
Dynamic Pathfinding for a Swarm
Intelligence Based UAV Control Model
Using Particle Swarm Optimisation
Lewis M. Pyke and Craig R. Stark*

Complex Multiscale Dynamics, Division of Games Technology and Mathematics, Abertay University, Dundee, United Kingdom

In recent years unmanned aerial vehicles (UAVs) have become smaller, cheaper, and more
efficient, enabling the use of multiple autonomous drones where previously a single,
human-operated drone would have been used. This likely includes crisis response and
search and rescue missions. These systems will need a method of navigating unknown
and dynamic environments. Typically, this would require an incremental heuristic search
algorithm, however, these algorithms become increasingly computationally and memory
intensive as the environment size increases. This paper used two different Swarm
Intelligence (SI) algorithms: Particle Swarm Optimisation and Reynolds flocking to
propose an overall system for controlling and navigating groups of autonomous
drones through unknown and dynamic environments. This paper proposes Particle
Swarm Optimisation Pathfinding (PSOP): a dynamic, cooperative algorithm; and, Drone
Flock Control (DFC): a modular model for controlling systems of agents, in 3D
environments, such that collisions are minimised. Using the Unity game engine, a real-
time application, simulation environment, and data collection apparatus were developed
and the performances of DFC-controlled drones—navigating with either the PSOP
algorithm or a D* Lite implementation—were compared. The simulations do not
consider UAV dynamics. The drones were tasked with navigating to a given target
position in environments of varying size and quantitative data on pathfinding
performance, computational and memory performance, and usability were collected.
Using this data, the advantages of PSO-based pathfinding were demonstrated. PSOP
was shown to be more memory efficient, more successful in the creation of high quality,
accurate paths, more usable and as computationally efficient as a typical incremental
heuristic search algorithm when used as part of a SI-based drone control model. This
study demonstrated the capabilities of SI approaches as ameans of controllingmulti-agent
UAV systems in a simple simulation environment. Future research may look to apply the
DFC model, with the PSOP algorithm, to more advanced simulations which considered
environment factors like atmospheric pressure and turbulence, or to real-world UAVs in a
controlled environment.

Keywords: dynamic pathfinding, swarm intelligence, particle swarmoptimisation, flocking, multi-agent systems and
autonomous agents

Edited by:
Lixin Shen,

Syracuse University, United States

Reviewed by:
Si Li,

Guangdong University of Technology,
China

Daniel H. Stolfi,
University of Luxembourg,

Luxembourg

*Correspondence:
Craig R. Stark

c.stark@abertay.ac.uk

Specialty section:
This article was submitted to

Optimization,
a section of the journal

Frontiers in Applied Mathematics and
Statistics

Received: 29 July 2021
Accepted: 21 October 2021

Published: 22 November 2021

Citation:
Pyke LM and Stark CR (2021) Dynamic
Pathfinding for a Swarm Intelligence

Based UAV Control Model Using
Particle Swarm Optimisation.

Front. Appl. Math. Stat. 7:744955.
doi: 10.3389/fams.2021.744955

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org November 2021 | Volume 7 | Article 7449551

ORIGINAL RESEARCH
published: 22 November 2021

doi: 10.3389/fams.2021.744955

http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2021.744955&domain=pdf&date_stamp=2021-11-22
https://www.frontiersin.org/articles/10.3389/fams.2021.744955/full
https://www.frontiersin.org/articles/10.3389/fams.2021.744955/full
https://www.frontiersin.org/articles/10.3389/fams.2021.744955/full
http://creativecommons.org/licenses/by/4.0/
mailto:c.stark@abertay.ac.uk
https://doi.org/10.3389/fams.2021.744955
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2021.744955

1 INTRODUCTION

It is the role of crisis response teams to react to disaster situations
such as out of control wildfires or major earthquakes. These teams
often must work in dangerous, volatile environments with limited
knowledge of the current situation. Such environments can pose a
serious risk to the health of the responders. The ability for teams
to deploy inexpensive, unmanned vehicles in place of human
responders could limit the risk to human life and, thus, could be a
valuable part of crisis response procedures [1].

Unmanned Aerial Vehicles (UAVs), commonly referred to as
drones, are aircraft which operate without an onboard human
pilot. Instead, these vehicles are either controlled remotely by a
human pilot, remotely with an autonomous control system, or
with an onboard, autonomous navigation system [2]. In recent
years UAV technology has advanced rapidly with numerous
different applications proposed and explored. Search and
rescue operations have been identified as a key task where
UAV technology could be of significant benefit [3].

This paper will explore the application of Swarm Intelligence
(SI) concepts as a method of controlling and navigating systems
of autonomous UAVs in unknown environments. Games
technology will be used to provide a simulation environment
in which the algorithm can be tested. Additionally, this paper will
describe how the core concepts could be applied to games
applications, combining concepts from both UAV dynamics
and games technology with the aim of enhancing both fields.

A crisis response mission that utilises remotely operated
UAVs requires constant real-time communication with each of
the deployed drones. This communication link can be considered
an operational vulnerability as a disruption, or failure, of this link
would significantly limit the effectiveness of the drones
consequently limiting the success of the overall mission. To
address this vulnerability, research has begun to explore SI as
a method of controlling a group of deployed drones [4]. SI
explores the decentralised, self-organisation of multi-agent
systems (MASs). SI can be considered a route to Artificial
Intelligence where the application of SI techniques can lead to
emergent, intelligent behaviour capable of solving a broad range
of problems [5]. SI techniques often require little, or no, direct
communication between agents, thus, a system using a SI
approach to control drones engaged in a crisis response
operation would be better able to handle communication
disruption than a remote-control approach [4].

The flocking behavioural model is a well-documented SI
concept that can produce collision-free collective motion
within a MAS. Reynolds flocking [6] is a ruleset that can be
used to produce flocking behaviour algorithmically and has been
utilised in both simulation and real-world environments [7, 8].
The scope of Reynolds flocking is limited, the ruleset alone does
not provide any obstacle avoidance (only avoiding collisions with
other agents) nor can it provide any pathfinding capabilities. For
a complete drone control model, both, obstacle avoidance and
pathfinding would have to be handled using additional
techniques.

Pathfinding, the calculation of an optimal path between two
points, is a foundational problem in computer science. Typically,

this problem has been approached from a graph-theory
perspective where a graph representation of the environment
is required. For use in dynamic environments, prominent graph-
based algorithms, such as Lifelong Planning A* or D* often suffer
bottlenecks and cycle repetition and, as the size of the graph
grows, become increasingly computationally, and memory,
expensive [9].

To address this limitation, this paper will propose the Particle
Swarm Optimisation Pathfinding (PSOP) algorithm as a method
of onboard, autonomous navigation in dynamic environments
for groups of UAVs. The algorithm will use the SI metaheuristic,
Particle Swarm Optimisation (PSO) [10] as the basis of an
environment-size agnostic pathfinding algorithm to be used as
part of an overall model for controlling flocks of UAVs. This
model—the Drone Flock Control (DFC) model—also proposed
by this paper, will combine the novel PSOP algorithm, with
Reynolds flocking, and an obstacle avoidance AI implementation
to create a performant solution for multi-agent, autonomous
UAV control in unknown, dynamic environments.

In addition to its real-world applications, the DFC model
could be used in game applications. Regularly, within games,
there is a desire to have a group of non-playable characters
(NPCs) navigate an environment. This could be a horde of
enemies, gameplay mechanics like target-seeking abilities, or
simply fauna to make an environment feel alive.

With the strict computational and memory resource
restrictions of games applications, the available resources for
NPC pathfinding is often very limited. As game environments
grow increasingly large and more complex, using A* based
pathfinding approaches can often become prohibitively
expensive in these large environments [11]. One solution to
this has been to reduce the granularity of the graph used by
the search algorithm, where the same game environment is
represented with a lower resolution graph. However, paths
created with a very low granularity graph—whilst traversing
the fewest number of nodes—may be far from optimal as far
apart nodes are unable to detect fine details in the environment,
such as small gaps that could be used as a shortcut.

The PSOP algorithm, proposed by this paper, may provide a
better alternative for NPC pathfinding than A* based approaches
for situations with multiple agents. It is hypothesised that the
computational and memory requirements of the PSOP algorithm
will be agnostic to the environment size and will have no
limitations on search granularity. Additionally, the DFC model
may be suitable as a method of controlling the complete motion
of an NPC group—particularly in situations where flocking
behaviour was desired, like for the control of a flock of birds.

The aim of this paper is to combine two different SI
algorithms: PSO and Reynolds flocking, to propose a model
for controlling a system of autonomous UAVs capable of
navigating unknown and evolving environments. The project
will design, implement, and test a PSO-based dynamic
pathfinding algorithm and the computational and memory
efficiency of this approach will be compared to that of a
traditional graph-based pathfinding method. A real-time
application will be created to provide a simulation
environment in which test scenarios can be run. Quantitative

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org November 2021 | Volume 7 | Article 7449552

Pyke and Stark Dynamic Pathfinding for Swarm Intelligence

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

data, describing the performances of both the SI-based and graph-
based pathfinding algorithms, will be collected. This data will be
analysed to assess the suitability of the proposed pathfinding
algorithm for use with a multi-agent UAV system. Deterministic
pathfinding algorithms, that guarantee an optimal path is found,
grow rapidly in computational andmemory expense as environment
size grows. A SI metaheuristic-based pathfinding algorithm, whilst
unable to guarantee an optimal path, will likely be far more scalable
than graph-based algorithms. It is hypothesised that the
computational and memory requirements of the proposed SI
pathfinding algorithm (PSOP) will be unaffected by the
environment size, and thus, as the environment size grows, the
PSOP algorithm is expected to increasingly outperform a traditional
graph-based algorithm for the navigation of a multi-agent system.

The paper is structured as follows: Section 2 describes the
development and implementation of the DFC model and the
PSOP algorithm including performance testing; Section 3
presents and discusses the results from the performance
testing; and, Section 4 summarises the results, placing the
results in the wider context and discusses further developments.

2 METHODOLOGY

To achieve the stated aims of the paper, both the DFC model and
the PSOP algorithm were designed and implemented.
Additionally, a real-time application was created to provide a
test environment in which the proficiency of the PSOP algorithm
could be compared to that of a contemporary pathfinding
approach. The following section will deliver a comprehensive
description of the development process and will discuss the
reasoning behind key development decisions. Performance
testing and data analysis processes will also be discussed.

2.1 Project Development
Unity [12] was chosen as the development environment as it is an
industry standard game engine. Using Unity allowed access to a
powerful physics subsystem and ensured that rendering would be
performant—without the need for extensive setup. The proposed
DFC model, PSOP algorithm, and D* Lite implementation were
implemented in C# and a real-time application was created to
facilitate testing and data collection. The application that was
created is capable of instantiating and controlling a system of
drones within a simulation environment. The application also
defines an objective for the drones to complete and records data
relating to the group’s performance in achieving that objective. A
concise menu was created to allow users of the application to run
multiple tests with various parameters without requiring changes
to the code or the use of the engine.

2.2 Particle Swarm Optimisation
Pathfinding (PSOP) Algorithm
The main focus of this project is the proposal, design, and
implementation of an environment-size agnostic approach to
cooperative pathfinding. The proposed algorithm, PSOP, utilises
the PSO algorithm [10] to iteratively improve the quality of an

agent’s position, where position quality is an estimate of how
useful that position is as a point on a path from the start to the
target. The PSO algorithmwas identified as an effective method of
iteratively improving a candidate solution in a search-space, using
multiple agents—or particles—to improve search-time by sharing
information about position quality between agents. This
approach is highly applicable to multi-agent pathfinding, and
thus, the proposed PSOP algorithm builds directly upon the
structure of the PSO algorithm. A record is kept of the highest
quality position found personally by each agent (pBest) and the
highest quality position found by any agent (gBest). Each
timestep, the quality of the current position is assessed using
the PSOP heuristic (see Section 2.2.1) with pBest and gBest
updated if required. The algorithm then updates the velocity of
each agent using the formula:

v(t) � wv(t − 1) + c1r1(pbest − p) + c2r2(gbest − p) (1)

where v(t) is the velocity at timstep t;w, c1, c2 are constants; r1, r2 ∈
[0, 1]; and, p, pbest, gbest are the current position, the position of
pBest, and the position of gBest respectively. The values of the
constants are shown (Table 1). The values for c1 and c2 were
selected to match the canonical PSO algorithm [10]. Inertia was
not described as part of the original PSO algorithm, however, an
inertia (or w) value in the range [0.9, 1.2] was found to improve
the performance of the algorithm [13] and thus was included in
the PSOP algorithm. Internal development testing found
improved performance when this value was lowered—likely
caused by the DFC model already considering the drone’s
inertia (see Section 2.3).

2.2.1 PSOP Heuristic
Borrowing from the heuristic used by the A* algorithm, the PSOP
heuristic considers the Euclidean distance between the agent and
the target—favouring positions that are closer to the target by
taking the inverse of the distance. Additionally, the PSOP
heuristic considers how obstructed the direct path from the
current position to the target, PT

��→
, is. Checking within a given

range, if an obstruction is found then the angle between PT
��→

and
the normal of the obstacle at the collision is assessed.
Obstruction’s that are closer to head-on (small angles)
decrease the value of a given position more than obstructions
that are close to parallel to with PT

��→
(larger angles). The Heuristic

used by PSOP is

H � 1000|PT��→|
a

, (2)

where

a � { θ90, if collision along PT
��→

exists,

1, otherwise, (3)

where θ is the angle between PT
��→

and the collision.

2.2.2 pBest and gBest
When applied in dynamic environments, it is highly likely that
positions that were once of high quality could lose quality, for

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org November 2021 | Volume 7 | Article 7449553

Pyke and Stark Dynamic Pathfinding for Swarm Intelligence

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

example, if an obstacle moves between the position and the
target—referred to as positions becoming stale. Stale positions
could negatively impact on the algorithm’s ability to effectively
find the target by causing the velocity of the agent to be calculated
using incorrect information. One solution to the problem, would
require drones to periodically recheck pBest and gBest positions.
This approach is conceptually similar to the ‘finder and tracker’
adaptation that can be applied to the PSO algorithm to allow it to
be applied to a dynamic search-space [14]. This adaptation

assigns each particle to one of two roles: finder or tracker.
When a candidate solution (position) of sufficient quality is
discovered by a finder, tracker particles are assigned to the
position and follow the peak as the environment evolves. The
approach chosen by this paper, however, was to use a confidence
system. The quality value of both pBest and gBest are decayed
over time so that recently discovered positions of high quality are
favoured over older positions—drones are less confident in the
quality of older positions. This approach negates any need for

TABLE 1 | PSOP algorithm constants.

Constant Definition Value

w Inertia: the tendency for agents to remain travelling at the velocity of the previous timestep 0.6
c1 Cognitive Factor: the tendency for agents to continue exploring areas they found successful 2
c2 Social Factor: the tendency for agents to converge on global areas of success 2

TABLE 2 | DFC Model pseudocode.

DFC model

1 Set the id, settings and target from inputted parameters

procedure Update()

2 Increase the drone’s speed (not exceed the assigned maximum
speed)

3 Call FindNeighbourhood() to update the list of drones within
the current drone’s neighbourhood radius

4 Call UpdateDroneForward() to update the current drone’s
direction of travel

procedure FindNeighbourhood()

5 Clear neighbourhood[] the list of drones within the
current drone’s neighbourhood radius

6 For all drones
7.1 Check that drone is not considering itself by

comparing ids, if ids match then skip
7.2 Find rr→other the vector from the current drone to the other drone
7.3 If |rr→other| ≤ the neighbourhoodRadius then
7.3.1 If the angle between dforward and

rr→other ≤ viewingAngle then
7.3.1.1 Add drone to neighbourhood[]

procedure UpdateDroneForward()

8 Calculate drone’s new forward direction as

ddesired � d̂forward× inertiaWeight +
FlockingModule.Cohesion()×cohesionWeight +
FlockingModule.Alignment()×alignmentWeight +
FlockingModule.Separation()×separationWeight +
PathfindingModule.Heading()×pathfindingWeight

9 Set a as the angle between ddesired and dforward

10 Calculate how close to ddesired the drone can turn to
given the ωmax, using
dforward � Lerp(dforward, ddesired, (ωmaxdt/a))

11 If heading for a collision then get distance and reduce speed with
v � as Min(v, vbase× distance/settings.neighbourhoodRadius)

12 Set drone direction from ObstacleAvoidance module
dforward � ObstacleAvoidance.Heading() this will find the
nearest obstructed heading from ddesired

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org November 2021 | Volume 7 | Article 7449554

Pyke and Stark Dynamic Pathfinding for Swarm Intelligence

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

positions to be actively rechecked. The implementation created
by this project uses a linear decay controlled by the ‘quality decay
factor’, however, any function of time t could be used.

2.3 Drone Flock Control Model
DFC is a model for facilitating the cooperative motion of a
multi-agent system in a 3D environment. Designed to be run
locally by each member of the flock, the DFC model
determines a velocity vector at each timestep by assessing
three factors: the flocking module, pathfinding module, and
the obstacle avoidance module. Each module contributes
between one and three vectors to the model and the
velocity is calculated as the weighted sum of these vectors
plus weighted inertia (the product of the velocity at the
previous timestep and its weight) (Table 2). The model
requires a neighbourhood radius, maximum viewing angle,
and safe operating radius in order to determine which of the
other drones and which obstacles should be considered by the
different modules (see Figure 1). During development several
issues were caused by conflicts between the obstacle avoidance
module and the other two modules. Both drone-to-drone and
drone-to-environment collisions were occurring because the
flocking and pathfinding modules were contributing vectors
that opposed the vector proposed by the obstacle avoidance
module. To address this, the model was updated to first assess
the velocity using inertia, flocking, and pathfinding, then
updating the obstacle avoidance module. Only using the
obstacle avoidance to update the velocity if the module has
assessed that a collision would occur.

2.3.1 Drone Flock Control Implementation
The DFC model implementation inherits from
MonoBehaviour—the base class from which Unity scripts
must derive [15]. This allows the model’s implementation to
be attached directly to a Unity GameObject. The functionality of
each of the DFC modules (flocking, obstacle avoidance, and
pathfinding) are defined with module-specific C# interfaces
[16]. Each interface describes a contract in code for what
behaviour a module must implement (Figure 1). This
approach creates an abstract, general structure for how the
DFC model should be implemented, separate from the specific
implementation created for this project. This allows further work
to easily use and extend the DFC model to meet domain specific
challenges.

2.3.2 Drone Settings
In the engine, the weight values—used by the DFC model to
calculate the weighted sum—are held in a ScriptableObject,
this container also stores the neighbourhood, viewing angle,
and safe-operating distance values—collectively this data is
referred to as the drone settings. Using a ScriptableObject to
store the drone settings requires just one copy of the data to be
stored. This copy can be accessed by all drones in a simulation,
thus, if a change to the drone settings is required then only the
centrally stored data needs to be updated for the change to
affect all drones. During the implementation of the project’s
test plan, fixed values were used for the drone settings across all
testing scenarios (Table 3). These values were selected
following internal development testing.

FIGURE 1 | UML diagram for DFC model.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org November 2021 | Volume 7 | Article 7449555

Pyke and Stark Dynamic Pathfinding for Swarm Intelligence

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

2.4 Flocking Module
Reynolds flocking [6] had previously been identified as an
effective approach to facilitating collision-free motion for
multi-agent systems. Additionally, Reynolds flocking is an
extremely well documented approach to autonomous UAV
control, previously used by numerous research groups [7, 17].
Thus, Reynolds flocking was chosen to form the basis of the
flocking component implementation used in this paper. There are
numerous examples of Reynolds flocking implementations in
both 2D and 3D environments (e.g. [7, 17]). Many of these
implementations include adaptions to either improve the
algorithm or to address a specific challenge. This paper,
however, implements the standard algorithm described by
Reynolds.

2.5 Obstacle Avoidance Module
As obstacle avoidance was not the focus of this paper, the
implementation of the obstacle avoidance module utilises a simple
but effective AI algorithm. The algorithm determines if the drone is
currently heading for a collision. If so, then rays are cast in increasing
distance from the current direction of travel, until an unobstructed
direction is found. Provided that the explored directions are always
evenly spaced and are of equal or increasing angle from the direction
of travel, then this method will identify an unobstructed heading that
requires a, close to, minimal alteration from the current heading.
Whether a given heading is obstructed is determined using the raycast
functionality included as part of Unity’s physics subsystem [15]. The
directions of increasing angle from the direction of travel are
calculated at startup-time using the “Fibonacci Spiral Sphere” to
find evenly distributed points on a unit sphere. When required by
a drone, the array of directions is transformed to start from the drone’s
current direction of travel.

2.6 Pathfinding Module
The role of the pathfinding module is to direct the drone along a
path that will lead to some target location. There is no

requirement for the target to be at a fixed location, however,
this paper will look specifically at pathfinding to a stationary
target. The only requirement of the pathfinding module is to
provide a single heading (a vector3 value) to represent the
direction that the module is recommending as the direction of
travel for the drone. The project will explore the use of two
different styles of pathfinding implementations: graph-based,
single-agent, deterministic pathfinding; and, a cooperative,
non-deterministic pathfinding approach. Specifically, this
paper will compare a DFC compatible implementation of the
incremental heuristic search algorithm, D* Lite to an
implementation of the PSOP algorithm.

2.6.1 PSOP Implementation
As it was designed for use in multi-agent systems, implementing the
PSOP algorithm for use with the DFC model required no changes
from the algorithm’s canonical form. The one notable technical hurdle
is the shared awareness of gBest (see Section 2.2.2). This project’s
implementation uses the singleton pattern to create a reference to
which each drone’s PSOP implementation can refer. Real-world
implementations, where each drone will have its own hardware,
will, naturally, not be able to rely on globally accessible memory
and thus a more involved solution would be required. For example,
each flock member could store what they believe to be gBest and
broadcast this to the other flock members periodically—updating
their own whenever they receive a broadcast of a gBest that is better
than the one they are currently aware of.

2.6.2 D* Lite Implementation
A C# implementation of the D* Lite algorithm [18] was adapted to
integrate with the DFC model. Typically, the D* Lite algorithm
requires the seeker to move to the next requested node for the
algorithm to be updated. As the drones move with a fixed
maximum speed and their velocity is not solely determined by the
pathfinding module, there is no guarantee that, at the next timestep,
the drone will be at the next position. The D* Lite implementation,

TABLE 3 | Drone Settings values selected for testing.

Module weights

Setting Definition Value used for testing

Inertia The weight given, by the DFC model, to the Inertial factor 5

Cohesion The weight given, by the DFC model, to the flocking module’s cohesion factor 1

Alignment The weight given, by the DFC model, to the flocking module’s alignment factor 6

Separation The weight given, by the DFC model, to the flocking module’s separation factor 6

Pathfinding The weight given, by the DFC model, to the pathfinding module 10

Neighbourhood

Setting Definition Value Used for Testing

Neighbourhood
Radius

The neighbourhood is the area around a drone in which other drones must be if they are to be considered by that
drone’s DFC flocking module. The Neighbourhood Radius describes the size of this area

12

Viewing Angle Drones cannot observe all directions. Viewing Angle describes the maximum angle from a drone’s forward direction
that a drone can see. Any obstacles, or fellow drones, out with the Viewing Angle cannot be considered by any DFC
modules

90

Safe Operating Radius The minimum distance drones attempt to keep from obstacles and from one another. The minimum distance to be
considered by the flocking module’s separation factor

5

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org November 2021 | Volume 7 | Article 7449556

Pyke and Stark Dynamic Pathfinding for Swarm Intelligence

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

thus, only searches for a new shortest path if either the seeker is at a
different node from last time step or a new obstacle was found. The
drones used a grid of nodes, one unit apart, as the graph
representation of the environment. Obstacles were identified using
the obstacle detection apparatus used by the obstacle avoidance
module (see Section 2.5). During development it was found that
in a small number of cases the algorithm was unable to update in the
time required to be applied in real-time. To address this a 700-node
expansion limit was applied to the algorithm when finding the
shortest path. This did not appear to impact performance as, if the
optimal path was not found after expanding 700 nodes, the correct
general direction was usually determined and further calculation, if
needed, could be completed as the drone moved closer to the target.

2.7 Testing
To assess the proficiency of the PSOP algorithm two types of
drones were created, both controlled with the DFC model. One
type of drone used PSOP as the pathfinding module (p-drones)
and the other used a D* Lite implementation (d-drones). Flocks,
comprised of either the p-drones or d-drones, were instantiated
in the environment and tasked with achieving an objective.

2.7.1 The Environment
This project focused on the performance of the flock within an
urban environment. The environment was created using user-
positioned, cuboidal obstacles to represent buildings and other
common urban structures such as signs and walls. These obstacles
were implemented with Unity GameObjects and placed within a
Unity scene (Figure 2). This approach was selected as it is in line
with the methods used and described by similar research projects
[19, 20]. A key requirement of the project was that the
environment be dynamic, to facilitate this, moving spherical
obstacles were added. These obstacles could move freely in
three-dimensions. The obstacles did, however, avoid other
obstacles using the same obstacle avoidance system as the
drones (see Section 2.5). During pretesting it was noted that
the dynamic obstacles—designed to move freely around the
environment—were not encountering the drone flocks often

enough to regularly disrupt the drones’ path planning. To
address this a probabilistic targeting system was added where,
each second, each dynamic obstacle would have a 4.17% chance of
changing direction to move directly towards the centre of the
flock. Additionally, obstacles would have a 12.5% chance, per
second, of moving away from the flock, to prevent one area from
becoming too crowded. The probabilities were set manually to
produce a reasonable level of encounters between the drones and
the dynamic obstacles. Please note that the simulations conducted
do not use a simulator implementing UAV dynamics.

2.7.2 The Objective
The drones were required to find and follow a clear path from the
starting location to a pseudorandom target point in the
environment. The flock was said to have completed this
objective when one of the flock members entered the region
immediately surrounding the target—within a radius of four
units. Please note that the environment size is measured in
non-dimensional units. In this context, a radius of 4 units is
deemed a reasonable threshold length scale for close proximity.
This objective was selected to simulate a latent objective of a crisis
response team in a disaster situation: making contact with a given
location in an environment.

The start point and target point could not be chosen at random
as some points would be unreachable—such as points that are
inside obstacles. Thus, the environment defines multiple
targetable regions that report every point within that region to
the simulation manager. When a target was to be selected, the
simulation manager selected a random point from the list of
reported targetable points. The same system was used to select a
starting position for the flock—using a “startable” region in place
of the targetable regions. Additionally, the simulation manager
only considered target points where the distance from the starting
point to the target point was greater than a given minimum
distance (defined as half the average edge length of the
environment).

2.7.3 Testing Scenarios
To obtain a robust understanding of the proficiency of the PSOP
algorithm when compared to the D* Lite algorithm, a
comprehensive test plan was proposed exploring the
performance differences between p-drones and d-drones. The

FIGURE 2 | Simulated urban environment: obstacle view.

TABLE 4 | Test plan scenarios. The environment size, n, is measured in non-
dimensional units.

Scenario Environment size
(n, n, n)

Number of drones

1 100 4
2 100 10
3 100 20
4 150 4
5 150 10
6 150 20
7 200 4
8 200 10
9 200 20

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org November 2021 | Volume 7 | Article 7449557

Pyke and Stark Dynamic Pathfinding for Swarm Intelligence

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

testing would specifically explore performance differences as
the environment size increased and as the number of drones
in the flock increased. The test plan comprised nine scenarios,
each with a unique environment size and flock size
combination. Each scenario would be simulated using first
p-drones then d-drones (Table 4). To facilitate the
presentation of strong claims about the proficiency of
p-drones when compared to d-drones each scenario was
repeated five times.

2.7.4 Data Gathering
Data was collected (Table 5) from the scenarios outlined in
Table 4. Data was gathered per iteration of each
scenario—with either one data point collected each frame
(for Frametime and Memory Allocation) or one data point
collected each iteration (for Initialisation Time, Search Time,
and Collisions). The data for the Frametime and Memory
Allocation was obtained by running the scenarios each five
times. Within each iteration of the scenarios a large number
of data was measured; for example, the number of frames
recorded is of the order of 1,000 frames. This approach to data
gathering allows the stochastic nature of the PSO algorithm to
be taken into account and the calculated mean and median

values of the Frametime and Memory Allocation to be
statistically valuable. Statistics are presented as the average,
and variance, of all iterations (n � 5) of a given scenario.
Where a data point was collected each frame, statistics are
presented as (weighted mean ± weighted SD) and as (mean ±
SD) when only one data point was collected per iteration. All
drones are controlled using the DFC model with p-drones
using the PSOP pathfinding-module and d-drones using the
D* Lite pathfinding-module. The testing was completed on a
PC (see Table 6) running Windows 10 with minimal
processes running in the background. The testing
application was a Unity Standalone development build,
with Windows as the target platform using 64-bit x86
architecture.

2.7.5 Data Analysis
Once the data has been gathered the mean frametime and
memory allocation will be calculated for each iteration of each
scenario. Using this intermediary data, the weighted mean for
both the frametime and memory allocation of each scenario will
be calculated using the formula:

�x � ∑
5
i�1ni�xi

∑
5
i�1ni

(4)

where, for the i-th iteration of a given scenario, ni is the number of
data points (frames) recorded that iteration and �xi is the mean
frametime or memory allocation calculated for the iteration. For
each scenario, the mean initialisation time, search time, and
number of collisions will be calculated as the mean of the five
data points collected—one data point for each category per
iteration.

TABLE 5 | Data collection from test simulations.

Description of data Why this data
will be collected

How this data
will be collected

Frametime of every frame during
the simulation

The frametime describes the computational efficiency of each
pathfinding approach, where a longer time to process a frame
indicates that more computational resources were required

The value is read from the Unity CoreModule Time class [15] using the
deltaTime property. This value is stored in a list each frame

Memory allocation at every
frame of the Simulationn

Memory allocation will describe the memory efficiency of each
pathfinding approach, where larger allocation indicates the
approach that required more memory resources

The value is read from the .NET GC class using the
GetTotalAllocatedBytes method (16). This method returns only an
estimate of the allocated memory; however, this estimate is widely
considered to be reliable and accurate. The data is stored in a list each
frame

Time taken to initialise the
simulation

Deployment time may be an important consideration in situations
where the DFC model is used. Faster software initialisation allows
for faster overall deployment

When a new simulation is requested the current time is recorded.
Once the simulation is ready to begin, the difference between the
current time and the recorded time is calculated and stored. Both start
and current time values are read from the Unity CoreModule Time
class using the realtimeSinceStartup property

Time taken to complete the
objective (find the target)

The time taken indicates how effective a pathfinding approach is,
where a faster time to find shows a more effective method

During initialisation of a simulation, the start time is recorded. Once the
objective is complete, the difference between the current time and the
start time is calculated and stored. The start and current time values
are, again, read from the Time class using the realtimeSinceStartup
property

Collisions Minimising the number of collisions is a key goal of the DFC
model. Limiting collisions is the role of the other two modules
(flocking and obstacle avoidance). Thus, the lower the number of
collisions the better a pathfinding module implementation
integrates with other modules

The CollisionReporter script is attached to each drone. This script,
using the Unity physics system, determines if a collision occurs and
reports this to the SimulationManager. The collisions are reported and
recorded as either drone-to- drone or drone-to- environment

TABLE 6 | System information.

CPU Intel Core i7-6700K @ 4.00 GHz
GPU NVIDIA GeForce GTX 1070
RAM 32 GB DDR4

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org November 2021 | Volume 7 | Article 7449558

Pyke and Stark Dynamic Pathfinding for Swarm Intelligence

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

FIGURE 3 | Weighted mean frametime by environment size. The 4 drones case shows similar performance between the two algorithms when using D* Lite;
whereas, there is a slight performance benefit when using PSOP for the 10 and 20 drone cases.

FIGURE 4 | Weighted median frametime by environment size. Across all nine scenarios the weighted-median required frametimes were shown to be extremely
similar with only a 0.027% variation between the highest and lowest weighted-median frametime.

FIGURE 5 |Weighted mean memory allocation by environment size. Across all nine scenarios, p-drones were shown to require far lower memory allocation than
d-drones. For 4 drones the results show a far higher memory allocation, which increases more rapidly as the environment size increases, when using D* Lite. This trend is
increasingly enhanced for 10 and 20 drones.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org November 2021 | Volume 7 | Article 7449559

Pyke and Stark Dynamic Pathfinding for Swarm Intelligence

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

3 RESULTS AND DISCUSSION

In this paper we explore how the PSO algorithm could be used to
facilitate dynamic pathfinding as part of a SI-based UAV control
model. Results from our investigation are shown in Figures 3–9. It
was hypothesised that the proposed PSO-based pathfinding
algorithm would be agnostic to the environment size and would
increasingly outperform a traditional graph-based algorithm as the
environment size increased. The hypothesis was found to be partially
correct as when compared to a contemporary graph-based
pathfinding algorithm (D* Lite), the PSO-based pathfinding
algorithm (PSOP) was more memory efficient and as
computationally efficient as the D* Lite algorithm (Figures 3–5).
This paper also found that the PSOP algorithm was more accurate
and efficient for systems of 10 or 20 agents (Figures 6–8).Whilst the
computational requirements of the PSOP algorithm were shown to

be agnostic to the environment size, the algorithm’s memory
requirements did increase as the environment size grew. This
increase was, however, far lower than the observed increase in
memory allocation required by the D* Lite algorithm. Overall,
this paper finds that the PSOP algorithm is a far more suitable
algorithm thanD* Lite for use as part of a SI-basedmulti-agentUAV
control model. This section will discuss, with reference to the data
gathered during testing, how these conclusions were formulated and
will analyse the effect of increasing the environment size on the
performance of the algorithms.

3.1 Computational and Memory
Performance
One aspect of pathfinding algorithm performance that is often
discussed in the literature is computational performance.

FIGURE 6 |Mean time taken to complete objective by environment size. For a system of 4 drones, p-drones required longer to complete objectives than d-drones;
whereas for systems of either 10 or 20 drones p-drones required less time to complete objectives when compared to d-drones. For 4 drones the PSOP method takes
longer than D* Lite; however, this trend is reversed for 10 and 20 drones.

FIGURE 7 | Mean incidence of collision by environment size (drone-to-environment). For a system of 4 drones, p-drones recorded a greater number of collisions
between drones and the environment (6.2 collisions per scenario, average across all environment sizes) than d-drones (0.5 collisions per scenario, average across all
environment sizes). Whereas for systems of either 10 or 20 drones p-drones recorded fewer collisions between drones and the environment (1.3 and 5.1 collisions per
scenario respectively, average across all environment sizes) when compared to d-drones (5.7 and 8.9 collisions per scenario respectively, average across all
environment sizes).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org November 2021 | Volume 7 | Article 74495510

Pyke and Stark Dynamic Pathfinding for Swarm Intelligence

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Typically, pathfinding algorithms are applied to graphs without
any limitations to how data about the graphs can be collected; this
is analogous to allowing the drones to move through the
environment without any limitation on movement speed. This
freedom allows the algorithms to run to completion without
interruption—making it simple to record the total time taken to
compute the path. Numerous studies have used this value as an
indicator of an algorithm’s computational efficiency [21–23].
However, there are limitations to this approach, the value
(typically in seconds) is specific to the graph and the hardware
the algorithm was applied to. This makes it difficult to compare
results between research groups as identical graphs
(environments) and hardware are required for research groups
to make meaningful comparisons with the work of other
researchers. Another approach to determine computational

efficiency is to assess the number of graph vertices that are
accessed (also called expanded) [18, 22]. This metric does
provide consistent results across different hardware but fails to
consider how long it takes to select which vertex to next
explore—this means that a lower number of accessed vertices
does not guarantee that an algorithm will execute faster.
Additionally, this metric only applies to graph-based
pathfinding and, thus, cannot be used to assess the efficiency
of the PSOP algorithm.

To assess the computational efficiency of the two algorithms,
the total Frametime for each frame was recorded. Frametime is
the interval between the previous frame and the current frame
[15]. This is not an indicator of the time spent executing the
pathfinding algorithm, but instead, the time spent for the whole
application to update. As the same application was used for both

FIGURE 8 |Mean incidence of collision by environment size (drone-to-drone). For collisions between two drones, p-drones recorded fewer incidences for systems
of 4, 10, and 20 drones with 0.2, 0.6, and 5.3 collisions per scenario respectively for p-drones (average across all environment sizes) and 1.9, 26.2, and 160.7 collisions
per scenario respectively for d-drones (average across all environment sizes).

FIGURE 9 | Mean time taken to initialise by environment size. Across all nine scenarios, p-drones were shown to require far less initialisation time than d-drones.
Figure shows far higher initialisation time, which increases as function of environment size and number of drones, when using D* Lite. For p-drones, the initialisation time
increased by 60.2% (on average across all drone system sizes) from environment size of (100 × 100 × 100) to environment size of (200 × 200 × 200) whereas d-drones
saw an average increase of 693.0% for the same increase in environment size. Additionally, for p-drones the initialisation time increased by 2.0% (on average across
all environment sizes) from a system of 4 drones to a system of 20 drones whereas d-drones saw an average increase of 417.8% for the same increase in number of
drones.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org November 2021 | Volume 7 | Article 74495511

Pyke and Stark Dynamic Pathfinding for Swarm Intelligence

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

algorithms the time required to update the application should be
consistent, thus, this can be considered a systematic error. As the
error is consistent and as a large volume of data was collected (one
data point per frame) the data gathered is sufficient for
meaningful conclusions to be made.

Across all nine scenarios, when the PSOP algorithm was
used the frametime was marginally lower on average than
when the D* Lite algorithm was used (Figure 3). This
improvement is very small and infers that the PSOP and D*
Lite algorithms computationally efficiency is comparable.
However, across all nine scenarios, when the D* Lite
algorithm was used there was significantly higher variance
in the recorded frametime. This indicates that for most frames
the D* Lite implementation was of similar computational
expense to the PSOP implementation but there were some
frames where the computational cost of D* Lite was far higher.
This was likely caused by the need for the D* Lite
implementation to update only when the drones entered a
new grid cell, and thus, for most frames the update cost was
minimal as the drones remained in the same cell as the
previous timestep. A comparison of the median frametime
adds credence to this interpretation as Figure 4 shows that, in
most scenarios, median frametime was slightly lower (around
0.02%) when using D* Lite. To quantify this further, a
Wilcoxon rank sum test [24] was performed, to do a left-
tailed hypothesis test, where the alternative hypothesis states
that the median of the PSOP data is less than the median of D*
Lite, for each of the nine scenarios. The Wilcoxon test rejected
the null hypothesis with p-values of ≈ 0.004 for all scenarios.
Overall, this suggests that the PSOP algorithm—that fully
updates every frame—requires only slightly more
computational resources to fully update than the D* Lite
implementation requires to simply determine whether an
update is required.

Another aspect of pathfinding algorithm performance that is
often scrutinised is memory performance—the amount of
memory that must be allocated for the algorithm to run (see
Figure 5). As with the frametime, this value was recorded each
frame and could be influenced by other factors and does not
represent only the memory allocated for the pathfinding
algorithm. This can again be considered a systematic error
thus meaningful conclusions about memory allocation
requirements can still be made.

The disparity in required memory allocation between when
the PSOP algorithm was used and when D* Lite was used was far
greater than the disparity in observed frametimes. The required
allocation when using D* Lite was consistently two (or even
three) orders of magnitude higher than PSOP with a similarly
large disparity between the variance in memory allocation.
Performing a Wilcoxon rank sum test, comparing the PSOP
and D* Lite data for each of the scenarios, rejected the null
hypothesis that the data samples are from continuous
distributions with equal medians, with p-values of ≈ 0.008.
The requirement for the D* Lite algorithm to store a grid
representation of the environment is the likely cause of the
large memory overheads. The D* Lite implementation is
required to store a three-dimensional array with the capacity

to hold data on every node in the graph. PSOP on the other hand
is only required to store their personal best (a position and value)
and to have access to the global best (also a position and value). If
applied to real-world UAVs the D* Lite algorithm may prove
entirely unfeasible due to the large memory requirements
especially if the environment is extremely large.

This project hypothesised that the computational and memory
performance of the PSOP algorithm would be unaffected by
changes to the environment size and would thus increasingly
outperform D* Lite as the environment size grew. This was
partially correct as the PSOP algorithm did outperform D*
Lite by increasing margins as the environment size increased
and particularly in the amount of required memory allocation.
This result was expected because as the environment size
increases the number of nodes that the D* Lite
implementation must represent increases as the cube of the
length of the environment’s side whereas the PSOP is only
ever required to store four individual values—regardless of the
environment size. Further research is required to determine why
the memory allocation when using PSOP increase as the
environment size increased.

This paper’s findings are in line with the findings of other
research groups using SI-based pathfinding algorithms. For
example, Bee Algorithm pathfinding—a SI-based pathfinding
algorithm—was found to be, both, more computationally and
memory efficient then the A* algorithm and that the
efficiency disparity grew larger as the environment size
increased [25].

3.2 Pathfinding Performance
In the literature, there are inconsistencies in how the quality of
pathfinding algorithms are evaluated. This makes the comparison
of results between studies challenging. This paper uses three
metrics to assess the performance of each algorithm: 1) the time
taken to complete the objective (find the target); 2) the number of
collisions between drones and obstacles; and, 3) the number of
collisions between drones and other drones. The time taken 1)
indicates the quality of the path created by an algorithm where a
higher quality path enables the drones to find the target more
rapidly. The drone-to-environment collision count 2) indicates
how accurate the created path is where an accurate path
efficiently evades obstacles. Finally, the drone-to-drone

TABLE 7 | Table of p-values for Wilcoxon rank sum test results to compare the
Search Time between the PSOP and D* Lite algorithms. The null hypothesis is
that both data sets are samples from continuous distributions with equal medians.

Scenario p-values (search time)

1 0.0556
2 0.0952
3 0.3095
4 0.0317
5 0.0952
6 0.0159
7 0.0952
8 0.0556
9 0.0317

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org November 2021 | Volume 7 | Article 74495512

Pyke and Stark Dynamic Pathfinding for Swarm Intelligence

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

collision count 3) indicates how well each algorithm integrates
with the DFC model’s other modules—as the objective of the
other modules is to minimise collisions.

This approach is similar to the approach used by [26] who
used algorithm run time and the number of conflicts (between the
path and obstacles) as the metrics to assess algorithm quality.
Other research teams have used the length of the path created by a
given algorithm as the metric determining the quality [27]. This
approach, however, was considered broadly unsuitable for this
paper as the dynamic, non-deterministic nature of the test
environment would mean variations in the length of the
optimal path. This would make it challenging to determine
whether a longer path was the result of a poorly performing
algorithm or simply the optimal path through an environment
with particularly challenging changes. Thus, a vast number of
iterations would be required for consistent trends in path length
to be identified.

For a system of only 4 drones, p-drones required significantly
more time to find the target than d-drones (Figure 6) whilst
causing a similar number of collisions with the environment
(Figure 7). However, for systems of either 10 or 20 drones, in all
cases, p-drones required less time to find the target (Figure 6).
Due to the significant overlap of the error bars between PSOP and
D* Lite, a Wilcoxon rank sum test was performed to assess the
extent the performance of the two algorithms differs. Table 7
shows the p-values from the statistical test demonstrating that
only scenarios 4, 6 and 9 have p < 0.05 and that the performance
benefit of PSOP relative D* Lite is statistically significant;
whereas, scenarios 5, 7 and 8 have p ≲ 0.1 and the
performance benefits of PSOP are alluded to, but not
statistically significant. This shows that the quality and
accuracy of the PSOP algorithm’s paths improve as the
algorithm accesses more information about candidate
solutions. This is consistent with the findings of [28] who
found that when using PSO-based pathfinding, in a game
environment, an increase in the number of particles (agents)
led to a decrease in the time taken to find a target.

For systems of either 10 or 20 drones, in all cases, p-drones
recorded fewer collisions with the environment than drones using
D* Lite (Figures 7 and 8). However, we can not say definitively
that this trend is statistically significant since a Wilcoxon rank
sum test only determined p < 0.05 for scenario 6, and so further
experiments are required to investigate this further. Across
almost all scenarios, p-drones recorded fewer drone-to-drone
collisions than d-drones. This is confirmed by a Wilcoxon rank
sum test, which shows that p < 0.008 for scenario 2 and 5–9. This
is likely a result of PSOP providing more influence of the
cognitive factor and the random weights, r1 and r2, decrease
the chance that drones will have similar headings, whereas, the D*
Lite algorithm often has nearby drones heading towards the same
position, leading to a follow-the-leader style formation. This
formation reduces the information available to the flocking
module as only having fellow drones in front and behind
reduces the number of drones within one’s neighbourhood.
Thus, for systems of at least 10 drones, the PSOP algorithm
can be considered a superior algorithm than D* Lite for use in a
UAV control model that utilises Reynolds flocking.

For both pathfinding approaches, when the environment size
increased the time taken to find the target also increased. Given
that the maximum speed of the drones was constrained, it was
expected that it would take longer for the drones to traverse a
larger environment. Additionally, for both approaches, the
number of collisions (both drone-to-environment and drone-
to-drone) increased as the environment size increased. This is
likely a result of objectives in larger environments taking longer to
complete and requiring the circumvention of more
obstacles—leading to increased opportunity for collisions
to occur.

3.3 Ease of Implementation and Usability
An algorithm’s ease of implementation describes how simple an
algorithm is to implement and maintain. Ease of implementation
is a key factor, alongside efficiency, in determining an algorithm’s
overall efficacy. Algorithms that are more straightforward to
implement require less development time and are easier to
modify, analyse, and debug. Whilst computational and
memory efficiency are central considerations when selecting an
algorithm to solve a given problem, algorithms with poor ease of
implementation are difficult and time consuming to implement
and, thus, may not be worth the performance benefits they bring.
This is an especially important consideration in the field of games
development as overall development time is typically a central
economic consideration. The Maintainability Index (MI) [29] is a
commonly used metric for describing the ease of implementation
for a given section of code. This project used the MI variant that is
available within Visual Studio 2019 [30] to assess the ease of
implementation for the PSOP algorithm and for the D* Lite
implementation. The MI variant used produces a value between 0
and 100 where a higher value indicates code that is easier to
understand and maintain. The singular PSOP implementation
class received a MI of 72 whereas the D* Lite class received only
66 in addition to the MI of 75 received by the second D* Lite
implementation class that was required to communicate between
the D* Lite class and the DFC model code. As higher MI values
have been shown to indicate code with fewer defects [31] we can
conclude that implementations of the PSOP algorithm are likely
easier to understand, maintain, and contain fewer defects than D*
implementations.

The final metric of algorithm performance that will be
explored is initialisation time—the time required for the
drones to setup ready to move. This is an important aspect of
usability as initialisation time would likely be an important
consideration for most uses of the DFC model. In real-world
crisis response situations, time is often critical, therefore an
algorithm that requires a long time to initialise may be
considered unsuitable. Additionally, long load times can break
a player’s emersion in a computer game as they can feel pulled out
of the experience. Thus, game developers may avoid algorithms
that would significantly increase the application load time.

This paper found that initialisation time when using D* Lite
was consistently two or three orders of magnitude higher than
when using PSOP (Figure 9). A Wilcoxon rank sum test shows
that improvements in the initialisation time are statistically
significant with p-values of ≈ 0.008. Additionally, the disparity

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org November 2021 | Volume 7 | Article 74495513

Pyke and Stark Dynamic Pathfinding for Swarm Intelligence

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

between the two pathfinding approaches increased significantly
as the environment size increased. The initialisation time is likely
closely related to memory allocation as a vast majority of the
initialisation time when using D* Lite is likely spend allocating
space in memory for the graph representation of the
environment. This theory is supported by the similarities
between the observed memory allocation and recorded
initialisation times. This finding shows that in situations where
initialisation time is critical, PSOP is more suitable, especially in
large environments and furthers the overall conclusion that PSOP
is a more suitable algorithm for multi-agent UAV pathfinding
than D* Lite.

3.4 Limitations
There are two key limitations of this study. Firstly, this studies
simulation fails to consider the effects of atmospheric pressure,
wind, turbulence, gravity or UAV dynamics on the drones.
Considering these factors has been viewed as an important
part of the realism of UAV flight simulations [32] and
therefore the findings of this project may be less applicable to
real-world scenarios. Secondly, this study applied restrictions on
the D* Lite implementation (see Section 2.6.2) for the algorithm
to be applied to the real-time simulation. When finding the
shortest path, the algorithm was restricted to searching only
700 nodes. This was necessitated by the available computing
resources failing to facilitate a full search in the time required for
the algorithm to be applied in real-time—especially in large
environments for systems of many drones. During
development, a restriction of around 700 appeared to maintain
the algorithm’s performance whilst allowing this algorithm to be
used in real-time. However, this means that the implementation
is not the canonical D* Lite algorithm, and thus, some variations
in performance may have occurred.

The collision avoidance algorithm used in this work is not
optimal; however, the focus of the paper was not to characterise
collision avoidance. As collision avoidance (between agents) is a
key benefit of flocking behaviour this paper has demonstrated
that some pathfinding approaches can synergise with this
collision avoidance better than others. We have shown that
PSOP naturally created flock formations that were better
suited to flocking-based cooperative motion than the
formation seen when using D*Lite. Having a high-powered
collision avoidance system may have made it more challenging
to draw conclusions about the suitability of the pathfinding
algorithms for use with a flocking-based system. A well
designed collision avoidance algorithm may have mitigated
most (or all) collisions making it difficult to determine which
pathfinding algorithm reduced the likelihood of collisions
the most.

4 CONCLUSION

This paper has explored the use of SI techniques to facilitate
intelligent, collective, and directed motion within flocks of UAVs
and attempted to answer the question: How can the PSO
algorithm be utilised to facilitate dynamic pathfinding as part

of a Swarm Intelligence based UAV control model? Reynolds
flocking was used with an obstacle avoidance AI implementation
to create a modular model (DFC model) that enables collective
motion where collisions are minimised. Additionally, a dynamic
pathfinding algorithm, based upon the PSO algorithm, was
proposed, implemented, and integrated into the DFC model to
enable the model to facilitate pathfinding in a dynamic
environment. Using the Unity game engine, a testing
environment and data collection apparatus were developed.
The DFC model using the PSOP algorithm was tested in this
environment and compared to the performance of the DFC
model when using a D* Lite implementation.

This study found that, using a heuristic that evaluates the
quality of a position as a point along a path, the PSO algorithm
could be successfully adapted to facilitate pathfinding in a
dynamic environment for multi-agent systems. This study
showed that, using this approach, the PSOP algorithm was
able to produce higher quality and more accurate pathfinding
than the D* Lite algorithm when applied to a SI-based multi-
agent UAV control model operating in a dynamic environment.
For example, in a large environment (200 × 200 × 200) with a
system of 20 drones, when using PSOP an average of 26.6 s (with
an average of 21.8 total collisions) was required to find the target,
compared to 42.3 s (with an average of 185.2 total collisions)
when using D* Lite. When using the PSOP algorithm a system of
drones was shown to require similar computation time and far
less allocated memory. For the same environment (200 × 200 ×
200), 20 drones required on average 36 MB of allocated memory
when using PSOP compared to 14,000 MB for D* Lite.
Additionally, the PSOP algorithm was shown to require less
time to initialise, and it was found that the PSOP algorithm
was simpler to implement than D* Lite. This study concludes that
using the PSO algorithm, as the basis of a pathfinding algorithm,
is a viable approach to multi-agent navigation in dynamic
environments. The PSOP algorithm shows great promise as a
method of facilitating pathfinding for real-world UAVs and as a
method of controlling NPCs within games applications.

The work presented here has implications both within the field
of autonomous vehicle control and within the field of games
technology. This study furthers the research into autonomous
vehicle control presenting the application of SI algorithms to
autonomous UAV control. This study has shown that PSO-based
pathfinding can be a more effective approach than a typical
graph-based algorithm for systems of multiple drones. As
UAV technology continues to get cheaper, future crisis
response teams may increasingly have access to multiple
UAVs capable of autonomous navigation. As this study’s
findings suggest, in this scenario cooperative pathfinding using
a PSO-based algorithm may prove superior to traditional
pathfinding algorithms—allowing the drones to navigate the
environment faster and more efficiently, locating survivors
faster, and ultimately saving lives.

Often in games applications there is a need for low-cost systems to
control the movement and navigation of NPCs within game
environments. This research describes a cooperative pathfinding
approach free from the memory and scalability limitations of
graph-based pathfinding and showed that this approach

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org November 2021 | Volume 7 | Article 74495514

Pyke and Stark Dynamic Pathfinding for Swarm Intelligence

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

significantly outperformed D* Lite. This gives game developers a new
approach to implementing intelligent group motion to their
applications. The authors believe the DFC with the PSOP
algorithm would be the ideal approach to controlling a group of
nature-inspired NPCs in a three-dimensional environment, such as a
group of flying enemies attacking the player or fireflies guiding the
player through a complex area.

The research presented in this project may be expanded uponwith
future research focused on either SI-algorithms for real-world UAV
control or for applications of SI-based pathfinding in games
applications. The simulation used in this study does not consider
environmental factors such as atmospheric pressure, wind, turbulence,
and gravity. The simulation also does not consider UAV dynamics or
hardware, thus, further research may look to apply the DFC model,
with the PSOP algorithm, to a simulation that uses a modern
environment model to consider these factors. The existing
simulation could be improved through the application of AirSim
[33]—a hi-fidelity physics simulation designed specifically for
autonomous vehicle AI. Using the AirSim Unity package, the
simulation could be extended to consider a range of
environmental phenomena, real-world UAV dynamics, and
technical engineering considerations, such as the different types of
sensors available with real-world UAVs. Navigation systems that are
proficient in AirSim simulations can be applied in the real-world
without the need for adaptation [34]. Following further development
to meet the challenges of an AirSim hi-fidelity simulation, the DFC
model with the PSOP algorithm could be applied to real-world UAVs
in a controlled environment.

In the domain of games development, algorithm performance is
critical as games applications typically have strict framerate
requirements. Further research into the PSOP algorithm in this
domain may aim to optimise the performance of the algorithm.
Parallelisation has been shown to improve the performance of the
PSO algorithm [35], thus, further research may look to apply
parallelisation techniques to the PSOP algorithm. The aim of this
research would be to develop a highly performant pathfinding

algorithm for use in games applications and may include adapting
the work of [27]. Additionally, it has previously been noted that the
movement of NPCs controlled using a PSO-based pathfinding
algorithm navigate their environment with realistic motion that
resembles intelligent behaviour [28]. Further research may wish to
explore pathfinding with PSOP to find optimal parameter
configurations and adaptions that facilitate environment navigation
that appears highly lifelike and intelligent for a system of game NPCs.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://doi.org/10.
6084/m9.figshare.15015528.v1.

AUTHOR CONTRIBUTIONS

CS and LP contributed to the project conceptualization, the
development of the methodology, the visualization of the data
and project administration. LP conducted the primary research
and investigation process, the formal analysis of the data and
wrote the first draft of the manuscript under the supervision of
CS. Both authors contributed to manuscript revisions, read, and
approved the submitted version.

ACKNOWLEDGMENTS

The authors are grateful to the referees for constructive
comments and suggestions that have improved this paper. The
authors are grateful for support from the Complex Multiscale
Dynamics Research Group within the Division of Games
Technology and Mathematics at Abertay University.

REFERENCES

1. Scanlan J, Flynn D, Lane D, Richardson R, Richardson T, Sóbester A. Extreme
Environments Robotics: Robotics for Emergency Response, Disaster Relief and
Resilience. UK-RAS White Papers. UK-RAS Network (2017).

2. ICAO. International Civil Aviation Organization Unmanned Aircraft Systems
(UAS). [Dataset] (2011).

3. Hu J, Lanzon A. An Innovative Tri-rotor Drone and Associated Distributed
Aerial Drone Swarm Control. Robot Auton Syst (2018) 103:162–74.
doi:10.1016/j.robot.2018.02.019

4. Innocente M, Grasso P. Swarms of Autonomous Drones Self-Organised to
Fight the Spread of Wildfires. In: Proceedings of the RSFF’18 Workshop; 2018
Jul 19–20; L’Aquila, Italy (2018).

5. Karaboga D, Akay B. A Survey: Algorithms Simulating Bee Swarm Intelligence.
Artif Intell Rev (2009) 31:61–85. doi:10.1007/s10462-009-9127-4

6. Reynolds CW. Flocks, Herds and Schools: A Distributed Behavioral
Model. SIGGRAPH Comput Graph (1987) 21:25–34. doi:10.1145/
37402.37406

7. Hauert S, Leven S, Varga M, Ruini F, Cangelosi A, Zufferey J-C, Floreano
D. Reynolds Flocking in Reality with Fixed-wing Robots:
Communication Range vs. Maximum Turning Rate. In: 2011 IEEE/
RSJ International Conference on Intelligent Robots and Systems; 2011

Sept 25–30; San Francisco, CA (2011). p. 5015–20. doi:10.1109/
IROS.2011.6095129

8. Watson NR, John NW, Crowther WJ. Simulation of Unmanned Air Vehicle
Flocking. Proc Theor Pract Comput Graphics (2003) 2003:130–7. doi:10.1109/
TPCG.2003.1206940

9. Silver D. Cooperative Pathfinding. In: Proceedings of the First AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment-
AIIDE’05; 2005 Jun 1–3; Marina del Rey, CA. AAAI Press (2005). p. 11722.

10. Kennedy J, Eberhart R. Particle Swarm Optimization. In: Proceedings
of ICNN’95 - International Conference on Neural Networks; 1995 Nov
27–Dec 1; Perth, Australia, 4 (1995). p. 1942–8. doi:10.1109/ICNN.1995.488968

11. Cui X, Shi H. A*-Based Pathfinding in Modern Computer Games. Int. J. Netw.
Secur. (2011). 11(1):125–130.

12. Unity Technologies. Unity. [Dataset] (2021)
13. Shi Y, Eberhart R. A Modified Particle Swarm Optimizer. In: 1998 IEEE

International Conference on Evolutionary Computation Proceedings. IEEE
World Congress on Computational Intelligence (Cat. No.98TH8360); 1998
May 4–9; Anchorage, AK; (1998). p. 69–73. doi:10.1109/ICEC.1998.699146

14. Yazdani D, Bb A, Sepas-Moghaddam A, Meybodi M. A Novel Multi-Swarm
Algorithm for Optimization in Dynamic Environments Based on Particle Swarm
Optimization. Appl Soft Comput (2013) 13:2144158. doi:10.1016/j.asoc.2012.12.020

15. Unity. Unity User Manual 2020.3. Unity Technologies (2020). Available at:
http://docs.unity3d.com/Manual/index.thml

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org November 2021 | Volume 7 | Article 74495515

Pyke and Stark Dynamic Pathfinding for Swarm Intelligence

https://doi.org/10.6084/m9.figshare.15015528.v1
https://doi.org/10.6084/m9.figshare.15015528.v1
https://doi.org/10.1016/j.robot.2018.02.019
https://doi.org/10.1007/s10462-009-9127-4
https://doi.org/10.1145/37402.37406
https://doi.org/10.1145/37402.37406
https://doi.org/10.1109/IROS.2011.6095129
https://doi.org/10.1109/IROS.2011.6095129
https://doi.org/10.1109/TPCG.2003.1206940
https://doi.org/10.1109/TPCG.2003.1206940
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1016/j.asoc.2012.12.020
http://docs.unity3d.com/Manual/index.thml
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

16. Microsoft. Microsoft, NET Documentation. Redmond, WA: Microsoft (2020).
17. Basu P, Redi J, Shurbanov V. Coordinated Flocking of Uavs for Improved

Connectivity of mobile Ground Nodes. In: IEEE MILCOM 2004 Military
Communications Conference; 2004 Oct 31–Nov 3; Monterey, CA, 3 (2004). p.
1628–34. doi:10.1109/MILCOM.2004.1495182

18. Koenig S, Likhachev M. Incremental a*. In: T Dietterich, S Becker,
Z Ghahramani, editors. Advances in Neural Information Processing Systems,
Vol. 14. Cambridge, MA: MIT Press (2002).

19. De Filippis L, Guglieri G, Quagliotti F. Path Planning Strategies for Uavs in 3d
Environments. J Intell Robot Syst (2012) 65:247–64. doi:10.1007/s10846-011-9568-2

20. Wu J, Wang H, Li N, Yao P, Huang Y, Yang H. Path Planning for Solar-
Powered Uav in Urban Environment. Neurocomputing (2018) 275:2055–65.
doi:10.1016/j.neucom.2017.10.037

21. Sazaki Y, Satria H, Syahroyni M. Comparison of a* and Dynamic Pathfinding
Algorithm with Dynamic Pathfinding Algorithm for Npc on Car Racing Game.
In: 2017 11th International Conference on Telecommunication Systems Services
and Applications (TSSA); 2017 Oct 26–27; Lombok, Indonesia (2017). p. 1–6.

22. Krishnaswamy N. Comparison of Efficiency in Pathfinding Algorithms in Game
Development. [Ph.D. Thesis] (2009).

23. Zarembo I, Kodors S. Pathfinding Algorithm Efficiency Analysis in 2d Grid.
Etr (2015) 2:46. doi:10.17770/etr2013vol2.868

24. Barlow RJ. Statistics: A Guide to the Use of Statistical Methods in the
Physical Sciences (Manchester Physics Series). reprint edn. Chichester,
England: WileyBlackwell (1989).

25. Sabri AN, Radzi NHM, Samah AA. A Study on Bee Algorithm and a?
Algorithm for Pathfinding in Games. In: 2018 IEEE Symposium on
Computer Applications Industrial Electronics (ISCAIE); 2018 April 28–29;
Penang Island, Malaysia (2018). p. 224–9. doi:10.1109/ISCAIE.2018.8405474

26. Burwell K.Multi-agent Pathfinding for Unmanned Aerial Vehicles. Universitat
Politècnica de Catalunya. Facultat d’Informàtica de Barcelona (2019).

27. DangW, Xu K, Yin Q, Zhang Q. A Path Planning Algorithm Based on Parallel
Particle Swarm Optimization. In: D-S Huang, V Bevilacqua, P Premaratne,
editors. Intelligent Computing Theory. Cham: Springer International
Publishing (2014). p. 82–90. doi:10.1007/978-3-319-09333-8_10

28. Díaz G, Iglesias A. Swarm Intelligence Scheme for Pathfinding and Action
Planning of Non-player Characters on a Last-Generation Video Game. Adv
Intell Syst Comput (2017) 514:343–53. doi:10.1007/978-981-10-3728-3_34

29. Oman P, Hagemeister J. Metrics for Assessing a Software System’s
Maintainability. In: Proceedings Conference on Software Maintenance
1992; 1992 Nov 9-12; Orlanda, FL (1992). p. 337–44. doi:10.1109/
ICSM.1992.242525

30. Microsoft. Visual Studio Documentation. Redmond, WA: Microsoft (2021).
31. Counsell S, Liu X, Eldh S, Tonelli R, Marchesi M, Concas G, Murgia A.

Re-visiting the ’Maintainability Index’ Metric from an Object-Oriented
Perspective. In: 2015 41st Euromicro Conference on Software
Engineering and Advanced Applications; 2015 Aug 26–28; Madeira,
Portugal (2015). p. 84–7. doi:10.1109/SEAA.2015.41

32. Mancini A, Cesetti A, Iualè A, Frontoni E, Zingaretti P, Longhi S. A
Framework for Simulation and Testing of UAVs in Cooperative Scenarios.
J Intell Robot Syst (2008) 54:307–29. doi:10.1007/s10846-008-9268-8

33. Microsoft. Airsim. [Dataset] (2021)
34. Shah S, Dey D, Lovett C, Kapoor A. Airsim: High-Fidelity Visual and Physical

Simulation for Autonomous Vehicles. In: FSR-2017; 2017 Sep 12–15; Zurich,
Switzerland (2017). doi:10.1007/978-3-319-67361-5_40

35. Lalwani S, Sharma H, Satapathy SC, Deep K, Bansal JC. A Survey on Parallel
Particle Swarm Optimization Algorithms. Arab J Sci Eng (2019) 44:2899–923.
doi:10.1007/s13369-018-03713-6

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Pyke and Stark. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org November 2021 | Volume 7 | Article 74495516

Pyke and Stark Dynamic Pathfinding for Swarm Intelligence

https://doi.org/10.1109/MILCOM.2004.1495182
https://doi.org/10.1007/s10846-011-9568-2
https://doi.org/10.1016/j.neucom.2017.10.037
https://doi.org/10.17770/etr2013vol2.868
https://doi.org/10.1109/ISCAIE.2018.8405474
https://doi.org/10.1007/978-3-319-09333-8_10
https://doi.org/10.1007/978-981-10-3728-3_34
https://doi.org/10.1109/ICSM.1992.242525
https://doi.org/10.1109/ICSM.1992.242525
https://doi.org/10.1109/SEAA.2015.41
https://doi.org/10.1007/s10846-008-9268-8
https://doi.org/10.1007/978-3-319-67361-5_40
https://doi.org/10.1007/s13369-018-03713-6
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	Dynamic Pathfinding for a Swarm Intelligence Based UAV Control Model Using Particle Swarm Optimisation
	1 Introduction
	2 Methodology
	2.1 Project Development
	2.2 Particle Swarm Optimisation Pathfinding (PSOP) Algorithm
	2.2.1 PSOP Heuristic
	2.2.2 pBest and gBest

	2.3 Drone Flock Control Model
	2.3.1 Drone Flock Control Implementation
	2.3.2 Drone Settings

	2.4 Flocking Module
	2.5 Obstacle Avoidance Module
	2.6 Pathfinding Module
	2.6.1 PSOP Implementation
	2.6.2 D* Lite Implementation

	2.7 Testing
	2.7.1 The Environment
	2.7.2 The Objective
	2.7.3 Testing Scenarios
	2.7.4 Data Gathering
	2.7.5 Data Analysis

	3 Results and Discussion
	3.1 Computational and Memory Performance
	3.2 Pathfinding Performance
	3.3 Ease of Implementation and Usability
	3.4 Limitations

	4 Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

