and plot location.

2.3.2 Non-Sentinel Reports
Cucurbit downy mildew was also monitored via voluntary
reporting in locations not designated for regular surveillance.
These locations include commercial fields, research plots, and
home gardens. Compiled data on voluntary reports consisted of
the date of first observed occurrence of disease, the reporting date,
location, and affected host type (if provided). This information is
potentially instructive for understanding the distribution and
appearance of cucurbit downy mildew, but subject to greater
uncertainty with respect to the timeliness of disease detection due
to the non-standardized nature of the plant populations, potential
confounding from fungicide applications, and the absence of
regular monitoring and reporting protocols.

2.3.3 Data Selected for Analysis
We selected a subset of the disease reports from which to model
epidemic wavefronts using the framework described above. The
subsetting strategy was intended to capture a single epidemic
wave as best as possible while ensuring uniform reliability on the
timeliness of reports. First, for the reliability of timeliness, we
considered only sentinel reports. This was thought to better
ensure consistent variation across reports in the accuracy of
dates of first observed disease occurrences due to a fixed
observation frequency and protocol. Second, late-season
outbreaks are known to occur due to later-planted cucurbit

FIGURE 3 | Disease reports from 2008 to 2010 plotted by location, reported symptom date, and plot type.
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crops that are common in southern and mid-Atlantic regions of
the U.S [1]). Thus, we sought to capture the first outbreak each
year by restricting attention to reports in which the date of
observed occurrence is before August. Finally, we selected data
from 2008, 2009, and 2010 to capture annual variation, and chose
these specific years due to a relatively greater number of sentinel
plots available (n � 25, 65, and 28, respectively). From the
resulting reports, we compiled data on the location, date of
symptom onset (presence of disease at any level), and host
type from each report (Figure 3).

2.3.4 Application Details
The three consecutive years of selected sentinel reports were
analyzed separately by fitting isotropic (I) and anisotropic (A)
one-source (OS) and two-source (TS) velocity models to data
from each year. To apply the model framework to this specific
dataset, we identified potential source locations from an
exploratory analysis of early occurrences and developed a
simple method of estimating the functions gk from
meteorological information known to drive dispersal.

2.3.5 Selection of Source Locations for Cucurbit
Downy Mildew Data
Source locations were specified as county centroids. To
identify putative source locations for each year, we
examined both sentinel and voluntary reports of early
disease occurrences for geographical location and timing.
The first observation of disease occurrence occurs reliably in
southern Florida every year, so the centroid of the county in
which the first disease symptoms were reported each year was
fixed as the (anonymized) main source point. In addition,
early occurrences are often observed in the southwestern U.S.
and the Great Lakes region before expected dispersal from the
source point in Florida. We identified several counties in
northern latitudes (Erie and Wayne Counties in Ohio, and
Niagara County in New York) that had early occurrences in
multiple years, and several counties in the southwestern
region (Brazos and Hidalgo Counties in Texas, Vernon
County in Louisiana, and Payne County in Oklahoma)
that had early occurrences in multiple years. We
considered each of these counties as possible locations for
a second source in each year informed by biology of the
pathosystem [13, 14, 26]. Based on the reports in each region,
the earliest disease occurrences were used to identify dates at
which a putative source in each region might appear. We note
here that the alternate sources specified are not necessarily
the actual location of overwintering of P. cubensis, but are a
reasonable proxy for an alternate source of inoculum, if one
should exist, when placed within the path of the wavefront
emanating from the true source.

2.3.6 Estimation of Anisotropy Function From
Meteorological Data
While estimating the parameters ( p(k)

i{ }n
i�1, ĉk, M̂k, ĥk, σ̂

2
k)

K

k�1 in
the EM algorithm, the functions (gk)Kk�1 were considered known.
However, usually gk are not known, so we propose estimating gk
using some additional data. In our application we estimated the

functions gk based on meteorological data measured at the source
locations, since variation in wind direction and speed are primary
drivers of anisotropic dispersal in this pathosystem. Hourly wind
direction and speed near each county centroid with a sentinel plot
or imputed disease source was derived from weather observations
in the National Oceanic and Atmospheric Administration
Integrated Surface database [28] and were provided by BASF
(Research Triangle Park, Raleigh, NC).

We modeled gk as radial density functions and estimated gk
using the wind data. Nonparametric kernel density estimates of
the radial density functions gk were computed from the collection
of hourly wind directions at each of the k sources over the time
interval represented in the disease data. If θ(k)i denotes the angle of
the predominant wind direction at time point i and source
location k, the wind direction data θ(k)1 , . . . , θ(k)n is treated as a
sample of size nk on the unit circle centered at the source point
x(k). For each k, we computed a kernel density estimator ĝk of the
form

ĝk(x) �
C(h)
n

∑nk
i�1

K
1 − xθ(k)i

h2
( ) , x ∈ [0, 2π] (29)

where h is a positive number andC(h)−1 � ∫2π

0
K((1 − xθ)/h2)dθ

is a normalizing constant. For the application in this work, the
kernel function K(z) � exp{ − z} is used.

2.3.7 Application of Model Framework
To apply our modeling framework in the analysis of the cucurbit
downy mildew data, we calculated two alternate responses: a
response for the isotropic models, log(1 + r(k)i ), and a response
for the anisotropic models, log(1 + r(k)i /ĝk(ϕ(k)i )) for each data
point i � 1, . . . , n, and estimated the velocity models as
described above.

FIGURE 4 | The locations of observations from one simulation for κ � 5
and σ2 � 0.5 and 1. The results are shown for temporally synchronous and
asynchronous epidemics. The x and y axis scales are set to -500 and 5,000 for
better visualization. Note that x and y are coordinates in this visualization.
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2.4 Simulation Study
We conducted a set of simulations to quantify parameter recovery
using the model and estimation procedure for different sample
sizes and scenarios when disease spread was weakly to strongly
anisotropic. First, we set two source locations well separated
in two-dimensional space at Cartesian coordinates of (0,0)
and (2000, 2000) representing the first and second sources,
respectively. These locations approximate the spatial scale in
kilometers of the cucurbit downy mildew sources in Florida
and an alternate source of interest in the Upper Midwest. For
sample sizes of n � 50, 100, 250, and 500, we fixed the proportion
of disease attributable to the first and second sources as 0.7 and
0.3, respectively. We chose the Von Mises density function to
generate circular normal data that could induce anisotropy in
disease spread relative to the two locations. The Von Mises
function has two parameters: μ, a location measure, and κ, a
concentration measure, and is given by

f(x) � eκ cos(x−μ)

2πIo(κ)
for any angle x ∈ [μ − π, μ + π] where Io is a Bessel function of
order 0. The μ values were chosen such that disease spread from
the two sources would be in opposite directions and overlapping
in space by setting μ1 � π

4 and μ2 � 5π
4 . Values of κ � 5 and κ � 2

were chosen to produce strongly and weakly anisotropic spread,
respectively. We generated two separate angle grids from the
uniform distribution and used the Von Mises density function
with μ and κ as noted to estimate g(ϕ).

We also simulated temporally synchronous and asynchronous
epidemics by varying the daily time grids from the uniform
distribution. The time grid ranged from the day of year
50–150 for synchronous spread from the two sources, and
days 50–150 for source 1, and days 100–150 for source 2 for

asynchronous epidemics. We then generated data according to
the two models by inputting the corresponding time grid, angle
grid, and coefficients according to a simplified version of the
model in Eq. 21.

We consider that the error variance σ2 is the same for both the
sources. We evaluated the sensitivity of the parameter estimates to
error variance by varying σ2 two-fold. The distance from each source
location (r) was then calculated by back transforming r. We then
calculated the corresponding x and y Cartesian coordinates.

TABLE 2 | The mean parameter estimates and standard deviation for two-source models fit to simulated data. Two sets of estimates are reported corresponding to a (0,0)
placement for a first source and a (2000,2000) placement for a second source, with temporally synchronous or asynchronous epidemics (n is the sample size.)

Start
time

Source 1 Source 2

n σ2 Intercept Time Basis
1

Basis
2

Intercept Time Basis
1

Basis
2

True values 4.850 0.030 0.500 0.000 3.750 0.020 0.000 −1.000

Synchronous 50 0.5 4.849 0.030 0.498 −0.003 3.768 0.020 −0.005 −0.968
(0.322) (0.003) (0.178) (0.175) (0.556) (0.005) (0.295) (0.313)

1 5.100 0.028 0.489 −0.067 4.435 0.017 −0.011 −0.790
(0.777) (0.007) (0.383) (0.366) (6.867) (0.015) (1.003) (6.579)

250 0.5 4.860 0.030 0.497 0.001 3.783 0.020 −0.001 −0.987
(0.142) (0.001) (0.077) (0.075) (0.225) (0.002) (0.123) (0.126)

1 5.561 0.024 0.501 −0.189 4.032 0.016 0.005 −0.700
(0.373) (0.003) (0.158) (0.155) (0.709) (0.007) (0.376) (0.456)

Asynchronous 50 0.5 4.860 0.030 0.505 −0.005 4.015 0.018 0.005 −0.949
(0.334) (0.003) (0.177) (0.179) (1.655) (0.013) (0.343) (0.350)

1 5.117 0.028 0.514 −0.006 6.378 0.001 −0.039 −0.317
(0.791) (0.007) (0.441) (0.390) (6.858) (0.026) (1.214) (6.007)

250 0.5 4.935 0.029 0.498 0.003 3.958 0.018 −0.001 −0.931
(0.166) (0.002) (0.075) (0.074) (0.712) (0.006) (0.158) (0.167)

1 5.180 0.027 0.502 0.003 8.563 −0.011 −0.014 −0.808
(0.299) (0.003) (0.161) (0.145) (18.319) (0.017) (0.742) (18.197)

FIGURE 5 | Estimated probability of disease source for each of the n �
250 observations in individual, representative simulations with κ � 5 and σ2 �
0.5 and 1. Results are shown for temporally synchronous and asynchronous
epidemics.
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We pooled the simulated Cartesian coordinates and times,
converted the Cartesian coordinates to sets of polar coordinates
for each source, and applied the fitting procedure to estimate
coefficients. We ran 1,000 simulations and calculated the mean
and standard deviation of the estimated coefficients, as well as the
proportion of the n samples attributed correctly to each of the two
sources in each of the 1,000 simulated epidemics. Examples of
individual simulations are presented in Figure 4.

3 RESULTS

In this section, we first present representative conditions
important for confirming the performance of the two-source
model and the EM procedure for parameter recovery and source
attribution. Full results of other simulation experiments are
presented as Supporting Information. Following the simulation
results, we present the results of analyses of observed disease data
from 2008 through 2010. For each year, several candidate models
were fit. We considered both one-source and two-source models
in each year, and anisotropic and isotropic versions of each. In
addition, for the two-source models, we considered two alternate
source locations based on the considerations discussed above.

3.1 Simulation Study
The mean and standard deviation of the estimated coefficients for
n � 50 and 250 for a two-source epidemic with anisotropic spread
of disease (Von Mises distribution κ � 5) are given in Table 2.
Results for n � 100 and 500 are given in Supplementary Table S1
and results for κ � 2 are given in Supplementary Figures S1–3.
Parameter estimates were generally accurate across the various
sample sizes and whether epidemics at the two sources were
initiated synchronously or asynchronously, but sensitive to error

variance. There was a slight increase in the mean values of the
intercept estimates as n increased from 50 to 250, particularly as
the error variance increased. Expectedly, the standard deviation
of the parameter estimates increased with error variance and
decreased with n. Overall, the estimates were highly accurate in all
scenarios except for large sample sizes with high variance and an
asynchronous start (n � 250, σ2 � 1). We hypothesize that the
disease observations become more densely mixed under this
setting and thus make the sources more difficult to discern,
thereby compromising estimation of model parameters. We
note in particular that estimates for the less dominant source
(source 2) are most severely compromised, consistent with our
observation below that more challenging simulation conditions
tend to cause misattribution to the dominant source.

The estimated probability of disease being due to spread
from one of the two sources was used to attribute disease to
each of the sources in the simulations and calculate the
overall mean proportion of disease correctly assigned to
the true source (Figure 5 and Figure 6). The disease due
to the dominant source, source 1, was attributed correctly to
this source in most simulations independent of sample size,
error variance, location of the source, or other epidemic
conditions specified. This behavior is consistent with
expectations, as without additional information the EM
algorithm attributes disease due to the most abundant,
dominant inoculum source. The disease was less often
attributed correctly to the less abundant second source,
although source attribution here was still relatively
accurate. Classification accuracy was sensitive to the
placement of sources in space, diminishing as the two
sources were more closely situated. Classification accuracy
decreased when epidemics initiated from the two sources
were temporally asynchronous, anisotropy was stronger, and
error variance was larger. Although we see that some of the
observations from the less abundant source can be incorrectly
allocated to the more abundant source, the estimates of the
model parameters for the two sources are still relatively
accurate and capture the behavior of the spread from each
of the sources in terms of velocity of spread and anisotropy.

3.2 Estimation for Cucurbit Downy Mildew
Dataset
Parameter estimates are reported for six models in each year:
three isotropic models having one source only, an alternate source
in the north, and an alternate source in the southwest; and three
anisotropic models with the same source locations. The isotropic
models are referred to as “Isotropic One Source” (IOS), “Isotropic
Two Source (Southwest)” (ITS-SW), and “Isotropic Two Source
(North)” (ITS-N); and similarly, the anisotropic models are
referred to as “Anisotropic One Source” (AOS), “Anisotropic
Two Source (Southwest)” (ATS-SW), and “Anisotropic Two
Source (North)” (ATS-N). For the two-source models, separate
velocity models are fitted corresponding to each of the two
sources, and these are distinguished by indicating the source
location parenthetically, e.g., ITS-SW (FL) and ITS-SW (TX)
indicate the two velocity models that comprise the ITS-SW

FIGURE6 |Results from a simulation experiment with n � 250; κ � 5, two
levels of error variance (σ2), and temporally synchronous or asynchronous
epidemics. The histogram summarizes the mean proportion of disease
correctly assigned to the true source over 1,000 simulations.
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model. Since one of these sources is always located in Florida in
the analyses, we adopt the convention of referring to the two
sources as the Florida source and the “alternate” source.

Graphical and tabular representations of spatial and temporal
prediction errors are reported for each of the models fitted to data
from each year. The graphical representations focus on temporal
predictions and show contours of the estimated epidemic fronts
at various times. Numerical reports include spatial prediction

errors, and, for the two-source models, errors from models fitted
using additional alternate source locations that were considered.

These results simultaneously address several questions.
First, the model comparisons suggest whether in a given
year dispersal exhibited directional variation. Second, the
same comparisons provide indirect evidence for the existence
of a second source, depending on whether positing such a
source better explains the pattern of dispersal. Third, the

TABLE 3 | Parameter estimates and 95% confidence intervals for one- and two-source models fit to 2008 data (n � 25). In the two-source models, two sets of estimates are
reported corresponding to a northern placement and a southwestern placement for the alternate (non-FL) source. No basis parameters are reported for the isotropic
models, since these terms are only included in the anisotropic models (FL - Florida, TX - Texas, OH - Ohio).

Model (source) Intercept (ĉk) Time (−M̂k) Basis 1 (β̂
(k)
1 ) Basis 2 (β̂

(k)
2 )

IOS (FL) 3.052 0.020
(2.451, 3.654) (0.017, 0.024)

ITS-SW (FL) 2.943 0.021
(2.464, 3.421) (0.018, 0.024)

ITS-SW (TX) 1.784 0.024
(0.583, 2.986) (0.017, 0.031)

ITS-N (FL) 2.975 0.021
(2.370, 3.581) (0.017, 0.025)

ITS-N (OH) 24.675 −0.089
(−15.374, 64.725) (−0.281, 0.103)

AOS (FL) 4.921 0.021 −0.234 0.207
(4.273, 5.568) (0.017, 0.026) (−0.679, 0.212) (−0.296, 0.710)

ATS-SW (FL) 4.887 0.021 −0.189 0.297
(4.287, 5.488) (0.016, 0.026) (−0.572, 0.194) (−0.293, 0.886)

ATS-SW (TX) -18.597 0.033 6.894 18.280
(−22.652, −14.543) (0.033, 0.033) (3.001, 10.787) (18.023, 18.537)

ATS-N (FL) 4.885 0.022 −0.194 0.191
(4.241, 5.528) (0.017, 0.026) (−0.608, 0.219) (−0.264, 0.647)

ATS-N (OH) 7.780 −0.009 5.089 −0.475
(−117.549, 133.110) (−0.562, 0.543) (−19.883, 30.062) (−10.783, 9.833)

TABLE 4 | Parameter estimates and 95% confidence intervals for one- and two-source models fit to 2009 data (n � 65). In the two-source models, two sets of estimates are
reported corresponding to a northern placement and a southwestern placement for the alternate (non-FL) source. No basis parameters are reported for the isotropic
models, since these terms are only included in the anisotropic models (FL - Florida, TX - Texas, OH - Ohio).

Model (source) Intercept (ĉk) Time (−M̂k) Basis 1 (β̂
(k)
1 ) Basis 2 (β̂

(k)
2 )

IOS (FL) 4.524 0.014
(3.744, 5.304) (0.010, 0.018)

ITS-SW (FL) 4.194 0.016
(3.516, 4.873) (0.012, 0.019)

ITS-SW (TX) 5.092 0.009
(4.153, 6.032) (0.004, 0.015)

ITS-N (FL) 2.921 0.023
(2.466, 3.377) (0.020, 0.026)

ITS-N (OH) 7.795 −0.007
(5.453, 10.137) (−0.020, 0.005)

AOS (FL) 8.531 0.014 2.555 −2.334
(7.262, 9.799) (0.010, 0.019) (1.153, 3.958) (−3.758, −0.910)

ATS-SW (FL) 8.179 0.014 2.028 −1.636
(7.011, 9.347) (0.010, 0.018) (0.736, 3.319) (−2.968, −0.304)

ATS-SW (TX) 5.609 0.027 5.328 −3.062
(4.515, 6.704) (0.017, 0.036) (4.603, 6.054) (−4.714, −1.409)

ATS-N (FL) 4.873 0.021 −0.599 1.424
(4.020, 5.726) (0.017, 0.024) (−1.434, 0.236) (0.556, 2.293)

ATS-N (OH) 9.148 −0.005 0.308 −0.396
(7.277, 11.019) (−0.015, 0.004) (−0.089, 0.706) (−0.818, 0.026)
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prediction errors illustrate the sensitivity of results to the
placement of source locations.

3.3 Disease Outbreak and Spread for
Cucurbit Downy Mildew Dataset
In all the years, the disease was observed first in Florida from
January to February, with reports in sentinel plots beginning in
February to March (Figure 3). The first detection of the disease
generally progressed northward with time, but with some
exceptions particularly in the southwestern locations along the
Gulf Coast and infrequently in the Great Lakes region such as in
2009. That is, there appeared to be anisotropy in disease spread.

3.3.1Model Fitting for Cucurbit DownyMildewDataset
The parameter estimates for one- and two-source isotropic and
anisotropic models fitted to data from each of the years 2008
through 2010 are given in Table 3, Table 4, and Table 5. For all
years, the time parameter estimates (−M̂k) for the isotropic and
anisotropic one-source models (IOS and AOS) were significant,
indicating that the Florida source is an important epicenter in
explaining disease progression. Further, the estimates of this
parameter were not affected considerably by model
specification—that is, they are relatively stable across models in
each year—suggesting that the epidemic velocity associated with
the Florida source is a relatively strong signal in the data.

For the two-source models, estimates of the time parameter
associated with the alternate source were not significantly
different from 0 when the alternate source was placed in the
Great Lakes region (ITS-N and ATS-N in all years). This indicates
that the data provide little evidence of dispersal emanating from
the northern alternate source location, suggesting that no
epicenter was present, or detectable, in the region. In these
cases, when the northern source is included in the model, the
contribution of the associated velocity model in explaining

disease progression is to generate predictions of occurrences at
time-invariant distances from the source based on certain observations
in the dataset. In many cases, the estimated parameter was negative,
indicating a slightly contracting front toward the source. By contrast,
time parameters associated with the alternate source were positive and
significantwhen the alternate sourcewas placed in the southwest (ITS-
SW and ATS-SW in 2008 and 2009; the estimated ITS-SW or ATS-
SWmodels in 2010 reduced to single-sourcemodels, as all data points
had low estimated probabilities of being caused by a southwestern
source).

The basis parameter estimates β̂
(k)
1 and β̂

(k)
2 , which when

combined give estimates of the normalizing functions ĥk, are
of varying significance depending on the year and velocity model.
In 2008, these parameters are only significant for the ATS-SW
model; in 2009, they are significant for every model except ATS-
N; and in 2010, they are not significant for any model. Since the
normalizing functions hk are functions of angle, the significance of
these parameters indirectly indicates the statistical strength of evidence
that anisotropy is present. Thus, in 2008 there is evidence for
anisotropic spread from the southwestern source, and in 2009,
there is evidence of anisotropic spread from all source locations.

Finally, the estimates for the two-source models suggest that
the importance of including a second source varies depending on
the year and source location. None of the velocity models
associated with northern source locations had significant non-
intercept parameter estimates. In 2008 and 2009, the velocity
model associated with the Texas source included significant
terms. Yet, in 2010, the ITS-SW and ATS-SW models
attributed all data points to the Florida source.

3.3.2 Spatial and Temporal Predictions for Cucurbit
Downy Mildew Dataset
Estimated epidemic fronts from each of the six models discussed
above for each of the years 2008–2010 are shown in Figure 7,
Figure 8, Figure 9, respectively, along with time-of-occurrence

TABLE 5 | Parameter estimates and 95% confidence intervals for one- and two-source models fit to 2010 data (n � 28). In the two-source models, two sets of estimates are
reported corresponding to a northern placement and a southwestern placement for the alternate (non-FL) source. No basis parameters are reported for the isotropic
models, since these terms are only included in the anisotropic models. In this year, no alternate source model is estimated for the southwest location, as nearly all data points
are attributed to the FL source during model fitting (FL - Florida, TX - Texas, OH - Ohio).

Model (source) Intercept (ĉk) Time (−M̂k) Basis 1 (β̂
(k)
1 ) Basis 2 (β̂

(k)
2 )

IOS (FL) 3.433 0.017
(2.200, 4.665) (0.011, 0.024)

ITS-SW (FL) 3.564 0.016
(2.381, 4.747) (0.010, 0.023)

ITS-N (FL) 4.337 0.011
(3.342, 5.331) (0.005, 0.017)

ITS-N (NY) 5.363 0.004
(1.612, 9.115) (−0.015, 0.023)

AOS (FL) 4.967 0.020 0.226 −0.129
(3.116, 6.817) (0.009, 0.032) (−0.475, 0.927) (−0.814, 0.557)

ATS-SW (FL) 5.218 0.019 0.292 −0.053
(3.384, 7.051) (0.007, 0.030) (−0.388, 0.972) (−0.743, 0.636)

ATS-N (FL) 5.745 0.015 0.364 −0.268
(4.536, 6.955) (0.007, 0.022) (−0.081, 0.809) (−0.680, 0.144)

ATS-N (NY) 10.675 −0.014 −0.040 0.559
(5.278, 16.073) (−0.040, 0.012) (−0.509, 0.429) (−0.565, 1.684)
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errors for each data point. Epidemic front predictions and
associated errors for an extension of the methods to a three-
source model are given in Supplementary Figure S4. Anisotropy
in disease spread was apparent in the models accounting for an
unequal velocity of spread in space, with the direction and
magnitude varying depending on the specific source or
combinations of sources (regardless of the significance of the
estimates of hk). Predicted expansion of the epidemic wavefront
indicated an acceleration of epidemic velocity over time from the
initial disease focus when the focus was placed in the southwest
extent of the spatial domain or Florida. This was true for all years
and models, consistent with the positive sign of the coefficient for
the time variable associated with these models and sources (−M̂k

in Tables 3–5). In contrast, disease sources placed in a northern
location near the Great Lakes only displayed this behavior (an
expanding predicted wavefront) in 2010. In 2008 and 2009, the
predicted wavefronts were either little changed over time (2008)
or indicated a gravitational pull behavior (2009) due to near zero
or negative parameter estimates for the time parameter
(Tables 3, 4).

Accounting for anisotropy in one source models reduced
RMSE measured in time slightly (0.76–1.35 days) but

consistently (Table 6; Supplementary Figures S5–7); spatial
errors were not consistently reduced in these data sets. For
multiple source models, prediction errors in time and space
varied over orders of magnitude depending on the model and
specific year (Figures 7–9 and Table 7). Among the multiple
source models, some anisotropic models reduced temporal and
spatial errors for some years as compared to the corresponding
isotropic model. However, no single more complex model
consistently reduced prediction errors across all years when
multiple sources were included.

RMSE for multiple source models was sensitive to the
placement of the alternate source in both space and time
(Table 7). Model sensitivity to source placement was
particularly acute for alternate sources placed in northern
latitudes. Imputing sources in certain locations and times led
to massive prediction errors in some instances, for example, when
the source was placed in Niagara County, New York in 2009.
Generally, reductions in RMSE in space or time were most often
observed with two-source models when disease spread was
isotropic and the second source was placed in the
southwestern extent of the spatial domain. Conversely, the
two-source models with the largest RMSE were most often

FIGURE 7 | Time-of-occurrence prediction errors for predictions from isotropic and anisotropic one- and two-source models fit to data from sentinel plots in 2008,
with contours representing estimated disease front over time according to themodels. The two-sourcemodels were each fit with two alternate (non-FL) source locations:
a northern and a southwestern location. Each panel shows results according to a different model: isotropic one-source (IOS); isotropic two-source (ITS); anisotropic one-
source (AOS); and anisotropic two-source (ATS).
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associated with an alternate source sited in a northern latitude
(Table 7; Figures 7–9).

3.3.3 Source Attribution
The modeling framework includes the estimation of the most
probable source k resulting in disease at a distant location when
multiple sources are specified. Disease outbreak was attributable
to different primary sources depending on the year, location of
the alternate source, and anisotropy (indicated by plotting
character in Figures 7–9). Disease outbreaks in Florida and
other southeastern states were invariably attributed to the
source in southern Florida, independent of anisotropy or the
specification of another source. In other regions, the source
deemed most probable for disease outbreak at a given location
depended on where sources were placed. Proximity was
associated with whether a source was the most probable cause
of disease at a given sentinel plot, but with some notable
exceptions. For instance, setting a source in the Great Lakes
region led to most disease outbreaks in the Upper Midwest,
Northeast, and northern mid-Atlantic region to be attributable to
the northern source rather than a source in Florida. With an
alternate source sited in the southwest, plots on the western and

northern edge of the Gulf Coast were mostly attributed to this
source, with ensuing disease spread to the northeast (Figure 7) or
north (Figure 8). In 2010 there were no contours associated with
the southwest source (Figure 9) as only two sentinel plots in
Texas and Michigan were attributed to that source.

We again emphasize here that prediction errors associated
with any of these models varied depending on the year and
specific model, and were not necessarily improved uniformly as
compared to the corresponding isotropic one source model
(Tables 6, 7).

4 DISCUSSION

We have developed a generalized, wide, and flexible class of
spatio-temporal models capable of accounting for the presence of
any number of initial inoculum sources and any kind of
anisotropic spread of biological species that can govern disease
(or other) gradients and spatial spread in time. We have also built
a data-driven procedure, which selects an appropriate model
from the above-mentioned class of models and provides
computationally efficient estimates of the model parameters.

FIGURE 8 | Time-of-occurrence prediction errors for predictions from isotropic and anisotropic one- and two-source models fit to data from sentinel plots in 2009,
with contours representing estimated disease front over time according to themodels. The two-sourcemodels were each fit with two alternate (non-FL) source locations:
a northern and a southwestern location. Each panel shows results according to a different model: isotropic one-source (IOS); isotropic two-source (ITS); anisotropic one-
source (AOS); and anisotropic two-source (ATS).
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This framework is well suited to infer the probable sources of disease
spread due to long-distance dispersal responsible for later outbreaks at
distant locations. We successfully applied this approach to predict the
spread of cucurbit downy mildew in the eastern U.S., although the
class of models and estimation methods are directly applicable to any
disease organism where long-distance dispersal may occur. The
novelty of the class of models and estimation framework is multi-
fold, as we describe below.

Previous models that describe or predict the extent of disease
spread and velocity of epidemics assume dispersal is isotropic [1,
7, 8]. This assumption usually is unrealistic because wind tends to
be directional, weather gradients exist, host connectivity is
patchy, inoculum source strength varies between field and
regions, and landscape and terrain features influence transport
and deposition of inoculum [29, 30]. Anisotropy may occur at
multiple spatial scales, ranging from individual plants [31],
individual fields [23, 32], the mesoscale [33], and the
landscape or continental scale [8, 34]. Soubeyrand et al. [21]
and Rieux et al. [22] incorporated anisotropy into their models
for describing disease gradients resulting from dispersal due to

essentially one generation of a plant pathogenic fungus but did
not consider anisotropy in epidemics over time. The models
derived in this study accommodate both spatial and temporal
components. The anisotropic model framework assumes that the
rate of change of disease incidence with distance from a source
depends on the direction. The rate of change with time is
independent of location in the present framework but could
be modified to allow the rate of change of disease incidence
with distance to depend both on direction and time provided a
richer data set for parameter estimation.

The importance of accounting for anisotropy will vary
depending on the specific system under investigation. In the
motivating example of cucurbit downy mildew used here, there
was a small but consistent reduction in temporal prediction errors
by incorporating anisotropy in disease spread. A reduction of
multiple days is biologically relevant for aerially dispersed
organisms with high reproductive potential and short
generation times, where even a brief lag in implementing
control measures may substantially diminish the efficacy of
control measures and containment [5, 17, 35]. In settings

FIGURE 9 | Time-of-occurrence prediction errors for predictions from isotropic and anisotropic one- and two-source models fit to data from sentinel plots in 2010,
with contours representing estimated disease front over time according to themodels. The two-sourcemodels were each fit with two alternate (non-FL) source locations:
a northern and a southwestern location. Each panel shows results according to a different model: isotropic one-source (IOS); isotropic two-source (ITS); anisotropic one-
source (AOS); and anisotropic two-source (ATS).
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where improvements in prediction errors are inconsequential or
variates related to anisotropy are unknown, an isotropic, one-
source model can be recovered easily in our modeling framework
as a special case.

A second novel aspect of the modeling framework derived in
this study is the ability to account for multiple inoculum sources
that may each produce epidemic wavefronts. Interpretation of
disease gradients under natural conditions has long been
recognized as a difficult process due to the potential for
asynchronous and overlapping wavefronts from multiple
inoculum sources [16, 24]. The latent process introduced in
our modeling framework assumes multiple sources may exist,
which might better reflect conditions in natural environments
when an organism is naturalized and primary inoculum is
dispersed (e.g., [33, 36–38]). Our modeling framework is
amenable to inference about the likelihood of disease outbreak
at a specific location due to disease at multiple potential sources.
This is often a basic question in invasion biology of immense
importance for formulating effective management policies [38,
39], but a difficult question to address due to the stochastic nature
of long-distance dispersal and technical challenges associated
with its detection [40]. With multiple sources specified, our

modeling approach attributes a probability to the first
occurrence of the disease being associated with the specified
sources. The simulation experiments indicate that the accuracy
of source prediction can be influenced by the spatial proximity of
the disease sources, temporal asynchrony of epidemics, the
strength of anisotropy, and error variance. Source attribution
is most accurate when sources are well separated in space,
epidemics are temporally synchronous, and disease spread is
isotropic. Source attribution error rates will increase when
epidemic conditions vary in one or more of these
characteristics, usually resulting in incorrect attribution of
disease to the most dominant source in the landscape.

We considered examples with two sources in this work, but the
approach is readily extendable to many sources provided a
sufficiently dense data set for estimating the full set of models
and associated latent variable process. As an example, we fit a
three-source anisotropic model with epicenters placed in
southern Florida, southern Texas, and a northern source in
Ohio (Supplementary Figure S4). The model was fit
successfully, and disease in nine sentinel plots was attributed
to the northern source. However, all but one of these plots were
located far south of the source location. Further, the coefficient of

TABLE 7 |Root mean square errors of time and distance for isotropic and anisotropic two-source models for several alternate source locations. The other of the two sources
is placed in Florida in the same location and time as in the one-source model.

Year (n) Alternate (non-FL) source Isotropic Anisotropic

County, State Date Time (days) Distance (km) Time (days) Distance (km)

2008 (25) Vernon, LA 06-12 9.61 318.11 12.42 170.04
Brazos, TX 05-06 9.88 238.26 9.57 237.38
Hidalgo, TX 05-06 9.61 236.70 10.36 240.88
Sandusky, OH 07-20 11.20 244.74 30.42 267.16
Sandusky, OH 06-03 45.95 300.67 61.31 280.83
Niagara, NY 06-03 17.68 229.13 124.26 153.92

2009 (65) Payne, OK 06-16 26.23 379.49 21.14 356.59
Brazos, TX 05-07 47.29 452.58 35.08 669.44
Hidalgo, TX 05-07 23.48 361.31 23.12 360.34
Huron, OH 06-05 81.24 365.92 88.36 344.33
Sandusky, OH 06-04 1676.48 390.29 151.06 370.96
Niagara, NY 06-04 20517.83 411.95 28.40 245.95

2010 (28) Brazos, TX 07-12 25.01 300.38 25.27 374.55
Brazos, TX 05-07 24.54 294.76 24.79 367.55
Hidalgo, TX 05-07 24.37 315.55 24.84 391.08
Wayne, OH 07-03 57.03 251.97 109.26 314.68
Sandusky, OH 06-04 2492.48 270.42 61.12 295.33
Niagara, NY 06-04 52.75 200.48 24.03 192.53

TABLE 6 | Root mean square errors of time and distance for isotropic and anisotropic one-source models. The source location and time of appearance, shown in the table,
are the earliest occurrences among all sentinel plots in the data for the corresponding year (n is the sample size.)

Year (n) Florida source Isotropic Anisotropic

County, state Date Time (days) Distance (km) Time (days) Distance (km)

2008 (25) Collier, FL 02-18 12.38 271.73 11.62 273.61
2009 (65) Miami-Dade, FL 03-23 26.14 443.78 24.79 411.62
2010 (28) Alachua, FL 03-24 24.44 325.09 23.50 392.40
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the estimated time parameter in this model for the northern
source was negative, resulting in a contracting epidemic front. In
this specific example, the statistical fit of the model was improved
with three sources but the model predictions were not consistent
with disease biology and ecology. However, the methodological
aspects remain valid and should be suitable for other applications
where sufficient data exists to avoid model overfitting.

A salient point here is that the modeling framework estimates
the likelihood that the first occurrence of disease originated from
a specific source, but does not partition total disease intensity to
one or more sources or consider later pathogen incursions. The
total amount of disease at a given location can be due to multiple
sources with inoculum arriving at different times. Furthermore,
most disease at a location may be due to secondary or community
spread following an initial infection event depending on the time
since that infection and local conditions (e.g., [37, 38, 41]).
Nonetheless, understanding which source is most likely
responsible for the first appearance of disease remains highly
important for understanding potential genetic founder effects,
genotypic and phenotypic traits of a newly arrived pathogen
causing disease, and planning mitigation strategies.

In the motivating example of cucurbit downy mildew, there is
speculation and circumstantial evidence that inoculum sources
outside of Florida may be important for disease in more northern
latitudes in the U.S [13, 14]. Greenhouse cucumber production
has been postulated as a possible alternate source of inoculum
responsible for outbreaks of cucurbit downy mildew in the Great
Lakes region [13, 17, 42]. Downy mildew can occur at damaging
levels in greenhouse-grown cucurbits [14], and thus winter and
spring cucurbit production in protected cultivation in the Great
Lakes region [43] could be a possible source of inoculum [1, 14].
Definitive evidence for this hypothesis has been elusive, though
[17]. The present data set and analysis do not provide evidence of
an annually-occurring, alternate source of P. cubensis in northern
latitudes. In certain years downy mildew was observed in the
Upper Midwest in June before the expected occurrence of a
disease wavefront originating from southern Florida. However,
two-source models with an observed or imputed alternate source
placed in the Great Lakes region generally had the largest
prediction errors, and in some cases, these errors were indeed
massive. We explored various spatial placements of alternate
sources in northern latitudes (north, south, east, and west of Lake
Erie) and timings for their appearance based on when sporangia
of P. cubensis may be in the air [44, 45]. None of the observed or
imputed sources led to appreciable improvements in prediction.
The three-source model we fitted also failed to yield biologically
plausible predictions of disease spread associated with a northern
source (Supplementary Figure S4). However, given the sparsity
of the present data sets, absence of disease reports from
greenhouses in the Cucurbit Downy Mildew ipmPIPE system,
and our restriction of disease to the first planting of cucurbits, we
caution that a lack of evidence for a second source in northern
latitudes does not prove that one does not exist.

We did find support for an alternate inoculum source on the
western edge of the Gulf of Mexico. This is perhaps unsurprising
given that hosts of P. cubensis are present year-round in frost-free
areas along the southern Gulf Coast [17]. Depending on seasonal

wind direction, the southwestern source is predicted to be a
source for downy mildew in the southern plains, lower
Midwestern states, and certain other regions of the
southeastern U.S. Separate spatio-temporal analyses also
suggest that inoculum sources in the southern U.S. outside of
Florida may be responsible for disease outbreaks in more
northern latitudes [12]. In all years, predicted wavefronts from
the southwestern source and Florida overlapped as early as May
to June, potentially resulting in population admixture. Genetic
evidence suggests that populations of P. cubensis in Florida may
be differentiated from populations in Texas and certain other
states [46]. A partial explanation for this genetic differentiation
may be the presence of distinct overwintering populations and
epidemic trajectories of downy mildew on the western and
eastern edges of the Gulf of Mexico.

The multiple source modeling framework we present is most
useful for post hoc analysis of epidemics rather than prediction.
This is because parameter estimation requires an iterative
procedure based on the known distribution of disease, which
precludes prediction during an active epidemic. This has no
bearing on one-source models, with or without anisotropy,
which our analyses suggest may be adequate in some situations.

We introduced anisotropy in disease spread through the
functions gk that are estimated from prevailing wind directions
at the epicenters. Wind direction and velocity at a primary
inoculum source are associated with the shape of disease
gradients when measured at the scale of individual or multiple
fields [22, 47]. Wind speed and direction are also predictive of
disease transmission of aerially dispersed pathogens at the
mesoscale [33] and landscape-level [34]. At these scales and
the scales we evaluated, wind direction alone is only a simple
correlate of a complex biophysical process that may act along the
entire path of dispersal [13, 17, 48, 49]. More fundamentally,
anisotropy in the early stages of an epidemic appears to be
important for dispersal patterns that persist throughout the
entire epidemic. It is unclear whether this observation is
idiosyncratic to these particular data sets or suggestive of a
more basic process of epidemic spread being heavily affected
by properties of the initial disease epicenter.

We also point out that many other functions could be used to
introduce anisotropy; van Putten et al. [20] provide several useful
statistical alternatives that do not explicitly consider wind. As discussed
above, physical process models could better capture anisotropy due to
environmental factors but at the expense of greater data and
computational requirements [48]. Similarly, knowledge of host
presence and their disease status in the landscape and more
intensive placement and sampling of sentinel plots could enable
one to develop time-varying anisotropy functions not possible here
due to the extent of the cucurbit downy mildew data sets. In spite of
these limitations, the novelty and utility of our modeling framework is
that it is tractable for estimating the generalized location and velocity of
a disease front from sparsely sampled data with minimal data
acquisition costs. Furthermore, when multiple sources exist the
most probable source of the initial appearance of disease can be
identified. These innovations make this modeling and estimation
framework attractive for many problems central to dispersal,
ecology of infectious disease, and management of epidemics.
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