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Since its inception Smoothed Particle Hydrodynamics (SPH) has been widely employed as
a numerical tool in different areas of science, engineering, and more recently in the
animation of fluids for computer graphics applications. Although SPH is still in the process
of experiencing continual theoretical and technical developments, the method has been
improved over the years to overcome some shortcomings and deficiencies. Its widespread
success is due to its simplicity, ease of implementation, and robustness in modeling
complex systems. However, despite recent progress in consolidating its theoretical
foundations, a long-standing key aspect of SPH is related to the loss of particle
consistency, which affects its accuracy and convergence properties. In this paper, an
overview of the mathematical aspects of the SPH consistency is presented with a focus on
the most recent developments.
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1 INTRODUCTION

The basic form of Smoothed Particle Hydrodynamics (SPH) was introduced more than 40 years ago
by Gingold andMonaghan [1] and Lucy [2] for solving the equations of fluid dynamics in the context
of astrophysical flows. Since then, SPH has become a popular numerical method due to its countless
applications to the study of a great variety of astrophysical processes along with its ever-increasing
applications to fluid and solid mechanics, magnetohydrodynamics, cosmology, geophysics,
engineering, health sciences, and computer-generated animations, among others.

SPH is a Lagrangian scheme that is based on particle interpolation to compute smooth field
variables. Such particles1 act as control masses and carry all physical properties of the system to be
simulated. Because of its Lagrangian nature, SPH has clear advantages over traditional mesh-
dependent Eulerian methods. For example, it does not suffer from mesh distortions that affect the
numerical accuracy in simulations of large material deformations. Most importantly, advection is
performed exactly and therefore material history information can be tracked free of numerical
diffusion. While these advantages cast SPH as a potential method for solving many kinds of
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1These are actual interpolation points carrying physical properties, such as mass, density, volume, velocity, temperature, etc.
Sometimes these interpolation points are also referred to as pseudo-particles in the sense that they are not true particles.
However, as is more frequently used in the SPH literature, we will refer to them simply as particles.
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problems, the method in its classical flavor suffers from slow
numerical convergence due to loss of particle consistency, which
has motivated in the last 20 years different modifications and
corrections to the original formulation [3–13]. Consistency is a
mathematical concept that is related to how well the discrete
equations approximate the exact differential equations [14]. In
other words, it is a measure of the local truncation error carried by
the numerical discretization of the governing equations. In SPH,
consistency is always approached under the assumption that the
numerically approximated function is sufficiently smooth
between particles. This is a quite acceptable assumption
because information of the function is not available at scales
smaller than the interparticle separation distances. Unlike
traditional grid-based methods, the SPH discretization is
performed in two separate steps: the kernel approximation and
the particle approximation. Therefore, any error analysis will
involve a two step process. In particular, the loss of particle
consistency in standard SPH arises from the particle
discretization procedure and the discrepancy that emerges
between the kernel and the particle approximations is referred
to as particle inconsistency [6]. In general three different sources
of particle inconsistency have been identified, namely: truncation
of the kernel support due to the presence of a physical boundary,
irregular distributions of particles, and spatially varying
smoothing lengths in adaptive calculations [6]. In particular,
the problem of particle inconsistency in the presence of two-
dimensional irregular boundaries was revised more recently by
Fourtakas et al. [15], where C0 consistency is restored by
discretizing the wall by means of a set of virtual particles.

Early corrective strategies to restore particle consistency were
first advanced by Li and Liu [16] and Liu et al. [17], where the
kernel function is modified to ensure that polynomial functions
are exactly interpolated up to a given degree. Based on a
variational formulation of SPH, Bonet and Lok [18] proposed
kernel gradient corrections to allow exact evaluation of the
gradient of a linear function, while Liu et al. [19] proposed a
reconstruction approach of the kernel function that obeys the
consistency conditions of SPH in continuous form (i.e., the
conditions that the moments of the kernel must satisfy to
guarantee completeness). However, this latter approach was
quickly put aside because the reconstruction procedure may
result in partially negative, non-symmetric, and non-
monotonically decreasing smoothing functions, compromising
the stability properties of SPH. More stable schemes for restoring
particle consistency rely on Taylor series expansions of the kernel
approximation of a function and its spatial derivatives. For
example, if m derivatives are retained in the series expansion,
then the resulting kernel and particle approximations will have
(m + 1)th-order accuracy, or Cm consistency. Based on this
observation, Chen et al. [3, 4] proposed the Corrective
Smoothed Particle Method (CSPM), which is obtained by
ignoring all derivatives in the expansion of the function and
retaining only first-order terms in the expansions of the
derivatives of the function. This method restores C1 kernel
consistency everywhere except at the boundaries, where the
kernel consistency drops to C0. However, C1 particle
consistency is restored only for uniformly distributed particles,

while at the boundaries and for irregular particle distributions the
particle approximation is only C0-consistent. The CSPM
approximations obtained this way have the same form of a
Shepard’s interpolation for the function and its gradient [20].
Improvements to the CSPM approach were further introduced by
Liu and Liu [6]. Their FPM scheme was designed to restore C1

particle consistency everywhere by retaining first-order terms in
the Taylor series expansions for the function and its derivatives
and allowing the simultaneous solution of the resulting set of
linear equations. An even better approach was proposed by
Zhang and Batra [5] (their MSPH scheme) by retaining up to
second-order terms in the Taylor series expansions. This method
was claimed to restore C2 particle consistency (i.e., third-order
convergence rates) for the function and C1 particle consistency
for the first-order derivatives. However, a drawback of this
approach is that when adding higher-order derivatives to the
Taylor series expansions, the number of algebraic linear
equations that must be solved simultaneously increases. Since
the solution involves a matrix inversion, this not only affects the
computational efficiency when large matrices are tried, but also
compromises the stability of the overall scheme in situations
where the matrix becomes ill-conditioned. A FPM-like scheme,
which is free of kernel gradients and results in a symmetric
corrective matrix was introduced by Huang et al. [10].

Alternative formulations to methods relying on Taylor series
expansions were also reported in the literature. For example,
Ferrand et al. [21, 22] proposed an approach based on a
Shepard renormalization of the boundary integrals in the kernel
approximation of the spatial derivatives in order to restore C0

consistency close to physical wall boundaries in weakly
compressible SPH calculations, while Macià et al. [23] extended
the scheme for incompressible SPH formulations, where a Poisson
equation is solved for the pressure field, and performed a
consistency analysis. A consistent Shepard interpolation for both
the kernel and the kernel gradient was recently introduced by
Reinhardt et al. [24] for applications to fluid animation. These
authors noted that in the classical Shepard interpolation scheme the
correction factors and the fluid quantities are calculated using
different kernels, i.e., the uncorrected kernel is used for the
correction factors, while the corrected kernel is employed in the
calculation of all fluid quantities. This results in an inconsistent
scheme since new errors are introduced, which may distort the
density field even more than in simulations without a kernel
correction. In this formulation C0 consistency is restored by
correcting the volumes of source and neighboring particles
simultaneously. A further recent contribution to SPH consistency
from the computer graphics and animation community consisted in
the formulation of a physically consistent implicit viscosity solver
for incompressible and highly-viscous flows [25]. This method
produces realistic animations of very complex flows as, for
example, the buckling and rope coiling effects observed in nature
when a thin stream of honey or caramel flows from a spoon. Such
improvements are not only useful for animation purposes, but also
for other science and engineering applications. Improved
simulations of highly-viscous free-surface flows were recently
reported by Kondo et al. [26]. A completely different scheme
based on a piecewise high-order Moving-Least-Squares WENO
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reconstruction and the use of Riemann solvers was presented by
Avesani et al. [27]. In particular, this latter approach was found to
improve the accuracy and stability of SPH in the presence of sharp
discontinuities.

As was first realized by Rasio [28] and then analyzed by Zhu et al.
[13], a new source of inconsistency is due to the use of small numbers
of neighbors per particle in simulations with compactly supported
kernels. A formal derivation of the error carried by the SPH
interpolation by Sigalotti et al. [29] has shown that the
inconsistency is removed by increasing the number of neighbors.
This was thereafter tested in the astrophysical context with
reasonably good results [30, 31]. In this approach no corrections
to the SPH discretization are required and full particle consistency is
restored in the asymptotic limit N → ∞, h → 0, and nneigh → ∞
with nneigh/N→ 0, where N is the total number of particles, h is the
smoothing length, and nneigh is the number of neighbors within the
kernel support. Unlike most modern applications of SPH, Zhu et al.
[13] demonstrated thatC0 particle consistency can be achieved when
working with a large number of neighbors and correspondingly
small values of h. This result is consistent with the analysis
performed by Read et al. [32], who found that working with a
small number of neighbors, as it is common practice in SPH
simulations, particle consistency is lost due to irreducible zeroth-
order errors that will appear even thoughN→∞ and h→ 0. In spite
of these improvements, the issue of convergence in a rigorous
mathematical sense and its relation to the conservation properties
have not been well understood. However, encouraging preliminary
steps in this line were first put forward by Di Lisio et al. [33], Moussa
and Vila [34], Quinlan et al. [35], Vignjevic et al. [36], Vaughan et al.
[37], Fatehi and Manzari [38], and more recently by Sigalotti et al.
[39], who developed an error analysis in n-dimensional space using
the Poisson summation formula and derived for the first time the
functional dependence of the error bounds on the SPH interpolation
parameters, namelyN, h, and nneigh. In the following, an overview of
the mathematical aspects of the SPH consistency will be given by
focusing on the most recent advances. The paper is organized as
follows. The standard SPH formulation along with the problem of
particle inconsistency are briefly described in Section 2, while
Section 3 deals with an overview of the most popular corrective
schemes. Section 4 presents and discusses new insights and
developments that have been made to improve the consistency of
standard SPH. A brief discussion on the strategies that SPH
practitioners must follow to achieve consistency in their
applications is given in Section 5, while Section 6 contains the
conclusions.

2 CONVENTIONAL SPH FORMULATION

The foundation of SPH is interpolation theory. The starting point
of the method lies on the Dirac sifting property

f x( ) � ∫
Ω
f x′( )δ x − x′( )dnx′, (1)

where f(x) is some smooth function defined in the domain
Ω ⊆ Rn and evaluated at the generic point x ∈ Ω, δ(x − x′) is

the Dirac delta distribution, and n denotes the spatial dimension
(n � 1, 2, or 3).

2.1 Kernel Approximation
The kernel approximation is obtained by substituting the Dirac
delta distribution by an interpolation function such that

〈f x( )〉 � ∫
Ω
f x′( )W ‖ x − x′ ‖, h( )dnx′, (2)

where 〈f(x)〉 is the smoothed estimate of f(x),W �W(‖x − x′ ‖, h)
is the interpolation or smoothing kernel function, and h is the
smoothing length. In general,W is a bell-shaped function defined
such that: (1) it must satisfy the normalization condition

M0 � ∫
Ω
W ‖ x − x′ ‖, h( )dnx′ � 1, (3)

2) it must equal the Dirac delta distribution in the limit h → 0,
3) it must be positive definite, 4) it must be an even function such
that W(‖x − x′ ‖, h) � W(‖x′ − x ‖, h), and 5) it must be a
monotonically decreasing function. In addition, modern
applications of SPH employ kernels of compact support for
which W � 0 except within a sphere of radius kh from the
center x, where k is some integer that depends on the kernel.
Hence,W � 0 for ‖x − x′ ‖≥ kh. If f(x′) in the integrand of Eq. 2 is
expanded in Taylor series about x, the kernel approximation
becomes [39].

〈f x( )〉 � f x( )

+∑∞
l�1

1
l!
∇ l( )f x( )T . . . : ∫

Ω
x′ − x( )lW ‖ x − x′ ‖, h( )dnx′,

(4)

where ∇(l) is the product of the ∇ operator l times with respect to
coordinate x, the symbol ::. . .: is used to denote the lth-order
inner product, and (x′ −x)l is a tensor of rank l. It is clear from Eq.
4 that 〈f(x)〉→ f(x) only if the family of consistency relations are
satisfied for the moments of the kernel

Ml � ∫
Ω

x′ − x( )lW ‖ x − x′ ‖, h( )dnx′ � 0 l( ), (5)

for l � 1, 2, . . . , where 0(1) � (0, 0, 0) is the null vector and 0(l) is
the null tensor of rank l. C0 kernel consistency is always
guaranteed by virtue of the normalization condition Eq. 3,
while C1 kernel consistency is automatically ensured because
for l � 1 Eq. 5 is always satisfied due to the symmetry of the kernel.
The same is also true for all odd values of l. Therefore, only for l
even the above integrals do not necessarily vanish and for l � 2 a
second-order error follows for the estimate of the function.
Therefore, C2 kernel consistency is not achieved by the kernel
approximation unless a higher-order kernel is used for whichM2

� 0(2) [40]. Similar expressions to Eqs 2, 5 for the estimate of the
gradient and its moments can be derived as

〈∇f x( )〉 � ∫
Ω
f x′( )∇W ‖ x − x′ ‖, h( )dnx′, (6)

and
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M0′ � ∫
Ω
∇W ‖ x − x′ ‖, h( )dnx′ � 0 1( ),

M1′ � ∫
Ω

x′ − x( )∇W ‖ x − x′ ‖, h( )dnx′ � I,

Ml′ � ∫
Ω

x′ − x( )l∇W ‖ x − x′ ‖, h( )dnx′ � 0 l+1( ),

(7)

for l � 2, 3, . . . , where I is the unit tensor of second rank.
Therefore, exact approximation to the gradient requires that the
kernel consistency relations given by Eq. 7 are exactly fulfilled.

2.2 Particle Approximation
The SPH discretization makes reference to a set of Lagrangian
particles which may, in general, be disordered as a consequence of
their being convected with the fluid. The discretization is shown
schematically in Figure 1, where the domain Ω is divided into N
subdomains,Ωk, within each of which lies a Lagrangian particle at
point xk chosen such that xk ∈Ωk. It is common practice to define
the boundaries of the Lagrangian subdomains, i.e., zΩk, such that
their masses remain constant. The kernel support is termed Ωs,
which may be a circle in two-dimensions or a sphere in three-
dimensions, and is centered at the observation point xa. Thus, the
numerical integration is performed over the intersection set
between Ωs and the finite model domain Ω. The elements of
the intersection set are the neighbors around particle a (or
subdomain Ωa).

Using the mean value theorem so that xb ∈ Ωb for each
neighbor b of the observation particle a and denoting by Vb

the volume of Ωb, Eq. 2 in discretized form becomes

fa � 〈f xa( )〉

� ∑nneigh
b�1

∫
Ωb

f x′( )W ‖ xa − x′ ‖, h( )dnx′ ≈ ∑nneigh
b�1

f xb( )W ‖ xa − xb ‖, h( )Vb,

(8)

where the last term in Eq. 8 is called the summation interpolant.
From now on we will simplify the notation by setting Wab �
W(‖xa − xb ‖, h) and na � nneigh for the number of neighbors of
particle a, which should not be confused with the same letter used
for the dimension. Here the subscript a is used to denote a generic
observation particle and the subscript b is used to denote its
neighbors. Therefore, in simplified form the particle estimate of
function f(x) at the observation point xa becomes

fa � ∑na
b�1

fbWabVb � ∑
b∈N a

fbWabVb, (9)

as it is traditionally written in the SPH literature [41–44]. Here
N a � {1, 2, . . . , na} is the set of all neighbors of particle a and the
second summation stresses the fact that subscript b takes only
values pertaining to this set. In general, all particles have the same
number of neighbors so that the number of elements of N a is
always the same (i.e., n � na). In actual SPH applications it is
customary to replace the particle volume Vb by the ratio mb/ρb,
where mb and ρb are the mass and density of particle b,
respectively. For quasi-ordered particles following a low-
discrepancy sequence, Fulk [45] proved that the SPH
approximation (9) is consistent with the identity operator,
If(x) � f(x), under the uniform norm

‖ Sf − If‖∞ �‖ Kf − If + Sf − Kf‖∞ ≤ ‖ Kf − If‖∞+
‖ Sf −Kf‖∞, (10)

only if Vb � mb/ρb, where If � f(xa) is the exact value of the
function evaluated at point xa, while Kf � 〈f(xa)〉 and Sf � fa are,
respectively, the kernel and particle estimates of the function at
xa defined by Eqs 2, 9. In the limit of vanishing inter-particle
distances ‖ Sf − Kf ‖∞ → 0, whereas ‖ Kf − If ‖∞ → 0 as h → 0.
Therefore, it has always been common practice to write Eq. 9 as

fa � ∑
b∈N a

mb
fb

ρb
Wab. (11)

Following similar steps, the particle approximation of Eq. 6
can be written as

∇f( )a � ∑
b∈N a

mb
fb

ρb
∇aWab. (12)

A better representation of the gradient, which vanishes exactly
when the function is a constant, is given by [46]

∇f( )a � ∑
b∈N a

mb

ρb
fb − fa( )∇aWab. (13)

Other alternative representations can be found in the literature
guided by momentum conservation requirements [41, 42].

2.3 Particle Inconsistency
The SPH approximation given by Eq. 11 introduces two types of
error. The first one comes from the kernel approximation which
is ∝ hm, where m is a small integer that depends on the order of
completeness that is enforced. This error is independent of the

FIGURE 1 | Schematic of the SPH discretization with a compactly
supported kernel function.
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particle distribution and for most commonly used kernels it
contributes with a second-order term (i.e., m � 2). The second
error originates from the discretization procedure and is a
function of the number of neighbors, ϕ � ϕ(n), and depends
on how they are actually distributed within Ωs. It has long been
conjectured that ϕ(n) ∝ log n/n when the neighbors are quasi-
ordered [46], while if they are randomly distributed then ϕ(n) ∝
n−1/2 [13]. The dependence of the discretization error on n can be
parameterized as ϕ(n) ∝ n−p, where 1/2 ≤ p ≤ 1. Zhu et al. [13]
noted that the reduction of the overall error would demand
making h smaller and, at the same time, n larger so that the
combined limitN→∞, h→ 0, and n→∞, with n/N→ 0, would
be necessary to achieve full consistency. This limit was first noted
by Rasio [28] using a simple analysis based on sound waves. From
the matching between the smoothing and particle discretization
errors, Zhu et al. [13] proposed the following power-law
dependences of h and n on the total number of particles (N)

h∝N−1/β, n∝N1−3/β, (14)

where β − 3 +m/p. Thus, form � 2 and a random distribution (p �
1/2), β − 7 and n ∝ N0.57, while for quasi-ordered distributions
(p � 1), β − 5 and n ∝ N0.4. For an intermediate value of β(− 6),
h ∝ N−1/6 and n ∝ N1/2. If higher-order kernels (m > 2) are
chosen, a stronger scaling of n with N would be required. From a
truncation error analysis of the SPH approximation of spatial
derivatives in one dimension, Quinlan et al. [35] suggested that
the SPH errors will decay as h2 if h is reduced while maintaining
Δ/h constant, where Δ is the inter-particle distance. If, on the
other hand, Δ/h is reduced while maintaining h fixed, the error
will also decrease, which is equivalent to increase the number of
neighbors. Using the Euler equations, Read et al. [32] realized that
the loss of particle consistency is due to the presence of
h-independent, zeroth-order error terms that are irreducible even
whenN→∞, h→ 0, and n is maintained constant at the low values
typically used in most SPH applications. They suggested as a
convergence criterion that n must increase to ensure that ϕ(n)
shrinks faster than the smoothing error (∝ hm). A similar result
was reported byVaughan et al. [37], who found that ifC0 consistency
is not restored the error does not converge with h, whereas if C1

consistency is achieved then the error goes as −h2.
The claim of particle consistency based solely on the

equivalence Vb → mb/ρb is not sufficient because in general
the conditions on the kernel moments given by Eqs 3, 5 are
not fulfilled in discrete form, i.e.,

M0,a � ∑
b∈N a

mb

ρb
Wab ≠ 1, (15)

Ml,a � ∑
b∈N a

mb

ρb
xb − xa( )lWab ≠ 0 l( ), (16)

and similarly for the particle form of the integral conditions in Eq.
7 for the kernel gradient. The loss of C0 particle consistency is a
clear manifestation of the violation of the discrete form of the
probability function given by Eq. 15 even for regularly ordered
particles because of noise errors that scale with n as −n−1. In
practical applications, as the particles are convected with the fluid,
node disorder results in amplified noise, leading to loss of C0

consistency because of more severe deviations of the particle
normalization condition from unity. Loss of C0 consistency also
occurs when Ωs is truncated by a physical boundary or when
spatially and temporally adaptive kernels are employed [6].

2.4 Conservation Principles
The loss of particle consistency in fluid simulations may affect the
fundamental principles of physics, such as the principles of
conservation of mass, energy, linear momentum, and angular
momentum. For most applications, the conservation of mass and
linear momentum represents irreducible requirements. Restoring
particle consistency is therefore important to guarantee local
conservation because if a condition is satisfied locally
everywhere within a domain, then it will be also satisfied globally.

Local and global mass conservation can be satisfied exactly by
using Eq. 11 with f → ρ to evaluate the density provided that all
particles with Lagrangian boundaries preserve their mass. As was
demonstrated by Vignjevic et al. [36], if C0 particle consistency is
achieved, then the homogeneity of space is not affected by the
process of spatial discretization, which in turn has, as a
consequence, the conservation of linear momentum. In other
words, under C0 particle consistency the SPH interpolation
becomes independent of rigid-body translations of the
coordinates. To put this in mathematical form, let us first
approximate the position vector xa using Eq. 11

xa � ∑
b∈N a

xb
mb

ρb
Wab. (17)

The transformed coordinates x′ � x + Δx will then be
estimated according to

xa′ � ∑
b∈N a′

xb′
mb′
ρb′

Wab′ , (18)

where Wab′ � W(‖ xa′ − xb′ ‖, h′), mb′ � ρb′Vb′ ,
N a′ � {1, 2, . . . , n′ � na′}, and n′ is the number of neighbors in
the transformed support domainΩs′ of radius kh′. Preservation of
space homogeneity under uniform translations demands that
xa′ � xa + 〈Δx〉, with 〈Δx〉 � Δx. Replacing xb′ by xb + Δx in
Eq. 18 it is easy to show that

xa′ � xa + Δx ∑
b∈N a

mb

ρb
Wab � xa + ΔxM0,a, (19)

where we have made mb′ � mb, Wab′ � Wab, and n′ � n because
under solid-body translations the coordinates of a point are
independent of the translation of the coordinate axes. Therefore,
Eq. 19 expresses that homogeneity of the discrete space is satisfied
by the SPH interpolation only when the condition M0,a � 1,
i.e., only when C0 particle consistency is restored2. Vignjevic et
al. [36] also demonstrated that angular momentum conservation is
exactly preserved only if the isotropy of space is not affected by the
SPH interpolation. This is equivalent to demand that the SPH

2A simple way to enforce the condition M0,a � 1 at a physical boundary is to use
Shepard’s interpolation, where the kernel Wab is normalized according
to ~Wab → Wab/M0,a .
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interpolation must be invariant under solid-body rotation of the
coordinate axes. In order to simplify the mathematical operations,
let us consider only small rotations so that the coordinates are
transformed according to

x′ � x − dw × x � x − x · ∇ dw × x( ), (20)

where dw is the differential rotation vector. Under solid-body
rotation, the coordinates of a point are invariant with respect to a
rotation of the coordinate axes and therefore [∇(dw ×x)]a � ∇(dw
×x), or using the particle approximation given by Eq. 12

∇ dw × x( )[ ]a � ∑
b∈N a

mb

ρb
dw × x( )b∇aWab

� ∇ dw × x( ) · ∑
b∈N a

mb

ρb
xb∇aWab, (21)

which implies that the first moment of the gradient given by Eq. 7
in discrete form must satisfy the condition

M1′ � ∑
b∈N a

mb

ρb
xb∇aWab � I, (22)

in order to preserve the isotropy of the discrete space and
conserve angular momentum. In summary, the particle
approximation does not affect the conservation of linear
and angular momentum provided that C0 and C1

consistencies are restored for the function and its gradient.
When thermal effects are important, energy conservation is
ensured by the first law of thermodynamics from which an
equation for either the internal energy or the enthalpy is
derived. Rotational invariance using the more accurate
representation given by Eq. 13 requires that, in addition to
the condition represented by Eq. 22, the discrete zeroth
moment of the kernel gradient, M0′ , must vanish.

3 CORRECTIVE SPH SCHEMES

As was outlined above, SPH particle inconsistency is a
manifestation of the discrepancy between the spatially
discretized equations and their corresponding kernel
approximation in continuous form. Improvements on this
drawback is therefore mandatory for SPH to become a robust
and reliable simulation tool. Earlier approaches to restore
particle consistency were based on kernel reconstruction
techniques [19, 47, 48]. Although these methods can
reproduce a polynomial function and its derivatives to any
desired order, they can sometimes lead to reconstructed
kernels that may be non-positive, not symmetric, and not
monotonically decreasing, yielding inaccurate results. In
addition, the computational effort for constructing higher-
order reproducing kernel functions could be quite intensive.
More robust and stable approaches rely on a Taylor series
expansion of the function and its derivatives in the kernel
estimate. In what follows the most popular methods based on
Taylor series expansions will be briefly reviewed along with
some alternative recent schemes.

3.1 The Corrective Smoothed Particle
Method (CSPM)
The CSPM scheme was originally developed by Chen et al. [3, 4]
as a corrective scheme for approximating a function and its
derivatives. In this formulation, the conventional kernel
estimate of a function is expressed in terms of its Taylor series
expansion about an arbitrary point of its domain of definition.
Expansion of the function f(x) about the point xa up to second-
order terms gives

f x( ) � f xa( ) + xa − x( ) · ∇f xa( ) + 1
2

xa − x( )
xa − x( ): ∇∇f xa( ) +O xa − x( )3[ ]. (23)

Multiplying the above expression by the kernel functionWa �
W(‖xa − x ‖, h) and integrating over the domain volume V, the
result is

∫
V
f x( )WadV � f xa( )∫

V
WadV + ∇f xa( ) · ∫

V
x − xa( )WadV +/ ,

(24)

which after solving for f(xa) and neglecting all terms
containing derivatives, the corrective kernel estimate of the
function becomes

f xa( ) � ∫
V
f x( )WadV

∫
V
WadV

, (25)

which is identical to the Shepard kernel interpolation [20].
From now on, the angle brackets used to denote the kernel
estimate of the function will be dropped for simplicity. The
approximations for the derivatives are constructed the same
way by multiplying Eq. 23 by ∇Wa for the first derivatives and
by ∇∇Wa for the second derivatives and then integrating both
expressions over the whole volume of the domain. Retaining
terms up to first-order, the expansion for the first derivatives
becomes

∇f xa( ) · ∫
V

x − xa( )∇WadV � ∫
V
f x( ) − f xa( )[ ]∇WadV.

(26)

Similarly, retaining terms up to the second-order in the
expansion for the second derivatives, the result is

1
2
∇∇f xa( ): ∫

V
xa − x( ) xa − x( )∇∇WadV � ∫

V
f x( ) − f xa( )[ ]∇∇WadV

− ∇f xa( ) · ∫
V

x − xa( )∇∇WadV.

(27)

In three-space dimensions, Eqs 26, 27 represent two
independent sets of three and six coupled equations,
respectively. Due to the symmetry of W, the second term on
the right-hand side of Eq. 24 vanishes identically for points that
are far from the boundaries of the domain, implying that the
estimate given by Eq. 25 is of second-order for unbounded
domains. However, for points close to a boundary Eq. 25 is only
a first-order approximation because the second term on the
right-hand side of Eq. 23 no longer vanishes. The same holds for
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the kernel approximation of the derivatives. Therefore, the
whole scheme achieves C1 kernel consistency away from the
boundaries and C0 kernel consistency for points near or on the
boundary. For numerical work, the particle approximation of
Eq. 25 is just

fa � 1
M0,a

∑
b∈N a

mb

ρb
fbWab, (28)

while the particle approximation of Eq. 26 for the corrective first-
order derivatives can be written in terms of the linear matrix
equation

Aa · Fa′ � ba, (29)

whereA is a 3 × 3matrix, F′ is the vector solution whose elements
are the three derivative components, and b is a column vector.
Using index notation, these quantities are given by

Alm,a � ∑
b∈N a

mb

ρb
xl
b − xl

a( ) zWab

zxm
a

,

Fl,a′ � zf

zxl
( )

a

,

bm,a � ∑
b∈N a

mb

ρb
fb − fa( ) zWab

zxm
a

,

(30)

where in three dimensions l,m � 1, 2, and 3. Since the integral on
the left-hand side of Eq. 27 is a tensor of rank four and the other
two integrals on the right-hand side are of second rank, the six
components of the second-order derivatives can be obtained by
solving the linear equation

Ba · F′′
a � da, (31)

where in index notation

Blksm,a � 1 − 1
2
δlk( ) ∑

b∈N a

mb

ρb
xl
b − xl

a( ) xk
b − xk

a( ) z2Wab

zxs
azx

m
a

,

F′′
lk,a �

z2f

zxlzxk
( )

a

,

dlsm,a � ∑
b∈N a

mb

ρb
fb − fa( ) z2Wab

zxs
azx

m
a

− zf

zxl
( )

a

∑
b∈N a

mb

ρb
xl
b − xl

a( ) z2Wab

zxs
azx

m
a

,

(32)

for l, k, s,m� 1, 2, and 3 in three dimensions. The solution of Eqs 29,
31 uniquely determine the particle estimate of the three components
of the first-order derivatives and the six components of the second-
order derivatives at the position of particle a.

3.2 The Finite Particle Method (FPM)
The FPM approach was proposed by Liu and Liu [6] as an
improved extension of the CSPM method for the kernel and
particle approximations of the function and its first derivatives.
The main differences with the CSPM scheme is that terms up to
second-order are retained in the expansion given by Eq. 24 for the
kernel and particle approximations of both the function and its
first-order derivatives and that the particle estimates of the
function and its derivatives are solved simultaneously. Using

Cartesian coordinates the problem reduces to solve a linear
system of the form

A ·

f xa( )
zf x( )
zx

( )
a

zf x( )
zy

( )
a

zf x( )
zz

( )
a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

∫
V
f x( )WadV

∫
V
f x( ) zWa

zx
dV

∫
V
f x( ) zWa

zy
dV

∫
V
f x( ) zWa

zz
dV

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (33)

where A is a 4 × 4 matrix, which in three dimensions looks like

A �

∫
V
WadV ∫

V
x − xa( )WadV ∫

V
y − ya( )WadV ∫

V
z − za( )WadV

∫
V

zWa

zx
dV ∫

V
x − xa( ) zWa

zx
dV ∫

V
y − ya( ) zWa

zx
dV ∫

V
z − za( ) zWa

zx
dV

∫
V

zWa

zy
dV ∫

V
x − xa( ) zWa

zy
dV ∫

V
y − ya( ) zWa

zy
dV ∫

V
z − za( ) zWa

zy
dV

∫
V

zWa

zz
dV ∫

V
x − xa( ) zWa

zz
dV ∫

V
y − ya( ) zWa

zz
dV ∫

V
z − za( ) zWa

zz
dV

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(34)

In discrete form, the solution vector containing the particle
estimate of the function and its first derivatives is given by

fa

zf

zx
( )

a

zf

zy
( )

a

zf

zz
( )

a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� A
−1
a ·

∑
b∈N a

mb

ρb
fbWa

∑
b∈N a

mb

ρb
fb

zWa

zxa

∑
b∈N a

mb

ρb
fb

zWa

zya

∑
b∈N a

mb

ρb
fb

zWa

zza

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (35)

where

A−1
a �

∑
b∈N a

mb
ρb
Wa ∑

b∈N a

mb
ρb
xbaWab ∑

b∈N a

mb
ρb
ybaWab ∑

b∈N a

mb
ρb
zbaWab

∑
b∈N a

mb
ρb

zWab
zxa

∑
b∈N a

mb
ρb
xba

zWab
zxa

∑
b∈N a

mb
ρb
yba

zWab
zxa

∑
b∈N a

mb
ρb
zba

zWab
zxa

∑
b∈N a

mb
ρb

zWab
zya

∑
b∈N a

mb
ρb
xba

zWab
zya

∑
b∈N a

mb
ρb
yba

zWab
zya

∑
b∈N a

mb
ρb
zba

zWab
zya

∑
b∈N a

mb
ρb

zWab
zza

∑
b∈N a

mb
ρb
xba

zWab
zza

∑
b∈N a

mb
ρb
yba

zWab
zza

∑
b∈N a

mb
ρb
zba

zWab
zza

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

,

(36)

and xba � xb − xa, yba � yb − ya, and zba � zb − za are the
components of vector xba � xb − xa in a Cartesian coordinate
system. It is often claimed that this correction scheme restores
C1 kernel and particle consistency for both the interior and
boundary points, implying full second-order accuracy.
Although it improves the C0 consistency of CSPM for the
particle approximation of the function, it can be shown that
the method achieves only C0 consistency in its discrete form
given by Eqs 35, 36 for both the function and its first
derivatives [29].
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3.3 The Modified Smoothed Particle
Hydrodynamics (MSPH) Scheme
Although thismethod was reported by Zhang and Batra [5] in 2004
before the FPM paper of Liu and Liu [6] was published, MSPH is
just a straightforward extension of FPM by including second-order
terms in the expansion given by Eq. 24 for the function and its first
and second derivatives. The coupling of the particle estimates of the
function and its first and second derivatives results in a system of
10 equations for the 10 unknowns fa, zfa/zxl

a, and z
2fa/zxl

azx
k
a at

point xa, where l, k � 1, 2, and 3 in three dimensions. The details of
the method are similar to those displayed for the FPM scheme and
therefore they will not be repeated here. Although C2 consistency is
achieved by the kernel estimates of the function and its first and
second derivatives, the particle approximation is actually C1-
consistent for the estimate of the function and C0-consistent for
the first-order derivatives. Retention of third-order derivatives in
the Taylor series expansions will result in a system of 20 linear
equations that must be solved simultaneously for the particle
approximation.

This method can be straightforwardly generalized to ensure any
order of consistency. A generalization to kth-order was reported by
Di Blasi et al. [8], where the estimates of the function and all its
higher-order derivatives are obtained with kth-order consistency.
Thus, increasing the order of the Taylor series expansions will also
increase the computational cost because this will require inverting
large corrective matrices. In addition, a serious drawback of this type
of schemes is that the corrective matrix may be close to singularity
especially when the kernel gradients do not exist or when they are
either close or equal to zero. In these cases, the matrix will not admit
inversion and the method will fail. More recently, a modification to
the MSPH scheme was presented by Huang et al. [10] in which case
the kernel gradient is not necessary in the whole calculation. This
method which was dubbed “a kernel gradient free (KGF) SPH
method” presents some advantages over the conventional FPM and
MSPH corrective approaches in that kernels that are not
differentiable or not sufficiently smooth can all be used in the
KGF-SPH formulation. Also, due to the symmetry of the
correction matrix, KGF-SPH is insensitive to the particle
distribution, free of ill-conditioning of the correction matrix, and
performs better than FPM and MSPH at low spatial resolution. A
reformulation of the FPM and MSPH schemes was suggested by
Sibilla [12], where only the first-, second-, and third-order
derivatives are retained as unknowns. This scheme enforces C1

particle consistency for the first-order derivatives and C0

consistency for the second-order derivatives, both inside the
domain and close to the domain boundaries. Like the KGF-SPH
scheme, it is not affected by irregular particle distributions.

3.4 A Boundary Integral SPH Formulation
A different strategy to restore consistency near wall boundaries was
first introduced by Ferrand et al. [21, 22] in the context of a weakly
compressible SPH formulation by just considering the contribution
of the boundary integral terms in standard SPH, while Macià et al.
[23] extended the scheme to incompressible SPH formulations.
Apart from the treatment of the Poisson equation for the
pressure, both schemes use the same principle. Therefore, for

simplicity the method is described here in terms of the one-
dimensional analysis reported by Macià et al. [23]. The
generalization to multi-dimensions is straightforward. The
method starts by considering a symmetric kernel function such that

∫∞

−∞
W |x − x′|, h( )dx′ � 1, (37)

which is the one-dimensional form of Eq. 3. The kernel is
assumed to have compact support and the kernel estimate of
the function within the interval (A, B) ⊂ R is given by the
Shepard interpolation

〈f xa( )〉 � ∫B

A
f x( )Wadx

∫B

A
Wadx

� 1
Γ xa( )∫

B

A
f x( )Wadx, (38)

where f(x) is a scalar function on R,Wa �W(|xa − x|, h), and the
angle brackets are re-used to distinguish the kernel estimate of the
function from its exact value evaluated at x � xa ∈ (A, B). The
kernel approximation defined via Eq. 38 has C1 consistency for all
interior particles in the interval (A, B) and C0 consistency for
particles at distances ≤ kh from a domain boundary. For any xa ∈
(A, B) far from a boundary Γ(xa) � 1 in Eq. 38 and the kernel
estimate becomes

〈f xa( )〉 � ∫∞

−∞
f x( )Wadx. (39)

By expanding f(x) in Eq. 39 in Taylor series about x � xa and
subtracting the result from the exact value of the function
evaluated at x � xa, it is easy to show that 〈f(xa)〉 − f(xa) ∝
O(h2), while the same operation on Eq. 38 produces the result

〈f xa( )〉 − f xa( ) � 1
Γ xa( )

df xa( )
dxa

∫B

A
x − xa( )Wadx ˜O h( ),

(40)

because the first moment of the kernel no longer vanishes.
Replacing f(x) by df(x)/dx in Eq. 38 produces the following

expression for the kernel estimate of the first-order derivative

〈df xa( )
dxa
〉 � 1

Γ xa( )∫
B

A

df x( )
dx

Wadx. (41)

Subtracting this from the exact derivative evaluated at x � xa, it
can be demonstrated that the error carried by Eq. 41 far from a
boundary is ˜O(h2), while in the proximity of a boundary it is

˜O(h). In a completely analogous form, the expression for the
kernel estimate of the second-order derivative

〈d2f xa( )
dx2

a

〉 � 1
Γ xa( )∫

B

A

d2f x( )
dx2

Wadx, (42)

reproduces the exact derivative to second-order accuracy for
unbounded domains and for points far from a boundary, while
in the proximity of a domain boundary the approximation is only
first-order accurate. In particular, when a gradient is calculated near
a domain boundary, C0 particle consistency is restored for the
estimate of the gradient if the boundary terms are included. The
same is true for the particle estimate of the second-order derivatives,
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which also restores C0 consistency close to a domain boundary only
when boundary terms along with the normalization factor Γ(xa) are
included.Mathematically, this can be seen by integrating by parts the
kernel estimates given by Eqs 41, 42.

After straighforward integration by parts Eq. 41 becomes

〈df xa( )
dxa
〉 � 1

Γ xa( ) f B( )W |xa − B|, h( ) − f A( )W |xa − A|, h( )[ ]
− 1
Γ xa( )∫

B

A
f x( ) dWa

dx
dx.

(43)

Similarly, after integration by parts of Eq. 42, the kernel
estimate of the second derivative becomes

〈d2f xa( )
dx2

a

〉� 2
Γ xa( )

f xa( )−f B( )
xa −B W |xa −B|,h( )−f xa( )−f A( )

xa −A W |xa −A|,h( )[ ]
+ 2
Γ xa( )∫

B

A

f x( )−f xa( )
x−xa

[ ]dWa

dx
dx,

(44)

where one-sided finite differences have been used to evaluate the
first-order derivatives of the function at both extremes of the
interval (A, B). Macià et al. [23] suggested the following particle
discretization of Eqs 43, 44

df

dx
( )

a

� 1
Γa

fNWN,a − f1W1,a[ ] + 1
Γa

∑
b∈N a

mb

ρb
fbWab, (45)

and

d2f

dx2
( )

a

� 2
Γa

fa − fN

xa − B
( )WN,a − fa − f1

xa − A
( )W1,a[ ]

+ 2
Γa

∑
b∈N a

fb − fa

xb − xa
( )mb

ρb

dWab

dxa
, (46)

respectively, where the notation f1 � f(x1) � f(A) and fN � f(xN) � f(B)
has been used. Also, note that the index b employed for the neighbors
of particle a only runs for interior particles and excludes the lower and
upper ends of the interval (A, B), i.e., b ≠ 1 and b ≠ N.

3.5 An Integral Approach to First Derivatives
An interesting formalism based on a matrix approach to the SPH
Euler equations that improves the interpolation of physical
magnitudes was introduced by García-Senz et al. [49]. In this
approach first derivatives are approximated from an integral
expression that leads to a tensor, instead of the usual vector,
estimation of the gradients. The scheme reduces to the standard
formulation in the continuum limit and results into a less noisy
estimate of the gradients. Assuming that f(x): R3 → R is a smooth
and differentiable function, the method starts with the integral
expression

I x( ) � ∫
Ω⊂R3

f x′( ) − f x( )[ ] x′ − x( )W ‖ x′ − x ‖, h( )d3x′. (47)

Expanding the term f(x′) − f(x) in Taylor series about x′ � x
and retaining terms up to first-order, the above integral becomes

I x( ) � ∇f x( ) · ∫
Ω⊂R3

x′ − x( ) x′ − x( )W ‖ x′ − x ‖, h( )d3x′. (48)

Using Cartesian coordinates and writing

x′ − x( ) � x1′ − x1( )i + x2′ − x2( )j + x3′ − x3( )k (49)

where x1 � x, x2 � y, and x3 � z, Eq. 48 can be written as a linear
matrix equation of the form

zf/zx1

zf/zx2

zf/zx3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � A11 A12 A13

A21 A22 A23

A31 A32 A33

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
−1 I1

I2
I3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (50)

that must be solved simultaneously for the three components of
the gradient, where

Aij � ∫
Ω

xi′ − xi( ) xj′ − xj( )W ‖ x′ − x ‖, h( )d3x′ (51)

for i, j � 1, 2, and 3, and

Ik � ∫
Ω
f x′( ) − f x( )[ ] xk′ − xk( )W ‖ x′ − x ‖, h( )d3x′, (52)

for k � 1, 2, and 3. For spherically symmetric kernels, A11 � A22 �
A33 and all off-diagonal terms vanish, i.e., Aij � Aji � 0 for i ≠ j.
When the integrals in Eq. 51 are converted into finite sums, most
of the symmetry properties of matrix A are lost because the
diagonal elements may have different values and the off-diagonal
elements may not vanish. However, the formulation of the
gradient according to Eq. 50 preserves the property that the
derivative of a linear function is always exact by construction.
This can be easily seen in one-space dimension, where Eq. 50 in
particle form reduces to

df

dx
( )

a

� 1
Λa

∑
b∈N a

mb

ρb
fb − fa( ) xb − xa( )Wab, (53)

where

Λa � ∑
b∈N a

mb

ρb
xb − xa( )2Wab. (54)

Although this method leads to improved results compared to
standard SPH, it has only been tested for two-dimensional problems
and the authors have commented on some difficulties that will
probably come up in three-dimensional simulations. These
difficulties include: 1) a much higher level of numerical noise as a
result of an increased sensitivity to particle disorder compared to
conventional SPH and 2) an inherent difficulty in handling sharp
boundaries which is typical of matrix methods.

4 RECENT INSIGHTS AND
DEVELOPMENTS

Other alternative attempts have been recently proposed to
improve the convergence properties of standard SPH.
Advances in this direction were presented by Adami et al.
[9], who proposed a transport-velocity formulation for
solution of the fluid-dynamics equations that combines the
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homogenization of the particle configuration by a background
pressure and reduces artificial numerical dissipation. A wide
number of numerical tests have demonstrated the accuracy
and stability of the scheme. In a further work, Litvinov et al.
[11] have outlined the importance of partition of unity as a
condition under which the conventional SPH approximation
can achieve consistency and convergence. In particular, they
argued that the inconsistency of standard SPH approximations
for a random particle distribution may be due to the SPH
definition of a particle volume, Va � ma/ρa, which does not
exactly partition the total volume, as is indeed required by the
Quasi Montecarlo method whose error goes as ˜ (logN)n/N
under randomly perturbed particles, where now n � 1, 2, or 3
denotes the dimension. Exact partition of unity requires that

∑N
b�1

Vb � V, (55)

that is, the sum of all particle volumes must equal the total volume
of the system. In general, this condition is not exactly fulfilled by
standard SPH because of either gaps between or overlaps of the
particle volumes. Litvinov et al. [11] found that standard SPH will
achieve better error properties and improve on the partition of
unity by relaxing a particle distribution under a constant pressure
field and invariant particle volume.

The use of the principle of least action to derive the equations of
motion with a regularized density field in the context of measures
has been illustrated by Evers et al. [50]. Depending on the order in
which regularization and the principle of least action are applied
two different equations can be derived, whose discrete counterparts
coincide with the traditional scheme used in SPH. Measure theory
provides a framework to study convergence as the number of
particles goes to infinity. In particular, both the particle
approximation and the limiting continuum setting can be
formulated in terms of measures. For example, the Wasserstein
distance on the space of probabilitymeasures provides a natural tool
to characterize convergence. Convergence of measure-valued
solutions was first studied by Di Lisio et al. [33], who proved
the convergence of the SPH method with the use of measures in
combination with the Wasserstein distance. The measure-valued
formulation of Evers et al. [50] not only generalizes Di Lisio et al.
[33] work in that the SPH-particle approach is just a special case
because it can be applied to a class of approximating measures that
is much broader than just sums of Dirac delta distributions. An
important concluding remark from this study is that a favorable
approach is to have h depending on the total number of particles N
in such a way that h − O(N−1/n) (where n denotes dimension) as
N → ∞, and hence the joint limit N → ∞ and h → 0 must hold
simultaneously. This entails a close relationship with the fact that
the smoothing kernel asymptotically approaches a Dirac delta
distribution when h → 0 and this can be achieved in the
continuum limit when N → ∞ simultaneously.

4.1 Consistency and Self-Consistency
Conditions
The particle density estimate as is frequently used in SPH can be
derived from Eq. 11 by replacing f by ρ such that

ρa � ∑N
b�1

mbWab, (56)

where in the original SPH formulation the sum is taken over all
particles of the system. However, in modern applications of SPH a
smoothing function of compact support is employed to limit the
volume to a locally finite extent in order to improve the
computational efficiency. This means that the sum will then
operate only on a finite number (n) of particles around
particle a. As was pointed out by Zhu et al. [13], consistency
of this step requires that n → ∞ in order to approach the
continuous limit. Therefore, there is a lack of self-consistency
when working with finite values of N and n, where the condition

∑
b∈N a

mb

ρb
Wab � 1, (57)

is not satisfied with the density estimate given by Eq. 56 when the
sum is made to operate on a finite number of neighbors. In order
words, the violation of Eq. 57 implies that partition of unity is not
exactly fulfilled by standard SPH as was claimed by Litvinov et al.
[11]. Therefore, the joint limit N → ∞, h → 0, and n→ ∞, with
n/N → 0, is a necessary requirement to achieve consistency and
self-consistency [13, 28]. This complies with the suggestion
advanced by Evers et al. [50] that h → 0 as N → ∞ if the
sum interpolant is taken over all particles of the system, as in Eq.
56. A previous error analysis of the SPH representation of the
density and momentum equations have shown that for finite
values of n, the errors carried by the SPH discretization will not
decay even when N → ∞ and h → 0 because of an irreducible
zeroth-order error that is independent of h and that will depend
only on n [32]. Based on the above discussions, restoring particle
consistency in SPH applications is impeded by the loss of self-
consistency when using smoothing functions of compact support
with a small number of neighbors.

As was already outlined in Section 2.3, Zhu et al. [13] derived
power-law dependences of n and h on N complying with the joint
limitN→∞, h→ 0, and n→∞ by matching the SPH error from
the kernel approximation (smoothing procedure),∝ hm withm �
2 in most cases, with that resulting from the particle
approximation, ϕ(n) −n−p, where 1/2 ≤ p ≤ 1. By balancing
both errors, they suggested to use the scaling relations given by
Eq. 14 as approximate requirements for SPH convergence.
However, increasing the number of neighbors with resolution
will demand using a particular class of kernel functions. It is well-
known that conventional kernels, like the widely used cubic
B-spline kernel [51], suffer from a pairing instability when
supporting large numbers of neighbors. The instability
manifests by particles coming into so close pairs that
resolution is halved and, as a consequence, they become less
sensitive to small perturbations within the volume of the kernel
support [52–54]. One route to overcome this difficulty has been
to use theWendland functions [52, 55].Wendland functions are a
family of spherically symmetric interpolation kernels that are
smooth everywhere and have positive Fourier transforms under
compact support, thereby allowing the use of large number of
neighbors without suffering from particle clumping. Also, the
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exact particle distribution depends on the actual flow dynamics
and on the kernel function that is employed to perform particle
interpolation. For example, in contrast to most conventional
kernels, Wendland functions do not allow particle motions on
a sub-resolution scale (i.e., within the kernel support) and
therefore they maintain quasi-ordered particle distributions
even in highly dynamical test problems [56]. A Wendland
function that has been adopted in many recent tests and
simulations [13, 30] is the Wendland C4 kernel function given by

W q, h( ) � 495
32πh3

1 − q( )6 1 + 6q + 35
3
q2( ), (58)

for q ≤ 1 and 0 otherwise, where q � ‖x − x′ ‖/h.
The magnitude of self-inconsistency due to violation of the

partition of unity was further examined by Zhu et al. [13] and later
on by Gabbasov et al. [30] in three-dimensional simulations of the
protostellar collapse, where the full set of gravitohydrodynamics
equations were solved. In particular, Zhu et al. [13] found through
a simple test that for a random particle distribution the density
distribution approaches a Dirac-δ distribution as n is increased,
leading to approximate volume partitioning. Also, the standard
deviation measured in the density estimate as a function of varying
n showed the expected inferred trend of σ(ρ) ∝ n−1/2. When the
particles were relaxed into a quasi-ordered distribution, the density
distribution as a function of varying n was much narrower at all
resolutions compared to the random case and σ(ρ) ∝ n−1 with
increasing n as expected. These results were further confirmed
through full hydrodynamical simulations by Gabbasov et al. [30],
where particle consistencies close to C1 were confirmed for values
of N above 9 million particles and n higher than 24 thousand
neighbors.

4.2 Consistent Shepard Interpolation
Since the introduction of SPH to the fascinating field of computer
graphics and animation in 1996 by Desbrun and Gascuel [57], the
method has been extensively revised and improved to produce
realistic animations of deformable bodies and complex flow
scenarios. The ever-increasing demand for good visual quality
and realism for computer-generated animations has imposed new
challenges to many SPH practitioners. Following this line of
research, Reinhardt et al. [24] have recently implemented a
generalization of the classical Shepard interpolation to achieve
constant completeness (or true C0 consistency) for both interior
particles and particles near a rigid boundary. The essence of the
new approach consisted in realizing that the classical particle
Shepard correction of the smoothing kernel defined as

~Wab � csha Wab � Wab∑
k∈N a

mk/ρk( )Wak
, (59)

introduces new errors because the densities of neighboring
particles entering in the normalization factor csha are calculated
with the uncorrected kernel, while any fluid attribute, say

~Aa � ∑
b∈N a

mb

ρb
Ab

~Wab, (60)

is calculated using the corrected kernel. This approach is
inconsistent and when applied to solve the hydrodynamics
equations, the density calculation is inaccurate and produces
erroneous pressure forces that may induce instabilities in the
course of the simulation. In order to restore consistency with the
Shepard interpolation, Reinhardt et al. [24] have proposed to use
the corrected kernel, ~Wab, to compute the correction factors, ca, in
Eq. 59. To do so, it is necessary to correct the densities of all
neighboring particles, which is equivalent to correct their
volumes according to the prescription Vb � mb/(cbρb) such
that the correction factors become

ca � 1∑
b∈N a

mb/ cbρb( )[ ]Wab
, (61)

whichmust be solved implicitly. They found that use of the power
method provides an unconditionally stable and fast converging
algorithm for the calculation of the correction factors. To this
end, they proposed working with the equivalent form of Eq. 61

~ca � 1
ca

� ∑
b∈N a

~cb
mb

ρb
Wab � ∑

b∈N a

~cbaab, (62)

where aab � mbWab/ρb are the elements of matrix
A � (aab)(a,b)∈N×N, which satisfy the condition 0 ≤ aab ≤ 1.
Solving Eq. 62 is equivalent to solve the linear system
A · ~c � ~c, which implies finding an eigenvector ~c to the
eigenvalue λ � 1 of matrix A, where the elements of vector ~c
are the correction factors ~ca for a � 1, 2, . . . , N. Because of the
condition 0 ≤ aab ≤ 1, matrix A is a column stochastic matrix and
so the eigenvalue λ � 1 exists, while for all other eigenvalues |λ| <
1. This allows the use of the power method to find the solution
vector ~c through the recurrence relation

~c r+1( ) � A · ~c r( )

‖ A · ~c r( ) ‖. (63)

For details of the mathematical derivation and convergence
proof of the method, the interested reader is referred to Reinhardt
et al. [24] paper. Once the correction factors are determined, the
corrected kernel follows as

~Wab � Wab

~ca
, (64)

which can be used to perform the SPH simulation step. In order
to restore full C0 consistency, the kernel gradients must be
corrected as well. From Eq. 64 it follows that

∇ ~Wab � ∇
Wab

~ca
( ) � ∇Wab −Wab ∇~ca/~ca( )

~ca
, (65)

where from Eq. 12, the gradient of the correction factors has the
form

∇~ca � ∑
b∈N a

mb

ρb/~cb( )∇Wab. (66)

Although the use of Eqs 65, 66 increases the accuracy, they do
not ensure fullC0 consistency because in general the discrete form
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of the zeroth moment of the kernel gradient,M0,a′ ≠ 0(1), implying
that the gradient of constant functions is not exactly reproduced.
In fact, reproduction of the consistency condition M0,a′ � 0(1)
would require that ∇~ca, as given by Eq. 66, vanishes
identically. However, in general this is not true. To overcome
this trouble, Reinhardt et al. [24] have proposed to adjust the
gradient of a fluid quantity Aa according to

∇Aa � ∑
b∈N a

Ab
mb

cbρb
∇ ~Wab − Aaξsa, (67)

where, for instance, the form

ξsa � ∑
b∈N a

mb
1
ρ2b

+ 1
ρ2a

( )∇ ~Wab, (68)

is suggested when animating the fluid with a weakly compressible
SPH formulation. For particles near a solid boundary, C0

consistency is restored by adjusting the density according to

ρa � ∑
b∈N fluid

a

mb
~Wab + ∑

k∈N boundary
a

Ψbk ρ0( )Wbak, (69)

where N fluid
a is the set of neighbors of particle a pertaining to the

fluid domain, N boundary
a is the set of boundary neighbors of

particle a, ρ0 is a reference density, and Ψbk(ρ0) is a pseudo-
mass given by the expression

Ψbk ρ0( ) � ρ0∑
j∈N boundary

k

Wbkj
. (70)

A consistent approach for particles near the boundary is
maintained by including the boundary particles into the
calculation of the correction factors, which is accomplished by
replacing the uncorrected kernels in Eqs 69, 70 by the corrected
ones such that the density of a boundary particle, namely ρba, is
given by

ρba � ∑
k∈N boundary

a

Ψbk ρ0( ) ~Wbak, (71)

and

Ψbk ρ0( ) � ρ0∑
j∈N boundary

k

~Wbkj

. (72)

With the use of the above prescriptions smooth density
distributions can be obtained at the rigid boundaries of a body
with only very small deviations from the reference density ρ0.

4.3 The Poisson Summation
The Poisson summation formula was first used by Monaghan
[41] as a tool to estimate the errors carried by the SPH
summation interpolant for a linear function, f(x) � α + βx, in
one-space dimension using equidistant particles and a Gaussian
kernel

WG x, h( ) � 1��
π

√
h
exp −x

2

h2
( ). (73)

However, no clear conclusion about the SPH particle
consistency resulted from this analysis. The difficulty was
problably due to the fact that it was not until 2016 that it was
discovered that the Poisson summation formula is not unique, but
belongs to a wider class allowing the construction of crystalline
measures with locally finite support and spectrum [58]. This
brought out the Poisson summation formula as a powerful tool
for the error analysis of particle methods involving the evaluation
of quadratures. As was recently demonstrated by Sigalotti et al.
[39], the use of this formula will enable the simultaneous treatment
of both the kernel and the particle approximation errors for
arbitrary particle distributions. In particular, the method
allowed to derive for the first time the explicit dependence of
the error bounds on the SPH interpolation parameters, namely N,
h, and n, from which the consistency scaling relations introduced
by Zhu et al. [13] arise naturally. In Sigalotti et al. [39] the analysis
is first performed in one dimension and then its generalization to n
dimensions is fully developed. Here we shall describe the salient
features of the analysis and its results in three-space dimensions,
which is the case of interest in most real life applications. As a
starting point, let Λ ⊂ R3 be a crystalline lattice and
Φ(x): R3 → R a smooth function of locally finite support Γ
belonging to space D(R3) of all smooth functions with
compact support in R3. In passing, we note that every function
of D(R3) belongs to the Schwartz space, S(R3), of all infinitely
continuous functions onR3 with fast decay at infinity along with all
derivatives. The distributional Fourier transform of Φ, namely Φ̂,
in the dual lattice Λp is given by the Poisson formula [58].

∑
b1 ,b2 ,b3∈Λ

Φ b1, b2, b3( ) � ∑
j∈Λp

Φ̂ j( ), (74)

where the triplet of integers (b1, b2, b3), with bi ∈ Z(i � 1, 2, 3),
denotes the projections of the lattice node (or particle) labels
b ∈ Z on the axes of a 3-dimensional Cartesian coordinate system
and j � (j1, j2, j3) belongs to the dual of the space labels b. If we set
the summation on the left-hand side of Eq. 74 equal to the right-
hand side of Eq. 8 for the particle estimate of a funtion
f(x): R3 → R at particle position xa, the Poisson summation
formula becomes

fa � ∑
j∈Λp

∫
Ω
f xb( )W ‖ xa − xb ‖, h( )exp −i2πj · b( )mb

ρb
d3b, (75)

where b ∈ N3 and Ω ∈ supp(W) is the integration domain in 3-
dimensional Euclidean space. Since b � b(xb) is a bijective
function, it admits the inverse xb � xb(b). Differentiation leads
to d3xb � |Jxb|d3b, where Jxb is the Jacobian of the transformation
whose determinant is given by

|Jxb| �
mb

ρb
≈
V
n
, (76)

where V � 4πk3h3/3 is the spherical volume of the kernel support
and kh is its radius. Note that the first equality in Eq. 76 only
holds in the SPH sense. Since it is common practice in SPH to
assume the mass of particles to be constant, the particle volumes
will change according to the value of the local density. If the local
density increases, the particle volume shrinks. If, on the other
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hand, the local density decreases, then the particle volume
expands. Moreover, the relation mb/ρb ≈ V/n holds because the
number of neighbors per particle must remain the same.
Expanding f(xb) in Taylor series about xa in the integrand of
Eq. 75 yields the difference between the particle approximation fa
and the exact value of the function at xa,

fa − f xa( ) � ∑∞
l�1

1
l!
∇ l( )f xa( )T . . . :∫

Ω
xb − xa( )lW ‖ xa − xb ‖, h( )d3xb

+ ∑∞
j∈Λ+

j≠0

∑∞
l�0

1
l!
∇ l( )f xa( )T . . . : MF

l j( ), (77)

where 0 is the null vector and

MF
l j( ) � ∫

Ω
xb − xa( )lW ‖ xa − xb ‖, h( )exp −i2πj · b( )d3xb.

(78)

These integrals must vanish for all values of l to guarantee full
particle consistency. Integration of d3xb � |Jxb|d3b over the support
of particle a and use of Eq. 76 leads to the following expression

n xa, h( ) � ∫
Ωb

ρ x( )
m x, h( )d

3x, (79)

which for h ≪ 1 becomes

n xa, h( ) � 4π
3

ρa
ma

k3h3 + O h5( ). (80)

According to Eq. 80, the limit n(xa, h)→ ∞ as h→ 0 demands
that ρa/ma − h−β, with β > 3. This is true because in the limit h→ 0
the volume of the kernel support shrinks to a point (V → 0) with
no mass. Hence, ma − hβ and it follows from Eq. 80 that n − h3−β,
which reproduces the consistency scaling suggested by Zhu et al.
[13]. In the continuous limit the ratio n/N → V/V as N → ∞,
where V is the finite volume of the system. SinceN → nV/V − h−β,
it follows thatN→∞ faster than n as h→ 0 so that n/N→ 0 in the
transition from the discrete to the continuous space. The minimum
resolvable mass is the mass contained within the kernel support and
therefore Mmin � nma � nm. Since m ∝ hβ and n ∝ h3−β, then
Mmin − n3/(3−β). Since β varies between β − 5 for quasi-ordered
particle distributions to β − 7 for random distributions, an
intermediate choice of β − 6 could well describe the typical
particle distributions encountered in SPH simulations. Therefore,
for β − 6, the minimum resolvable mass scales as n−1 so that as n is
increased the mass resolution is improved. As we shall see below,
these scaling relations together with Eq. 80 have important
implications for the partition of unity. In terms of the uniform
norm given by Eq. 10 and after some involved algebraic steps, Eq.
77 can be manipulated to derive an error bound for the full SPH
estimate of a function [39], which can be written as

‖ Sf − If‖∞ ≤
32 1 + c( )3a0k3

3π2n
~e 0( )
r + h~e 1( )

r + h2~e 2( )
r( ) + h2e 2( )

r

+ O h3( ),
(81)

where a0 is the maximum value of the smoothing function
(evaluated at the center of the spherical kernel support), c �
0.5572 . . . is the Euler-Mascheroni constant, and the terms ~e(l)r
(between parentheses) and e(2)r are proportional to derivatives of
the approximating function. Expression 81 gives the error bound
for the full SPH interpolation in terms of n and h. The first term on
the right-hand side of the inequality is the contribution of the
particle approximation, while the last term arises from the
smoothing procedure. If n is fixed to some finite number and
h→ 0 asN→∞, it is clear that the zeroth-order term proportional
to ~e(0)r will survive, implying a loss of consistency. This term decays
only for sufficiently large values of n. Therefore, full consistency is
restored only when the joint limit n→∞ and h→ 0, which is only
possible when N → ∞, is satisfied.

4.4 Approximate Partition of Unity
Equation 80 leads to a concept of partition of unity that differs
from Eq. 55 introduced by Litvinov et al. [11], where exact
partitioning of the volume is achieved when the sum over all
particle volumes equals the total volume of the system. In this case
the presence of void spaces or overlaps between adjacent particle
volumes will cause that the total volume is not exactly
partitioned, i.e.,

1
V

∑N
b�1

Vb ≠ 1. (82)

However, solving for the ratio ma/ρa in Eq. 80 yields the
expression

ma

ρa
� 4π

3
k3h3

n
+ O h5( ), (83)

where the volume of the kernel support is V � 4πk3h3/3. Hence,
Eq. 83 becomes

ma

ρa
� V
n
+ O h5( ). (84)

If the ratio ma/ρa is associated with the volume of particle a,
Va, it follows from Eq. 84 that the sum over all particles lying
within the kernel support of particle a is given by

1
V ∑

b∈N a

Vb � 1 + O h5( ), (85)

where it has been assumed for simplicity that all particles have the
same mass. Equation 85 implies that for sufficiently small (but
finite) sizes of the kernel support, and independently of whether h
is fixed or variable, partition of unity can be achieved only in an
approximate sense. Only in the continuous limit when h → 0,
exact partition of unity can be fulfilled provided that the joint
limit n→∞,m→ 0, and N→∞ is satisfied. Thus, Eq. 85 differs
from Eq. 55 in that for compact kernel supports exact partition of
unity demands that the volumes of all neighboring particles
exactly fit the volume of the kernel support. If this
requirement is fulfilled, the conditions M0,a � 1 and M0,a′ � 0
will be exactly satisfied. For example, Zhu et al. [13] calculated
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numerically the deviation from an exact partition of unity by
evaluating the standard deviationmeasured in the distributions of
M0,a as a function of n for a compactly supported Wendland
kernel and a low-discrepancy set of particles, finding that σ(M0,a)
− n−1 as is indeed predicted by the error bound given by Eq. 81.
Therefore, the inconsistency in the volume estimate declines as
the number of neighbors increases because in this limit h must
also decrease. As this limit is observed, it was demonstrated
numerically that the particle approximations of the derivatives
converge essentially at the same rate as the particle estimate of the
function, regardless of the particle distribution [29].

5 SOME STRATEGIES FOR SPH
PRACTITIONERS

The issue of consistency restoring in SPH has advanced to the
point that the SPH practitioners can choose from a number of
possible strategies to ensure convergence and consistency of their
model simulations. When dealing with incompressible fluid
flows, C0 particle consistency may be enough to produce
acceptably good results at a relatively low computational cost.
Such schemes include the FPM approach of Liu and Liu [6] and
the boundary integral SPH formulation introduced by Ferrand
et al. [21] and Macià et al. [23]. However, in the light of the most
recent developments, the consistent Shepard interpolation
formulation advanced by Reinhardt et al. [24] seems to be a
better choice for restoring C0 particle consistency and improving
the volume preservation of the fluid. For example, the consistent
Shepard interpolation scheme can be combined with the implicit
viscosity solver introduced byWeiler et al. [25] to model complex
physical effects in highly viscous fluids, such as rope coiling and
melting. Very recent progress in improving the physical
consistency of highly viscous, free surface flow calculations has
been reported by Kondo et al. [26].

Unlike incompressible fluids, with the exception perhaps of
turbulent flows, compressible fluid flows are likely to develop
small-scale structures. Such flows are commonplace in many
astrophysical phenomena, in the transport of gas through
pipelines, in the motion of airplanes and similar high-
velocity vehicles, in shock wave formation, and in
commercial and industrial applications such as abrasive
blasting and supersonic wind tunnels, among many others.
For example, formation processes in astrophysics involve flows
over many orders of magnitude increase in density and
temperature by simultaneously spanning a wide range of
spatial and time scales. As a good example, the star
formation process involves a continuous gas flow from
galactic scales (measured in kiloparsecs (kpc), where 1 kpc �
3.086 × 1016 km) down to stellar scales (measured in
astronomical units (AU), where 1 AU � 1.496 × 108 km). In
this case and in cases where compressions, expansions, and
shock waves form in small-scale systems, it is important to
solve the smallest features that compose the structure of the
flow. Resolution requirements become an important factor in
this kind of simulations. However, for such flows particle
consistency demands using a large number of neighbors and

correspondingly small values of the smoothing length
according to the power-law scalings advanced by Zhu et al.
[13], which define the number of neighbors and the size of the
kernel support in terms of the total number of particles filling
the computational domain. As the number of neighbors is
increased, the minimum resolvable mass is reduced which is
a key aspect for solving small local structures in compressible
flows at all scales. In these simulations consistency and volume
partitioning is improved as the number of neighbors per
particle is increased and the smoothing length is reduced
with increasing total number of particles. This has, as a
consequence, increased accuracy and a reduction of the
minimum resolvable mass, leading in most cases to better
than C0 completeness [30].

6 CONCLUSION

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian particle-
based method that has emerged in recent years as a popular
numerical technique for the simulation of a large variety of
problems in computational fluid and solid mechanics and
related areas. On the surface SPH looks like deceptively simple
and robust, but when we delve into its convergence properties, in
spite of its widespread applications and recent progress in
consolidating its theoretical foundations, the method still has
unknown properties that need to be investigated. Undoubtedly
a long-standing and non-trivial problem that has concerned many
practitioners is the lack of mathematical consistency that the SPH
approximation typically experiences. The lack of consistency is a
key feature of SPH because it not only affects its accuracy and
convergence properties, but also the conservation of fundamental
principles of physics, such as the principles of conservation of
linear momentum, angular momentum, and energy. In the light of
these shortcomings and deficiencies, the issue of SPH consistency
has become a very hot and important topic of research.

Several corrective methods and strategies have been
proposed over the years to restore SPH consistency and
misunderstandings regarding its concept have been clarified.
In this overview, we have provided a comprehensive survey of
the most successful corrective methods and strategies that have
been recently developed to address the problem of SPH
consistency. In particular, methods based on Taylor series
expansions of the kernel approximations of a function and
its derivatives can be formulated to achieve any degree of
consistency. However, the improved accuracy of these
corrective schemes comes at the price of involving the
inversion of large matrices that apart from implying an
increased computational cost for time-evolving simulations,
may also involve a loss of numerical stability due to matrix ill-
conditioning for some specific problems. Other methods
consisted in generalizing the kernel approximation of a
function and its derivatives by including the boundary
integrals and in specialized representations of the kernel
and particle estimates of the derivatives. It was not until
recently that the Poisson summation formula was employed
to study the convergence properties of SPH, allowing for the
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derivation of the functional dependence of the error bounds
carried by the particle interpolation formula on the SPH
parameters, namely the total number of particles, N, the
smoothing length, h, and the total number of neighbors
within the kernel support, n. This dependence indicates that
the error of the particle discretization decays as n is increased
in compliance with previous findings that have pointed to the
joint limit N →∞, h→ 0, and n →∞ as the only possible way
to guarantee full SPH consistency. Whereas this route seems
quite promising, it is not free of difficulties. For example,
regardless of how large N and n may be and of how small the
size of h may be consistency will be restored only in an
approximate sense. Although, the use of large values of n
along with small sizes of the kernel support may result in
drastic improvements of the SPH accuracy and convergence,
they may incur high computational costs which, on the other
hand, can discourage many practitioners. However, at the
present state, the SPH practitioner can choose from a
number of possible strategies to mitigate the lack of
consistency in their model applications. Unquestionably the
improvement of SPH certainly rests on a more accurate
volume estimate, or in other words, on the elimination of
the zeroth-order error so that the resulting scheme will be
confidently second-order accurate because of the symmetry of
the smoothing function.
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