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1D Generalised Burgers-Huxley:
Proposed Solutions Revisited and
Numerical Solution Using FTCS and
NSFD Methods
Appanah R. Appadu* and Yusuf O. Tijani

Department of Mathematics and Applied Mathematics, Nelson Mandela University, Gqeberha, South Africa

In this paper, we obtain the numerical solution of a 1-D generalised Burgers-Huxley

equation under specified initial and boundary conditions, considered in three different

regimes. The methods are Forward Time Central Space (FTCS) and a non-standard finite

difference scheme (NSFD). We showed the schemes satisfy the generic requirements

of the finite difference method in solving a particular problem. There are two proposed

solutions for this problem and we show that one of the proposed solutions contains

a minor error. We present results using FTCS, NSFD, and exact solution as well as

show how the profiles differ when the two proposed solutions are used. In this problem,

the boundary conditions are obtained from the proposed solutions. Error analysis and

convergence tests are performed.

Keywords: Burgers-Huxley equation, three different regimes, FTCS, NSFD, proposed solutions, error analysis,

convergence tests

1. INTRODUCTION

The study of nonlinear partial differential equation continues to fascinate many researchers
due to their ubiquitous application in every area of science and technology. Because of their
complexity, many of these nonlinear partial differential equations do not always have explicit
solutions using a known finite combination of elementary functions [1]. Some non linear partial
differential equations, on the other hand, become integrable following a symbolic transformation.
The analytical solution becomes available in this instance. Some analyses of most numerical and
semi-analytical methods are studied using the heat equation. The linearity of this differential
equation makes it a test case for many problems, it takes the form

∂u

∂t
= D

∂2u

∂x2
, (1)

where D is the diffusivity term or coefficient of diffusion. Burgers [2] while studying turbulence
in flow resulted in the investigation of a non linear partial differential equation that contains an
advective term in addition to the diffusion term and it may be regarded as a prototype in the theory
of nonlinear diffusive waves. The equation takes the form

∂u

∂t
= −αu

∂u

∂x
+ D

∂2u

∂x2
. (2)
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Many approximate solutions have been documented for
Equation (2) subject to different initial and boundary conditions,
we mention the works of Abazari and Borhanifar [3] and
Mukundan and Awasthi [4].

The FitzHugh-Nagumo model is a well-known reaction-
diffusion system proposed by Hodgkin and Huxley [5] for the
conduction of electrical impulses through a nerve fibre. A decade
later, FitzHugh [6] and Nagumo et al. [7] solved the challenge by
reducing the original four-variable system to a simplified model
with only two variables. The differential equation is expressed as

∂u

∂t
= D

∂2u

∂x2
+ βu (1− u) (u− γ ) . (3)

The Newell-Whitehead-Segel equation is applicable in nonlinear
systems that describe the emergence of stripe patterns. This
equation, on the other hand, is used as a mathematical model
in a variety of systems, including Rayleigh-Benard convection,
chemical reactions, and Faraday instability, and is given by

∂u

∂t
= D

∂2u

∂x2
+ βu (1− u) (u+ 1) . (4)

The generalised Huxley equation which models the propagation
of neural pulses, the motion of liquid crystal walls, and the
dynamics of nerve fibres is expressed as

∂u

∂t
= D

∂2u

∂x2
+ βu

(

1− uδ
) (

uδ − γ
)

. (5)

We note here that δ is an arbitrary constant. The nonlinear
partial differential equation which generalises (Equations 1–5)
and can be thought of as an archetypal equation for explaining
the interplay between reaction mechanisms, convection effects,
and diffusion transport is called the generalised Burgers-Huxley
which takes the form

∂u

∂t
= D

∂2u

∂x2
− αuδ

∂u

∂x
+ βu

(

1− uδ
) (

uδ − γ
)

. (6)

Equation (6) can as well be thought of as a combination of
Burger’s equation with advective term and Huxley’s equation
with non linear reaction term with diffusion, hence the name.
It is worth noting that, for δ = 1, Equation (6) yields the
Burgers-Huxley equation. Wang et al. [8] obtained a closed
form solution for Equation (6) and all of its variances. There
have been many semi-analytical and numerical methods used in
obtaining an approximate solution to the generalised Burgers-
Huxley equation, many authors have compared some numerical
solutions to the exact solution obtained in Wang et al. [8] and
these works are [9–18], among many others. However, there is
a minor discrepancy between the closed form solution obtained
by Wang et al. [8] and the one obtained by Deng [19] using
the first-integral approach. To the best of our knowledge, few
researchers have compared their methods with the exact solution
in [19], these include [20] using the modified exponential finite
differencemethod, Ervin et al. [21], andNourazar et al. [22] using
the homotopy perturbation method.

Many drawbacks of the approximation analytical approaches
include slow convergence at long propagation t, expensive
computer memory usage, and difficulty in finding a closed
form formula for the resulting series expression ([9, 10]). To
this end, we cannot overemphasise the need for analysing
the two proposed solutions from Wang et al. [8] and
Deng [19]. In this study, we will obtain solution of the
generalised Burgers-Huxley equation using the classical finite
difference scheme (FTCS) and non-standard finite difference
scheme (NSFD).

2. ORGANISATION OF THE PAPER

The structure of the paper is as follows. In section 3, we
present the numerical experiment and describe some estimation
tools. Section 4 is devoted to the analysis of the two proposed
solutions. In section 5, we present the two numerical methods
(FTCS and NSFD) and study some of their properties. We
present the numerical results from FTCS and NSFD schemes
using the reference solution of Wang et al. [8] as a benchmark
in section 6 and the proposed solution of Deng [19] as
a measure in section 7. Section 8 contains the dynamics
of the travelling wave phenomenon of the Burgers-Huxley
equation. Conclusion and final remarks of this study are given
in section 9.

3. NUMERICAL EXPERIMENT

We solve the generalised 1-D Burgers-Huxley Equation (6) which
is given by

∂u

∂t
= D

∂2u

∂x2
− αuδ

∂u

∂x
+ β(1+ γ )u1+δ − βγu− βu2δ+1, (7)

subject to the following initial conditions

u(x, 0) =
[

γ

2
+
γ

2
tanh{σγ x}

]
1
δ

, (8)

where α > 0, β > 0, 0 < γ < 1, and δ > 0 is a positive constant,
x ∈ [0, 1] and t ≥ 0. The boundary conditions are obtained from
exact solution.

Wang et al. [8] used the non linear transformation to obtain a
closed form solution for Equation (6) given as

u1(x, t) (9)

=
[

γ

2
+
γ

2
tanh

{

σγ

(

x−
{

(α + ρ)γ + (1+ δ)(α − ρ)
2(1+ δ)

}

t

)}]
1
δ

,

where σ =
δ(ρ − α)
4(1+ δ)

and ρ =
√

α2 + 4β(1+ δ).

Deng [19] claimed there is a minor error in the proposed
solution given byWang et al. [8] using the first-integral approach,
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which is based on the ring theory of commutative algebra. Deng
[19] presented a new proposed solution given as

u2(x, t) (10)

=
[

γ

2
+
γ

2
tanh

{

σγ

(

x−
{

(α − ρ)γ + (1+ δ)(α + ρ)
2(1+ δ)

}

t

)}]
1
δ

,

where σ =
δ(ρ − α)
4(1+ δ)

and ρ =
√

α2 + 4β(1+ δ).

The closed-form expressions are given in Equations (9) and

(10) both lie in the interval (0, γ
1
δ ), refer to the work of Ervin

et al. [21].We fix the coefficient of diffusion to be equal to one and
we obtain the solution of generalised Burgers-Huxley equation in
three distinct regimes using two finite difference methods. In this
study, we consider three different cases as follows:

(1) α = 1.0, β = 1.0, γ = 0.01, δ = 4.0.
(2) α = 1.0, β = 5.0 (β > α), γ = 0.01, δ = 4.0.
(3) α = 5.0 (α > β), β = 1.0, γ = 0.01, δ = 4.0.

We used finite difference technique; Forward time central space
(FTCS) and non-standard approaches in obtaining numerical
solutions for the numerical experiment. The solution domains
are discretised into cells as (xj, tn), where xj = jh, ; (j = 1, 2, ...,N)

and tn = nk, ; (n = 1, 2, ...), where h = 1−0
N−1 is the spatial mesh

size and the values of h selected for computations are explicitly
specified for each instance. The temporal step size is denoted by
k. The following estimation techniques were used to assess the
accuracy of the schemes as well as to check the exact solution
with oversight

Absolute Error =
∣

∣u (x, t)− U
(

xj, tn
)

,
∣

∣

L1 = h

N
∑

j=1

∣

∣u (x, t)− U
(

xj, tn
)∣

∣ , (11)

and

L∞ = max
∣

∣u (x, t)− U
(

xj, tn
)∣

∣ .

where u(x, t) and U(xj, tn) are the exact and numerical
solutions, respectively.

The rate of convergence in space and time are computed using

RT =

ln

(

Ek

E k
2

)

ln

(

k

0.5k

) , (12)

where Ek =
∣

∣

∣

∣L∞
∣

∣

∣

∣ stands for maximum norm errors at
grid point k. All numerical simulations are done in MATLAB
computing platform on an Intel Core-i5, 2.50 GHz PC with 5GB
RAM. We use the two different proposed solutions from Wang
et al. [8] and Deng [19] in order to test the performances of our
two finite difference methods.

4. ANALYSIS OF THE PROPOSED
SOLUTIONS

Before we begin solving a differential equation, we must first
answer three basic questions which are due to Hadamard [23].
However, we keep in mind that non linear partial differential
equations may have multiple solutions in different space
functions. For example, a problem may have multiple solutions,
only one of which is bounded. We would argue the uniqueness of
the solution in the space of bounded functions. This is the case
of the closed form solution provided in Wang et al. [8] and Deng
[19]. The question of well-posedness, existence, and uniqueness
of the solution to the Burgers-Huxley Equation (7) has been
recently reported by Mohan and Khan [24]. One classic test for
possible closed form solution to any differential equation is the
Painleve test, which informs us about the possible integrability of
the differential equation.

In this section, we will subject the two proposed solutions in
Equations (9) and (10) to test using the ansatz technique on the
Burgers-Huxley equation. We consider the case where D = β =
δ = 1 and γ = 1, we have our equation now as

∂u

∂t
−
∂2u

∂x2
+ αu

∂u

∂x
− 2u2 + u+ u3 = 0. (13)

Using the closed form expression of Wang et al. [8], we assume
the solution of Equation (13) to be

u1(x, t) =
[

1

2
+

1

2
tanh

{

σ

(

x−
{

3α − ρ
4

}

t

)}]

, (14)

where σ =
ρ − α
8

and ρ =
√
α2 + 8. By substituting Equation

(14) into Equation (13) and using the Maple symbolic package in
differentiating term by term before simplification, we obtain

∂u

∂t
−
∂2u

∂x2
+ αu

∂u

∂x
− 2u2 + u+ u3

=
8− ρα + α2

32 cosh

[(

ρ

8
−
α

8

)(

x−
3αt

4
+
ρt

4

)]2
. (15)

By using the closed form expression of Deng [19], we assume the
solution of Equation (13) in the form

u2(x, t) =
[

1

2
+

1

2
tanh

{

σ

(

x−
{

3α + ρ)
4

}

t

)}]

, (16)

we substitute the assumed solution Equation (16) into Equation
(13) and using theMaple symbolic package to differentiate before
simplification of terms, we obtain

∂u

∂t
−
∂2u

∂x2
+ αu

∂u

∂x
− 2u2 + u+ u3 = 0. (17)

REMARK 1. The supposed solution using Deng [19] closed-form
expression satisfy Equation (13). However, the assumed solution
utilising the closed-form expression of Wang et al. [8] does not
satisfy Equation (13). We expect the remainder to be zero but
obtained some terms on the right hand side of Equation (15).
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FIGURE 1 | 3D plots of the remainder for the two proposed solutions of Wang et al. [8] and Deng [19] for the three cases using x ∈ [0, 1] and t ∈ [0, 1].
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Figure 1 gives the plots of the remainder from the two proposed
solutions using the three test cases. We observed that remainder
becomes extremely small, around (10−13) in case of Deng [19]
but this is not the case for [8] proposed solution.

5. NUMERICAL METHODS

The study of stability, consistency, positivity, and boundedness of
NSFD for the case δ = 4 was done in Appadu et al. [25], we have
reproduced some of the main analyses.

5.1. FTCS Scheme
Using the FTCS scheme for Equation (7), we have

Un+1
j − Un

j

k
=

(

Un
j+1 − 2Un

j + Un
j−1

h2

)

− α(Un
j )
δ
Un
j+1 − Un

j−1

2h

+ β(1+ γ )(Un
j )
δ+1 − βγUn

j − β(Un
j )

2δ+1.

(18)

By making Un+1
j the subject, we have

Un+1
j = Un

j +
k

h2

(

Un
j+1 − 2Un

j + Un
j−1

)

−
kα

2h
(Un

j )
δ

(

Un
j+1 − Un

j−1

)

+ kβ(1+ γ )(Un
j )
δ+1

−kβγUn
j − kβ(Un

j )
2δ+1. (19)

By using the freezing coefficient method and Von-Neumann
stability analysis, we obtain the amplification factor as

ξ = 1− I
kα

h
Umax sinw+

k

h2
(2 cosw− 2)

+kβ(Umax)
4(1+ γ )− kβγ − kβ(Umax)

8. (20)

Since 0 ≤ U(xj, tn) ≤ γ 1/δ , it follows that Umax = γ 1/4. On
simplification, we obtain

| ξ |=

√

(

1−
4k

h2
sin2

w

2

)2

+
(

kα

h
sinw

)2

. (21)

Stability is guaranteed when 0 ≤ | ξ | ≤ 1 for w = [−π ,π].
Region of stability is k ≤ 0.005. We next study the consistency.

We expand using Taylor’s series expansion around (tn, xj)
using Equation (19) and obtain

U + kUt +
k2

2
Utt +

k3

6
Uttt +O(k4)

= U +
k

h2

(

h2Uxx +
h4

12
Uxxxx +O(h6)

)

−
kα

2h
Uδ

(

2hUx +
1

3
h3Uxxx +O(h5)

)

+ kβ(1+ γ )Uδ+1

−kβγU − kβU2δ+1. (22)

Dividing throughout by k and simplifying, we have

Ut − Uxx + αUδUx − β(1+ γ )Uδ+1 + βγU + βU2δ+1

= −
k

2
Utt −

k2

6
Uttt − α

h2

6
UδUxxx +

h2

12
Uxxxx +O(k3)

+O(h4), (23)

and as k, h → 0, we recover the generalised Burgers-Huxley
equation. We note that the FTCS scheme is first-order accurate
in time and second-order accurate in space.

REMARK 2. The generalisation of Equation (18) to a higher
dimension is quite straight-forward. In R

m, the approximate
solution in the reaction term becomes Un

{j1 ,j2 ,··· ,m}. The diffusion

term △U and advection term takes the form of the generalised
finite difference, refer to Prieto et al. [26].

5.2. Non-standard Finite Difference
The use and popularity of the NSFD scheme are due to
anomalous behaviour of the traditional finite difference scheme
when used in discretisation of some continuous differential
equation. In particular, some partial differential equations are
of practical importance. The idea of NSFD scheme gained
the popular attention from many researchers after the work
of Mickens [27]. Some noteworthy failure of standard finite
difference methods is the lack of preservation of physical
properties like positivity and boundedness for equations arising
inmathematical biology [27]. The derivations are primarily based
on the notion of dynamical consistency, which includes features
like special solutions with predetermined stability. There are
certain guidelines to follow while developing such techniques.
They are as follows:

• Linear or non linear terms are modelled non-locally on the
computational grid.

e.g. u3n ≈ 3un+1(un)
2 − 2(un)

3.
• Use of non-classical denominator functions.
• The order of the difference equation should be the same as

the order of the differential equation. In general, spurious
solutions arise when the order of the difference equation is
greater than the order of the differential Equation [27].

• The discrete approximation should preserve some important
properties of the corresponding differential equation.

We discretise the 1-D generalised Burgers-Huxley equation i.e.

ut = uxx − αuδux + β(1+ γ )u1+δ − βγu− βu2δ+1,

using the forward Euler in time and the usual second order
approximation in the diffusion term. We employed the non-local
discretisation in the advection and reaction terms as employed in
Appadu et al. [25, 28].

To this end, we propose the following non standard finite
difference scheme for Equation (7):

Un+1
j − Un

j

φ(k)
=

[

Un
j+1 − 2Un

j + Un
j−1

[ψ(h)]2

]

−αUn+1
j (Un

j )
δ−1

(

Un
j − Un

j−1

ψ(h)

)

+β(1+ γ )
[

2(Un
j )
δ+1 − (Un

j )
δUn+1

j

]

− βγUn+1
j
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−βUn+1
j (Un

j )
2δ . (24)

where φ(k) =
eβk − 1

β
and ψ(h) =

eh − 1

h
. To restate in a more

concise form, we have

Un+1
j =

(1− 2R)Un
j + R(Un

j+1 + Un
j−1)

+2φ(k)β(1+ γ )(Un
j )
δ+1

1+ αr(Un
j )
δ−1(Un

j − Un
j−1)+ φ(k)βγ

+φ(k)β(1+ γ )(Un
j )
δ + φ(k)β(Un

j )
2δ

. (25)

The denominator functions are defined as R =
φ(k)

[ψ(h)]2
and

r =
φ(k)

ψ(h)
.

5.2.1. Positivity
If 1−2R ≥ 0 and 1−αrγ ≥ 0 the numerical solution fromNSFD
obeys

0 ≤ Un
j ≤ γ

1
δ , H⇒ 0 ≤ Un+1

j ≤ γ
1
δ ,

for all considered values of n and j.
PROOF: Since α,β ∈ R

+, and γ ∈ (0, 1). For positivity, we
require 1 − 2R ≥ 0 and 1 − αrγ ≥ 0. Substituting R and using
1− 2R > 0, we obtain

(

eβk − 1

β

)(

β

eβh − 1

)2

≤
1

2
, (26)

which gives

k ≤
1

β
ln

(

1+
(eβh − 1)2

2β

)

. (27)

Simplifying 1− αrγ ≥ 0 and after some manipulation, we have

k ≤
1

β
ln

(

1+
(eβh − 1)

αγ

)

. (28)

Thus, the positivity condition rests on the following conditions:

k ≤















1

β
ln

(

1+
(eβh − 1)2

2β

)

,

1

β
ln

(

1+
(eβh − 1)

αγ

)

.

(29)

On substituting h = 0.1, and evaluating for different values of α,
β , and γ we obtain

(a) k ≤ 5.515× 10−3 and k ≤ 2.4438 for α = β = 1.0.
(b) k ≤ 8.244×10−3 and k ≤ 8.375×10−1 for α = 1.0, β = 5.0.
(c) k ≤ 5.515× 10−3 and k ≤ 1.1325 for α = 5.0, β = 1.0.

We chose the time of the experiment to be t = 1.0. For positivity,
we require k ≤ 5.515× 10−3 for all the three cases.

5.2.2. Boundedness
We assume 0 ≤ Un

j ≤ γ
1
δ for all considered values of n and j.

Therefore,

(Un+1
j − γ

1
δ )

[

1+ αr(Un
j )
δ−1(Un

j − Un
j−1)+ φ(k)βγ

+φ(k)β(1+ γ )(Un
j )
δ + φ(k)β(Un

j )
2δ

]

= (1− 2R)Un
j + R(Un

j+1 + Un
j−1)+ 2φ(k)β(1+ γ )(Un

j )
δ+1

−γ
1
δ − αrγ

1
δ (Un

j )
δ−1(Un

j − Un
j−1)− φ(k)βγ 1+ 1

δ

−φ(k)βγ
1
δ (1+ γ )(Un

j )
δ − φ(k)βγ

1
δ (Un

j )
2δ ≤ (1− 2R)γ

1
δ

+2Rγ
1
δ + 2φ(k)β(1+ γ )(Un

j )
δ+1 − γ

1
δ

−αrγ
1
δ (Un

j )
δ−1(Un

j − Un
j−1)− φ(k)βγ

1+ 1
δ

− φ(k)βγ
1
δ (Un

j )
2δ ≤ 2φ(k)β(1+ γ )(Un

j )
δ+1

−αrγ
1
δ (Un

j )
δ−1(Un

j − Un
j−1)− φ(k)βγ

1+ 1
δ

−φ(k)βγ
1
δ (1+ γ )(Un

j )
δ − φ(k)βγ

1
δ (Un

j )
2δ

≤ φ(k)β(1+ γ )(Un
j )
δ+1 − αrγ

1
δ (Un

j )
δ−1(Un

j − Un
j−1)

−φ(k)βγ 1+ 1
δ − φ(k)βγ

1
δ (Un

j )
2δ

≤ −αr(Un
j )
δ−1(Un

j − Un
j−1) ≤ 0. (30)

This implies that 0 ≤ Un+1
j ≤ γ

1
δ . Hence, boundedness property

is satisfied.

5.2.3. Consistency
We consider Equation (25) and using the Taylor’s series
expansion around (nk, jh), we obtain

U + kUt +
k2

2
Utt +

k3

6
Uttt +O(k4) (31)

=

(

1− 2R

)

U + R

(

2U + h2Uxx +
h4

12
Uxxxx +O(h6)

)

+2kβ(1+ γ )Uδ+1

1+ αrUδ−1

(

hUx −
h2

2
Uxx +O(h3)

)

+kβγ + kβ(1+ γ )Uδ + kβU2δ

.

Since R =
φ(k)

[ψ(h)]2
, r =

φ(k)

ψ(h)
and φ(k) ≈ k, ψ(h) ≈ h, we

therefore approximate R as
k

h2
and r as

k

h
.

Equation (31) after some simplification can be rewritten as

(

U + kUt +
k2

2
Utt +

k3

6
Uttt +O(k4)

)

Γω

= U + kUxx +
kh2

12
Uxxxx + 2kβ(1+ γ )Uδ+1,

(32)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 January 2022 | Volume 7 | Article 773733

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Appadu and Tijani 1D Generalised Burgers-Huxley

where Γω =
[

1+αkUδ−1

(

Ux− h
2Uxx+O(h2)

)

+kβγ +kβ(1+

γ )Uδ + kβU2δ

]

.

Expanding, simplifying, and dividing throughout by k, gives

αUδUx −
h

2
αUδUxx + α

h2

6
UδUxxx + βγU + β(1+ γ )Uδ+1

+βU2δ+1 +
(

Ut +
k

2
Utt +

k2

6
Uttt +O(k3)

)

Γω = Uxx

+
h2

12
Uxxxx + 2β(1+ γ )Uδ+1. (33)

As k, h → 0, we recover the generalised Burgers-Huxley equation
which is given by Equation (7).

5.2.4. Accuracy
Using Equation (33), we have

Ut − Uxx + αUδUx − β(1+ γ )Uδ+1 + βγU + βU2δ+1

= −
[

αkUδ−1

(

Ux −
h

2
Uxx +

h2

6
Uxxx

)

+kβγ + kβ(1+ γ )Uδ + kβU2δ

]

Ut

−
(

k

2
Utt +

k2

6
Uttt

)[

1+ αkUδ−1

(

Ux −
h

2
Uxx +

h2

6
Uxxx

)

+kβγ + kβ(1+ γ )Uδ + kβU2δ

]

(34)

+
h

2
αUδUxx −

h2

6
αUδUxxx +

h2

12
Uxxxx +O(k4)+O(h3).

We deduce that NSFD has first-order accuracy in time and
second order in space.

5.2.5. Stability
We consider Equation 24, using the freezing coefficient
technique, we obtain

Un+1
j − Un

j

= R

[

Un
j+1 − 2Un

j + Un
j−1

]

− rα(Umax)
δ

(

Un
j − Un

j−1

)

+φ(k)β(1+ γ )
[

2(Un
j )(Umax)

δ − (Umax)
δUn+1

j

]

− φ(k)βγUn+1
j − φ(k)βUn+1

j (Umax)
2δ , (35)

whereUmax = γ
1
δ . We use the ansatzUn

j = ξneIjw where w is the

phase angle and obtain

ξn+1eIjw = ξneIjw + R
[

ξneI(j+1)w − 2ξneIjw + ξneI(j−1)w
]

−rαγ
(

ξneIjw − ξneI(j−1)w
)

+ φ(k)β(1+ γ )γ
[

2ξneIjw − ξn+1eIjw
]

−φ(k)βγ ξn+1eIjw − φ(k)βγ 2ξn+1eIjw. (36)

The amplification factor, ξ in Equation (36) takes the form

ξ =

1− 2R+ R(eIw + e−Iw)+ 2φ(k)βγ (1+ γ )
−αrγ (1− e−Iw)

1+ φ(k)βγ 2 + φ(k)βγ + φ(k)βγ (1+ γ )
, (37)

TABLE 1 | A comparison between the exact and numerical solutions at some values of x for α = 1.0, β = 1.0, and γ = 0.01 at time t = 1.0.

t x Exact FTCS Abs Error (FTCS) NSFD Abs Error (NSFD)

1 0.1 2.66808× 10−1 2.66711× 10−1 9.70955× 10−5 2.66701× 10−1 1.07217× 10−4

0.5 2.66997× 10−1 2.66727× 10−1 2.69371× 10−4 2.66699× 10−1 2.97924× 10−4

0.9 2.67185× 10−1 2.67088× 10−1 9.68712× 10−5 2.67077× 10−1 1.07212× 10−4

TABLE 2 | A comparison between the exact and numerical solutions at some values of x for α = 1.0, β = 5.0, and γ = 0.01 at time t = 1.0.

t x Exact FTCS Abs Error (FTCS) NSFD Abs Error (NSFD)

1 0.1 2.71286× 10−1 2.70774× 10−1 5.12597× 10−4 2.70423× 10−1 8.62784× 10−4

0.5 2.71735× 10−1 2.70311× 10−1 1.42389× 10−3 2.69334× 10−1 2.40108× 10−3

0.9 2.72181× 10−1 2.71670× 10−1 5.10520× 10−4 2.71320× 10−1 8.60918× 10−4

TABLE 3 | A comparison between the exact and numerical solutions at some values of x for α = 1.0, β = 5.0, and γ = 0.01 at time t = 1.0.

t x Exact FTCS Abs Error (FTCS) NSFD Abs Error (NSFD)

1 0.1 2.66130× 10−1 2.66062× 10−1 6.81536× 10−5 2.66055× 10−1 7.52697× 10−5

0.5 2.66221× 10−1 2.66031× 10−1 1.89299× 10−4 2.66011× 10−1 2.09794× 10−4

0.9 2.66311× 10−1 2.66243× 10−1 6.81112× 10−5 2.66235× 10−1 7.57484× 10−5
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=

1− 2R+ R(2 cosw)+ 2φ(k)βγ (1+ γ )
−αrγ (1− cosw+ I sinw)

1+ 2φ(k)βγ (1+ γ )
. (38)

=
1− 2R+ R(2 cosw)+ 2φ(k)βγ (1+ γ )− αrγ (1− cosw)

1+ 2φ(k)βγ (1+ γ )

−I
αrγ sinw

1+ 2φ(k)βγ (1+ γ )
. (39)

The scheme is stable whenever the Von-Neumann condition,
|ξ | ≤ 1 is satisfied. The modulus of amplification factor is given
by

|ξ | =
√

(R(ξ ))2 + (I(ξ ))2,

where R(ξ ) and I(ξ ) are the real and imaginary parts of ξ ,
respectively. From Equation (39), we get

|ξ | =

√

√

√

√

√

√

√

(

1− 2R+ R(2 cosw)+ 2φ(k)βγ (1+ γ )

−αrγ (1− cosw)
)2 +

(

αrγ sinw
)2

(

1+ 2φ(k)βγ (1+ γ )
)2

, (40)

where w ∈ [−π ,π]. On differentiation and solving for w, we
obtain w = 0, π , and−π . We note for w = 0, we get |ξ | = 1.

Substituting w = π or−π in Equation (40) yields

|ξ | =
1+ 2φ(k)βγ (1+ γ )− 4R− 2αγ r

1+ 2φ(k)βγ (1+ γ )
. (41)

which is

− 1 ≤
1+ 2φ(k)βγ (1+ γ )− 4R− 2αγ r

1+ 2φ(k)βγ (1+ γ )
≤ 1. (42)

FIGURE 2 | A plot of initial, numerical profiles, and profile from proposed solution [8] vs. x for the three test cases using FTCS and NSFD at t = 1.0 using h = 0.1 and

k = 0.00125. (A) α = 1.0, β = 1.0, and γ = 0.01. (B) α = 1.0, β = 5.0, and γ = 0.01. (C) α = 5.0, β = 1.0, and γ = 0.01.
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After some simplification,

2R+ αγ r ≤ 1+ 2φ(k)βγ (1+ γ ). (43)

We note from Equation (43) that

2R ≤ 1 H⇒ 1− 2R ≥ 0 and αγ r ≤ 1 H⇒ 1− αγ r ≥ 0,

which are the conditions for positivity.

The inequalities

αγ r ≤ 2φ(k)βγ (1+ γ ) and 2R ≤ 2φ(k)βγ (1+ γ )

are 2φ(k)βγ (1+ γ )− αγ r ≥ 0 and 2φ(k)βγ (1+ γ )− 2R ≥ 0.
Thus, the conditions for stability are

1− 2R ≥ 0, 1− αγ r ≥ 0, 2φ(k)βγ (1+ γ )− 2R ≥ 0,

and 2φ(k)βγ (1+ γ )− αγ r ≥ 0. (44)

FIGURE 3 | Plot of absolute error vs. x for the three test cases at t = 1.0 using h = 0.1 and k = 0.00125. (A) α = 1.0, β = 1.0, and γ = 0.01. (B) α = 1.0, β = 5.0, and

γ = 0.01. (C) α = 5.0, β = 1.0, and γ = 0.01.

TABLE 4 | A comparison between the exact and numerical solutions at some values of x for α = 1.0, β = 1.0, and γ = 0.01 at time t = 1.0.

t x Exact FTCS Abs Error (FTCS) NSFD Abs Error (NSFD)

1 0.1 2.64625× 10−1 2.64625× 10−1 1.08007× 10−7 2.64625× 10−1 1.41772× 10−7

0.5 2.64818× 10−1 2.64818× 10−1 3.00189× 10−7 2.64818× 10−1 3.93692× 10−7

0.9 2.65011× 10−1 2.65010× 10−1 1.08071× 10−7 2.65010× 10−1 1.41709× 10−7
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We would like to point out that we have obtained the conditions
of positivity for stability.

REMARK 3. The generalisation of Equation (24) to a higher
dimension rests on the fact that terms (reaction and advection)
with non-standard approximation Un+1 should have a minus sign.
In R

m, the approximate solution in the reaction term becomes
Un
{j1 ,j2 ,··· ,m}. The diffusion term △U and advection term takes the

form of the generalised finite difference, refer to Prieto et al. [26].
In Appadu et al. [25], we have constructed a few versions of NSFD
methods to solve a 2D generalised Burgers-Huxley equation.

6. NUMERICAL RESULTS AND ERROR
ANALYSIS USING PROPOSED SOLUTION
FROM WANG ET AL.

In this section, we have reproduced some results obtained by
Appadu et al. [29]

Case 1: α = β = 1.0 and γ = 0.01.
Case 2: α = 1.0, β = 5.0, and γ = 0.01.
Case 3: α = 5.0, β = 1.0, and γ = 0.01.

In Table 1, we observed the absolute error of the FTCS scheme
to be of order 10−4 − 10−5 while that from NSFD scheme is of
the order 10−4. The relative error of both schemes is of order
10−3 − 10−4. When the reaction coefficient β dominates the
advection coefficient α, we noticed a decline in the accuracy
of both schemes as the absolute and relative errors increase to
magnitude of order 10−3−10−4 and 10−3, respectively, as shown
in Table 2. Absolute and relative errors decrease to 10−4 − 10−5

and 10−4 when α > β , we refer to Table 3. Figures 2, 3 shed
more light on the behaviour and performance of the FTCS and
NSFD scheme with respect to the exact solution of Wang et al.
[8].

REMARK 4. There is always deviation in the numerical profiles
(FTCS and NSFD) with the profile from proposed solution of

FIGURE 4 | A plot of initial, numerical profiles, and profile from proposed solution [19] vs. x for the three test cases using FTCS and NSFD at t = 1.0 using h = 0.1

and k = 0.00125. (A) α = 1.0, β = 1.0, and γ = 0.01. (B) α = 1.0, β = 5.0, and γ = 0:01. (C) α = 5.0, β = 1.0, and γ = 0.01.
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Wang et al. [8] as depicted in Figure 1, despite performing grid
refinement i.e., k → 0.

7. NUMERICAL RESULTS AND ERROR
ANALYSIS USING PROPOSED SOLUTION
FROM DENG

The results in this section are novel and are not taken from any
reference.

Case 1: α = β = 1.0 and γ = 0.01.
Case 2: α = 1.0, β = 5.0, and γ = 0.01.
Case 3: α = 5.0, β = 1.0, and γ = 0.01.

Table 4 show the absolute error of the FTCS and NSFD schemes
to be of order 10−7 while the relative error of both schemes is of
order 10−6 − 10−7. When the reaction coefficient β dominates
the advection coefficient α, we noticed a decline in the accuracy
of both schemes (FTCS andNSFD) as the absolute errors increase

to magnitude of order 10−5−10−7 and relative error to 10−6 and
10−5, respectively, as shown in Table 6. In Tables 5, 7, 9 show
the rate of convergence as we perform grid refinement in time.
Figures 4, 5 shed more light on the behaviour and performance

TABLE 5 | L1, L∞ errors and rate of convergence (in time) for α = 1.0, β = 1.0,

and γ = 0.01 (Case 1) at some different time-step size k with spatial mesh size

h = 0.1 using FTCS and NSFD at t = 1.0.

Scheme k L1 Error L∞ Error Rt

FTCS 0.005 1.9810× 10−6 3.0018× 10−7 −
0.0025 1.9608× 10−6 2.9711× 10−7 1.484× 10−2

0.00125 1.9506× 10−6 2.9558× 10−7 7.479× 10−3

NSFD 0.005 2.5984× 10−6 3.9369× 10−7 −
0.0025 1.1361× 10−6 1.7213× 10−7 1.193

0.00125 4.0451× 10−7 6.1282× 10−8 1.489

FIGURE 5 | Plot of absolute error vs. x for the three test cases at t = 1.0 using h = 0.1 and k = 0.00125. (A) α = 1.0, β = 1.0, and γ = 0.01. (B) α = 1.0, β = 5.0, and

γ = 0.01. (C) α = 5.0, β = 1.0, and γ = 0.01.
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FIGURE 6 | 3D plots of solution vs. t vs. x using FTCS, NSFD, and proposed solution [19] for α = 1, β = 1, δ = 1.0, and γ = 0.1 using k = 0.005 and h = 0.1.

TABLE 6 | A comparison between the exact and numerical solutions at some values of x for α = 1.0, β = 1.0, and γ = 0.01 at time t = 1.0.

t x Exact FTCS Abs Error (FTCS) NSFD Abs Error (NSFD)

1 0.1 2.59166× 10−1 2.59166× 10−1 3.13176× 10−7 2.59160× 10−1 5.80488× 10−6

0.5 2.59680× 10−1 2.59680× 10−1 8.72601× 10−7 2.59664× 10−1 1.60915× 10−5

0.9 2.60191× 10−1 2.60191× 10−1 3.14074× 10−7 2.60185× 10−1 5.79044× 10−6

TABLE 7 | L1, L∞ errors and rate of convergence (in time) for α = 1.0, β = 1.0,

and γ = 0.01 (Case 2) at some different time-step size k with spatial mesh size

h = 0.1 using FTCS and NSFD at t = 1.0.

Scheme k L1 Error L∞ Error Rt

FTCS 0.005 5.75636× 10−6 8.72601× 10−7 −
0.0025 5.28394× 10−6 8.00967× 10−7 1.235× 10−1

0.00125 5.04769× 10−6 7.65145× 10−7 6.601× 10−2

NSFD 0.005 1.0623× 10−4 1.6091× 10−5 −
0.0025 4.7996× 10−5 7.2693× 10−6 1.146

0.00125 1.8799× 10−5 2.8461× 10−6 1.352

of the FTCS and NSFD schemes with respect to the proposed
solution of Deng [19].

8. THE DYNAMICS OF A TRAVELLING
WAVE BY THE BURGERS-HUXLEY
EQUATION

The Burgers-Huxley equation is a non linear PDE that
exhibits many complex phenomena among which is the wave
phenomenon. The proposed solutions are given in Equations
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TABLE 8 | A comparison between the exact and numerical solutions at some values of x for α = 1.0, β = 1.0, and γ = 0.01 at time t = 1.0.

t x Exact FTCS Abs Error (FTCS) NSFD Abs Error (NSFD)

1 0.1 2.64598× 10−1 2.64598× 10−1 2.54332× 10−7 2.64598× 10−1 1.42838× 10−7

0.5 2.64690× 10−1 2.64691× 10−1 7.06786× 10−7 2.64691× 10−1 3.97948× 10−7

0.9 2.64782× 10−1 2.64783× 10−1 2.54418× 10−7 2.64783× 10−1 1.43706× 10−7

TABLE 9 | L1, L∞ errors and rate of convergence (in time) for α = 1.0, β = 1.0,

and γ = 0.01 (Case 3) at some different time-step size k with spatial mesh size

h = 0.1 using FTCS and NSFD at t = 1.0.

Scheme k L1 Error L∞ Error Rt

FTCS 0.005 4.6644× 10−6 7.0678× 10−7 −
0.0025 4.6441× 10−6 7.0371× 10−7 6.291× 10−3

0.00125 4.6339× 10−6 7.0217× 10−7 3.156× 10−3

NSFD 0.005 2.6265× 10−6 3.9794× 10−7 −
0.0025 1.1622× 10−6 1.7608× 10−7 1.176

0.00125 4.2962× 10−7 6.5089× 10−8 1.435

(9) and (10) both exhibit the dynamics of a travelling wave.
A travelling wave is a wave that moves in a certain direction
while maintaining a stable form. In this section, we show the
travelling wave dynamics of the Burgers-Huxley equation using
the proposed solution by Deng [19] and behaviour of the
approximate solutions by looking at Equation (7) in an extended
domain for the spatial variable x ∈ [−100, 100] and t ∈ [0, 1].
The plots are displayed in Figure 6.

9. CONCLUSION

In this work, we examined the two proposed solutions provided
by Wang et al. [8] and Deng [19] for the generalised Burgers-
Huxley equation. The FTCS and NSFD schemes are designed
to approximate the solution of the generalised Burgers-Huxley
equation. The numerical estimation tools of absolute error,
relative error, and rate of convergence serve as the means of
benchmarking the two proposed solutions. We observed that
despite the consistency of the two (FTCS and NSFD) finite
difference schemes and working within their region of stability,
the results deviate from the proposed solution from Wang et al.
[8] upon grid refinements. This directly has a greater impact
on its error analysis as shown in Figure 1 and Tables 1–3. This
anomalous behaviour was not experienced using the proposed
solution of Deng [19] as seen in Figure 3 and Tables 4–9. In
conclusion, the proposed solution of Wang et al. [8] indeed

contains a minor error while the solution provided by Deng

[19] is the true exact solution for the generalised Burgers-
Huxley equation for the initial conditions given by Equation
(8). In our future work, we will consider an application in
microfluidic, microfluidics deals with the flow of fluids and
suspensions in channels of sub-millimetre-sized cross-sections
under the influence of external forces. In these instances, viscosity
dominates over inertia, ensuring the absence of turbulence and
the appearance of regular and predictable laminar flow streams,
which implies an exceptional spatial and temporal control of
solutes. The equation modelling microfluidics is as follows [30]:







∇ · u = 0,

ρ

(

∂u

∂t
+ (u · ∇)u

)

= −▽P + η∇2u+ ρg (45)

we will approach the set of partial differential equations given in
Equation (45) using FTCS, NSFD, and possibly other methods.
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