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Expanded Model of Non-alcoholic
Fatty Liver Disease
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Department of Mathematical Statistics, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza, Egypt

A global increase in the prevalence of obesity and type 2 diabetes is strongly connected

to an increased prevalence of non-alcoholic fatty liver disease (NAFLD) worldwide. In this

article, the progression of the NAFLD process is modeled by continuous time Markov

chains (CTMCs) with nine states. Maximum likelihood is used to estimate the transition

intensities among the states. Once the transition intensities are obtained, the mean

sojourn time and its variance are estimated, and the state probability distribution and

its asymptotic covariance matrix are also estimated. A hypothetical example based on

a longitudinal study assessing patients with NAFLD in various stages is discussed. The

mean time to absorption is estimated, and the other abovementioned statistical indices

are examined. In this article, the maximum likelihood estimation (MLE) function is utilized

in a new approach to compensate for the missing values in the follow-up period of

patients evaluated in longitudinal studies. A MATLAB code link is provided, at the end of

the article, for the estimation of the transition rate matrix and transition probability matrix.

Keywords: multistate Markov chains, non-alcoholic fatty liver disease, continuous time Markov chains, maximum

likelihood estimation, mean sojourn time, longitudinal study, mean time to absorption

INTRODUCTION

Continuous time Markov chain (CTMC) is commonly used to model data obtained from
longitudinal studies inmedical research and to investigate the evolution and progression of diseases
over time. Estes et al. [1] used multistate Markov chains to model the epidemic of non-alcoholic
fatty liver disease (NAFLD). Younossi et al. [2] used multistate Markov chains to demonstrate the
economic and clinical burden of NAFLD in the United States and Europe.

According to the American Association for Study of Liver Disease, American College of
Gastroenterology, and the American Gastroenterological Association, NAFLD to be defined
requires (a) evidence of hepatic steatosis (HS) either by imaging or by histology and (b) no causes
of secondary hepatic fat accumulation, such as significant alcohol consumption, use of steatogenic
medications, or hereditary disorders [3]. This is the same definition established by the European
Association for the Study of the Liver (EASL), the European Association for the Study of Diabetes
(EASD), and the European Association for the Study of Obesity (EASO) [4]. NAFLD can be
categorized histologically into the non-alcoholic fatty liver (NAFL) or non-alcoholic steatohepatitis
(NASH). NAFL is defined as the presence of ≥ 5% HS without evidence of hepatocellular injury in
the form of hepatocyte ballooning. NASH is defined as the presence of≥ 5% HS and inflammation
with hepatocyte injury (ballooning), with or without any fibrosis.
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In Attia [5], non-alcoholic fatty liver disease (NAFLD) can
be modeled by the simplest form of a multistate model for the
health-illness-death process as illustrated in Figure 1. The system
is composed of 4 states. State 1 represents the individuals with
high risk factors such as type 2 diabetes, hypercholesterolemia,
obesity, and hypertension. State 2 represents patients suffering
from NAFLD with all possible substates that are explained and
clarified in a more elaborate manner in this paper. The death
state is represented by two states highlightening the competing
risk factors for death: state 3 represents the death state as a
complication of NAFLD and state 4 represents the death state
from other causes than the complications of NAFLD. For this
general and abstract system, 5 rates of transitions among states
are estimated using the maximum likelihood estimation (MLE)
function and quasi-Newton. Once the transition rate matrix
is obtained, exponentiation of this rate matrix will yield the
transition probability matrix to estimate the eight probability
density functions (PDFs). All diseases can be modeled by this
abstract form (health-illness-death process), what makes each
disease unique from the other is the detailed substages of the
illness state: how many substates that encompass the illness state,
how the movements among these states can take place, and the
definitions specified for each of these substates. In this article;
the system is composed of nine unique different states. Each

Abbreviations: CC, compensated cirrhosis (stage 4); CTMCs, continuous time
Markov chains; CVS, cardiovascular disease; DCC, decompensated cirrhosis (stage
5); EASD, European Association for the Study of Diabetes; EASL, European
Association for the Study of Liver; EASO, European Association for the Study of
Obesity; EM, extramortality (stage 9); HCC, hepatocellular carcinoma (stage 8);
HS, hepatic steatosis; LT, liver transplant (stage 6); NAFLD, non-alcoholic fatty
liver disease; NAFL-NO FB, non-alcoholic fatty liver with no fibrosis (stage 1);
NASH, non-alcoholic steatohepatitis; NASH-NO FB, non-alcoholic steatohepatitis
with no fibrosis (stage 2); NASH-FB, non-alcoholic steatohepatitis with fibrosis
(stage 3); PLT, postliver transplant (stage 7); PNPLA-3, patatin-like phospholipase
domain containing protein 3 gene variants; TE, transient elastography; T2DM,
type 2 diabetes mellitus.

FIGURE 1 | The simplest multistate model for analysis of NAFLD (health-illness-death process) [2].

state defines specific biological changes in the whole journey of
the disease, and from each state, the patient can be in the death
state without specifying the cause of death for simplicity. This
more complicated system of the NAFLD process is composed of
22 rates in addition to 49 PDFs to be estimated. The transition
rate matrix differs from the simple model as the number and
movement among the states are more specified and complicated;
consequently, the PDFs are different.

A MATLAB code illustrating all the calculations is published
in the code Ocean site at the URL: https://codeocean.com/
capsule/8641183/tree/v2 with doi: 10.24433/CO.6022979.v2.

A full detailed description of a simple form of the model
to enhance understanding of the difference between the two
forms of the model is illustrated in a thorough explanation in
the Supplementary Materials for the simple model (refer to
Supplementary Material).

In this article, NAFLD is modeled as a multistage disease
process consisting of nine stages, as depicted in Figure 2 [2].
As shown in Figure 2, the patient can move across the stages
of the disease process. Whereas, remission rates are allowed
from stage 4 (compensated liver cirrhosis) to earlier stages, the
patient progresses to HCC and liver transplantation once he
arrives at stage 5 (decompensated liver cirrhosis), and remission
rates are not allowed. Death state can be reached from any
state. The patient can move from the first 5 stages to stage 8
(HCC) with a higher rate of progression from stage 4 (CC)
or stage 5 (DCC) to stage 8 (HCC) compared to the first
3 stages. A brief definition of each stage is illustrated below
the figure.

NAFLD stages are modeled as time-homogenous CTMCs,
that is, Pij (1t) depends on 1t and not on t, with constant
transition intensities λij over time, exponentially distributed time
spent within each state and patient events following a Poisson
distribution. The states are finite and can be defined or identified
based on various aspects, such as clinical symptoms and invasive
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FIGURE 2 | Disease model structure. NAFL-NO FB, non-alcoholic fatty liver with no fibrosis (stage 1); NASH-NO FB, non-alcoholic steatohepatitis with no fibrosis

(stage 2); NASH-FB, non-alcoholic steatohepatitis with fibrosis (stage 3); CC, compensated cirrhosis (stage 4); DCC, decompensated cirrhosis (stage 5); LT, liver

transplant (stage 6); PLT, post liver transplant (stage 7); HCC, hepatocellular carcinoma (stage 8); EM, extramortality (stage 9). [2].

or non-invasive investigations. The gold-standardmethod for the
classification of histopathological changes in the liver is invasive
liver biopsy. It is presently the most trustworthy procedure
for diagnosing the presence of steatohepatitis and fibrosis in
patients with NAFLD [6]. The limitations of this procedure
are cost, sampling error, and procedure-related morbidity and
mortality. MR imaging, by spectroscopy [7] or by proton density
fat fraction [8], is an excellent non-invasive technique for
quantifying HS and is being widely used in NAFLD clinical
trials [9]. The use of transient elastography (TE) to obtain
continuous attenuation parameters is a promising tool for
quantifying hepatic fat in an ambulatory setting [10]. However,
non-invasive quantification of HS in patients with NAFLD is
limited in routine clinical care. Additionally, one of the most
recent biological markers is the keratin (K18) and its caspase-
cleaved fragments (cK18). There are many scoring systems that
can identify the stages of the disease process [11]. NAFLD
has a higher prevalence rate in individuals with risk factors
such as visceral obesity, type 2 diabetes mellitus (T2DM),
dyslipidemia, hypertension, older age, male sex, and Hispanic
ethnicity [12].

For simplicity, all individuals are assumed to enter the disease
process at stage one, and they are all followed up with the same
length of the time interval between measurements.

The article is divided into eight sections. In Section 1, the
transition probabilities are thoroughly discussed. In Section 2,
transition rates are clarified. In Section 3, the mean sojourn time
and its variance are reviewed. In Section 4, the state probability
distribution and its covariance matrix are discussed. In Section
5, the life expectancy of the patients is considered. In Section 6,
the expected numbers of patients in each state are obtained. A
hypothetical numerical example is used in Section 7 to illustrate
the above concepts. Finally, a brief summary is comprehended

in Section 8. A link to the MATLAB code is provided
at the end of the article (refer to Supplementary Material,
Appendix A & B).

1. TRANSITION PROBABILITIES

NAFLD is modeled by multistate Markov chains that define a
stochastic process:

[

(X(t), t ∈ T)
]

over a finite state space S = { 1, 2, . . . , 9}

and T = [0, t ] and t < ∞.

The transitions can occur at any point in time and, hence, are
called continuous time Markov chains, in contrast to the discrete
time Markov chains in which transitions occur at fixed points in
time. The rates at which these transitions occur are constant over
time and, thus, are independent of t; that is, the transition of the
patient from state i at time = t to state j at t = t + s where s =
1t depends on the difference between two consecutive time

points. In addition, it is defined as θij (t) = lim1t→0
Pij(1t)−I

1t
or the Q matrix; while, the I matrix is the identity matrix, the
thetas are the transition rates among states (in this model, they
are 22 rates).

For the above multistate Markov model demonstrating the
NAFLD process, the forward Kolmogorov differential Equations
(1) are as follows:

d

dt
P (t) = PQ =
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(1)

Solving the Kolmogorov differential equations will
give the transition probability matrix Pij (t) (refer to
Supplementary Material Section 1).

Pij (t) satisfies the following properties:

1. Pij (t + s) =
∑

i.j.l∈S Pil (t)Plj (s), ∀ t ≥ 0, s ≥ 0, i, j, l ∈

S; obeying kolmogrov equations.
2.

∑

S Pij (t) = 1.
3. Pij (t) ≥ 0, ∀ t ≥ 0 and i, j ∈ S.

The Q matrix satisfies the following conditions:

1.
∑

S qij (t) = 0.
2. qij (t) ≥ 0 i 6= j.
3. −

∑

S qij (t) = qii i = j.

where qij is the ( i, j) th entry in the Qmatrix emphasizing that Pij
depends only on the interval between t1 and t2 and not on t1.

2. MAXIMUM LIKELIHOOD ESTIMATION
OF THE Q TRANSITION RATE MATRIX

Let nijr be the number of individuals in state i at tr−1 and in state j
at time tr . Conditioning on the distribution of individuals among
states at t0, the likelihood function for θ is (2):

L (θ) =

τ
∏

r=1







k=9
∏

i,j=1

[

Pij (tr−1, tr)
]nijr







(2)

where k is the index of the number of states

log L (θ) =

τ
∑

r=1

k=9
∑

i.j=1

nijr log P
ij
(tr−1, tr) where τ = (tr−tr−1) .

According to Kalbfleisch and Lawless [13], applying the quasi-
Newton method to estimate the rates mandates calculating the
score function S (θ) (3), which is a vector–valued function for
the required rates and is the first derivative of the log likelihood

function. The second derivative of the probability transition
function with respect to theta is assumed to be zero.

S (θ) =
∂

∂θh
log L (θ) =

τ
∑

r=1

k
∑

i,j=1

nijr
∂Pij (τ ) /∂θh

Pij (τ )
,

h = 1, . . . , 22 while Pij (τ ) =
nijr

ni+
, such that ni+ =

k
∑

j=1

nijr .

S (θ) = τ e3τd3(3)

where S (θ) is the score function.
3 is the eigenvalue for each Q matrix in each τ

(refer to Supplementary Material Section 2). Taking the second
derivative of log L (θ) (4):

∂2

∂θg∂θh
log L (θ)

=

τ
∑

r=1

k
∑

i,j=1

nijr

{

∂2Pij (τ ) /∂θg∂θh

Pij (τ )
−

∂Pij (τ ) /∂θg∂Pij (τ ) /∂θh

P2ij (τ )

}

(4)

Assuming the second derivative is zero and
nijr

Pij(τ )
= ni+ where

ni+ =
∑9

j= 1 nij then:

Mij (θ) =
∂2

∂θg∂θh
log L (θ) =

−

τ
∑

r=1

k
∑

i,j=1

ni+
∂Pij (τ ) /∂θg∂Pij (τ ) /∂θh

Pij (τ )
.

The quasi-Newton formula is (5).

θ1 = θ0 + [M (θ0)]
−1 S (θ0) (5)

According to Klotz and Sharples [14], the initial θ0 =
nijr
ni+

for 1t = 1.

For this NAFLD process (refer to
Supplementary Material Section 2).

3. MEAN SOJOURN TIME

It is the mean time spent by a patient in a given state i of the
process. It is calculated in relation to transition rates θ̂ . These
times are independent and exponentially distributed random
variables with mean 1

λi
where λi = −λii; i = 1, . . . , 8.

According to Kalbfleisch and Lawless [13], the asymptotic
variance of this time is calculated by applying the multivariate
delta method (6):

var (si) =

[

(

qii

(

θ̂

))−2
]2

∑22

h=1

∑22

g=1

∂qii

∂θg

∂qii

∂θh
[M (θ)]−1

∣

∣

θ=θ̂
(6)

where si is the mean sojourn time.
For this NAFLD process (refer to

Supplementary Material Section 3).
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4. STATE PROBABILITY DISTRIBUTION

According to Cassandras and Lafortune [15], it is the probability
distribution for each state at a specific time point given the
initial probability distribution. Thus, using the rule of total
probability, a solution describing the transient behavior of a chain
characterized by Q and an initial condition π (0) is obtained by
direct substitution to solve (7):

π (t) = π (0)P (t) . (7)

The stationary probability distribution when t goes to infinity
or, in other words, when the process does not depend on
time is obtained by differentiating both sides of the following
Equation (8):

π (t) = π (0)P (t) = π (0) eQt (8)

differentiate both sides to obtain d
dt

π (t)
∣

∣

∣

t=0
= π (0)Q.

d

dt
πi (t)

∣

∣

∣

∣

t=0

=
[

π0(1) π0(2) π0(3) π0(4) π0(5) π0(6) π0(7) π0(8) π0(9)
]
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.

[

π1 π2 π3 π4 π5 π6 π7 π8 π9
]

at a specific time point is
obtained by solving this system of differential equations.
Solving these differential equations for this complex chain
is cumbersome.

If the limit of πz = limt→∞ πz (t) exists, then there is a
stationary or steady state distribution, and as t → ∞, d

dt
πj (t) =

0, since πz (t) does not depend on time. Therefore, d
dt

π (t) =

π (t)Q will reduce to π (t)Q = 0. The stationary state
probability distribution is obtained by solving π(t)Q = 0 subject
to

∑

all z πz = 1.
For this NAFLD process (refer to

Supplementary Material Section 4).

4.1. Asymptotic Covariance of the State
Probability Distribution
The multivariate delta method is applied to the following
function Q′π = F (θh,πi) = 0 to obtain the asymptotic
covariance matrix of the state probability distribution, as π is not
a simple function of theta.

Differentiating F (θh,πi) implicitly with respect to θh is used
in the following manner (9):

∂

∂θh
F (θh,πi) =

∂

∂θh
Q′πi = 0. (9)

∂

∂θh
Q′πi =

[

Q′
]

[

∂

∂θh
πi

]

+ πi

[

∂

∂θh
Q

′

]T

= 0

let′s call πi

[

∂

∂θh
Q

′

]T

= C (θ) .

[

Q′
]

[

∂

∂θh
πi

]

+ C (θ) = 0.

solving for

[

∂

∂θh
πi

]

,

[

∂

∂θh
πi

]

= −
[

Q
′
]−1

C (θ) .

Let

[

∂

∂θh
πi

]

=A (θ) .

By multivariate delta method

var (π) = A (θ) var (θ)A (θ)
′
, where var (θ) = [M (θ)]−1 .

For this NAFLD process: (refer to
Supplementary Material Section 4.1).

5. LIFE EXPECTANCY OF THE PATIENT IN
THE NAFLD PROCESS

The disease process is composed of eight transient states and one
absorbing state (death state). So, the Q matrix is partitioned into
four sets:

Q =

[

B A
0 0

]

,

where

B =


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


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.

Additionally, the differential equations can be partitioned into
the following (10):

[

Ṕ(t) Ṕk (t)
]

=
[

P (t) Pk (t)
]

[

B A
0 0

]

(10)

B is the transition rate matrix among the transient states and
column vector A is the transition rate from each transient state
to the absorbing (death) state.

A = −B1T such that1T is a column vector of
(

k− 1
)

× 1

with all its elements equal to one
[

Ṕ(t) Ṕk (t)
]

=
[

P (t) Pk (t)
]

[

B A

0 0

]

can be written as :

P′ (t) = P (t)B and Ṕk (t) = P (t)A.

The solution to Ṕ (t) = P (t)B is P (t) = P (0) eBt
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then Ṕk (t) = P (0) eBtA.

and eBt = 1+ Bt +
(Bt)2

2!
+

(Bt)3

3!
+

(Bt)4

4!
+ · · · =

∞
∑

j=0

(Bt)j

j!
.

If τk is the time taken from state i to reach the absorbing death
state from the initil time

Fk (t) = pr [ τk ≤ t] = pr
[

X (t) = k
]

= Pk (t) = 1T − P (t) 1T

= 1T − P (0) eBt1T .

The moment theory for the Laplace transform can be used to
obtain the mean of the time that has the above cumulative
distribution function. CTMC can be written in a Laplace
transform (11) such that:

[

sP∗(s) − P (0) sP∗k (s)
]

=
[

P∗ (s) P∗k (s)
]

[

B A
0 0

]

(11)

∴ sP∗ (s) − P (0) = P∗ (s)B and sP∗k (s) = P∗ (s)A.

Rearrange:

∴ sP∗ (s) − P∗ (s)B = P (0) .

P∗ (s) [sI − B] = P (0) → P∗ (s) = P (0) [sI − B]−1.

∴ sP∗k (s) = P∗ (s)A → P∗k (s)

=
1

s
P∗ (s) A =

1

s
P (0) [sI − B]−1A.

F∗k (s) =
1

s
P (0) [sI − B]−1A.

f ∗k (s) = s F∗k (s) = P (0) [sI − B]−1A;

where A = −B1T .

Mean time to absorption:

E (τk) = (−1)
df ∗k (s)

ds

∣

∣

∣

∣

s=0
= (−1) P (0) [sI − B]−2A

∣

∣

s=0

= P (0) [−B]−1 1T .

For this NAFLD process: (refer to Supplementary

Material Section 5).

Q =





























−0.3931
0.018
0

0.3864
−0.2808
0.05

0
0.25

−0.3717
0
0
0

0
0
0

0.0458
0
0

0
0
0

0
0
0

0
0
0

0
0

0.2248

0
0
0

0
0
0

−0.5502
0
0

0.2844
−0.346

0

0
0.188

−0.9375
0
0
0

0
0
0

0
0
0

0
0
0

0
0

0.05

0.0067
0.0128
0.0469

0
0

0.75

0.11
0.059
0

0
0.11
0.099
0.1875

−0.423
0
0

0
−0.7419

0

0.423
0.7419

0





























6. EXPECTED NUMBER OF PATIENTS IN
EACH STATE

Let u (0) be the size of patients in a specific state at a specific time
t = 0. The initial size of patients U (0) = uj (0), as there are
eight transient states and one absorbing state, where uj (0) is the
initial size or number of patients in state j at time t = 0 given that
u9 (0) = 0, i.e., the initial size of patients in state 9 (absorbing
death state) is zero at initial time point t = 0. As the transition
or the movement of the patients among states is independent, at
the end of the whole time interval (0, t) and according to Chiang
[16], there will be uj (t) patients in the transient states at time
t, and there will also be u9 (t)patients in state 9 (death state) at
time t.

E
[

uj (t) |uj (0)
]

=

9
∑

j=1,i=1

uj (0) Pij (t) ,

i & j = 1, . . . , 9

For this NAFLD process: (refer to
Supplementary Material Section 6).

7. HYPOTHETICAL NUMERICAL EXAMPLE

To illustrate the above concepts and
discussion, a hypothetical numerical example
is introduced. It does not represent real data
but it is for demonstrative purposes (refer to
Supplementary Material Section 7).

A study was conducted over 15 years on 1,050
patients with risk factors for developing NAFLD such
as type 2 diabetes mellitus, obesity, and hypertension
acting alone or together as a metabolic syndrome. The
patients were scheduled to be followed up every year
by a liver biopsy to identify the NAFLD cases, but
the actual observations were recorded as shown in the
(Supplementary Material). Table 1 shows the observed
transition counts.

The observed transition rate matrix Q over the whole period
of the study (15 years) is:
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TABLE 1 | The observed transition counts in the whole period of the study (15 years) regardless of the time interval between observations.

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 Total

State 1 1,175 859 112 32 30 0 0 0 15 2,223

State 2 14 498 195 31 28 0 0 0 10 776

State 3 6 15 152 67 29 0 0 15 14 298

State 4 0 0 5 49 31 0 0 12 12 109

State 5 0 0 0 0 51 19 15 6 10 101

State 6 0 0 0 0 0 1 12 0 3 16

State 7 0 0 0 0 0 0 15 0 11 26

State 8 0 0 0 0 0 0 0 8 23 31

State 9 0 0 0 0 0 0 0 0 0 0

The estimated transition rate matrix Q̂ is:

Q̂ =





























−0.397
0.02
0

0.39
−0.281
0.05

0
0.25

−0.365
0
0
0

0
0
0

0.041
0
0

0
0
0

0
0
0

0
0
0

0
0

0.225

0
0
0

0
0
0

−0.538
0
0

0.281
−0.348

0

0
0.19

−0.934
0
0
0

0
0
0

0
0
0

0
0
0

0
0

0.047

0.007
0.011
0.043

0
0

0.767

0.109
0.059
0

0.107
0.099
0.167

−0.421
0
0

0
−0.745

0

0.421
0.745
0





























.

Using the above approach as illustrated in the main text and Supplementary Materials, the estimated Q̂ transition rate matrix is nearly
approaching equality to the observed transition rate matrix.

var
(

θ̂

)

= 1× 10−13
[

v1 v2
v3 v4

]

where

v1 =

























0.3292
0.0327
0.4414
0.0827
0.4004
0.0268
0.2540
0.1517

0.0327
0.0064
0.0428
0.0108
0.0385
0.0053
0.0268
0.0159

0.4414
0.0428
0.5922
0.1100
0.5373
0.0350
0.3400
0.2032

0.0827
0.0108
0.1100
0.0228
0.0995
0.0088
0.0650
0.0387

0.4004
0.0385
0.5373
0.0995
0.4876
0.0315
0.3082
0.1843

0.0268
0.0053
0.0350
0.0088
0.0315
0.0044
0.0219
0.0130

0.2540
0.0268
0.3400
0.0650
0.3082
0.0219
0.1967
0.1174

0.1517
0.0159
0.2032
0.0387
0.1843
0.0130
0.1174
0.0702

























.

v2 , v3, and v4 are all zero matrices of size (8 by 14), (14 by 8), and (14 by 14), respectively.
Transition probability matrix at 1 year:

P (1) =





























0.6751
0.0143
0.0004

0.279
0.7625
0.0364

0.0345
0.1819
0.7017

0
0
0

0.0007
0
0

0.0262
0
0

0
0
0

0
0
0

0
0
0

0.0025
0.0190
0.144

0.0002
0.0018
0.0209

0
0

0.0001
0.0012

0.5868
0
0

0.1810
0.7061

0

0.0147
0.1015
0.3930

0
0
0

0
0
0

0
0
0

0
0

0.0002

0.0006
0.0044
0.0347

0.0082
0.016
0.0606

0.0039
0.0416
0.3938

0.0630
0.0344

0

0.1237
0.1163
0.2132

0.6564
0
0

0
0.4747

0

0.3436
0.5253

1





























.
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Mean time spent by the patient in state 1 is∼2 years and 6 months; in state 2, the mean sojourn time is∼3 years and 6 months; in state
3, it is ∼2 years and 9 months; in state 4, it is ∼1 year and 10 months; in state 5, it is ∼2 years and 10 months; in state 6, it is ∼1 year
and 1 month; in state 7, it is∼2 years and 5 months and last; in state 8, the mean sojourn time is∼1 year and 4 months.

If a cohort of 5,000 patients with NAFLD has an initial distribution of
[

0.62 0.22 0.081 00.03 0.028 0.005 00.007 0.009 0
]

and the initial counts of patients in each state are
[

3100 1100 405 150 140 25 35 45 0
]

, then at 1 year, the state probability

distribution is
[

00.4217 0.3437 0.1191 00.035 0.0274 0.0054 00.0079 0.0112 0.0287
]

and the expected counts of patients

are
[

2109 1718 595 175 137 27 39 56 144
]

.
To calculate the goodness of fit for the multistate model used in this example, it is similar to the procedure used in the contingency

table, and it is calculated in each interval and then summed:
Step 1: H0 = future state does not depend on the current state. H1 = future state depends on the current state .
Step 2: Calculate the Pij (1t = 1)

Pij (1t = 1) =





























0.6751
0.0143
0.0004

0.279
0.7625
0.0364

0.0345
0.1819
0.7017

0
0
0

0.0007
0
0

0.0262
0
0

0
0
0

0
0
0

0
0
0

0.0025
0.0190
0.144

0.0002
0.0018
0.0209

0
0.0001
0.0012

0.5868
0
0

0.1810
0.7061

0

0.0147
0.1015
0.3930

0
0
0

0
0
0

0
0
0

0
0

0.0002

0.0006
0.0044
0.0347

0.0082
0.016
0.0606

0.0039
0.0416
0.3938

0.0630
0.0344

0

0.1237
0.1163
0.2132

0.6564
0
0

0
0.4747

0

0.3436
0.5253

1





























.

Step 3: Calculate the expected counts in this interval by multiplying each row in the probability matrix with the corresponding total
marginal counts in the observed transition counts matrix in the same interval to obtain the expected counts.

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 Total

State 1 1000.5 413.5 51.13 3.705 0.3 0 0 0.8892 12.15 1482

State 2 7.4074 394.97 94.22 9.842 0.9324 0.0518 0 2.2792 8.288 518

State 3 0.08 7.28 140.34 28.8 4.18 0.24 0.04 6.94 12.12 200.02

State 4 0 0.0511 1.9126 42.8364 13.213 1.0731 0.2847 4.599 9.0301 73

State 5 0 0 0 0 47.3087 6.8005 2.7872 2.3048 7.7921 66.9933

State 6 0 0 0 0 0 3.93 3.938 0 2.132 10

State 7 0 0 0 0 0 0 11.1588 0 5.8412 17

State 8 0 0 0 0 0 0 0 9.494 10.506 20

State 9 0 0 0 0 0 0 0 0 0 0

Step 4: Apply
9

∑

i=1

9
∑

j=1

(Oij−Eij)
2

Eij
= 2219.118 ∼ χ2

(9−1)(9−1)(0.05).

The same steps are used for the observed transition counts in 1t = 2 and 1t = 3 with the following results:

Pij (1t = 2) =





























0.4597
0.0206
0.001

0.4023
0.5920
0.0535

0.0984
0.2674
0.5028

0
0
0

0.0019
0
0

0.0339
0
0

0
0
0

0
0
0

0
0
0

0.0134
0.0519
0.1862

0.0019
0.0099
0.0555

0.0001
0.0008
0.0055

0.3481
0
0

0.2345
0.4986

0

0.0328
0.1116
0.1544

0
0
0

0
0
0

0
0
0

0.0000
0.0002
0.0022

0.0032
0.013
0.0508

0.0210
0.0442
0.1425

0.0182
0.0967
0.4133

0.074
0.0406

0

0.2566
0.2525
0.4323

0.4308
0
0

0
0.2254

0

0.5692
0.7746

1





























.
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The expected counts are:

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 Total

State 1 272.6 238.56 58.351 7.946 1.1267 0.0593 0 1.8976 12.453 593

State 2 4.2642 122.54 55.35 10.743 2.0493 0.1656 0.0414 2.691 9.1494 207

State 3 0.08 4.28 40.224 14.896 4.44 0.44 0.176 4.064 11.4 80

State 4 0 0.0551 0.9831 10.0949 6.8005 0.9512 0.5278 2.146 7.4414 29

State 5 0 0 0 0 13.4622 3.0132 2.6109 1.0962 6.818 27

State 6 0 0 0 0 0 0.6176 1.6532 0 1.729 4

State 7 0 0 0 0 0 0 3.0156 0 3.984 7

State 8 0 0 0 0 0 0 0 1.8032 6.197 8

State 9 0 0 0 0 0 0 0 0 0 0

applying :

9
∑

i=1

9
∑

j=1

(Oij−Eij)
2

Eij
= 158.571 ∼ χ2

(9−1)(9−1)(0.05).

The same steps are used for the observed transition counts 1t = 3 in with the following results:

Pij (1t = 3) =





























0.3161
0.0225
0.0016

0.4386
0.4669
0.0595

0.1584
0.2974
0.3675

0.0001
0
0

0.0029
0
0

0.0333
0
0

0
0
0

0
0
0

0
0
0

0.0308
0.0803
0.1827

0.0066
0.023
0.0835

0.0006
0.0024
0.0111

0.2092
0
0

0.2293
0.352
0

0.0418
0.0945
0.0607

0
0
0

0
0
0

0
0
0

0.0002
0.0011
0.0068

0.0079
0.0217
0.0555

0.0408
0.0847
0.2319

0
0.036
.1282
0.3321

0.0663
0.0364

0

0.3811
0.3889
0.6072

0.2828
0
0

0
0.107
0

0.7172
0.893
1





























.

The expected counts are:

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 Total

State 1 46.783 64.913 23.443 4.5584 0.9768 0.0888 0.0296 1.1692 6.0384 148

State 2 1.148 23.812 15.1674 4.0953 1.173 0.1224 0.0561 1.1067 4.3197 51

State 3 0.0288 1.071 6.615 3.2886 1.503 0.1998 0.1224 0.999 4.1742 18

State 4 0.0007 0.0203 0.2331 1.4644 1.6051 0.2926 0.252 0.4641 2.6677 7

State 5 0 0 0 0 2.464 0.6615 0.8974 0.2548 2.7223 7

State 6 0 0 0 0 0 0.1214 0.6642 0 1.2144 2

State 7 0 0 0 0 0 0 0.5656 0 1.4344 2

State 8 0 0 0 0 0 0 0 0.321 2.679 3

State 9 0 0 0 0 0 0 0 0 0 0

applying :

9
∑

i=1

9
∑

j=1

(Oij−Eij)
2

Eij
= 65.37 ∼ χ2

(9−1)(9−1)(0.05).

Step 5: Sum up the above results to get:

9
∑

i=1

9
∑

j=1

t=3
∑

l=1

(

Oijl − Eijl
)2

Eijl
= 2443.06 ∼ χ2

(df=192)(0.05)
.

Therefore, from the above results, the null hypothesis is rejected, whereas the alternative hypothesis is accepted, and the model
fits the data to mean that the future state depends on the current state with the estimated transition rate and probability matrices
as obtained.

8. CONCLUSION AND SUMMARY

Continuous time Markov chains are suitable mathematical and statistical tools to be used for the analysis of disease evolution over
time. CTMCs are the type of multistate model utilized to study this evolution in patients with NAFLD, with the main phenotypes
being NAFL and NASH, as well as to study the associated presence of fibrosis and its stages. The prevalence of NAFLD is rapidly
increasing worldwide and parallels the epidemics of obesity and type 2 diabetes. Metabolic syndrome is a well-known risk factor.
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In this study, NAFLD is modeled in a more elaborative
expanded form, which includes nine states: the first eight states
are the states of disease progression as time elapses, while
the ninth state is the death state. The importance of such
analysis is that health policy makers can predict the number
of affected patients at each stage, the needed investigations and
medications for each of them, and the costs and budgets that
medical insurance should assign to this disease burden. This
analysis is of great value and benefit to physicians, as they can
conduct longitudinal studies to explore further investigations
that better define each stage specifically and efficiently and to
explore further treatment needed for each stage. An example
of a non-invasive diagnostic tool is the circulating level of
cytokeratin-18 fragments; although promising, it is not available
in a clinical care setting, and there is no established cutoff value
for identifying NASH [17]. Genetic polymorphism of patatin-
like phospholipase domain-containing protein 3 gene variants
(PNPLA-3) is associated with NASH and advanced fibrosis;
however, testing for these variants in routine clinical care is not
supported and needs further study.

A hypothetical example of factitious non-real data is used to
emphasize the attributes that need to be estimated:

❖ Transition rate matrix among the various states.
❖ Transition probability matrix among states.
❖ Mean sojourn time in each state.
❖ Life expectancy in each state; in other words, mean time to

absorption (death state).
❖ Expected number of patients in each state.
❖ State probability distribution at specific time points in

the future.

Such analysis may give better insights to physicians, especially
when new drug classes will soon be released on the market.
What drug classes are to be used first? How can the disease
be monitored throughout the journey of treatment? What
investigations are to be used in such monitoring? How to modify
the drug treatment? What is the target that needs to be achieved,
and how can this target be maintained? Moreover, in the late
stage of the disease, when patients suffer from decompensated
liver cirrhosis, liver transplantation is the treatment of choice to
such patients, which increases the economic burden of NAFLD,
as was the disease course during treatment in the early stages.
Additionally, a load of what are the best economic non-invasive
tests to be used in primary health care units for stratification and
identification of high-risk patients, whether to perform genetic
tests in health insurance settings, and when to refer for liver
biopsy in secondary or special clinics should be considered.
All these questions can be answered from longitudinal studies
conducted on susceptible individuals. Over and above, some of
the recently investigated non-invasive scoring systems of fibrosis
need further external validation to be generalized in ethnicities
other than the one tested upon. There are some controversies
regarding the cutoff points of these scoring systems among
countries and ethnicities within the same country. Although liver
biopsy is considered the standard method for the diagnosis of
NAFLD and staging it, its limitations encourage the development
of various non-invasive tests, which necessitate better correlation
between the findings obtained from the biopsy and the results

of these tests to minimize misclassification errors, which hamper
good diagnosis and prognosis of the patient. These tests should be
easy, feasible, convenient, and have a high safety profile to be used
repeatedly in patients for follow-up in such longitudinal studies.

A multistate model represented by CTMC is a valuable
statistical methodology for longitudinal studies in medical
research to better comprehend and understand the
pathophysiology or the mechanism of the NAFLD process,
and the interactions between the different modifiers, either
external or internal modifiers. The external modifiers reside in
bad dietary habits with excessive fat and carbohydrate ingestion,
and sedentary life, whereas the internal modifiers are represented
in genetic factors affecting the metabolism of the food stuff (fat
and carbohydrates) and other cellular functions, such as risk
factors for fibrogenesis (formation of fibrous tissue); fibrosis
is a detrimental predictor factor for disease progression to
liver cirrhosis and its complications. The importance of such
understanding has a great impact on revealing the genes that
must be tested if ever needed, for whom to do such a test,
and should it be in the utilities or services offered by medical
insurance. Moreover, should the degradation byproducts
resulting from extracellular matrix destruction be used in routine
clinical practice to mirror the fibrosis stages?

In Egypt, there are scarce data or maybe no available data
about the prevalence of NAFLD and its phenotypes. Guidelines
for risk stratification and identification are also lacking. Thus,
more longitudinal studies are needed to address these issues.

Multistate models can also be used for the analysis of
competing risks of death in such patients, as the first and second
most common causes of death in patients with NAFLD are
cardiovascular diseases (CVDs) and kidney diseases, whereas
liver-related mortality is the third most common cause of death.

Other statistical methodologies, such as semi-Markov and
hidden Markov chains, can be used to model NAFLD,
especially hidden Markov CTMC can be used to model
misclassification errors encountered in studies analyzed by time-
homogenous CTMC.

Hint: A MATLAB code is edited to calculate the
statistical indices in the hypothetical example. The code
can be found published in the code ocean site with the
following URL: https://codeocean.com/capsule/7628018/tree/v3;
doi: 10.24433/CO.7719785.v3.
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