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The theory of orthogonal multiwavelets offers enhanced flexibility for signal processing
applications and analysis by employing multiple waveforms simultaneously, rather than a
single one. When implementing them with polyphase filter banks, it has been recognized
that balanced vanishing moments are needed to prevent undesirable artifacts to occur,
which otherwise compromise the interpretation and usefulness of the multiwavelet
analysis. In the literature, several such balanced orthogonal multiwavelets have been
constructed and published; but however useful, their choice is still limited. In this work we
present a full parameterization of the space of all orthogonal multiwavelets with two
balanced vanishing moments (of orders 0 and 1), for arbitrary given multiplicity and degree
of the polyphase filter. This allows one to search for matching multiwavelets for a given
application, by optimizing a suitable design criterion. We present such a criterion, which is
sparsity-based and useful for detection purposes, which we illustrate with an example from
electrocardiographic signal analysis. We also present explicit conditions to build in a third
balanced vanishing moment (of order 2), which can be used as a constraint together with
the earlier parameterization. This is demonstrated by constructing a balanced orthogonal
multiwavelet of multiplicity three, having three balanced vanishing moments, but this
approach can easily be employed for arbitrary multiplicity.

Keywords: wavelet theory, orthogonal multiwavelets, balanced vanishing moments, matched wavelets, sparsity,
parameterization, lossless polyphase filters

INTRODUCTION

Wavelets [1, 2] are a popular signal processing tool, able to provide a time-frequency representation
of signals. Though there are various viewpoints on wavelets, here we will restrict ourselves to wavelets
from filter banks. Within this class, various desirable properties are possible to achieve, e.g.
orthogonality, linear phase, compact support, symmetry and vanishing moments. We will
restrict ourselves to orthogonal wavelets with compact support [3]. Vanishing moments induce
a degree of smoothness and allow the wavelet transform to be interpreted as a multiscale differential
operator, which allows one to measure the regularity of a signal [4]. The orthogonality property does
not combine well with the other properties of scalar wavelets; for instance there is no compactly
supported orthogonal wavelet other than the Haar wavelet that is also symmetric.

In the orthogonal scalar case, if one uses all free parameters to build in as many vanishing
moments as possible, the Daubechies wavelets are obtained. If instead only a limited number of
vanishing moments is required, there is freedom left for other properties. One can use this freedom
also to design matched wavelets for an application, e.g., to promote a sparse representation of a
specific prototype signal. In [5] a parameterization was developed for orthogonal scalar wavelets,
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which were matched to a prototype signal. This approach was
further expanded in [6, 7] by using a parameterization based on
lossless systems. In that parameterization, the polyphase filter
associated with the orthogonal wavelet is recursively constructed
as the transfer matrix of a lossless system using Schur
interpolation theory [8] with rotation matrices and elementary
delay operators.

Multiwavelets [9–12] are a generalisation of scalar wavelets,
and consist of a tuple of r scalar wavelets. Multiwavelets are more
flexible, and can combine properties such as compact support,
orthogonality and symmetry. This added flexibility is for example
advantageous in multiwavelet denoising, which has been applied
in rolling bearing fault detection [13–16], and in the load
spectrum of computer numerical control lathe [17]. Recently,
the correspondence between multiwavelet shrinkage and
nonlinear diffusion was studied [18]. We will be addressing
orthogonal multiwavelets with compact support generated from
filter banks with a complexity (filter order) that can be chosen by
the user.Much of the theory of orthogonal scalar wavelets carries
over to orthogonal multiwavelets, but some subtle differences are
encountered.

An important difference arises when processing a one-
dimensional signal with a multiwavelet. Since the filter bank
associated with the multiwavelet is a multi-input multi-output
system (MIMO), vectorisation of the input signal is required. A
natural vectorisation is obtained by decomposing the signal into
its phases. However, arbitrary multiwavelet filters do not preserve
this structure throughout the filtering operation. As a result the
output channels of the low-pass filter become unbalanced.
Moreover, the multiwavelet filter does not guarantee the
preservation of polynomial signals by the low-pass filter, even
when an appropriate vanishing moment is in place. This further
complicates a direct interpretation of the multiwavelet analysis.
This “balancing problem” [9, 12] is caused by the different
spectral behaviour of the components of the scaling function
that together with the wavelet function define the multiwavelet.
Lack of balancing has hampered the use of multiwavelets by the
signal processing community, despite the widely recognized
potential. An option to overcome this is to first reconstruct a
signal from the low-pass outputs, split it into phases, and feed
those to the filter bank, but this is an unattractive approach, since
it deteriorates computational performance especially with an
increasing number of scales.

A more attractive solution is to impose a balancing condition
on the scaling function, to complement the vanishing moment
condition on the wavelet function. In the literature, there are
constructions of balanced multiwavelets [19, 20] and of balanced
multiframelets [21, 22]. However, enforcing such a balancing
condition has turned out to become increasingly hard when the
order of the vanishing moment grows larger.

The problem of balancing was first formally addressed by
Lebrun and Vetterli in [23]. In [24] necessary and sufficient
conditions were provided for a multiwavelet to be p-order
balanced. These conditions were formalised in [9]. In [11]
necessary and sufficient conditions on the zeros of certain
filters associated with p-order balanced multiwavelets were
developed. Both authors include examples of multiwavelets

that are balanced up to order two or three1 for multiplicity
r � 2. These multiwavelets were obtained by solving systems
of nonlinear polynomial equations using Gröbner bases.

The balancing conditions given in [11, 24] are highly non-
linear, and are difficult to satisfy. These conditions were further
characterised in [12]. In [25] the construction of balanced
multiwavelets is simplified by using the lifting scheme. In [26]
balanced multiwavelets with interpolatory property are discussed,
for multiscaling functions of multiplicity r � 2.

From the literature it is found that a parameterization for the
construction of multiwavelets balanced up to order p with an
arbitrary multiplicity r is largely lacking. In [27, 28] a
parameterization for the construction of zero-order balanced
multiwavelets is derived. This was a large step forward in the
construction of balanced multiwavelets, and allows for balanced
multiwavelet design. A set of directly applicable filter conditions
for the construction of balanced multiwavelets for order p > 0 and
an arbitrary multiplicity r, is not available in the literature.

In this paper we will develop such a parameterization for
orthogonal multiwavelets with compact support based on lossless
systems, with an arbitrary multiplicity r. To this end, we will first
introduce multiwavelets from filter banks in Section 2.1. Next we
will discuss parameterizations of multiwavelets as lossless FIR
polyphase filters in Section 2.2. Then the balancing concept is
investigated from a signal processing viewpoint in Sections
2.3–2.5, and balancing up to and including order 1 is built
directly into the parameterization in Sections 2.6–2.7. For
order 2, an additional condition is provided in Section 2.8 in
a form which can be used for numerical optimization. The
parameterizations describe the free parameters in a form that
is suitable to match a multiwavelet filter bank to a prototype
signal. For this matching, it is argued in Section 2.9 that e.g., L1-
norm minimization or L4-norm maximization can be used, as in
[5–7], exploiting conservation of energy due to orthogonality.
The effects of the balancing issue is illustrated in Section 3.1. Two
multiwavelet design examples are provided in Sections 3.2, 3.3, to
illustrate the approach and techniques discussed. We will show in
this paper how all balanced orthogonal multiwavelets of orders 0
and 1 can be obtained for arbitrary multiplicity r and any given
polyphase filter order (McMillan degree), which we consider a
major step forward in making multiwavelets applicable.

MATERIALS AND METHODS

Multiwavelets andMultiwavelet Filter Banks
In this section we briefly review the theory of multiwavelets and
multiwavelet filter banks, to a large extent based on the work in
[9, 10]. We will restrict to orthogonal multiwavelets having
compact support. Compact support translates into finite
impulse response (FIR) filters, whereas orthogonality is
captured conveniently when switching from a filter bank

1In those papers, p-order balancing is defined to correspond to p balanced
vanishing moments, of orders 0, 1, . . ., p − 1. In this paper we will call this
‘balanced up to order p − 1.’
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description to polyphase filtering: it corresponds to the
polyphase FIR filter being para-unitary, i.e. lossless. For
lossless filters parameterizations are available in the
literature, which offer opportunities to build in additional
properties. We will exploit these when addressing vanishing
moments and balancing conditions.

A multiresolution structure for the space L2(R) is defined, as
usual in wavelet theory, to consist of nested approximation spaces
Vm, which are linear subspaces of L2(R) such that . . ., ⊂ V−1 ⊂ V0

⊂ V1 ⊂ . . ., with intersection ∩ m∈ZVm � {0} and with
completeness ∪ m∈ZVm � L2(R). For each m ∈ Z we define
the detail space Wm to be such that Vm+1 � Vm ⊕ Wm and Vm

⊥Wm. Thus, Vm andWm are orthogonal complements within the
enveloping space Vm+1. Furthermore, we assume that this
structure is both shift-invariant (∀f(t) ∈ L2(R), k, m ∈ Z:
f(t) ∈ Vm5f(t − k) ∈ Vm) and scale-invariant (∀f(t) ∈
L2(R), m ∈ Z: f(t) ∈ Vm5 f(2t) ∈ Vm+1).

In orthogonal multiwavelet theory, it is assumed next that
there exists a multiscaling function. This is a vector of r scaling
functions Φ(t) � (ϕ[0](t), ϕ[1](t), . . . , ϕ[r−1](t))T of which the
entries, together with their integer translates, generate an
orthonormal basis of the approximation space V0. Thus, for
each such multiscaling function we have that
〈ϕ[j](t − k), ϕ[p](t − ℓ)〉 � δj,pδk,ℓ for all integers k, l ∈ Z and
all indices j, p ∈ {0, 1, . . ., r − 1}. Here δj,k is the Kronecker
delta, equal to 1 if j � k and equal to 0 otherwise. In this set-up, the
orthonormal basis of V0 is generated by the r scaling functions
jointly rather than by any single one of them. Because of shift and
scale-invariance of the multiresolution structure, the
orthonormal basis of V0, for each m, induces an orthonormal
basis of Vm which is constituted by the entries of the vectors in
{2m/2Φ(2mt − k)|k ∈ Z}.

Likewise, it is assumed that there exists an associated
multiwavelet function Ψ(t) which together with its integer
translates generates an orthonormal basis of the detail space
W0. This multiwavelet is a vector of r wavelet functions
Ψ(t) � (ψ[0](t),ψ[1](t), . . . ,ψ[r−1](t))T, with the property
〈ψ[j](t − k),ψ[p](t − ℓ)〉 � δj,pδk,ℓ for all k, l ∈ Z and all j, p ∈
{0, 1, . . ., r − 1}. Since V0 ⊥ W0 it holds that
〈ϕ[j](t − k),ψ[p](t − ℓ)〉 � 0, for all j, p, k, and ℓ. As before
for the spaces V0 and Vm, the orthonormal basis of W0

induces an orthonormal basis of Wm which consists of the
entries of the vectors in {2m/2Ψ(2mt − k)|k ∈ Z}.

From the fact that Φ(t) ∈ Vr
0 and V0 ⊂ V1, it follows that Φ(t)

can be represented in terms of the induced basis�
2

√
Φ(2t − k)|k ∈ Z{ } of V1. So, there exist unique r × r matrix

coefficients Ck, k ∈ Z, for which the multiscaling function Φ(t)
satisfies a two-scale vector equation (a refinement equation)
called the dilation equation:

Φ t( ) � �
2

√ ∑∞
k�−∞

CkΦ 2t + k( ). (1)

Likewise, we have that Ψ(t) ∈ Wr
0 and W0 ⊂ V1, so it can also

be represented uniquely in terms of the same induced basis of V1.
This implies that there exist unique r × r matrix coefficients Dk,
k ∈ Z, which express the multiwavelet Ψ(t) in terms of the

multiscaling function on V1 by means of a two-scale vector
equation called the wavelet equation:

Ψ t( ) � �
2

√ ∑∞
k�−∞

DkΦ 2t + k( ). (2)

If we also impose that the multiscaling and multiwavelet
functions have compact support (i.e., they are nonzero only on
a finite interval, whichmakes them localized in space—a desirable
property of wavelets), it follows that only a finite number of basis
functions in the induced basis of V1 can contribute to
representing Φ(t) and Ψ(t). As a consequence, the infinite
sums in the dilation and wavelet equation become finite sums,
and by shiftingΦ(t) andΨ(t) appropriately, if necessary, it can be
assumed without loss of generality that the index k in each sum
runs from k � 0 to k � 2n − 1 for some integer n ≥ 1.2

The finite matrix coefficient sequences {Ck|k � 0, 1, . . .2n − 1}
and {Dk|k � 0, 1, . . .2n − 1} are used to define two r × r polynomial
matrices in z−1 according to C(z) � ∑2n−1

k�0 Ckz−k and
D(z) � ∑2n−1

k�0 Dkz−k. The function C(z) is the transfer function
of a FIR low-pass multiwavelet filter, whereas D(z) is the transfer
function of a FIR high-pass multiwavelet filter. Together they
make up an orthogonal FIR filter bank, satisfying the Smith-
Barnwell orthogonality conditions [29]:

C z( )C z−1( )T + C −z( )C −z−1( )T � 2Ir, (3)

D z( )D z−1( )T +D −z( )D −z−1( )T � 2Ir, (4)

C z( )D z−1( )T + C −z( )D −z−1( )T � 0. (5)

The converse of what has been presented so far, is also largely
true: if one starts from an orthogonal FIR filter bank with r × r FIR
filters C(z) and D(z) satisfying Eqs 3–5, then this induces a
multiresolution structure with orthonormal translation invariant
bases generated by the multiscaling and multiwavelet functions
satisfying the dilation equation and wavelet equation under
relatively mild conditions. What is needed, is what we have
assumed earlier, namely that the dilation equation admits a
solution and that the spaces eventually span all of L2(R).

The cascade algorithm is a tool to compute Φ(t) for a given
choice of filter coefficients Ck, k � 0, 1, . . ., 2n − 1 by iteration:
from a current estimate of Φ(t) a new estimate is computed by
substituting the current estimate into the right-hand side of the
dilation equation and reading off the new estimate from the
resulting left-hand side. This requires a suitable initialisation,

2Note that, unlike what is common in most of the literature, we have chosen in our
definition of the dilation and wavelet equation above to use functions Φ(2t + k)
rather than Φ(2t − k), in line with the convention in [7]. This causes no loss of
generality, but makes that the multiscaling and multiwavelet functions in Φ(t) and
Ψ(t) are all compactly supported on the negative interval (−(2n − 1), 0] as can be
quickly derived from (1) and (2). This has the two-fold advantage that we can save
on the notation and the number of filters required in the rest of this work, as well as
that we can work with causal filters and avoid unnecessary delay or advance
operators when switching to a signal processing perspective. Should one switch to
using functions Φ(2t − k) on the right-hand side of the dilation and wavelet
equations, then the time-reversed functions Φ( − t) and Ψ( − t) are the new
solutions in the adapted setting.
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which is achieved by the Haar multiwavelet, for which (consistent
with our convention) the multiscaling function Φ(t) is given by
ϕ[i](t) �

�
r

√
on the interval (−i+1

r ,− i
r] and ϕ[i](t) � 0 elsewhere.

Clearly, this Haar multiwavelet is an example of an orthogonal
multiwavelet (albeit not a spectacular one, as it simply mimics the
scalar Haar wavelet). It is easily verified that orthonormality of
the induced basis is preserved in each iteration step and that
compact support holds too due to the finite number of terms in
the summation; so if the cascade algorithm converges it will
produce a feasible solution for Φ(t). If the algorithm happens to
not converge, then a multiwavelet interpretation is lacking, but
the filter bank may still prove valuable from a signal processing
perspective. The cascade algorithm is useful to visualize the
multiwavelets which correspond to a chosen filter bank. When
discussing balancing conditions, it is instrumental for
determining the vector v0 in Eq. 39.

Assume a function (a scalar signal) s(t) ∈ Vm+1 to be
represented by a sequence of r × 1 vector coefficients {sℓ} in
terms of the induced basis of Vm+1:

s t( ) � ∑
ℓ∈Z

2 m+1( )/2sT
ℓ
Φ 2m+1t − ℓ( ). (6)

Since Vm+1 � Vm ⊕ Wm we can decompose s(t) into

s t( ) � a t( ) + b t( ), (7)

in which a(t) is an approximation signal with coefficient vectors
{aℓ} with respect to the induced multiscaling basis in Vm, and b(t)
is a detail signal (orthogonal to a(t)) with coefficient vectors {bℓ}
with respect to the induced multiwavelet basis in Wm:

a t( ) � ∑
ℓ∈Z

2m/2aT
ℓ
Φ 2mt − ℓ( ), (8)

b t( ) � ∑
ℓ∈Z

2m/2bT
ℓ
Ψ 2mt − ℓ( ). (9)

It now holds that these coefficient vectors can be computed
from those of s(t) as follows:

aℓ � ∑2n−1
k�0

Cks2ℓ−k, (10)

bℓ � ∑2n−1
k�0

Dks2ℓ−k. (11)

In digital signal processing terms, the sequences {aℓ} and {bℓ}
are obtained from {sℓ} by first filtering {sℓ} with the filters C(z) and
D(z) (in parallel), and then dyadically down-sampling the
resulting sequences: only the even-indexed coefficient vectors
are kept (and relabeled), all the odd-indexed coefficient vectors
are discarded.3

This process can be reorganized in a more efficient way, by
first splitting the coefficient vector sequence {sℓ} into two phases
(using down-sampling on the sequence and on a delayed
duplicate) and then passing both phases jointly through a

suitable polyphase filter Hp(z) to directly produce {aℓ} and
{bℓ}. More generally, if we start from a discrete-time
representation of the scalar signal s(t) as a sequence of scalar
values {fℓ} (for instance obtained by regular sampling) and
corresponding z-transform S(z) � ∑

ℓ∈Z
fℓz−ℓ , then one can split

{fℓ} into 2r phases and submit these jointly to the 2r × 2r polyphase
filter Hp(z). These 2r phases are defined by rewriting S(z) as:

S z( ) � S0 z2r( ) + z1S1 z2r( ) +/ + z2r−1S2r−1 z2r( ), (12)

where Sk(z) denotes the z-transform of the k-th phase of {fℓ} (k �
0, 1, . . ., 2r − 1). This matches the situation with a coefficient
vector sequence {sℓ} if each sℓ contains the phases 0, 1, . . ., r − 1 of
the scalar coefficient sequence {fℓ} for even indices ℓ and the
phases r, r + 1, . . ., 2r − 1 for odd indices ℓ.

The 2r × 2r FIR polyphase filter Hp(z) is constructed as:

where Ceven(z), Codd(z),Deven(z), andDodd(z) are r × r polynomial
matrices (in z−1) that split C(z) and D(z) into two phases, such
that

C z( ) � Ceven z2( ) + z−1Codd z2( ) (14)

D z( ) � Deven z2( ) + z−1Dodd z2( ). (15)

This architecture is illustrated in Figure 1 and leads to the
same approximation coefficients aℓ and detail coefficients bℓ as

FIGURE 1 | A single scale of a polyphase wavelet transform with r � 3
and a univariate input signal S(z) that is split into 2r phases, yielding r
approximation components a1,ℓ and r detail components b1,ℓ.

3The convolution sums in Eqs 10–11, involving s2ℓ−k rather than s2ℓ+k, appear
because of the convention we adopted for the dilation and wavelet equation.
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before, where we used double subscripts to anticipate a
multiresolution structure with repeated down-sampling and
filtering steps later on.

For the 2r × 2r polyphase filter Hp(z) defined in Eq. 13 the
orthogonality conditions of Eqs 3–5 translate into the equivalent
condition:

Hp z( )Hp z−1( )T � I2r. (16)

This implies that Hp(z) is a lossless FIR filter, with coefficient

matrices Hk � C2k C2k+1
D2k D2k+1

( ), for k � 0, 1, . . ., n − 1.

Complementary to Eq. 13, which expresses Hp(z) in terms of
C(z) and D(z), the low-pass and high-pass FIR filters C(z) and
D(z) are reobtained from the polyphase filter Hp(z) by:

C z( )
D z( )( ) � Hp z2( ) Ir

z−1Ir
( ). (17)

Parameterizing Lossless FIR Polyphase
Filters
Lossless polyphase filters have a rich structure and have been well
studied in the literature. See for instance [30, 31] for an accessible
review of lossless filters and their key properties, including
application areas and examples of the various uses they have.
The basic property of a discrete-time lossless system, from which
its name derives, is that the total energy of the output signals equals
the total energy of the input signals, regardless of the signals being
used. Here, energy is measured by the sum of squares of the values in
the (discrete-time) signals. ForHp(z) this precise property is captured
by Eq. 16. The point is that for |z| � 1 it holds that z−1 � zp (i.e., the
complex conjugate) and since Hp(z) has real coefficients it follows
thatHp(z−1)T � Hp(z)p. This shows that Hp(z) is unitary for all z
on the unit circle, which causes the conservation of energy property.

For the construction of arbitrary lossless FIR polyphase filters
(for given choices of r and n), the condition of Eq. 16 is not
convenient to work with and impose directly. Equating coefficients
for all the entries of the corresponding expressions on the left and on
the right, can of course be done but does not provide orthogonality
conditions in a form suitable for analytic or numerical computation.
Instead, there is a body of literaturewhich describes how the class of all
2r× 2r lossless systems of a fixed given order can be parameterized, by
carrying out a recursionwith respect to the systemorder, known as the
tangential Schur algorithm; see [8]. This approach is flexible, as it
allows the user to build in certain properties: for instance, by making
specific choices for some parameters in the general procedure it allows
one to parameterize the subclass of lossless FIR filters.

The following theorem was used in [27, 28] to parameterize (real)
lossless FIR polyphase filters of a given order; see also [10, 31] for a
similar yet slightly different construction.Here, the order k of a lossless
FIR polyphase filter G(k)(z) is the McMillan degree of this rational
matrix. For lossless functions this equals the degree of the
denominator of the rational function det(G(k)(z)). For the lossless
FIR polyphase filter Hp(z), the order n − 1 traditionally is the
maximum lag of the filter, which relates to the length of the
interval on which the multiwavelet lives. In the scalar case r � 1
these definitions coincide. In the multiwavelet case r ≥ 2 they do not.

Generically, the McMillan degree and the maximum lag are the same
for the lossless FIR polyphase filters in our class, but for special choices
of the unit vectors uk theymay be different: themaximum lag ofHp(z)
is less than its McMillan degree n − 1 if and only if uTk+1uk � 0 for
some k ∈ {1, . . ., n − 2}. We prefer to adopt the McMillan degree
definition of the filter order when addressing parameterizations, to
avoid having to consider special cases resulting from this mismatch.4

Theorem 3.1. Let G(k)(z) be a real 2r × 2r lossless FIR
polyphase filter of order k ≥ 1. Then there exists a real 2r × 1
vector uk of norm ‖uk‖ � 1 such that G(k)(z) can be factored as:

G k( ) z( ) � I2r + z−1 − 1( )uku
T
k( )G k−1( ) z( ), (18)

where G(k−1)(z) is a real 2r × 2r lossless FIR polyphase filter of
order k − 1.

This theorem shows that a lossless FIR polyphase filter of
order k can be reduced in k iteration steps to a lossless FIR
polyphase filter G(0)(z) of order 0, which is nothing else than a
constant orthogonal matrix. We therefore drop the variable z for
this last filter and simply write G(0).

For the polyphase matrixHp(z) of the filter bank, the recursion
makes clear that G(0) is in fact equal to the value of Hp(z) at z � 1:
G(0) � Hp(1). This will make it more convenient to build in
balanced vanishing moments than for the construction described
in [10]. Generically, there will exist unit vectors u1, . . ., un−1 which
allow Hp(z) to be factored as:

Hp z( ) � I2r + z−1 − 1( )un−1uT
n−1( ) . . . , I2r + z−1 − 1( )u1u

T
1( )G 0( ).

(19)

To make the parameterization explicit, all the vectors uk of norm
1 as well as the orthogonal matrix G(0) still can be parameterized in
terms of scalar parameters. This is easily achieved. A 2r × 1 unit

vector uk can be recursively parameterized as uk � cos(θk,1)
gk sin(θk,1)( )

with θk,1 ∈ [0, π] and gk again a unit vector but of smaller size (2r − 1)
× 1. For orthogonal matrices it is well-known how they can be
parameterized, for instance, with Givens rotations and Householder
matrices.5 When addressing balanced vanishing moments of several
orders, this parameterization will be refined further.

4To compute the McMillan degree of a lossless FIR polyphase filter Hp(z) �∑n−1
k�0Hkz−k with maximum lag n − 1, it is convenient to construct the block-Hankel

matrixH �
H1 H2 . . . Hn−2 Hn−1
H2 H3 . . . Hn−1 0
« « «

Hn−2 Hn−1 0
Hn−1 0 . . . 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠. The McMillan degreem is equal to rank(H).

The SVD is a particularly suitable tool to determinem numerically, because it holds
for a lossless system that all the m non-zero singular values of H are equal to 1,
see [36].
5Givens rotations and Householder reflections are commonly used to perform QR-
decomposition. When applied to an orthogonal matrix, the upper triangular R is in
fact diagonal with all entries on its main diagonal equal to ± 1. The space of
orthogonal matrices has two connected components, characterized by the sign of
the determinant ± 1, which is something to take into account when parameterizing
this space. Givens rotations all have determinant 1 and are used to create zeros one
by one; they involve a single angular parameter. Householder reflections all have
determinant − 1 and are used to create multiple zeros at once; they involve a vector
of norm 1 requiring multiple angular parameters. See [37]. We will introduce
Householder matrices in Eq. 45.
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The Balancing Problem
When processing a signal with a multiwavelet filter bank, the
differences in spectral behavior of the r components of the
multiscaling function may result in unbalanced channels of
the low-pass filter. The consequences will further escalate in
a multiresolution structure, when the filter bank is
repeatedly applied to part of the output (the
approximation signals) of a previous filtering step. The
imbalance will adversely affect performance in
compression and detection applications in signal and
image processing, due to the fact that high and low
frequencies start to mix. This problem is known as the
balancing problem and was pointed out and characterized
in detail in [9, 12, 24, 32].

The balancing problem is first encountered when
processing a single scale of a multiwavelet filter bank with a
sampled univariate signal as in Figure 1. Assume that the
sampled input signal with z-transform S(z) is constant, then all
down-sampled signals with z-transforms Sk(z) will be constant
too and in fact be equal. A constant signal is supposed to pass
unaltered through the polyphase filter, as the multiwavelet
function Ψ(t) should pick up details and the multiscaling
function Φ(t) the trend (an approximation to the signal);
indeed, a constant function is all about trends and has no
details. This can be achieved by imposing a zero-order
vanishing moment on the filter bank, as is commonly done.
This is the multiwavelet counterpart to the admissibility
condition for scalar wavelets: ∫

R
Ψ(t)dt � 0.

However, though each of the low-pass outputs a1,ℓ(z) will
then be constant (due to the vanishing moment), their values
may differ between components, since the vanishing moment
by itself does not enforce coherence between the low-pass
output channels. The signals a1,ℓ can therefore no longer be
considered as phases from the constant approximation signal
a(t). Though in itself this is already undesired as it hampers
interpretation of the decomposition by the filter, this is further
complicated when the signals are reused unaltered in a
multiresolution structure. Spurious frequencies will then be

introduced and severely compromise the usefulness and
interpretability of the multiwavelet analysis. If a
reconstruction of the approximation signal a(t) is done,
possibly involving a number of upsampling and inverse
filter steps, then this imbalance could be undone after
which the signal can be split in 2r phases again as in
Figure 1 for each wavelet scale. But to ensure that the
filters will work properly on dyadic halfbands, this will
involve extra effort whereas the interpretability of the
approximation signals remains unfixed.

From a practical perspective, the approach as illustrated in
Figure 2 is more appealing. Here, intermediate reconstruction
and phase splitting between the scales is omitted. The
approximation coefficient sequences are directly split into two
phases and propagated to the next scale, as is common for scalar
wavelets and consistent with the signal processing formulas
(10)–(11). Without balancing, the consequence of this setup is
that for a constant input signal at scale 2 the low-pass output a2,ℓ
will no longer even be constant. This happens despite the fact that
the zero-order vanishing moment ensures that constant signals
are retained in the approximation low-pass output. With
balancing, a constant input signal produces equal output
signals a1,ℓ which remain well-behaved when further
propagated to the next scale.

This issue generalizes to higher order vanishing moments
which aim to have all polynomials up to a given degree in the
approximation spaces. Including balanced vanishing moments of
each order ≤p ensures that every polynomial of degree ≤p is
annihilated in the high-pass output and retained as a polynomial
of degree ≤p in the low-pass output.

The p-th order vanishing moment condition on the
multiwavelet function Ψ(t) is given by:

∫
R

Ψ t( )tpdt � 0. (20)

It makes clear that polynomials of degree ≤p are fully
suppressed in the detail spaces spanned by the multiwavelet
function. The general form of the balancing conditions on the

FIGURE 2 | Multiresolution structure of a multiwavelet filter bank with r � 3 on a univariate input signal S(z) and N wavelet scales.
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multiscaling functionΦ(t) up to order p are given by [11]. In view
of our convention for the dilation and wavelet equation they take
the form:

∫
R

ϕ 0[ ] t( ) t + 0
r

( )p

dt � ∫
R

ϕ 1[ ] t( ) t + 1
r

( )p

dt � . . .

� ∫
R

ϕ r−1[ ] t( ) t + r − 1
r

( )p

dt. (21)

Constructing specific orthogonal multiscaling functions which
obey both (20) and (21) up to a given order p can be
straightforward, e.g. by using a concatenation of r shifted
versions of a Daubechies-p scaling function, where each ϕ[j](t)
has been shifted by − j/r. Then, due to orthogonality of the shifted
Daubechies scaling functions, clearly an orthogonal multiscaling
function is obtained, which mimics the scalar setup entirely by
having the wavelet forms ψ[j](t) now capture what is normally
achieved by integer translations of a single wavelet. Using such
Daubechies-p wavelets ensures vanishing moments up to and
including order p − 1. Since each component ϕ[j](t) of the
multiscaling function is just a time-shifted version of the
others, it is also balanced.

However, constructing non-trivial orthogonal multiwavelet
functions with different (non-shifted) wave forms and balanced
vanishingmoments up to a given order p is not straightforward. To
address this question, we proceed as follows. (1) First, we derive
vanishing moment conditions on the polyphase filter Hp(z). (2)

Next, we derive additional balancing conditions. (3)We investigate
how to satisfy all these conditions, up to a chosen order p, by
building them into the parameterization of lossless FIR polyphase
filters of order n. This is achieved for orders 0 and 1, whereas for
order 2 the conditions can be brought into a form which can be
used for numerical search.

Vanishing Moment Conditions for
Multiwavelets
Let us introduce the r × 1 vectors vk and wk (for k � 0, 1, 2, . . .) by
defining:

vk � ∫
R

Φ t( )tkdt, wk � ∫
R

Ψ t( )tkdt. (22)

These are the k-th moments of the multiscaling and
multiwavelet functions. From the dilation and wavelet Eqs
1–2, we derive the following relationships. First, integration gives

v0 � 1
2

�
2

√ ∑2n−1
k�0

Ckv0, (23)

w0 � 1
2

�
2

√ ∑2n−1
k�0

Dkv0. (24)

Here it is used that ∫
R
Φ(2t + k)dt � 1

2∫R
Φ(τ)dτ by

substituting τ � 2t + k.

FIGURE3 | Top: result of feeding a constant signal into an unbalancedmultiwavelet filter bank. Bottom: Consequence of interpreting the output of the two low-pass
channels as phases of a signal.
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Next, if we first multiply left and right hand sides of the
dilation and wavelet equations by t and then integrate, we obtain
in a similar fashion:

v1 � 1
4

�
2

√ ∑2n−1
k�0

Ckv1 − ∑2n−1
k�0

kCkv0⎛⎝ ⎞⎠, (25)

w1 � 1
4

�
2

√ ∑2n−1
k�0

Dkv1 − ∑2n−1
k�0

kDkv0⎛⎝ ⎞⎠. (26)

Here it is used that ∫
R
Φ(2t + k)tdt � 1

4 (∫R
Φ(τ)τdτ −

k∫
R
Φ(τ)dτ) by writing t � 1

2 ((2t + k) − k) and substituting τ
� 2t + k.

More generally, if we first multiply left and right hand sides of
the dilation and wavelet equations by t2 and then integrate, we
obtain:

v2 � 1
8

�
2

√ ∑2n−1
k�0

Ckv2 − 2 ∑2n−1
k�0

kCkv1 + ∑2n−1
k�0

k2Ckv0⎛⎝ ⎞⎠, (27)

w2 � 1
8

�
2

√ ∑2n−1
k�0

Dkv2 − 2 ∑2n−1
k�0

kDkv1 + ∑2n−1
k�0

k2Dkv0⎛⎝ ⎞⎠. (28)

Here we wrote t2 � 1
4((2t + k) − k)2 and substituted τ � 2t + k

to get ∫
R
Φ(2t + k)t2dt �

1
8 (∫R

Φ(τ)τ2dτ − 2k∫
R
Φ(τ)τdτ + k2∫

R
Φ(τ)dτ). It is clear how

this generalizes to arbitrary order p, using tp � 1
2p(τ − k)p.

The vanishing moment conditions up to and including order
p are:

w0 � 0, w1 � 0, . . . , wp � 0, (29)

because wk represents the (vector) wavelet coefficient of the
polynomial signal tk for the untranslated multiwavelet Ψ(t),
and these wavelet coefficients should all vanish. The vanishing
moment conditions state that the filter coefficients Ck andDk (k �
0, 1, . . ., 2n − 1) should be such as to allow these equations to be

satisfied for some vectors v0, v1, . . ., vp, representing the moments
of the multiscaling function.

For orders p � 0, p � 1, and p � 2, the vanishing moment
conditions above can be rewritten in terms of the filtersC(z) andD(z).
Focusing on the equations involving C(z) (the other equations with
D(z) are handled entirely analogously)we see fromdifferentiation, that

C z( ) � ∑2n−1
k�0

Ckz
−k, C′ z( ) � − ∑2n−1

k�0
kCkz

− k+1( ),

C″ z( ) � ∑2n−1
k�0

k k + 1( )Ckz
− k+2( ), (30)

whence

∑2n−1
k�0

Ck � C 1( ), ∑2n−1
k�0

kCk � −C′ 1( ),

∑2n−1
k�0

k2Ck � C″ 1( ) + C′ 1( ). (31)

The relationship (17) links the filters C(z) and D(z) to the
polyphase filter Hp(z). Differentiation after multiplication by any
constant vector v gives:

C′ z( )
D′ z( )( )v � 2zHp′ z2( ) v

z−1v( ) − z−2Hp z2( ) 0
v

( ), (32)

which produces at z � 1:

C′ 1( )
D′ 1( )( )v � 2Hp′ 1( ) v

v
( ) −Hp 1( ) 0

v
( ). (33)

An additional differentiation step yields:

C″ z( )
D″ z( )( )v � 4z2Hp″ z2( ) v

z−1v( ) + 2Hp′ z2( ) v
z−1v( )

− 4z−1Hp′ z2( ) 0
v

( ) + 2z−3Hp z2( ) 0
v

( ), (34)

FIGURE 4 | Result of processing a constant signal with an unbalanced orthogonal multiwavelet filter bank with a vanishing moment of order 0 for three scales.
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which gives at z � 1:

C″ 1( )
D″ 1( )( )v � 4Hp″ 1( ) v

v
( ) + 2Hp′ 1( ) v

−v( ) + 2Hp 1( ) 0
v

( ).
(35)

These results are combined and summarized in the following
theorem.

Theorem 3.2. Let the vectors vk (k � 0, 1, 2) be defined as in Eq.
22. The polyphase filter Hp(z) imposes a vanishing moment of
order 0 on the multiwavelet if it holds that:

v0
0

( ) � 1
2

�
2

√
Hp 1( ) v0

v0
( ). (36)

A vanishing moment of order 1 occurs if:

v1
0

( ) � 1
4

�
2

√
2Hp′ 1( ) v0

v0
( ) +Hp 1( ) v1

v1 − v0
( )( ). (37)

A vanishing moment of order 2 occurs if:

v2
0

( ) � 1
8

�
2

√ (4Hp″ 1( ) v0
v0

( ) + 4Hp′ 1( ) v0 + v1
v1

( )
+Hp 1( ) v2

v2 − 2v1 + v0
( )). (38)

To have balanced vanishing moments of order up to and
including p, requires extra conditions on the vectors vk, k � 0, 1, 2,
. . ., p. This is addressed next.

Balanced Vanishing Moment Conditions for
Multiwavelets
The balancing conditions can be computed from Eq. 21 by
integration.

For order p � 0 this gives that all entries of v0 are equal, say with
value α0. To find α0, the cascade algorithm is useful. For the Haar

multiwavelet in the initialisation step, the scaling function ϕ[j](t) is
positive and constant on the interval (−j+1

r ,
j
r] of width 1

r; hence, as the
basis is orthonormal, this constant value equals

�
r

√
. The value (v0)[j]

therefore initially equals 1�
r

√ . At the initialisation step, the vector v0
already has the required form and therefore it is preserved during the
cascade algorithm iterations. It follows that α0 � 1�

r
√ , and so:

v0 � 1�
r

√
1
«
1

⎛⎜⎝ ⎞⎟⎠. (39)

For order p � 1 it is obtained that (v1)[j] + j
r(v0)[j] should have

the same value, say λ�
r

√ for all j � 0, 1, . . ., r − 1. Imposing
balancing of order 1 only makes sense when balancing of order 0
is also imposed. Then, with the earlier result (v0)[j] � 1�

r
√ , it is

obtained that:

v1 � − 1
r

�
r

√
0
1
«

r − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + λ�
r

√
1
1
«
1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (40)

By inspecting what happens for balanced orthogonal
multiwavelets generated from scalar orthogonal wavelets
with vanishing moments through shifting, just as explained
earlier for the Haar multiwavelet, we find that the value of λ
varies between multiwavelets. It therefore is left as a free
parameter.

Next, for order p � 2 it is obtained that (v2)[j] + 2 j
r(v1)[j] +(jr)2(v0)[j] should have the same value, say μ�

r
√ for all j � 0, 1, . . .,

r − 1.With the earlier results (v0)[j] � 1�
r

√ and (v1)[j] � − j
r
�
r

√ + λ�
r

√
we obtain:

v2 � 1
r2

�
r

√
0
12

«
r − 1( )2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − 2λ
r

�
r

√
0
1
«

r − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + μ�
r

√
1
1
«
1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (41)

The parameter μ is again left free.

FIGURE 5 | Result of designing a multiwavelet with r � 2 for feature detection in the prototype ECG signal. Shown for each wavelet are the values of the
approximation coefficients at the coarsest scale, and of the detail coefficients for three increasing scales (from fine to coarse). The first wavelet was trained on the QRS-
complex, the second wavelet on the T-wave in the ECG signal.
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From a signal processing point of view, if a signal s(t) is a
polynomial in t of degree ≤p and passed through the
multiwavelet filter bank starting from its sampled sequence,
then the output channels retain the interpretation of phases of
sampled signals.

These additional balancing conditions on the vectors v0, v1 and
v2 can now be combined with the previous vanishing moment
conditions. This gives the following result.

Theorem 3.3. (a) The polyphase filter Hp(z) imposes a
balanced vanishing moment of order 0 on the multiwavelet
structure if it holds that:

(b) Balanced vanishing moments of orders 0 and 1 occur if in
addition to the condition of (a) it holds that there exists a constant
λ such that:

(c) Balanced vanishing moments of orders 0, 1 and 2 occur if
in addition to the conditions of (a) and (b) it holds that there
exists a constant μ such that:

The proof of this result is by direct computation, using Eqs
39–41 together with Thm. 3.2. Part (a) of this theoremwas shown
earlier in the work of [9] and used before in [27]. Parts (b) and (c)
are novel characterizations, using the lossless polyphase filter and
its derivatives at z � 1.

Parameterization of Lossless FIR Polyphase
Filters With a Balanced Vanishing Moment
of Order 0
A parametrization of lossless FIR polyphase filters with a
balanced vanishing moment of order 0 has previously been
described in [27, 28]. We present it here for completeness and
also because some of the techniques and notation will be reused
when we address balancing of order 1. In fact, the
parameterization in Eq. 19 is slightly different from the
parameterization used in the literature cited above, but the
basic ideas are similar.

From part (a) of Thm. 3.3 we have that for a zero-order
balanced vanishing moment, the orthogonal matrix Hp(1) must
map the vector ( 1 . . . 1 1 . . . 1 )T into the vector�
2

√ ( 1 . . . 1 0 . . . 0 )T. This can be achieved with
Householder transformation matrices. Let R1 be the
Householder matrix which maps ( 1 . . . 1 0 . . . 0 )T to�
r

√ ( 1 0 . . . 0 0 . . . 0 )T and let R2 be the Householder
matrix which maps ( 1 . . . 1 1 . . . 1 )T to��
2r

√ ( 1 0 . . . 0 0 . . . 0 )T. A Householder matrix Rv,w
which maps a vector v into another vector w with ‖w‖ � ‖v‖ is
orthogonal and symmetric and of the form

Rv,w � I − 2
w − v( ) w − v( )T
w − v( )T w − v( ). (45)

Clearly Rv,w � Rw,v � RT
v,w � R−1

v,w. For the matrices R1 and R2
we have the explicit forms

FIGURE 6 | Wavelet and scaling functions obtained from the polyphase filter in Section 3.3.
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Note that the zero-order condition can be rewritten as

and in this way turns into

The matrix R1Hp(1)R2 is again orthogonal, and it therefore
necessarily is of the form

with Q an orthogonal matrix of size (2r − 1) × (2r − 1). The
converse clearly also holds true, which motivates the following
result.

Theorem 3.4. All lossless FIR polyphase filters Hp(z) of order
n − 1 with a balanced vanishing moment of order 0 are
obtained as:

where R1 and R2 are the fixed Householder matrices given in
Eqs 46, 47, where Q ranges over the set of (2r − 1) × (2r − 1)
orthogonal matrices, and where u1, u2, . . ., un−1 ranges over the
set of n − 1 unit vectors of size 2r × 1.

Explicit parameterization of the orthogonal matrix Q can be
done with Givens rotations and Householder matrices as
indicated earlier, see Section 2.2. There we also showed how a
parameterization of the unit vectors u1, . . ., un−1 can be obtained.
We see that manipulating the vectors uk (or increasing their
number) does not affect the zero order balancing property as it is
fully implied by the structure of Eq. 51. This is conveniently
exploited when considering an additional balanced vanishing
moment of order 1 below.

Parameterization of Lossless FIR Polyphase
FiltersWith Balanced VanishingMoments of
Orders 0 and 1
To build an extra balanced vanishing moment of order 1 into
the lossless FIR polyphase filters Hp(z), retaining the balanced
vanishing moment of order 0, the idea is to start from the
parameterization in Thm. 3.4 and to refine the structure of the
orthogonal matrix Q and the unit vectors u1, . . ., un−1 to meet
the condition of Eq. 43. The latter condition involves an
additional scalar parameter λ, which can be freed up by
premultiplication of all the terms in the equation by the
Householder matrix R1 of Eq. 46 as we will now show. In
view of the structure of Hp(1) � G(0) given by Eq. 50, it is useful
to first work out the following two matrix-vector products (the
horizontal lines are just for clarity):

The matrix Hp′(1) results from differentiation of Eq. 19
followed by substitution of z � 1, which gives:

Using all of this, condition (43) takes the form:

The parameter λ only appears in the top row of this vector
equation. Selecting this row admits computation of λ as:

λ � −2∑n−1
k�1

R1uk( )1( )2 − 1
2r
. (55)

Here, (R1uk)1 denotes the first entry in the unit vector R1uk. It
is convenient to parameterize these vectors R1uk (rather than the
unit vectors uk) as

R1uk � cos θk( )
~uk sin θk( )( ) (56)
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for some scalar θk ∈ [0, π] and with ~uk a unit vector of size (2r − 1)
× 1. Then

λ � −2∑n−1
k�1

cos2 θk( ) − 1
2r
, (57)

whereas, upon division by
��
2r

√
, the remaining part of the

balancing condition attains the form

Introducing the following (r − 1) × 1 vectors hr, for positive
integers r:

hr � 2
r

�
r

√
1
«

r − 1

⎛⎜⎝ ⎞⎟⎠ − 1 + �
r

√
r

1
«
1

⎛⎜⎝ ⎞⎟⎠ (59)

allows us to summarize these findings concisely in the following
theorem.

Theorem 3.5. All lossless FIR polyphase filters Hp(z) of order n − 1
with two balanced vanishing moments, of orders 0 and 1, are
obtained as:

where R1 and R2 are the fixed Householder matrices given in Eqs
46, 47, where Q is (2r − 1) × (2r − 1) orthogonal, and where uk
(k � 1, . . ., n − 1) are unit vectors of size 2r × 1 parameterized as

uk � R1
cos θk( )
~uk sin θk( )( ), (61)

with scalar θk ∈ [0, π], unit vectors ~uk of size (2r − 1) × 1, and such
that the following condition is satisfied:

with the vectors hr and h2r defined as in Eq. 59.

To complete the parameterization of Theorem 3.5, we now
show how all tuples of orthogonal Q, unit vectors ~uk and scalars
θk can be obtained which make up all the solutions of Eq. 62.

For hr it is straightforward to compute its norm ‖hr‖ as

‖hr‖ �
������
1
3
− 1
3r2

√
. (63)

For r � 1, we encounter the scalar orthogonal wavelet case, and
the vector hr is in fact empty (of size 0, ×, 1). Balancing is not
meaningful then. Indeed the condition reduces to the scalar
equation −1

2 Q � −∑n−1
k�1~uk sin(2θk) in which Q as well as

~u1, . . . , ~un−1 are all ±1. Note that the scalars ~uk can all be fixed
to 1, because uk and therefore also ~uk need only be parameterized
up to a sign. For Q it is remarked in general that the space of real

orthogonal matrices has two connected components,
characterized by the determinant which is either 1 or − 1. For
r � 1, restricting to just one of these components corresponds to
using a sign convention for ψ(t), which can be performed by
fixing a sign for the last row ofHp(z) and therefore the sign ofQ.
Choosing Q � 1 and taking slight differences in
parameterization into account, the resulting condition∑n−1

k�1 sin(2θk) � 1
2 is entirely consistent, unsurprisingly, with

the vanishing moment condition of order 1 reported in [6,
10, 28] or in Proposition 2 in [7].

Focusing on the multiwavelet case with r ≥ 2, it is noted that
‖hr‖ increases monotonically from 1

2 � 0.50 (at r � 2) to 1�
3

√ ≈ 0.58
(for r → ∞). It is also noted that ‖Qh2r‖ � ‖h2r‖ �

������
1
3 − 1

12r2

√
because Q is orthogonal.

Writing gk � −~uk sin(2θk), we see that this is an arbitrary
vector of norm ≤ 1, with its direction determined by the unit vector
~uk and its norm determined by sin(2θk). With a sum of m
such vectors gk one can precisely cover all points in a (2r − 1)-
dimensional hyperball of radius m centered at the origin.

The idea of the parameterization, is to build the vectors gk one
by one, such that the condition remains feasible, i.e., the
remaining vectors-to-be-constructed can still be assigned
values to meet Eq. 62. Suppose g1, . . ., gℓ−1 have been chosen
and denote (for ℓ � 1, 2, . . ., n):

Then, for ℓ � 1, 2, . . ., n − 2, the vector gℓ must be chosen such
that the vector qℓ+1 � qℓ + gℓ is in (or on) the hyperball (centered
at the origin) of radius

rℓd‖h2r‖ + n − 1 − ℓ. (65)

This still allows the right-hand side of Eq. 62, viz. the expression
qℓ+1 + gℓ+1 +/ + gn−1 � qn, to eventually land on the hypersphere
of vectors with norm ‖h2r‖. For the left-hand side expression Qh2r,
note that the norm equals ‖h2r‖ for every orthogonalQ, and that
a suitable orthogonal matrix Q can always be constructed to
make Qh2r equal to that landing point (a Householder matrix
would do). In fact, all such orthogonal Q can be constructed
along the same lines as before when constructing G(0) for
balancing of order 0, as we will demonstrate below in Eq.
74. Note that if one cannot land on that hypersphere the
construction is infeasible, since the norm of Qh2r is fixed; so
this precisely characterizes feasibility. (Note, also, that points
inside the hypersphere of radius ‖h2r‖ can always be brought to a
point on the hypersphere in one step, by adding a single vector
gk, since ‖h2r‖ < 1; therefore one need not consider a constraint
on the inside of the hypersphere.)

For ℓ � 1, 2, . . ., n − 2, we proceed as follows. If ‖qℓ‖ ≤ rℓ − 1,
then gℓ can be any vector of norm ≤ 1, so there are no particular
constraints on ~uℓ (of norm 1) or θℓ. Note that
rℓ − 1 � ‖h2r‖ + n − 2 − ℓ ≥ ‖h2r‖≥ 1

2, so this is a non-empty set
of vectors including the case qℓ � 0.
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If ‖qℓ‖ > rℓ − 1, then let q⊥
ℓ
denote an arbitrary vector of unit norm

andorthogonal to qℓ. The space of such vectors is easily parameterized.6

Next, note that each vector gℓ can be written uniquely as:

gℓ � αℓqℓ + β
ℓ
q⊥
ℓ
, (66)

with scalar coefficients αℓ (still unrestricted) and βℓ ≥ 0. For gℓ to
be feasible it must hold that: (1) ‖gℓ‖ ≤ 1, (2) ‖qℓ + gℓ‖ ≤ rℓ. Because
qℓ and q⊥

ℓ
are orthogonal to each other, setting βℓ � 0 gives the

maximum range for αℓ. Requirement (1) implies: αℓ ∈ [− 1
‖qℓ‖,

1
‖qℓ‖].

Requirement (2) implies: αℓ ∈ [−1 − rℓ
‖qℓ‖,−1 + rℓ

‖qℓ‖]. Combining
these two intervals, using ‖qℓ‖ > rℓ − 1, it follows that both
requirements are met if and only if:

− 1
‖qℓ‖≤ αℓ ≤ − 1 + rℓ

‖qℓ‖. (67)

Once αℓ is chosen, βℓ can be chosen non-negative but such that
the two conditions remain satisfied. This gives:

0≤ β
ℓ
≤min

���������
1 − α2

ℓ
‖qℓ‖2

√
,

���������������
r2
ℓ
− 1 + αℓ( )2‖qℓ‖2

√{ }. (68)

For ℓ � n − 1, choosing the final vector gn−1 (of norm ≤ 1) is
special, in the sense that it must satisfy the equality ‖qn−1 + gn−1‖ �
rn−1 � ‖h2r‖ rather than an inequality as before.

If ‖qn−1‖ ≤ 1 − rn−1, then qn can land on every point of the
hypersphere with radius rn−1 by choosing gn−1 as the difference
between that point and qn−1.

If ‖qn−1‖ > 1 − rn−1, then the hypersphere centered at the origin
with radius rn−1 and the hypersphere centered at qn−1 with radius
1 intersect at points qn � qn−1 + gn−1 � (1 + αn−1)qn−1 + βn−1q

⊥
n−1

if the following two conditions hold:

α2n−1‖qn−1‖2 + β2n−1 � 1, (69)

1 + αn−1( )2‖qn−1‖2 + β2n−1 � r2n−1. (70)

Subtracting the first equation from the second leaves a linear
equation for αn−1, which gives:

αn−1 � −1
2

1 + 1 − r2n−1
‖qn−1‖2( ). (71)

This determines the minimal value for αn−1 to give solutions
on the hypersphere for qn. The maximal value for αn−1 is obtained
with βn−1 � 0 and equals αn−1 � −1 + rn−1

‖qn−1‖. This implies that all
feasible gn−1 � αn−1qn−1 + βn−1q

⊥
n−1 have

−1
2

1 + 1 − r2n−1
‖qn−1‖2( )≤ αn−1 ≤ − 1 + rn−1

‖qn−1‖ (72)

and

βn−1 �
��������������������
r2n−1 − 1 + αn−1( )2‖qn−1‖2

√
. (73)

Finally, to find all feasible orthogonal Q once the right-hand
side expression qn is constructed to have ‖qn‖ � rn−1 � ‖h2r‖, let R3
be the Householder matrix which maps qn to ‖h2r‖( 1 0 . . . 0 )T
and let R4 be the Householder matrix which maps h2r to
‖h2r‖( 1 0 . . . 0 )T. Then all feasible orthogonal matrices Q
are obtained as

with ~Q an arbitrary orthogonal matrix of size (2r − 2) × (2r − 2).

Balanced Vanishing Moments of Orders 0, 1
and 2
Incorporating an additional balanced vanishing moment of order
p � 2, requires further refinement of the current parameterization
such that condition (44) is also satisfied. As we have not
developed a way to incorporate this into a parameterization,
we will only show how the condition can be reworked into a form
which makes it suitable to be added as a constraint to the
parametrization in terms of the parameters used before.

A first step to achieve this, is to free up and remove the parameter μ
by premultiplication of all terms in the condition by the Householder
matrix R1. The effect of this is that μ only appears in the term
(3μ − 2λ2)r2 �

2
√

R1( 1 1 . . . 1 0 . . . 0 )T � (3μ − 2λ2)r2 ��
2r

√
( 1 0 . . . 0 0 . . . 0 )T, of which just the first entry is nonzero.
Therefore, as before for λ for balancing of order 1, the parameter μ can
be left free and computed afterwards from the equation which
corresponds to the first entries on the left and right-hand sides.

The actual conditions for balancing of order 2, are then
captured by the remaining 2r − 1 equations in which μ no
longer appears. The parameter λ which does show up in them,
should be replaced by its value in terms of the chosen parameters
as given in Eq. 57. This gives the constraints in a form which can
readily be used for numerical optimization, using a routine for
constrained optimization which admits nonlinear constraints.

Design Criteria for Matching
For the scalar orthogonal wavelet design case, sparsity of a
prototype signal was already advocated in [7]. This is appealing
for detection and compression purposes. There it was also
shown that maximization of sparsity of the vector of all
approximation and detail coefficients w � {wk} in the setting
with a critically sampled orthogonal wavelet transform,
boils down to either: 1) maximization of the variance of the
sequence of absolute values |wk| of the coefficients, or 2)
maximization of the variance of the squared wavelet
coefficients. This is due to the fact that Parseval’s identity holds
[4], which makes that the sum of squares of all the wavelet and
detail coefficients equals the sum of squares of all the values of the
digital signal being processed. This result does obviously not
change for orthogonal multiwavelet design. Hence [[7],
Theorem 1], holds in the current setting too:

Theorem 3.6. Let w be the vector of the approximation
coefficients at the coarsest scale and the detail coefficients at

6To parameterize all such q⊥
ℓ
, if qℓ ≠ 0, one may proceed as follows. Define the

Householder matrix Pℓ to map the first unit vector ( 1 0 . . . 0 )T to the vector qℓ/
‖qℓ‖. Then the columns 2, 3, . . ., 2r − 1 of Pℓ constitute an orthonormal basis for the
space of vectors q⊥

ℓ
. All the vectors q⊥

ℓ
are produced as Pℓy with y ranging over all

the unit vectors with their first entry equal to 0. Such vectors y are recursively
generated analogous to Eq. 56.
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all scales, resulting from the processing of a signal s by means of an
orthogonal multiwavelet filter bank across multiple scales. Then:

1) Maximization of the variance of the vector of absolute values
{|wk|} is equivalent to minimization of the L1-norm of the
vector w.

2) Maximization of the variance of the energy vector {|wk|
2} is

equivalent to maximization of the L4-norm of the vector w.

For practical applications the latter criterion, L4-
maximization, is more appealing than the former since it can
be combined with weighing both in scale and location [27]. This
allows for designing a matched multiwavelet, where each of the
components ofΦ(t) is forced to focus on a single aspect in a signal
(see Section 3.2 for an example).

If instead of a critically sampled multiwavelet transform an
undecimated multiwavelet transform [33] is used, this has
advantages for detection purposes, since due to the redundant
representation time-invariance is achieved. The lack of down-
sampling, however, causes an abundance of coefficients at coarser
scales. To preserve conservation of energy properties for
orthogonal multiwavelets, this abundance can be counteracted
by dyadic discounting of energies towards coarser scales as in [7].
This makes it possible to use adapted versions of the L1-
minimization and L4-maximization criteria for undecimated
multiwavelet transforms promoting sparsity.

Another criterion one might consider is entropy. One can
quantify the effectiveness of compression algorithms in terms of
entropy [34]. As suggested in [35], entropy can be used to select
an orthogonal wavelet basis, and a similar approach can serve as a
design criterion. This is certainly appealing for compression
purposes.

ILLUSTRATIVE EXAMPLES

Experiment to Illustrate the Balancing
Problem
The effects of having unbalanced vanishing moments are easily
illustrated by considering what happens if a constant signal is fed
into an unbalanced orthogonal multiwavelet filter bank with
multiplicity r � 2 and of order n − 1 � 3, using the
construction scheme in Theorem 3.1, but without balancing.
To this end we took Q � I2r−1 � I3 and we changed the
Householder matrix R1 to produce a non-constant vector v0.

When a constant input signal is fed into an orthogonal
multiwavelet filter bank with an order 0 unbalanced
vanishing moment, as described in Section 3.1, the results
(depending on the exact choice of coefficients) are as shown
in Figure 3. What can be observed in the top figure, is that the
detail coefficients are all zero for both channels (consistent with
the imposed vanishing moments), and the approximation
coefficients are constant per channel, but the values are
different between the channels. In terms of the notation in
Eqs 8, 9, the detail vector coefficients bk are all zero, the
approximation vector coefficients ak are all constant, but
their entries (ak)1 and (ak)2 are different.

In the bottom figure of Figure 3 it is displayed what the
resulting signal looks like if the outputs are nevertheless
interpreted as the two phases of a signal.

If the outputs are now processed further with the multiwavelet
filter bank for a few more scales, this has the effect that at later
scales the constant nature of the original signal is lost and the
detail coefficients become nonzero, as demonstrated in Figure 4.

Example of Multiwavelet Design for ECG
Feature Detection
In this section we introduce an example for balanced
multiwavelet design. We will employ L4-maximization with
weighted masking to match the multiwavelet filter bank to a
prototype signal. The example evolves around creating a
representation for a prototype ECG signal as is commonly
encountered in the field of cardiology. The goal of this design
is for feature detection to distinguish and detect different
complexes in the ECG signal.

Feature detection is an application that makes efficient use of
the different components of the multiwavelet. The idea of feature
detection via multiwavelets is to design each component of the
multiwavelet to detect a specific feature in the signal.
Orthogonality between the components of the scaling- and
wavelet function allows the multiwavelet to detect up to r
orthogonal features, which cannot all be accurately detected by
a scalar wavelet at the same time. Since features in a signal need
not be orthogonal but can be overlapping, making them hard to
separate, the multiwavelet approach is fundamentally different
from template based approaches. When training orthogonal
multiwavelets on different features, the goal is to have them
pick up orthogonal aspects from the features that help to
distinguish between them.

For this application the variance maximizing L4-objective
function is no longer measured across all the wavelet
coefficients. Instead, a time-scale mask is employed for each
component of the multiwavelet [28], and the value of the
objective function of a component is only measured on the
wavelet coefficients that are in the time-scale mask. In this
way, maximization of the criterion forces energy into the
masked areas, helping the multiwavelets to focus on the user-
selected signal features covered by the time-scale masks. (This
same idea is less conveniently pursued with L1-minimization,
because minimization will force energy out of the masked areas,
but while the energy leaks away this does not mean that useful
multiwavelets are promoted.)

In this example, the design procedure employs a first-order
balanced orthogonal multiwavelet, with focus on the
approximation coefficients rather than the detail coefficients, and
aiming to detect features by looking at the peaks of the
approximation coefficients at masked areas at the coarsest scale l � 3.

It can be seen from Figure 5 that the first scaling function
mainly represents the QRS-complex on which it was trained,
whereas the second scaling function manages to capture the
T-wave on which it was trained. By thresholding the
approximation coefficients of the first channel the location of
the QRS-complex can be obtained. By thresholding the second
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channel the location of the T-peak is obtained. Both channels
can detect the feature that they were designed for
independently from one another. This is remarkable, as the
T-wave overlaps in spectrum and waveform with the QRS-
complex, which carries far more energy. Though the
second wavelet also picks up some energy from the QRS-
complex, it still allows to detect the T-peak location
with simple thresholding. This demonstrates that a
matched multiwavelet is a powerful signal processing tool
to detect and discriminate between different features in a
signal.

Example of an Orthogonal Multiwavelet
With Compact Support, Multiplicity 3 and
Balanced VanishingMoments of Orders 0, 1,
and 2
In this example we show an orthogonal multiwavelet filter with
multiplicity r � 3, involving a lossless FIR polyphase filter Hp(z)
of order n − 1 � 3, with balanced vanishing moments of orders
p � 0, p � 1, and p � 2 as a concrete example of multiwavelet
design with three balanced vanishing moments. To obtain such
a filter, we utilized the parameterization that was introduced in
Section 2.7 for multiwavelets with balanced vanishing moments
of orders 0 and 1, and we followed the approach of Section 2.8.
For r � 3 and n − 1 � 3, we first chose random parameters to
obtain an initial orthogonal multiwavelet only lacking a second
order vanishing moment. From there, constrained optimization
was used to adapt the parameters to satisfy condition (44),
producing an orthogonal multiwavelet with three balanced
vanishing moments.

For this example, the FIR polyphase filterHp(z) �H0 +H1z
−1 +

H2z
−2 + H3z

−3 has the following coefficient matrices Hk:

H0 �

0.5698 0.8165 0.0101 0.0248 0.0105 −0.0342
−0.0317 −0.0070 0.7024 0.6980 0.1093 −0.0555
0.0167 0.0051 −0.0687 0.0488 0.5488 0.8164
−0.0351 0.1002 0.1538 −0.2415 0.0724 −0.0026
0.0577 −0.0455 −0.4025 0.2809 0.6175 −0.3845
0.0170 0.0280 −0.0517 0.0043 0.1349 −0.0645

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(75)

H1 �

0.0551 −0.0351 0.0089 −0.0026 −0.0170 0.0190
−0.0205 0.0109 0.0101 −0.0165 0.0270 −0.0225
0.1108 −0.0792 0.0464 −0.0487 0.0339 −0.0205
−0.4528 0.2714 0.2526 −0.3512 0.4382 −0.3106
−0.3402 0.2485 −0.0335 0.0410 −0.0668 0.0795
−0.0069 −0.0331 −0.4161 0.3877 −0.0384 −0.1749

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (76)

H2 �

−0.0283 0.0203 −0.0104 0.0109 −0.0080 0.0053
0.0266 −0.0187 0.0077 −0.0076 0.0042 −0.0024
0.0136 −0.0092 0.0020 −0.0012 −0.0011 0.0013
0.3095 −0.2110 0.0525 −0.0384 −0.0127 0.0188
−0.1124 0.0831 −0.0559 0.0630 −0.0558 0.0394
0.4275 −0.3234 0.2539 −0.2942 0.2794 −0.2014

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(77)

H3 �

−0.0042 0.0029 −0.0011 0.0010 −0.0004 0.0002
0.0012 −0.0008 0.0003 −0.0003 0.0001 −0.0001
−0.0020 0.0014 −0.0005 0.0005 −0.0002 0.0001
−0.0360 0.0251 −0.0093 0.0086 −0.0037 0.0017
−0.0362 0.0252 −0.0093 0.0087 −0.0037 0.0018
0.1926 −0.1343 0.0495 −0.0462 0.0196 −0.0093

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(78)

Associated with this polyphase filter are the wavelet and
scaling functions as shown in Figure 6.

By definition, the Householder matrices R1 and R2 are given by:

R1 �

1�
3

√ 1�
3

√ 1�
3

√ 0 0 0

1�
3

√ 1
2

1 − 1�
3

√( ) −1
2

1 + 1�
3

√( ) 0 0 0

1�
3

√ −1
2

1 + 1�
3

√( ) 1
2

1 − 1�
3

√( ) 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

0.5774 0.5774 0.5774 0 0 0
0.5774 0.2113 −0.7887 0 0 0
0.5774 −0.7887 0.2113 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (79)

R2 �

1�
6

√ 1�
6

√ 1�
6

√ 1�
6

√ 1�
6

√ 1�
6

√

1�
6
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(80)

For the example, the orthogonal matrix Q and the unit vectors
u1, u2 and u3 which appear in the parameterization of Hp(z) have
the following values:

Q �

0.6826 0.3298 0.3193 −0.2805 −0.4946
0.7291 −0.2987 −0.2422 0.2729 0.4959
0.0378 0.3017 −0.7704 0.3463 −0.4406
0.0139 −0.7987 0.0961 0.1939 −0.5613
−0.0280 0.2703 0.4864 0.8303 −0.0153
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (81)
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(82)

The values of the parameters λ and μ encountered for this
particular balanced multiwavelet of order 2, are given by:

λ � −0.1966, μ � 0.0387. (83)

The resulting unit vectors R1u1, R1u2, and R1u3 are:

These vectors R1uk (k � 1, 2, 3) are partitioned as R1uk �
cos(θk)
~uk sin(θk)( ) with θk � arccos((R1uk)1) ∈ [0, π] and ‖~uk‖ � 1.

It holds that

θ1 � 1.6907, θ2 � 1.5925, θ3 � 1.5853. (85)

The vectors gk, which feature in the parameterization for
balancing of order 1, are defined as gk � −~uk sin(2θk) and
given by:

g1 �

0.0276
−0.0069
0.0028
0.1518
−0.1803
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−0.0001
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(86)

The vectors h3 and h6 are defined as follows:
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (87)

having norms: ‖h3‖ �
����
8/27

√
≈ 0.5443 and

‖h6‖ �
������
35/108

√
≈ 0.5693. It holds that

It is verified by direct computation upon substitution into Eqs
16, 51, 42, 43, 44, 62 that the orthogonality conditions as well as
the three balanced vanishing moment conditions for order p � 0,

1, 2 are all properly satisfied, and entirely consistent with the
proposed parameterization.

DISCUSSION

The results in Section 3.1 show, from a signal processing
perspective, the importance of having balanced vanishing
moments for multiwavelets. Not having this means that
polynomials do not yield zero detail coefficients in subsequent
scales, even if the required vanishing moments are built in. The
example in Section 3.2 shows that if the available remaining
freedom is used to promote sparsity, this has a benefit for
detection purposes. Other design objectives could also be
employed. When employing weighing over scales, this also
opens the opportunity to use overcomplete representations for
shift-invariance. Masking in the time-scale plane allows to focus
on selected parts of a prototype signal. When one would switch to
a criterion based on the information value, this can be valuable for
compression purposes.

In Section 3.3 a concrete example was worked out for the
design of orthogonal multiwavelets with compact support and
three balanced vanishing moments (orders 0, 1, and 2) and
multiplicity r � 3. Previous examples of orthogonal
multiwavelets in the literature with several balanced vanishing
moments either had balancing only up to order 1, or multiplicity
r � 2; see [9, 11]. The Gröbner basis approach used there is a
limiting factor for finding matching balanced multiwavelets to
applications, because the approach does not allow for excess
degrees of freedom. In this paper we advocated a different
approach by building an explicit parameterization which
allows free parameters to be tuned for various purposes. We
have shown how all balanced orthogonal multiwavelets of orders
0 and 1 can be obtained for arbitrary multiplicity r and any given
polyphase filter order (McMillan degree), which we consider a
major step forward in making multiwavelets applicable.
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