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Cancer invasion of the surrounding tissue is a multiscale process of collective cell

movement that involves not only tumour cells but also other immune cells in the

environment, such as the tumour-associated macrophages (TAMs). The heterogeneity of

these immune cells, with the two extremes being the pro-inflammatory and anti-tumour

M1 cells, and the anti-inflammatory and pro-tumour M2 cells, has a significant impact on

cancer invasion as these cells interact in different ways with the tumour cells and with the

ExtraCellular Matrix (ECM). Experimental studies have shown that cancer cells co-migrate

with TAMs, but the impact of these different TAM sub-populations (which can change

their phenotype and re-polarise depending on themicroenvironment) on this co-migration

is not fully understood. In this study, we extend a previous multi-scale moving boundary

mathematical model, by introducing the M1-like macrophages alongside with their

exerted multi-scale effects on the tumour invasion process. With the help of this model

we investigate numerically the impact of re-polarising the M2 TAMs into the anti-tumoral

M1 phenotype and how such a strategy affects the overall tumour progression. In

particular, we investigate numerically whether the M2→M1 re-polarisation could depend

on time and/or space, and what would be the macroscopic effects of this spatial- and

temporal-dependent re-polarisation on tumour invasion.

Keywords: collective cancer cell movement, cancer invasion, macrophages, macrophage re-polarisation, multi-

scale modelling, cell adhesions, WENO schemes, convolution

1. INTRODUCTION

The last few decades have seen a shift in the focus of cancer research: from a research that was
focused on individual tumour cells to a research that is now focused on collective cancer cells
movement within the tumour microenvironment (TME) and the complex interactions between
tumour cells and other types of cells inside the TME [1]. These processes are key for each of the
stages of tumour progression, from the early development of the avascular tumour and its local
invasion to angiogenesis and subsequent metastasis stages [2, 3].

The TME is formed of tumour’s vasculature, connective tissue, infiltrating immune cells and
the extracellular matrix (ECM). In recent years the ECM has received considerable attention due
to its role in cancer evolution and response to therapies [1]. The ECM is a complex network of
macromolecules (such as fibrous proteins, water and minerals), which is an essential part of any
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healthy tissue [4]. To maintain its functionality, the ECM is
subject to continuous remodelling via synthesis and degradation.
The degradation of ECM is related to the over-secretion of several
enzymes, such as the matrix metalloproteinases (MMPs), which
are not explicitly tied to cancer cells, but can also be secreted by
other stromal cells [5].

One of these stromal cell populations is the macrophages,
which can form up to 50% of the tumour mass [6, 7]. They
are often classified into pro-inflammatory anti-tumour M1-
like macrophages and anti-inflammatory pro-tumour M2-like
macrophages. A specific class of macrophages that is present in
TME is called tumour-associated macrophages (TAMs). Since
in established tumours TAMs have a phenotype that resembles
M2 cells [8], they are in general correlated with poor prognosis
in various cancers [9–14]. These TAMs are also involved in the
active remodelling of ECM [8]. Experimental and clinical studies
over the last two decades have shown that re-educating TAMs
to exhibit anti-tumour responses, by switching cell phenotype
from M2-like to M1-like cells, can lead to successful anti-cancer
treatment protocols [8]. An example of such a treatment protocol
involving macrophage re-polarisation, which was shown to
be successful in human pancreatic cancer, involved the use
of agonist anti-CD40 mAb [15]. Finally, an overview of the
complex effects of macrophages within cancer progression and
their interaction with the TME is provided in Aras and Zaidi
[16].

Nutrients (e.g., oxygen and glucose) are essential for any
cells to live and function properly, including cancer cells and
macrophages. Nutrients are extravasated from the blood flow and
diffuse through the ECM. In avascular solid tumours, nutrients
diffuse into the tumour through the tumour boundary, and
therefore tumour progression leads to the formation of regions
inside the tumours with very low nutrient levels. These regions
first become hypoxic and then necrotic, and cells in these
regions undergo cell death being deprived of nutrients. Hypoxic
conditions can also modify the polarisation of macrophages and
influence the malignant behaviour of some cancer cells [17].
Biological evidence also suggests that specifically targeting these
hypoxic regions and the metabolic activities of cells within these
areas might be a beneficial therapeutic option [18, 19].

Therefore, understanding the complex dynamic interactions
between macrophages and tumour cells (direct anti-
tumour/pro-tumour interactions, or indirect interactions
via the degradation/remodelling of ECM), as well as their
nutrient consumption patterns, could help us generate new
hypotheses regarding the collective cancer cells invasion of
surrounding tissue and the mechanisms involved in tumour
progression and control.

Over the last decade, there have been substantial advances
in mathematical modelling to understand the dynamics of the
cancer cell populations as well as their interactions with their
surroundings; see [20–33] and references therein. Although
these models mainly focused on the interplay between the
cancer cells and the neighbouring ECM, the importance of the
macrophages during tumour development cannot be overlooked
and as a consequence, some mathematical models started to
investigate the role of macrophages on the overall tumour

progression [26, 28, 30, 34–39]. Initially, these models [37–
39] focused only on the anti-tumour role of the macrophages,
and only later models started to explore also their pro-tumour
role [26, 28]. Furthermore, most of these initial mathematical
models investigated tumour progression only at one spatio-
temporal scale [20–22, 31]. Since the relevance of various
biological processes occurring on different scales could not be
ignored, more recent models started to capture these multiscale
interactions [23, 24, 29, 30, 32, 40]. However, due the novelty
of these multiscale approaches, they have not been extended
to capture also the complex roles of macrophages in the
tumour development.

In this work, we further extend an existing multi-scale moving
boundary modelling platform [29, 30, 32]. To this end, we build
upon a mathematical model [30] that accounts not only for
the proteolytic processes occurring at the leading edge of the
tumour but also for the fibre and non-fibre components of
ECM, as well as for the presence of M2-like macrophages. In
the new mathematical model introduced in this study we include
the contribution of M1 TAMs to the overall tumour dynamics,
by considering the impact of these cells on both macro- and
micro-scales. We pay special attention to the dynamics of M1
and M2 cells near the tumour interface, and their interactions
with the tumour and with the ECM. We also focus on the
M1→M2 tumour-induced polarisation (in the presence/absence
of nutrients) and on the M2→M1 re-polarisation as induced by
various treatment protocols (e.g., the agonist anti-CD40 mAb
mentioned above [15]). In this new study we also, model the
potential role of nutrients on the proliferation/death of M1 and
M2 macrophages and cancer cells.

With the help of this new extended multi-scale model, we
aim to investigate whether an effective macrophage M2→M1
re-polarisation strategy (within a fibrous tissue environment
which impacts macrophage dynamics) is spatial and/or temporal
dependent. To our knowledge, this question has never been
addressed experimentally, even if the spatial heterogeneity of
the TME and the ECM is known to impact the polarisation/re-
polarisation of macrophages, and therefore any potential anti-
tumour treatment involving re-polarisation protocols.

The structure of the paper is as follows. In Section 2.1 we
present the extended macro-scale dynamics. Then, in Section 2.2
we outline the two micro-scale processes. We present our
numerical simulations in Section 4, by focusing especially on
the spatial and temporal dependency of the macrophage re-
polarisation. At last, we summarise and discuss the results in
Section 5.

2. MULTI-SCALE MODELLING OF THE
TUMOUR DYNAMICS

Building on the multi-scale moving boundary framework
initially introduced in Trucu et al. [32] and later expanded in
Shuttleworth and Truc [29] and Suveges et al. [30], in this work,
we explore not only the M2-like macrophages [30] but also the
M1 phenotype, by assessing the impact that these bring within the
interlinked tissue-scale (macro-scale) and cell-scale (micro-scale)
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tumour dynamics. Moreover, the biological context of the
cancer macro-dynamics is further broadened by considering the
presence of the nutrients, such as glucose and oxygen, which are
key constituents of the tumour microenvirnment and play an
impotan role within overall tumour progression.

2.1. Macro-Scale Dynamics
As this work extends the modelling framework introduced in
Shuttleworth and Trucu [29], Suveges et al. [30], and Trucu
et al. [32], we start this section by introducing some of its key
features. Thus, on the macro-scale we focus on the expanding
tumour region �(t) that progresses within a maximal tissue
cube Y⊂R

d, for d = 2, 3 and over the time interval [0,T]
(i.e., �(t) ⊂ Y ,∀t ∈ [0,T]). In this context, at any macro-
scale spatio-temporal point (x, t) ∈ �(t) × [0,T], we consider
a mixed cell population consisting of distributions of: (a) cancer
cells c(x, t); (b) M1-like macrophages, M1(x, t), briefly addressed
here as M1 TAM; and (c) M2-like macrophages, M2(x, t), which
are briefly referred to as M2 TAM. This mixture of cancer cells
and macrophages exercise their naturally multiscale dynamics
within an extracellular matrix, which, as in Shuttleworth and
Trucu [29, 41, 42], is regarded as consisting of two major phases,
namely a fibrous and a non-fibrous one. Specifically, on the
one hand, we have the fibre ECM phase, accounting for all
major fibrous proteins (such as collagen and fibronectin), whose
micro-scale structure enables a spatial bias for withstanding
incoming spatial cell fluxes, inducing this way an intrinsic ECM
fibres spatial orientation [29, 30, 41, 42]. Therefore, the spatio-
temporal distribution of the oriented ECM fibres at the macro-
scale point (x, t) is described by a vector field θf (x, t), where

θf (·, t) :R
d → R

d, with its Euclidean norm F(x, t) : =‖θf (x, t)‖2
representing the amount of fibres at (x, t). Then, on the other
hand, besides these fibrous proteins, the ECM also contains many
other components such as non-fibrous proteins (for instance
amyloid fibrils), enzymes, polysaccharides and extracellular Ca2+

ions. Hence, in the second ECM phase, we bundle together these
constituents and refer to it as the non-fibre ECM phase, and
its distribution at each (x, t) ∈ �(t) × [0,T] is denoted by
l(x, t). Therefore, for compactness, we denote the global five-
dimensional tumour vector by u that is given by

u := (c(x, t),M1(x, t),M2(x, t), l(x, t), F(x, t))
⊺, (1)

as well as denoting the total space occupied at (x, t) by ρ(u) and
define it as

ρ(u) := c(x, t)+ F(x, t)+ l(x, t)+M1(x, t)+M2(x, t), (2)

for all (x, t) ∈ �(t)× [0,T]. Furthermore, the last component of
the macro-scale dynamics is the nutrients density σ (x, t), whose
level within the tumour microenvironment is depleted by the
invading cancer.

Finally, the macrophages are considered to infiltrate the
tumour through the outer boundary [30], which is denoted by
∂�o(t) ⊂ ∂�(t) (see Figure 2), and is defined in Appendix B.

2.1.1. Nutrient
In this study we focus on an avascular tumour mass, whose
growth is supported by an influx of nutrients that diffuse through
the outer boundary of the tumour. To incorporate this aspect
into our mathematical model, we consider the overall influx of
a generic nutrient through the outer tumour boundary ∂�o(t)
by using Dirichlet boundary conditions. Although different
cell types uptake the supplied nutrients at different rates, for
simplicity here we assume that all present cell populations (cancer
cells, M1 and M2 TAMs) uptake nutrients at the same constant
rate dσ > 0. The spatial transport of the nutrients is modelled
by a diffusion term with constant coefficient Dσ > 0. Since this
diffusion occurs more rapidly than cell diffusion (i.e., cell random
walk), we use a quasi steady state reaction-diffusion equation
(similar to the one for instance in Macklin et al. [27]) for the
generic nutrients σ (x, t):

0 =Dσ1σ − dσ (c+M1 +M2)σ , (3a)

σ (x, t) =σnor , ∀x ∈ ∂�o(t),∀t ∈ [0,T]. (3b)

Here, σnor is the normal level of nutrients along the tumour
interface, which is considered here to be a constant.

Since cells require nutrients to function properly, here we
introduce four smooth bounded effect-functions that we use to
model the effects of the nutrients on the different cell functions
that considers the following critical nutrients levels:

• the necrotic minimal threshold σn > 0 (i.e., if σ ≤ σn this
leads to necrotic tumour cell death in that area [43];

• the intrinsic nutrient level sufficient for cells to function
properly: σp > 0;

• the normal level of nutrients: σnor (threshold value that is used
also as the Dirichlet boundary condition in Equation 3).

Hence, we have the following relationship between these three
values, namely: σnor > σp > σn.

Starting with the effect of nutrients on cell proliferation, we
first assume that this effect is relatively similar for cancer cells and
both macrophage populations, in the sense that very low nutrient
level impedes cell proliferation and extremely high nutrient level
cannot increase cell proliferation rate above a certain maximum.
We consider a maximal proliferation enhancement rate9p,max >

0 which corresponds to nutrient levels σ ≥ σp. Also, we assume
no proliferation in the necrotic regions. Thus, we define the
proliferation effect-function:

9p(σ ) : =





0 if σ ≤ σn,

9p,max if σ ≥ σp,

8(σ ,9p,max, 0, σp − σn) otherwise,

(4)

where 8(σ , ·, ·, ·) is a generic cosine function that describes a
smooth transition between the two extrema, i.e., for any level
σn < σ < σp. Thus,8(σ , ·, ·, ·) is defined by

8(σ ,8max,8min,8L) :=

8max −8min

2

[
cos

(
π(σ − σn −8L)

σp − σn

)
+ 1

]
+8min,(5)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 February 2022 | Volume 7 | Article 799650

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Suveges et al. Macrophages Re-polarisation Within Cancer Invasion

where 8min is the minimum, 8max is the maximum and 8L

controls the phase shift of the cosine function. We illustrate the
proliferation effect-function, defined in Equation (4) in Figure 1.

As opposed to cell proliferation, we distinguish between
the death of cancer cells and the death of macrophages, since
cancer cells resist death [3] while macrophages do not. Moreover,
experimental studies have shown that macrophages can die in
the absence of nutrients [44]. Also, it is known that following
hypoxia-induced chemo-attractant signals, macrophages
position themselves into pre-necrotic regions to clear out dead
cells in the necrotic regions [45]. Therefore, we consider a
maximal enhancement death rate9d,max > 0 in necrotic regions
for both populations, and while we assume no death for cancer
cells, we consider a minimal level of macrophage enhancement
death rate 9dM,min > 0 in regions where the nutrient level
is σ ≥ σp. Hence, cancer cell death and macrophage death
effect-functions are defined as (using the transition function
Equation 5):

9dc(σ ) :=





9d,max if σ ≤ σn,

0 if σ ≥ σp,

8(σ ,9dc,max, 0, 0) otherwise,

(6a)

9dM(σ ) :=





9d,max if σ ≤ σn,

9dM,min if σ ≥ σp,

8(σ ,9dM,max,9dM,min, 0) otherwise.

(6b)

These death effect-functions are illustrated in Figure 1.
Finally, it was shown experimentally [46] that the nutrient

level affects the macrophages polarisation rate giving rise for
instance to hypoxia-inducible factors generated by the link with
the TME. Therefore, here we consider also a polarisation effect-
function by which we ensure a smooth transition between levels
of maximal enhancement rate 9M,max > 0 in necrotic regions
and levels of minimal enhancement rate 9M,min > 0 in regions
with normal nutrient amounts. Using the smooth transition
function (Equation 5), we define the polarisation effect-function
9M(σ ) by

9M(σ ) :=





9M,max if σ ≤ σn,

9M,min if σ ≥ σnor ,

8(σ ,9M,max,9M,min, 0) otherwise.

(7)

This function is illustrated in Figure 1.

2.1.2. Dynamics of both M1 and M2 TAMs
Focusing now on the macrophage population, specifically to the
two extreme phenotypes, M1 and M2 TAMs, in this paper we
focus on the dynamics of the two TAMs populations exclusively
inside the tumour domain�(t), the evolution of themacrophages
distribution in the surrounding tumour stroma being beyond
the scope of this current work. Hence, since macrophages are
recruited to tumour sites as an immune response through the
peritumoral vasculature, here this influx is represented by a
source of M1 TAMs that is localised along the outer tumour
boundary ∂�o(t), which is enabled by the immediate activation

FIGURE 1 | Schematic plots of the four nutrients effect-functions (A) 9p (σ ),

(B) 9dc(σ ), (C) 9dM (σ ) and (D) 9M (σ ) defined in Equations (4), (6), and (7),

respectively.

of macrophages intoM1 TAMs as they enter the tumour [30]. For
simplicity, we assume that both profile and maximal magnitude
M0 > 0 of this source are identical along the tumour interface,
and so this influx term is given by

MI := M0(χ∂�o(t) ∗ ψρ)(x). (8)

Here, ψρ is the standard mollifier with appropriately chosen
range ρ > 0, “∗” is the convolution operator [47] and χ∂�o(t)

is the characteristic function of the outer boundary ∂�o(t).
Experimental studies have shown that resident macrophages

can proliferate in situ, which can lead to the accumulation of
tumour-associated macrophages inside various tumours [48].
Moreover, as in Suveges et al. [30], we recognise that the
stiffness of the ECM plays a role in the proliferation of the
macrophages [49] and that according to several biological studies
[50–52], cancer cells trigger the proliferation of macrophages by
producing survival and proliferation factors. Hence, we denote
by µMF > 0 the macrophages proliferation enhancement rate
due to the fibres while the proliferation effect-function 9p(σ )
defined in Equation (4) accounts for the effect of nutrients
on the macrophage proliferation. For simplicity, both the
fibre enhancement rate and the effect-function are assumed to
remain unchanged for both phenotype. Thus, we formulate the
proliferation laws for the M1 and M2 TAMs as

PM1 (u) :=µM9p(σ )(1+ µMFF)M1c(1− ρ(u))
+, (9a)

PM2 (u) :=µM9p(σ )(1+ µMFF)M2c(1− ρ(u))
+, (9b)
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respectively. In Equation (9), µM is the positive baseline
proliferation rate while the term (1−ρ(u))+ : = max(0, 1−ρ(u))
ensures that there is no overcrowding.

Experimental studies have shown that macrophages’ death can
be induced by nutritional starvation [44]. Thus, for both M1
and M2 TAMs, we consider a natural death rate dM > 0 that
is regulated by the available nutrients through the death effect-
function 9dM(σ ) introduced in Equation (6b), and so the death
terms for each of the two phenotypes are defined by

QM1 (u) := dM9dM(σ )M1, QM2 (u) := dM9dM(σ )M2,
(10)

for the M1 and M2 TAMs populations, respectively.
Due to the versatility of the macrophages, their phenotype can

be switched from one to another [53, 54]. In the present work,
we focus on two factors that drive the polarisation of M1 TAMs
into M2 TAMs, which are detailed as follows. On the one hand,
cytokines secreted by the cancer cells were shown [55, 56] to
trigger the polarisation process. On the other hand, the nutrient
level was also shown [46] to affect this process. As a consequence,
we describe the polarisation of M1 TAMs to M2 TAMs by

T12(u) := p129M(σ )cM1, (11)

where p12 > 0 is a constant proliferation rate, and 9M

is the polarisation effect-function defined in Equation (7).
Further, in vitro, it has been demonstrated [57] that the M2-like
macrophages can be re-polarised back into the M1 phenotype
which may be a viable strategy against tumour development.
To that end, we explore here mathematically the possibilities of
the re-polarisation strategy through a re-polarisation term of the
form

T21(u) :=

{
0 if t < tp,

p21M2(χ�p(t,Rp) ∗ ψρ)(x) if t ≥ tp.
(12)

Here, p21 > 0 is the constant re-polarisation rate, tp > 0 is the
activation time andχ

�p(t,Rp)
is the characteristic function of the re-

polarisation domain�p(t,Rp) that is defined in Appendix C and
illustrated in Figure 2. This re-polarisation term Equation (12)
allows us to examine whether or not we would need to account
for spatio-temporal dependencies through the domain �p(t,Rp)
and activation times tp > 0 in order to obtain an effective
re-polarisation strategy.

The motility of both macrophages phenotypes is driven both
by random and directed movement. Based on recent biological
evidence [49], increased stiffness of the substrate leads to an
increase in macrophages’ speed, aspect explored in our modelling
through a diffusion enhancement that corresponds to with the
level of ECM fibres. To that end, we consider a stiffness-
dependent macrophage diffusion coefficient DM(u) of the form

DM(u) := DM(1+ DMFF), (13)

where DM > 0 is the baseline macrophage diffusion rate,
and DMF > 0 is the diffusion enhancement rate due to the
presence of fibres. On the other hand, besides randommovement,

FIGURE 2 | Schematic of the re-polarisation domain �p(t,Rp) that is

highlighted with red.

macrophages also exercise directed migration due to a both
adhesive interactions with the surrounding cells and the ECM
as well as an underlying cross-talk between themselves and
the cancer cells. A similar “non-local flux term" to the one
introduced in Suveges et al. [30] is used here to explore the
complex interactions of the cells distributed at x ∈ �(t0) with
other cells within a sensing region B(0,R), and this accounts
for: (1) cell-cell TAMs self-adhesion [58]; (2) nutrients level
mediated movement [59]; and (3) the contribution of the cancer
cells to the directional movement of the macrophages [60–63].
Specifically, the contribution of the cancer cells to the directional
movement of themacrophages account not only for the biological
evidence that cancer cells can bind themselves to TAMs [60]
but also for the fact that cancer cells can attract TAMs [61–63]
by secreting various chemokines. Although we neither model
explicitly the involved chemokine activities within this cross-talk
nor the chemo-attractant activities involved with the nutrients,
here we appropriately account for both of them through the
following non-local flux term:

AM(x,t,u,SMM):=
1

R

∫

B(0,R)

K(y)n(y)
[
SMσ

(
1−σ (x+y, t)

)
+SMcc(x+y, t)

+ SMM

(
M1(x+y, t)+M2(x+y, t)

)] [
1−ρ(u)

]+
,

where R represents the radius of the sensing region B(0,R).
Further, SMc > 0 is the combined strength of the macrophage-
cancer adhesion, and SMσ > 0 denotes strength of the
macrophage-nutrient relationship, with both SMc and SMσ
being assumed to maintain their individual values unchanged
when considering the cases of M1 and M2 TAMs populations.
Furthermore, SMM denotes the self-adhesion strength that differs
for M1 and M2 TAMs [58], i.e.,

• for M1 TAMs SMM = SM1M > 0, and
• for M2 TAMs SMM = SM2M > 0,

with SM1M 6= SM2M . Finally, to account in Equation (14) for the
gradual weakening of these different adhesions as we move away
from the centre x within B(x,R), we use a radially symmetric
kernel K(·) that is given by

K(y) = ψ

( y
R

)
, ∀y ∈ B(0,R),
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where ψ(·) is the standard mollifier. Moreover, in Equation (14),

[1 − ρ(u)
]+

ensures that overcrowded tumour regions do not
contribute to macrophage migration and n(·) is the unit radial
vector given by

n(y) :=





y

‖ y ‖2
if y ∈ B(0,R) \ {0},

0 if y = 0.
(14)

Thus, aggregating now all these cell movement aspects explored
in Equations (8)–(14), the dynamics of the two distinct
macrophages phenotypes are mathematically formulated as

∂M1

∂t
=∇·[DM(u)∇M1−M1AM(x,t,u, SM1M)]+PM1(u)−QM1(u)

−T12(u)+T21(u)+MI , (15a)

∂M2

∂t
=∇·[DM(u)∇M2−M2AM(x,t,u, SM2M)]+PM2(u)−QM2(u),

+T12(u)−T21(u), (15b)

where SM1M > 0 and SM2M > 0 are the self-adhesion strengths
of M1 and M2 TAMs, respectively.

2.1.3. Dynamics of the Cancer Cell Population
The third cell population that we consider at macro-scale
is the cancer cell population. Crucially important for cancer
development and invasion, the cancer cell proliferation is a
complex process that is regulated by several processes involving
nutrients and macrophages. From the modelling perspective,
while we consider the proliferation process as being of logistic
type [64–66], we explore the influence of nutrients and
macrophages as follows. On the one hand, similar to both TAMs
populations, we consider the proliferation effect-function 9p(σ )
defined in Equation (4) to explore the influence of the available
nutrients on the rate of cancer cell proliferation. On the other
hand, biological evidence shows that while M2 TAMs promote
cancer cell proliferation [67], M1 TAMs inhibits this [68]. Thus,
expanding here the proliferation law introduced in Suveges et al.
[30] by accounting for the negative effect of M1 TAMs, we obtain
leading to the following proliferation law:

Pc(u) := µc9p(σ )(1− µcM1M1 + µcM2M2)c(1− ρ(u))
+, (16)

where µc > 0 is a baseline proliferation rate that is being
regulated by the available nutrients, being enhanced by the M2
TAMs at a rate µcM2 > 0 and at the same time weakened by the
presence of the M1 TAMs at a rate µcM1 > 0. Again, here the
term (1− ρ(u))+ ensures that there is no overcrowding.

Besides proliferation, it is well known that cancer cells resist
death [3, 69]. However, due to the peritumoral vasculature as
well as the excessive degradation of the ECM, the efficiency of the
nutrients delivery significantly reduces inside the tumour, leading
to necrosis [70]. In addition, numerous studies have shown [71–
75] that classically activated M1-like macrophages can produce
significant amounts of pro-inflammatory cytokines, and thereby
have the ability to kill cancer cells. To that end, we assume here
a baseline death rate dc > 0 that is regulated not only by the

cancer cell death effect-function 9dc(σ ) introduced in Equation
(6a), but also by the M1 TAMs at a rate dcM1 > 0. This results
in the following mathematical representation of the cancer cell
death process, namely

Qc(u) := dc(9dc(σ )+ dcM1M1)c. (17)

Similar to the macrophages, for the cancer cell population we
also account for the diffusion enhancement that the spatial
distribution of ECM fibres enables [76–84]. Furthermore, the
random movement of the cell population is also affected by the
presence of both macrophage populations. While in general, the
M2 TAMs were shown to promote cancer cell motility, Afik
et al. [85] recent biological evidence [68, 86] indicates that the
M1 phenotype has a negative effect on the cancer cell motility.
Therefore, the diffusion coefficient for the random movement of
the cancer cells can be formulated mathematically as

Dc(u) := Dc(1+ DcM2M2 + DcFF − DcM1M1). (18)

where Dc > 0 is a baseline diffusion rate, DcF > 0 is the
ECM fibres enhancement coefficient, DcM1 > 0 represents the
weakening effect due to the presence of M1 TAM, and DcM2 > 0
accounts for the positive motility effect due to the presence of
M2 TAM.

Besides random motility, the directed movement of the
cancer cells induced by various adhesion mediated processes
[60, 61, 87–90] is a central player in cancer invasion within the
oriented fibrous environment. To that end, extending here on the
modelling approach proposed in Suveges et al. [30] to include the
interactions of cancer cells with both families of macrophages,
i.e., M1 and M2 TAM, we have that the non-local spatial flux that
drives the directed movement is given in this case as:

Ac(x, t, u, θf ) :=
1

R

∫

B(0,R)

K(y)
[
n(y)

(
Sccc(x+y, t)+Scll(x+y, t)

+ScM(M1(x+y, t)+M2(x+y, t))
)

+n̂(y,θf (x+ y, t))ScFF(x+y, t)
][
1−ρ(u)

]+
,

(19)

where R, n(·) and K(·) are the same as in Equation (14). Further,
in Equation (19) n̂(·, ·) is the unit radial vector biased by the
orientation of the fibres, i.e.,

n̂(y, θf (x+ y)) :=





y+ θf (x+ y, t)

‖ y+ θf (x+ y, t) ‖2
if y ∈ B(0,R) \ {0},

0 if y = 0,

(20)
as illustrated in Figure 3. Moreover, in Equation (19) ScM > 0
represents the strength of the adhesion relationship between the
cancer cells and M1 and M2 TAMs, ScF > 0 is the strength of
the cell-fibre ECM adhesion [91] and Scl > 0 corresponds to
strength of adhesion between the cancer cells and the non-fibre
ECM phase (that includes for instance amyloid fibrils, which can
support cell-adhesion processes [92]). Furthrmore,as high level
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FIGURE 3 | Illustration of how the orientation of the fibres θf (·, ·) biases the cell-fibre adhesion.

of extracellular Ca+2 ions (which form one of the constituents
of the non-fibre ECM phase) are necessary for cell-cell adhesion
[93, 94], proceeding as in Shuttleworth and Trucu [29, 41, 42],
and Suveges et al. [30] the cancer cells self-adhesion coefficient
Scc is taken here as

Scc(x, t) := Smin + (Smax − Smin) exp

[
1−

1

1− (1− l(x, t))2

]
,

where Smax > 0 and Smin > 0 correspond to maximum and
minimum levels of Ca+2 ions. Therefore, Scc smoothly increases
from a minimal to a maximum value in order to fully explore the
varying strengths of cell-cell adhesion.

Thus, using Equations (16)–(19) the spatio-temporal
dynamics of the cancer population c(x, t) is expressed as

∂c

∂t
=∇ · [Dc(u)∇c− cAc(x, t, u, θf )]+ Pc(u)− Qc(u). (21)

2.1.4. Two-Phase ECM Macro-Scale Dynamics
Besides the cancer cells, both macrophage phenotypes contribute
to the degradation of the ECM by secreting proteolytic enzymes
[95–99] (e.g., various classes of matrix metalloproteinases). To
that end, we extend the dynamics of the fibre, and non-fibre
ECM components used in Suveges et al. [30] by incorporating the
effects of the M1 phenotype. Thus, the dynamics of the non-fibre
l(x, t) as well as the fibre ECM F(x, t) are formalised as

∂ l

∂t
=− l(βlcc+ βlM1M1 + βlM2M2)+ (γ0 + γM2M2)(1− ρ(u))

+,

(22a)

∂F

∂t
=− F(βFcc+ βFM1M1 + βFM2M2), (22b)

where βlc, βlM1 , βlM2 are the positive degradation rates of
the non-fibre ECM phase due to the cancer cells, M1 and M2
TAMs, respectively. Similarly, βFc, βFM1 , βFM2 are all positive
and describe the degradation rates of the fibre component of the
ECM due to the cancer cells, M1 and M2 TAMs, respectively.
Finally, in Equation (22) γ0 > 0 represents the constant rate of

remodelling and γM2 > 0 is the remodelling enhancement rate
induced by the M2 TAM population [85, 96, 100].

2.1.5. The Full Macro-Scale Dynamics
In summary, using Equations (3), (15), (21), and (22) the non-
dimensional macro-scale dynamics is given by the following
coupled PDEs

∂c

∂t
=∇·[Dc(u)∇c−cAc(x,t,u, θf )]+Pc(u)−Qc(u), (23a)

∂M1

∂t
=∇·[DM(u)∇M1−M1AM(x,t,u, SM1M)]+PM1(u)−QM1(u)

− T12(u)+T21(u)+MI , (23b)

∂M2

∂t
=∇·[DM(u)∇M2−M2AM(x,t,u, SM2M)]+PM2(u)−QM2(u)

+ T12(u)−T21(u), (23c)

∂ l

∂t
=− l(βlcc+βlM1M1+βlM2M2)+(γ0+γM2M2)(1−ρ(u)),

(23d)

∂F

∂t
=− F(βFcc+βFM1M1+βFM2M2), (23e)

0 =Dσ1σ − dσ (c+M1+M2), (23f)

in the presence of appropriate initial conditions (such as those
specified in Equation (51)) with zero-flux boundary conditions
for c, M1, M2, l and F, as well as Dirichlet boundary condition
(Equation 3) for the nutrients σ .

2.2. Processes on the Micro-Scales and
Links Between the Scales
As the process of cancer invasion is truly a multi-scale
phenomena [2], the macro-scale dynamics is tightly linked
together with several micro-scale processes. Among the micro-
scale processes of important for cancer invasion, of main interest
for us in this work are the micro-scale rearrangement of ECM

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 February 2022 | Volume 7 | Article 799650

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Suveges et al. Macrophages Re-polarisation Within Cancer Invasion

fibre micro-constituents as well as the cell-scale proteolytic
processes that take place at the leading edge of the tumour. In
the following, we outline the details of these two micro-dynamics
as well as the naturally occurring double feedback loop that links
them to the tumour macro-scale dynamics (Equation 23).

2.2.1. Fibres on the Micro-Scale and Their Bottom-Up

and Top-Down Links to Macro-Dynamics
Following [29], the macroscopic oriented ECM fibres are
represented not only through their amount F(x, t), but also
via their spatial bias that characterise their ability to withstand
incoming forces. Indeed, both of these characteristics of the ECM
fibres are induced by the distribution of the non-dimensional
micro-fibres f (z, t) on a cell-scale micro-domain δY(x) : = x+δY
of appropriate micro-scale size δ > 0, and are captured via a
vector field representation [29] θf (x, t) of the ECM fibres which
is defined by

θf (x, t) :=
1

λ(δY(x))

∫

δY(x)

f (z, t)dz ·
θx,δY(x)(x, t)

‖ θx,δY(x)(x, t) ‖2
, (24)

where λ(·) is the Lebesgue measure in R
d and θf ,δY(x)(·, ·) is the

revolving barycentral orientation with respect to the measure
f (z, t)λ(·) given by Shuttleworth and Trucu [29]

θf ,δY(x)(x, t) :=

∫
δY(x)

f (z, t)(z − x)dz

∫
δY(x)

f (z, t)dz
.

Finally, the second characteristic, namely the ECM fibres
amount, is given by the Euclidean norm of the vector field θf (x, t),
i.e.,

F(x, t) :=‖ θf (x, t) ‖2,

and so it describes the mean-value of the micro-fibres distributed
on δY(x). Therefore, the micro-scale naturally links with the
macro-scale since the representation of the ECM fibres on the
macro-scale is induced by the micro-scale fibre distribution, and
so we refer to this as the fibres bottom-up link.

On the other hand, the macro-scale spatial fluxes, generated
by the tumour macro-dynamics (Equation 23), trigger a
rearrangement of the ECM fibres micro constituents on each
micro-domain δY(x). Indeed, the collective migration of the
cancer cells, M1 TAMS, and M2 TAMs lead naturally to the
emergence of the associated spatial fluxesFc,FM1 , andFM2 given
by

Fc(x, t) :=Dc(M1,M2, F)∇c− cAc(x, t, u, θf ),

FM1 (x, t) :=DM(F)∇M1 −M1AM(x, t, u, SM1M),

FM2 (x, t) :=DM(F)∇M2 −M2AM(x, t, u, SM2M),

respectively. The combined action of these fluxes upon the
ECM fibres distributed at (x, t) ∈ �t × [0,T] is felt
uniformly by its constituent micro-fibres f (z, t) distributed on
the associated micro-domain δY(x), consequently inducing a

micro-fibres rearrangement vector similar to the ones proposed in
Shuttleworth and Trucu [29] and Suveges et al. [30] of the form

r(δY(x), t) :=ωc(x, t)Fc(x, t)+ ωM1 (x, t)FM1 (x, t)

+ ωM2 (x, t)FM2 (x, t)+ ωF(x, t)θf (x, t),
(25)

which triggers a spatial redistribution of the micro-fibres in
δY(x). In Equation (25), the non-linear weightsωc,ωM1 ,ωM2 and
ωF are the associated mass factions of cancer cells, M1 TAMs, M2
TAMs, and ECM fibres at (x, t), and so these are

ωc(x, t) :=
c(x, t)

c(x, t)+M1(x, t)+M2(x, t)+ F(x, t)
,

ωM1 (x, t) :=
M1(x, t)

c(x, t)+M1(x, t)+M2(x, t)+ F(x, t)
,

ωM2 (x, t) :=
M2(x, t)

c(x, t)+M1(x, t)+M2(x, t)+ F(x, t)
,

ωF(x, t) :=
F(x, t)

c(x, t)+M1(x, t)+M2(x, t)+ F(x, t)
,

respectively. Ultimately, the rearrangement vector (Equation 25)
induces a relocation vector νδY(x)(z, t), and as a result we can
appropriately calculate the new positions of anymicro-scale node
z ∈ δY(x) that are given by

z∗ := z + νδY(x)(z, t).

In Figure 4, we illustrate the micro-fibre rearrangement process
by considering a typical example of these vectors while for further
details we refer the reader to Shuttleworth and Trucu [29] and
Suveges et al. [30]. Finally, this rearrangement of the ECM fibres
at micro-scale triggered by the emergent macro-scale spatial
fluxes (Fc,FM1 , andFM2 ) establishes the fibre top-bottom link. In
Figure 5, we illustrate the fibres bottom-up and top-down links,
connecting the macro-scale and the ECM fibre micro-scale.

2.2.2. MDE Boundary Micro-Dynamics and Its

Connections to Macro-Dynamics
The second micro-process that we consider is the proteolytic
molecular processes which are driven by the secretion of matrix-
degrading enzymes (MDEs) (such as matrix-metalloproteinases)
and take place along the leading edge of the tumour. Indeed,
besides cancer cells, both M1 and M2 TAMs within the
proliferating outer rim of the tumour secrete MDEs [95–99],
and this way the tissue-scale dynamics induces a source for cell-
scale proteolytic activity. Once secreted, the MDE molecular
population exercises a spatial transport across the tumour
interface within a cell scale neighbourhood of the tumour
boundary, causing degradation of the szrperitumoral ECM, and
ultimately leading to changes in the tumour morphology [2].
Thus, following here the approach introduced in Trucu et al. [32],
we explore the emerging spatio-temporal molecular MDEs
micro-dynamics on an appropriate cell-scale neighbourhood of
the tumour interface ∂�(t) enabled by the union of a covering
bundle of cubic micro-domains {ǫY}ǫY∈P(t), with each ǫY being
of micro-scale size ǫ > 0. This allows us to decompose the MDE
micro-dynamics occurring on

⋃
ǫY∈P(t)

ǫY into a union of MDE

micro-processes occurring on each ǫY [32].
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FIGURE 4 | Typical examples of the relevant vectors xdir (z): = z − x, r(δY (x), t) and νδY (x)(z, t), allowing the redistribution of each micro-point (z, t).

FIGURE 5 | Schematics of the four links between the macro and both micro-scales as well as how they are linked together.

Therefore, considering the tumour evolution over a time
perspective [t0, t0+1t], for an arbitrary instance t0 ∈ [0,T], and
of appropriate micro-scale range 1t > 0, on any of the micro-
domains ǫY ∈ P(t0) we denote by m(y, τ ) the spatio-temporal
distribution of MDEs at micro-scale point (y, τ ) ∈ ǫY × [0,1t].
In this context, at any spatio-temporal (y, τ ) ∈ (ǫY ∩ �(t0)) ×
[0,1t], a source of MDEs arises as a collective contribution of
the cancer cell and both macrophage populations from the outer
proliferating rim of the tumour that are situated within a distance
γh> 0 from y ∈ ǫY . Hence, denoting this micro-scale MDE
source by h(y, τ ), this can be formalised mathematically via the
non-local expression

h(y, τ ) =




∫
B(y,γh)∩�(t0)

h6(x, τ ) dx

λ(B(y, γh) ∩�(t0))
y ∈ ǫY ∩�(t0),

0 y /∈ ǫY \ (�(t0)+ {z ∈ Y | ‖z‖2 < ρ}),

(26)

where B(y, γh) : = {z ∈ Y| ‖ y − z ‖∞≤ γh} denotes the ‖ · ‖∞
ball with appropriately chosen radius γh > 0 and 0 < ρ < γh is a
small mollification range which smooths out the source function
h(·, ·). Further, in Equation (26) h6 is given by

h6(x, τ ) := αcc(x, t0+τ )+αM1M1(x, t0+τ )+αM2M2(x, t0+τ ),

where αc > 0, αM1 > 0 and αM2 > 0 are constant secretion rates
of the MDEs by the cancer cells, M1 and M2 TAMs respectively.
As the MDE micro-source is naturally induced by the macro-
scale, this establishes a MDE top-down link between the tumour
macro-dynamics and MDE-micro-dynamics occurring at the
tumour interface. Finally, under the presence of the MDE source
h(·, ·), the MDE micro-dynamics is given by

∂m

∂τ
= Dm1m+ h(y, τ ),

m(y, 0) = 0,

∂m

∂n
= 0,

(27)
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where Dm > 0 is the constant diffusion coefficient and n is
the outward normal vector. Finally, as the patterns of significant
degradation of the peritumoural ECM correspond the regions
where significant levels MDEs are transported during the micro-
dynamics, the micro-dynamics (Equation 27) enables us to
capture to changes in tumour morphology by determining the
direction of movement and magnitude of the displacement of
invading cancer in the surrounding tissue [32]. Thus, the MDE
micro-process induces changes in the shape of the tumour
boundary ∂�(t0), affecting directly the macro-dynamics, which
is continued on a modified tumour macro-domain �(t0 + 1t),
for further details we refer the reader to Trucu et al. [32].
Hence, aMDE bottom-up link between the proteolytic boundary
micro-dynamics and macro-scale cancer dynamics is this way
established. In Figure 5, we illustrate both MDE top-down and
bottom-up links that connect the macro-scale and the MDE
micro-scale.

3. NUMERICAL APPROACHES

In this section, we describe the numerical approach developed
to solve the tumour macro-scale dynamics (Equation 23). First,
to solve the quasi-steady nutrients σ equation (23f), we use
the usual successive over-relaxation method with relaxation
parameter ω = 0.5 and tolerance of 10−5. For the rest of
the dynamics (Equations 23a–23e), we use the method of lines
approach to discretise the system (Equation 23) first in space
and then for the resulting ODEs, we use a non-local predictor-
corrector scheme [29]. In this context, we carry out an accurate
approximation of the two distinct spatial operators, namely the
diffusion and adhesion operators, by using fast convolution-
driven approaches. Specifically, while for the diffusion, we
construct a convolution-based second-order central difference
scheme [30], for the adhesion operators, we formulate a
convolution-driven fifth-order weighted essentially non-oscillatory
(WENO5) finite difference scheme.

Furthermore, to approximate the adhesion integrals
(Equation 14 and 19), we adopt the numerical approach
used in Suveges et al. [30]. Here, we omit the technical details of
this method since it follows identical steps, the sole difference
being that within the formulas, we use the total macrophage
population, i.e., M1 + M2 TAMs instead of only the M2 TAMs
population. For the same rationale, we also skip the details of the
numerical method used in the MDE micro-scale, and for further
details, we refer the reader to Suveges et al. [30].

To facilitate the description of the numerical approaches,
let us introduce some basic notations. First, we discretise the
maximal tissue cube Y ∈ R

2 uniformly in each direction
with spatial step size 1x = 1y. Therefore, the discretisation
of Y can be represented through the macro-spatial locations
{(xi, yj)}i,j=1..N , with N = L/hL + 1. Then the discretised
global tumour vector at any time-step n is denoted by un =

[cn,Mn
1 ,M

n
2 , l

n, Fn]⊺, while the discretised nutrient field is
denoted by σ n. Furthermore, we denote the diffusion coefficient
functions and adhesion integrals for cancer cell and TAMs by
(Dc)n, (DM)n, (Ac)n and (AM)n, respectively. Finally, with these

notations, we are able to rewrite the macro-scale dynamics
(Equation 23) in the following convenient form

∂u

∂t
=∇ · [D(u)∇u]− ∇ · F(u)+ ß(u),

0 =Dσ1σ − dσ (c+M1 +M2),
(28)

where

D(u) :=




Dc(u)
DM(u)
DM(u)

0
0



, F(u) :=




cAc(x, t, u, θf )
M1AM(x, t, u, SM1M)
M2AM(x, t, u, SM2M)

0
0



,

ß(u) :=




Pc(u)− Qc(u)
PM1 (u)− QM1 (u)− T12(u)+ T21(u)+MI

PM2 (u)− QM2 (u)+ T12(u)− T21(u)
−l(βlcc+ βlM1M1 + βlM2M2)+ (γ0 + γM2M2)(1− ρ(u))

−F(βFcc+ βFM1M1 + βFM2M2)



.

3.1. Diffusion Operators: ∇ · [D(u)∇u]
Starting with the discretisation of the diffusion operators ∇ ·

[D(u)∇u] in Equation (28), during the computations, we first
detect whether a spatial node (i, j) is inside or outside the
expanding tumour domain �(t0) via an indicator function
I(·, ·) :X × X → {0, 1}, with X = {1, ...,M} that is defined by

I(i, j) :=

{
1 if (xi, xj) ∈ �(t0),

0 otherwise.
(29)

Similarly, we detect any boundary nodes using a boundary
indicator function defined by

IB(i, j) :=

{
1 if (xi, xj) ∈ ∂�(t0),

0 otherwise,
(30)

where ∂�(t0) is boundary of �(t0), and for convenience we also
define the interior indicator function by

IIn(i, j) :=

{
1 if (xi, xj) ∈ �(t0) \ ∂�(t0).

0 otherwise.
(31)

These two functions, given in Equations (30) and (31), enable
us to split the domain into two parts, namely to boundary
and strictly inside parts. The motivation behind this is to use
two different computational technique on these parts which
eventually reduces the computational cost. Hence, while for any
interior node we can use the same discrete universal numerical
operator (convolution), for a boundary point we need to apply
unique operators due to the zero-flux boundary condition and
the continuously changing tumour domain (that may result in
an irregular tumour shape). Therefore, to achieve the reduction
in computational cost, we accordingly split the spatial operators
∇ · [D(u)∇u] into two components as well, and so at any spatial
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node (xi, yj) ∈ �(t0) ⊂ Y , the diffusion operators can be
represented as

∇ · [D(u)∇u](i, j) :=





∇ · [D(u)∇u]In(i, j) if IIn(i, j) = 1,

∇ · [D(u)∇u]B(i, j) if IB(i, j) = 1,

0 otherwise.
(32)

In this context, the usual two dimensional second-order central
difference scheme for a non-constant diffusion operator is given
by

(
∇ · [D(u)∇u]

)n
i,j =

1

1x2

(
D(uni+1,j)+D(uni,j)

2

(
uni+1,j − uni,j

)

−
D(uni,j)+D(uni−1,j)

2

(
uni,j − uni−1,j

)

+
D(uni,j+1)+D(uni,j)

2

(
uni,j+1 − uni,j

)

−
D(uni,j)+D(uni,j−1)

2

(
uni,j − uni,j−1

))
,

(33)

where uni,j = [cni,j,M
n
1i,j
,Mn

2i,j
, lni,j, F

n
i,j]

⊺. Further, we observe that

Equation (33) can be equivalently expressed by sum of discrete
convolutions and so for all interior node (xi, yj) the scheme is
given by

(
∇ · [D(u)∇u]In

)n
=

1

1x2

2∑

k=1

((
K̃
2k−1
A ∗D(un)

)
◦
(
K̃
k
F ∗ u

n
)

−
(
K̃
2k
A ∗D(un)

)
◦
(
K̃
k
B ∗ u

n
))

,

(34)

where ∗ is the discrete convolution and ◦ is the Hadamard
product [101]. Also, in Equation (34) each K̃

k
A, with k = 1 . . . 4

describe the average between the point (i, j) and one of its
immediate neighbour and so they are defined by

K̃
1
A = [0, 0.5, 0.5], K̃

2
A = [0.5, 0.5, 0], K̃

3
A =

(
K̃
1
A

)
⊺
,

K̃
4
A =

(
K̃
2
A

)
⊺
. (35)

Moreover, in Equation (34) K̃k
F and K̃

k
B with k = 1, 2 are induced

by the forward and backward differences, respectively. Hence,
they are defined in both direction i (if k = 1) as well as in
direction j (if k = 2) by

K̃
1
F = [0,−1, 1], K̃1

B = [−1, 1, 0], K̃2
F =

(
K̃
1
F

)
⊺
, K̃2

B =
(
K̃
1
B

)
⊺
.

(36)
However, for boundary nodes, we cannot use the form Equation
(34) due to the imposed zero-flux boundary condition and the
continuously changing tumour domain. This is because the
calculation of the diffusion operators at the boundary nodes
involves the approximation of the values at any node that does

not belong to the tumour domain, i.e., for any node (xi, yj) /∈

�(t0). In some cases, due to the irregular domain, such values
may not be uniquely defined because multiple nodes can require
the value of the same ghost/outside node, however, with different
values. Consequently, for any boundary node, instead of the
convolutional form Equation (34), we instead use the usual form
Equation (33) and symmetrically reflect the values of the interior
nodes to the ghost/outside nodes in a node by node fashion.

3.2. Adhesion Operators: ∇ · F (u)
The other spatial operators that contribute to the motility
are the adhesion operators ∇ · F(u) in Equation (28). The
procedure to approximate these differential operators is based
on the standard WENO5 scheme proposed in Jiang and Shu
[102] and Liu et al. [103]. However, it was shown [104] that
these standard WENO5 schemes suffer from slight post-shock
oscillations. As a consequence, we adopt here the modified
WENO5 scheme proposed in Zhang and Shu [104], which
uses modified smoothness indicators and is referred to as the
ZSWENO scheme.

Similarly to the diffusion operator case, here we split the
domain into two parts as well. However, ZSWENO schemes
induce larger stencils compared to the second-order central
difference scheme and so, we need to split the domain�(t0) into
two parts differently. We refer these two parts as the inside and
layer parts. First, the former one is detected by using an inside
indicator function II(i, j) that we define by

II(i, j) :=

{
1 if (I ∗ KI)i,j = 1,

0 otherwise,
(37)

where I is defined in Equation (29) and KI is given by

Kin =
1

13




0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0
1 1 1 1 1 1 1
0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0




,

which is induced by the fifth-order ZSWENO stencils. Then the
layer part of the domain is detected by a layer indicator function
formulated as

IL(i, j) :=

{
1 if I(i, j)− II(i, j) = 1,

0 otherwise.
(38)

Similarly to the diffusion, using these indicator functions
(Equations 37 and 38), we split the adhesion operator into two
parts and so at any spatial node (xi, yj) ∈ �(t0) this operator is
represented as

∇ · F(u)(i, j) :=





∇ · F(u)I(i, j) if II(i, j) = 1,

∇ · F(u)L(i, j) if IL(i, j) = 1,

0 otherwise.

(39)
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Therefore, for the inside operator ∇ · F(u)I , we use the usual
conservative form

∇ · F(u)I =
1

1x

(
F̂i+ 1

2 ,j
− F̂i− 1

2 ,j
+ Ĝi,j+ 1

2
− Ĝi,j− 1

2

)
, (40)

where F̂i+ 1
2 ,j
, F̂i− 1

2 ,j
, Ĝi,j+ 1

2
and Ĝi,j− 1

2
are the numerical fluxes at

(xi+ 1
2
, yj), (xi− 1

2
, yj), (xi, yj+ 1

2
) and (xi, yj− 1

2
), respectively. Also in

Equation (40), for compact notation, F̂ and Ĝ denotes the x and
y components of the vector field F(·), respectively.

For brevity, we will only focus on defining F̂i+ 1
2 ,j

and F̂i− 1
2 ,j
,

and note that corresponding calculations for Ĝi,j+ 1
2
and Ĝi,j− 1

2

follows identical steps. In this context, we split the x component
of F(·) into two parts

F̂(u) = F̂+(u)+ F̂−(u),

where dF̂+(u)/du > 0 and dF̂−(u)/du ≤ 0. Then, we define
these parts by using the popular Rusanov-type flux splitting
method [105] that is given by

F̂±(u) =
1

2

(
F̂(u)± αu

)
, (41)

where we approximate α : = max |dF̂(u)/du|, i.e., the spectral
radius of the Jacobian generated by F̂(·) in a Jacobian-free
manner, detailed in Section 3.3. To this end, let us denote by
F̂+
i± 1

2 ,j
and F̂−

i± 1
2 ,j

the numerical fluxes obtained by splitting F̂(·)

into the positive and negative parts, respectively. Then these
numerical fluxes used in Equation (40) are given by the sum of
their associated parts

F̂i± 1
2 ,j

= F̂+
i± 1

2 ,j
+ F̂−

i± 1
2 ,j
,

where following the standard ZSWENO procedure, F̂+
i± 1

2 ,j
and

F̂−
i± 1

2 ,j
are given by the weighted combination of the three third-

order essentially non-oscillatory (ENO) approximations [102–
104, 106]. Hence, they are given by

F̂±
i+ 1

2 ,j
=

2∑

k=0

ω±

k,i+ 1
2 ,j
F̂±
k,+, F̂±

i− 1
2 ,j

=

2∑

k=0

ω±

k,i− 1
2 ,j
F̂±
k,−, (42)

where ω±

k,i± 1
2 ,j

are the non-linear weights that we will define later,

F̂±
k,+ are the ENO approximations given by

F̂+0,+ =
1

3
F̂+(ui−2,j)−

7

6
F̂+(ui−1,j)+

11

6
F̂+(ui,j), (43a)

F̂+1,+ =−
1

6
F̂+(ui−1,j)+

5

6
F̂+(ui,j)+

1

3
F̂+(ui+1,j), (43b)

F̂+2,+ =
1

3
F̂+(ui,j)+

5

6
F̂+(ui+1,j)−

1

6
F̂+(ui+2,j), (43c)

F̂−0,+ =
1

3
F̂−(ui+3,j)−

7

6
F̂−(ui+2,j)+

11

6
F̂−(ui+1,j), (43d)

F̂−1,+ =−
1

6
F̂−(ui+2,j)+

5

6
F̂−(ui+1,j)+

1

3
F̂−(ui,j), (43e)

F̂−2,+ =
1

3
F̂−(ui+1,j)−

5

6
F̂−(ui,j)+

1

6
F̂−(ui−1,j), (43f)

and similarly, F̂±
k,− are defined by

F̂+0,− =
1

3
F̂+(ui−3,j)−

7

6
F̂+(ui−2,j)+

11

6
F̂+(ui−1,j), (44a)

F̂+1,− =−
1

6
F̂+(ui−2,j)+

5

6
F̂+(ui−1,j)+

1

3
F̂+(ui,j), (44b)

F̂+2,− =
1

3
F̂+(ui−1,j)+

5

6
F̂+(ui,j)−

1

6
F̂+(ui+1,j), (44c)

F̂−0,− =
1

3
F̂−(ui+2,j)−

7

6
F̂−(ui+1,j)+

11

6
F̂−(ui,j), (44d)

F̂−1,− =−
1

6
F̂−(ui+1,j)+

5

6
F̂−(ui,j)+

1

3
F̂−(ui−1,j), (44e)

F̂−2,− =
1

3
F̂−(ui,j)+

5

6
F̂−(ui−1,j)−

1

6
F̂−(ui−2,j). (44f)

Finally, in Equations (43) and (44) F̂±(u) are given by the
Rusanov-type flux splitting method defined in Equation (41).

Since our aim is to reduce the computational cost and so
for this we seek to use convolution, we observe that indeed
these ENO fluxes (Equations 43 and 44) can be equivalently
represented by discrete convolutions, i.e.,

F̂±
k,+ = K̃

±
k,+ ∗ F

±(u), F̂±
k,− = K̃

±
k,− ∗ F

±(u), (45)

where K̃±
k,+ and K̃±

k,− are the induced vectors from Equations (43)
and (44), and for completeness they are defined in Appendix D.

Let us now shift our attention to the non-linear weights
ω±

k,i± 1
2 ,j

that we used to construct the ZSWENO approximation

in Equation (42). Following again the usual procedure [103], we
define these weights as

ω±

k,i+ 1
2 ,j

:=

α±
k,i+ 1

2 ,j∑2
k=0 α

±

k,i+ 1
2 ,j

, α±
k,i+ 1

2 ,j
:=

ωo
k,+(

ǫW + IS±
k,i+ 1

2 ,j

)p ,

ω±

k,i− 1
2 ,j

:=

α±
k,i− 1

2 ,j∑2
k=0 α

±

k,i− 1
2 ,j

, α±
k,i− 1

2 ,j
:=

ωo
k,−(

ǫW + IS±
k,i− 1

2 ,j

)p ,

(46)

where we take the usual p = 2, ǫW = 10−6 values [102],
and define the optimal weights ωo

k,+ and ωo
k,− as: ωo

0,+ = 0.1,
ωo
1,+ = 0.6, ωo

2,+ = 0.3 and ωo
0,− = 0.3, ωo

1,− = 0.6, ωo
2,− =

0.1. Furthermore, in Equation (46) IS±
k,i± 1

2 ,j
are the ZSWENO

smoothness indicators [104], and the explicit formulae first for
IS±

k,i+ 1
2 ,j

are given by

IS+
0,i+ 1

2 ,j
=
(
F̂+(ui−2,j)− 4F̂+(ui−1,j)+ 3F̂+(ui,j)

)2
, (47a)

IS+
1,i+ 1

2 ,j
=
(
F̂+(ui−1,j)− F̂+(ui+1,j)

)2
, (47b)

IS+
2,i+ 1

2 ,j
=
(
3F̂+(ui,j)− 4F̂+(ui+1,j)+ F̂+(ui+2,j)

)2
, (47c)

IS−
0,i+ 1

2 ,j
=
(
F̂−(ui+3,j)− 4F̂−(ui+2,j)+ 3F̂−(ui+1,j)

)2
, (47d)
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IS−
1,i+ 1

2 ,j
=
(
F̂−(ui+2,j)− F̂−(ui,j)

)2
, (47e)

IS−
2,i+ 1

2 ,j
=
(
3F̂−(ui+1,j)− 4F̂−(ui,j)+ F̂−(ui−1,j)

)2
, (47f)

and then for IS±
k,i− 1

2 ,j
, we have

IS+
0,i− 1

2 ,j
=
(
F̂+(ui−3,j)− 4F̂+(ui−2,j)+ 3F̂+(ui−1,j)

)2
, (48a)

IS+
1,i− 1

2 ,j
=
(
F̂+(ui−2,j)− F̂+(ui,j)

)2
, (48b)

IS+
2,i− 1

2 ,j
=
(
3F̂+(ui−1,j)− 4F̂+(ui,j)+ F̂+(ui−1,j)

)2
, (48c)

IS−
0,i− 1

2 ,j
=
(
F̂−(ui+2,j)− 4F̂−(ui+1,j)+ 3F̂−(ui,j)

)2
, (48d)

IS−
1,i− 1

2 ,j
=
(
F̂−(ui+1,j)− F̂−(ui−1,j)

)2
, (48e)

IS−
2,i− 1

2 ,j
=
(
3F̂−(ui,j)− 4F̂−(ui−1,j)+ F̂−(ui−2,j)

)2
. (48f)

Once again, in Equations (47) and (48) the positive F̂+(u)
and negative F̂−(u) parts are defined by using the Rusanov flux
splitting Equation (41). Furthermore, we can observe that these
smoothness indicators (Equations (47), 48) can be equivalently
expressed in terms of discrete convolutions, i.e.,

IS±
k,i+ 1

2 ,j
=
(
K
±
k,+ ∗ F

±(u)
)2
, IS±

k,i− 1
2 ,j

=
(
K
±
k,− ∗ F

±(u)
)2
,

(49)
where the appropriately induced vectors K

±
k,+ and K

±
k,− are

defined in Appendix D. This completes the description of the
convolution-driven ZSWENO scheme for the inside differential
operators ∇ · F(u)I , i.e., the approximation of ∇ · F(u) for all
inside nodes.

However, since the adhesion operators∇ ·F(u) were split into
two parts in Equation (39), it remains to describe the ZSWENO
scheme for the layer operator ∇ ·F(u)L, accounting for all nodes
that are considered to be in the layer part of the domain. As in
Section 3.1 for the boundary diffusion operators, here we also
need to appropriately approximate the value of any point that
is located outside of the tumour domain �(t0). To this end, we
symmetrically reflect the values of the interior nodes to the ghost
nodes in a node by node fashion due to the irregular tumour
domain. This ultimately enables us to use the standard non-
convolutional ZSWENO scheme (Equations 43, 44, 47, and 48)
instead of the convolutional forms Equations (45) and (49) to
approximate the layer operators ∇ · F(u)L.

3.3. Approximation of the Propagation
Speed α

Due to the complexity of F(·), calculating its Jacobian dF̂(u)/du
is extremely time consuming. Hence, to find the largest
eigenvalue α, we rather skip the exact evaluation of the Jacobian
and choose to approximate the propagation speed in a Jacobian-
free manner. For this, let us first define the eigenvalue problem by

Jv = λv, (50)

where J = dF(u)/du is the Jacobian, v is an eigenvector, and λ is
an eigenvalue of J. Then in order to find the largest eigenvalue α,

we solve (Equation 50) iteratively with convergence tolerance of
10−14 and with a random initial guess for v. Hence, similarly to,
for instance, a Jacobian-free Newton-Krylov method [107, 108],
to find λv in Equation (50) we evaluate the Jacobian-vector
product Jv instead of J, which is proved to be a significantly less
time-consuming task. To that end, the approximation of Jv is
carried out via the first-order Taylor series expansion, and so it
is given by

Jv ≈
F(u+ ǫpv)− F(u)

ǫp
,

where ǫp is a small perturbation parameter. Since the precision
is limited in the evaluation of the flux F(·), a good choice to
evaluate this small parameter ǫp is given by Knoll and Keyes [108]

ǫp =

√
(1+ ‖ u ‖)ǫmach

‖ v ‖
,

where ǫmach > 0 is the machine precision.

4. NUMERICAL RESULTS

In this section, we present the numerical results for our multi-
scale model. Hence, for the simulations let us consider a tissue
domain Y = [0×4]×[0×4] and the following initial conditions:

c(x, 0) =
1

2
exp

(
− ‖ x ‖22
0.02

)
· χ

B((2,2),0.25) ,

M1(x, 0) =10−2 · χ
B((2,2),0.25) ,

M2(x, 0) =10−2 · χ
B((2,2),0.25) ,

l(x, 0) =min

(
1

2
+

1

4
sin(7πx1x2)

3 · sin

(
7π

x2

x1

)
, 1− c(x, 0)

)
,

σ (x, 0) =0.4;
(51)

which are illustrated in Figure 6A. Here the white curves indicate
the boundary of the tumour domain ∂�(0). Besides these macro-
scale initial conditions, we also illustrate the initial state of one
micro-scale fibre domain δY(x) in Figure 6B, which is repeated
for all macro-scale points. Also, the ratio between the fibre
and non-fibre ECM phases are assumed to be 20% : 80% for
all simulations.

Finally, all presented simulations corresponds to time 501t.
The baseline parameters values are provided in Appendix A, and
any alteration from these values will be stated accordingly.

4.1. Spatial Dependency of the
Re-polarisation
First, we investigate numerically the effects of changing the re-
polarisation domain �p(t,Rp) used in Equation (12), defined
in Appendix C and illustrated in Figure 2. Hence, here we
study whether the success of a M2→M1 re-polarisation strategy
against the tumour is dependent on the spatial domain�p(t,Rp),
specifically on Rp=the distance from the outer boundary ∂�o(t).
For this let us use the radii Rp ∈ {0,1x, 21x, 31x, 41x} for
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FIGURE 6 | (A) Initial conditions of the cancer cells, both M1 and M2 TAMs, non-fibre ECM and the nutrients, respectively. (B) Initial condition of the micro-fibres on

δY (x), which is repeated for all x.

the re-polarisation domain �p(t,Rp), as well as let us start the
process at time 0, i.e., we take tp = 0 in Equation (12). To
further study these spatial effects, we also consider multiple tissue
conditions by changing the tissue environment controller β ∈

{0.75, 0.7875, 0.825} (see Trucu et al. [32]).
To compare the resulting tumours, we measure the overall

tumour mass and spread at final time 501t, using the total
density of the cancer cells as well as the area of the tumour.
Ultimately, this enables us to quantify the changes, resulted
from the modification of the re-polarisation domain �p(t,Rp).
Specifically, the overall tumour mass is measured by integrating
the cancer cell density c(x, 501t) and the overall tumour spread
as given by the area of the tumour domain�(501t).

4.1.1. Baseline Cases
In Figure 7 we present the numerical results for the
baseline case characterised by the absence of M2→M1 re-
polarisation. Specifically, in Figures 7A–C we investigate
the no-repolarisation case in the context of different tissue
environment controllers: Figure 7A β = 0.75, Figure 7B

β = 0.7875, and Figure 7C β = 0.825. As we can see, at
time 501t, the tumour is enlarged and has invaded some of
its surroundings, and within the tumour domain �(501t) we
observed heterogeneity in all three cell populations (cancer
cell, M1 and M2 TAMs). We also notice that near M2 TAMs
accumulations sites, the density of cancer cells also seems to be
higher. In contrast, higherM1 TAMs density usually corresponds
to both low M2 TAMs as well as low cancer cell populations. The
movement and spatial distribution of tumour and immune cells
are influenced directly and indirectly by the ECM fibres. For
illustrative purposes, the rearranged fibre structure is portrayed
by a four-fold coarsened oriented ECM fibres field in Figure 7.
The peritumoral degradation of the two-phase ECM (caused by
the cancer cells and both TAMs) allows the tumour to expand

and spread to the neighbouring tissues, resulting in some tumour
fingering patterns that vary with the controller β : higher β leads
to more tumour fingering. This induces an irregular tumour
domain, as well as the formation of "islands" inside the tumour,
which corresponds to areas of initially low ECM density, i.e.,
the ECM level was too low in such areas to support tumour
movement. Finally, in Figure 7, we also present the level of
available nutrients. Hence, we can see that since the nutrients
are only supplied through the outer boundary �o(t), the initial
normal level of nutrients is significantly depleted (by the three
cell populations) inside the tumour. This can lead to hypoxia and
then eventually create a necrotic core (not modelled explicitly in
this study).

4.1.2. The Impact of M2→M1 re-Polarisation
In Figures 8A–C, we introduce the re-polarisation of the M2
TAMs to M1 TAMs within the domain �p(t,1x) (i.e., Rp =

1x), and again we investigate the role of three controller values:
Figure 8A β = 0.75, Figure 8B β = 0.7875, and Figure 8C β =

0.825. While in Figure 7 theM1 TAMsmainly accumulated near
the tumour boundary, in Figure 8 we see that the re-polarisation
of M2 TAMs leads to an increase in the M1 TAMs population
inside the tumour, leading to several accumulation sites located
further away from the leading edge. In contrast, the presence
of M2 TAMs inside of the tumour is decreased compared to
Figure 7, and these immune cells now accumulate only in a small
neighbourhood of the boundary (because we do not re-polarise
M2 TAMs into M1 TAMs in a Rp = 1x neighbourhood of
the boundary; see Figure 2). Since both macrophage populations
interact with the cancer cells, we also see some differences in
the cancer cell population and these differences depend on the
degradation level of ECM as controlled by the value of β . Using
two measures (spread and mass), we first focus on the β = 0.75
case and compare Figures 7A, 8A: re-polarisation leads to an
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FIGURE 7 | Baseline simulation with no macrophage re-polarisation (i.e., we set Rp = 0) at final time 501t. (A) β = 0.75, (B) β = 0.7875, and (C) β = 0.825.
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FIGURE 8 | Simulation with re-polarisation domain �p(t,1x) and with starting time tp = 0 at the final time 501t. (A) β = 0.75, (B) β = 0.7875, and (C) β = 0.825.
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≈ 11% increase in tumour spread as well as an ≈ 20% decrease
in tumour mass. Then for β = 0.7875 (Figures 7B, 8B) we
observe an ≈ 5% reduction in spread and an ≈ 34% decrease
in mass. Finally, for β = 0.825 (Figures 7C, 8C), the tumour
spread is increased by ≈ 15% and the tumour mass is reduced
by ≈ 31%. Hence, although re-polarising M2 TAMs into M1
TAMs does not show an overall improvement in terms of tumour
spread, it significantly impeded the migration of the cancer cell
mass from hypoxic regions to the proliferating rim as well as
helped reducing the mass by killing the cancer cells. However,
since Rp = 1x, the M2 TAMs are able to accumulate in a 1x
neighbourhood of the interface and so we can still observe a
moderate density of cancer cells near the boundary.

4.1.3. Tumour Spread/Mass Changes With Respect

to Rp

In Figure 9 we vary Rp and present the changes in the
dimensionless tumour area (spread) and mass resulted by
changing the radius Rp. Specifically, in Figures 9A–C we again
consider the three previously used environment controllers β =

0.75, β = 0.7875, β = 0.825. Moreover, since various
types of cancers secrete MMPs at different rates [109], here
we also consider high, medium and low MDE secretion rates.
Finally, we vary the radii for the re-polarisation domain, Rp ∈

{0,1x, 21x, 31x, 41x}, while we assume that the re-polarisation
process starts at time 0, i.e., we take tp = 0. The left panels
of Figure 9 show the changes in the dimensionless variable for
tumour areas/spreads with respect to Rp, while the right panels
show the changes in the dimensionless variables for tumour mass
with respect to Rp. Here, the blue circles correspond to high
ECM degradation rates (βlc = 3.0, βFc = 1.5, αc = 0.625),
the orange diamonds correspond to medium degradation rates
(βlc = 2.0, βFc = 1.0, αc = 0.42), and the red crosses correspond
to low degradation rates (βlc = 1.0, βFc = 0.5, αc = 0.21).
Comparing first the changes due to varying the tissue controller
β , we can see a clear overall decrease in both tumour spread
and mass as we increase β . This was seen also in Figures 7, 8,
where a more prominent tumour fingering pattern was present
as we increased β which resulted in a decrease in tumour
spread. Furthermore, in Figures 9A–C the overall behaviour of
the tumour spread does not change significantly as we vary the
radius of the re-polarisation domain Rp. Hence, even though
the proteolytic molecular processes at the leading tumour edge
change (via theMDE source Equation 26) following theM2→M1
re-polarisation, we cannot see a clear trend in tumour spread.
This might be because of the complex interactions between
tumour and infiltrating immune cell populations: although we
see an increase in the M1 TAMs populations near the boundary
[that also secrete more MDEs than the M2 cells [110]], the
overall proteolytic molecular processes at the leading edge of the
tumour might not change too much, which would mean similar
tumour spread. Second, the rearrangement of the micro-fibre
distribution also affects tumour spread, since the amount of fibres
that are being re-located near the leading edge is dependent on
the fluxes generated by the different cell populations. Therefore,
our model suggests that merely re-polarising the M2 TAMs into

the anti-tumoral M1 phenotype might not be enough to stop
tumour spread.

On the other hand, in Figures 9A–C we see that the tumour
mass is greatly reduced in all of the presented cases. These results
also show that for the largest reduction we need to re-polarise
the M2 TAMs inside the whole tumour domain (i.e., Rp = 0,
which means that the re-polarisation domain is�p(t, 0) = �(t)).
Hence, the presence of M2 TAMs in the proliferating rim may
be enough to maintain the tumour mass and to induce tumour
spread by leading to a moderate presence of cancer cells in the
proliferating rim. In conclusion, the results in Figure 9 suggest
that re-polarising M2-like macrophages to the M1 phenotype
have the ability to reduce tumour mass, but we may need a
supplementary strategy primarily focusing on tumour spread or
tumour stroma in order to restrain tumour development.

4.2. Temporal Dependency of the
Re-polarisation
Let us now concentrate on the temporal aspects of a possible
re-polarisation strategy. Since in the previous section, we have
shown that the M2→M1 re-polarisation impacts predominantly
tumourmass, and since this effect was the strongest whenRp = 0,
here we investigate the effect of changing tp on tumour mass
when we re-polarise the M2 TAMs within the whole tumour
domain. Thus, by varying tp used in Equation (12) we aim to
investigate the effectiveness of such strategy when we introduce
the re-polarisation of M2 TAMs at time tp > 0. This is crucial
since tumours are only detectable above a certain size, and so a
potential treatment that uses re-polarisation cannot be started
at time tp = 0. To this end, in Figure 10 we present the
change in the dimensionless tumour mass with respect to the re-
polarisation start time tp. As before, Figure 10A corresponds
to β = 0.75, Figure 10B to β = 0.8785 and Figure 10C

to β = 0.825. For each of these sub-cases, the blue circle
corresponds to high ECM degradation rates by cancer cells, the
orange diamond to medium degradation rates, and the red cross
to low degradation rates. The results in Figure 10 suggest that
the lowest tumour mass can be achieved by starting the re-
polarisation as soon as possible, as one would expect. However,
even at moderate times, for instance at 251t, the tumour mass
can be controlled at relatively low values. All these tumour values
obtained following re-polarisation at different times tp are smaller
than the tumour value obtained for no re-polarisation (see the
last point on the horizontal axis in Figure 10). This indicates
that a re-polarisation based strategy is not only viable when it is
introduced at a very early stage, but it could also be effective even
against a more advanced and larger tumour.

4.3. In the Absence of Nutrients
So far, we have considered the presence of nutrients and
the related effect-functions within the macro-scale dynamics
(Equation 23). However, here, we also investigate how the
absence of these components influence the overall tumour
dynamics. Hence, for the rest of this section, we take σ (x, t) ≡

0, ∀(x, t) ∈ Y × [0,T] and 9p(σ ) ≡ 1, 9dc(σ ) ≡ 1,
9dM(σ ) ≡ 1 and 9M(σ ) ≡ 1, ∀σ and SMσ = 0. For reasons
of comparability, we use the same scenarios as before, and so
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FIGURE 9 | Results of varying the radius of the re-polarisation domain Rp ∈ {0,1x, 21x, 31x, 41x} with starting time tp = 0. Left panel shows the change in the

tumour spread and the right panel shows the change in tumour mass with respect to Rp. Here the blue circles correspond to a high ECM degradation rate by cancer

cells (βlc = 3.0, βFc = 1.5, αc = 0.625), the orange diamonds to a medium ECM degradation rate (βlc = 2.0, βFc = 1.0, αc = 0.42) and the red crosses to a low

degradation rate (βlc = 1.0, βFc = 0.5, αc = 0.21). The environment controller β is set to (A) β = 0.75, (B) β = 0.7875, and (C) β = 0.825.
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FIGURE 10 | Results of varying the re-polarisation start time tp ∈ {0, 51t, . . . , 451t, 501t}. The blue circles correspond to a high ECM degradation rates by cancer

cells (βlc = 3.0, βFc = 1.5, αc = 0.625), the orange diamonds to medium ECM degradation rates (βlc = 2.0, βFc = 1.0, αc = 0.42) and the red crosses to low ECM

degradation rates (βlc = 1.0, βFc = 0.5, αc = 0.21). The environment controller β is set to (A) β = 0.75, (B) β = 0.7875, and (C) β = 0.825.

first, in Figure 11, we present the case of no re-polarisation and
no nutrients. Although comparing Figures 7 and 11 we can
observe some expected tumour morphology changes, the main

difference that we would like to emphasise is that in the absence
of nutrients, all three cell populations form a more homogeneous
distribution. For example, while in Figure 11 there is only one
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FIGURE 11 | Baseline simulation with no macrophage re-polarisation and no nutrients (i.e., σ (x, t) ≡ 0, ∀(x, t) ∈ Y × [0,T ] and 9p(σ ) ≡ 1, 9dc(σ ) ≡ 1, 9dM (σ ) ≡ 1 and

9M (σ ) ≡ 1, ∀σ and SMσ = 0) at final time 501t. (A) β = 0.75, (B) β = 0.7875, and (C) β = 0.825.
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FIGURE 12 | Simulation with re-polarisation domain �p(t,1x), starting time tp = 0 and with no nutrients (i.e., σ (x, t) ≡ 0, ∀(x, t) ∈ Y × [0,T ] and 9p (σ ) ≡ 1, 9dc(σ ) ≡ 1,

9dM (σ ) ≡ 1 and 9M (σ ) ≡ 1, ∀σ and SMσ = 0) at the final time 501t. (A) β = 0.75, (B) β = 0.7875, and (C) β = 0.825.
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cancer cell accumulation region (about (2, 2) where we centred
our initial condition), in Figure 7 this is not the case, and rather
cancer cells are more heterogeneously distributed throughout
the tumour domain �(501t) creating various accumulation
regions. Furthermore, we can also see an M2 TAMs population
that penetrate the tumour deeper in the presence of nutrients.
This is because in this case in Figure 11 there are no nutrients
mediated movement (since SMσ = 0), and so the combination
of macrophage-macrophage and macrophage-cancer adhesions
is not adequate to guide the M2-like macrophages away from
the boundaries in most cases. Hence, these results suggest
that the nutrient mediated movement play an important, non-
negligible role in guiding macrophages towards necrotic regions,
which is consistent with biological experiments [59]. Moreover,
in Figure 12, we introduce M2→M1 re-polarisation (with
�p(t,1x) and tp = 0), and so we can compare it to the results
of Figure 8 where we presented the same scenario but in the
presence of nutrients. By comparing these results, we can
observe more homogeneous cell populations (cancer, M1 and
M2 TAMs) as well as the same phenomena as before but with
the M1 TAMs population (due to the re-polarisation), i.e., in the
absence of macrophage-nutrient relationship (since SMσ = 0)
M1-like macrophages are accumulated closer to the boundary
and are less efficient in penetrating the tumour. This may be of
particular interest for future mathematical models due to recent
advances regarding macrophage-mediated drug delivery [111],
an approach that can be used not only for tumours but for other
diseases as well.

To investigate the effects of nutrients on the tumour spread
and mass behaviour that we have seen in Figure 9, here for
comparability, we also present the same scenarios but in the
absence of nutrients in Figure 13. Hence, we consider the
three previously used environment controllers β = 0.75, β =

0.7875, β = 0.825 with the three ECM degradation rates (high,
medium and low) and present both the tumour spread and
mass for each case. Although with some expected changes in
the values, in Figure 13 we detect a similar behaviour as in
Figure 9 that the proteolytic molecular processes at the leading
edge of the tumour do not change drastically, i.e., varying the
radius of the re-polarisation domain Rp does not affect tumour
spread substantially. Furthermore, we find consistent results for
tumour mass as well, since we achieve the greatest reduction
in the case of Rp = 0 and then as we increase the radius Rp,
tumour mass also increases. Therefore, our results suggest that
although nutrients play an important role in the movement of
both macrophage phenotype, it does not affect the features and
properties of the spatial dependency of the re-polarisation, i.e.,
both in the presence and in the absence of nutrients the tumour
spread and mass react to changes in the re-polarisation radius Rp
in a similar fashion.

5. CONCLUSIONS

In this study, we have further developed and extended a multi-
scale moving boundary framework for cancer invasion [29, 30,
32] by also considering the dynamics of the anti-tumoral M1

TAMs as well as the nutrients. On one hand, we took into
account the nutrients since every cell requires them to live and
function properly, and so their presence is indispensable. On
the other hand, we focused on the classically activated M1-
like macrophages since they are known to be capable of killing
cancer cells. Moreover, since macrophages are one of the most
abundant immune cells in the tumour micro-environment and
their plasticity enables them to switch phenotypes, they are
prime candidates to assist in the fight against cancer. To this
end, we investigated how the re-polarisation of the M2 TAMs
into M1 TAMs can affect cancer development, by focusing
especially on the macrophage populations near the leading edge
of the tumour. Specifically, we studied the spatial aspect of
the M2→M1 re-polarisation through the definition of a re-
polarisation domain �p(t,Rp), and the temporal aspect via the
starting re-polarisation time tp used in Equation (12). Finally,
while in this work we considered the death of macrophages
induced through nutritional starvation, this is only one aspect in
the wider picture concerning death and survival of macrophages
within the necrotic region, which so far has not been fully
explored experimentally. Future mathematical modelling studies
will explore other death and survival aspects involved concerning
macrophages in necrotic regions.

To propose new hypotheses, we first introduced a macro-
scale quasi-steady reaction-diffusion equation for the nutrients
where we considered the spatial transport to be described by
diffusion with constant-coefficient as well as a linear uptake
rate. To account for the effect of nutrients on the different cell
functions, we defined four effect-functions that we used for the
rest of tumour dynamics. Furthermore, we introduced another
macro-scale equation, describing the behaviour of the M1 TAMs
where the motility of the M1 phenotype is represented both
by random and directed movements. The rest of the equation
involves an influx term, a nutrient-dependent proliferation and
death laws, as well as a nutrient-dependent polarisation and
a re-polarisation terms that describe the switch between the
two phenotypes. Similarly to the M2 TAMs, the M1 phenotype
also secrete MDEs that can degrade the ECM. Therefore, this
M1 phenotype directly contributes to the re-arrangement of the
micro-fibres constituents, as well as serving as a source of MDEs
for the proteolytic processes that occur on the invasive edge of
the tumour.

We used this extended model to explore the possibilities of
macrophage re-polarisation to depend on the spatial domain
as well as on time. First, in Figures 7–9 we presented the
result of the spatial dependency by varying the re-polarisation
domain �p(t,Rp). We concluded that even though the tumour
spread does seems to be affected much by the M2→M1 re-
polarisation (which may be expected as biological studies [110,
112, 113] have shown that M1 TAMs located in the stoma can
promote cancer progression), the tumour mass can be reduced
significantly. Therefore, even though we may need additional
strategies directly targeting tumour spread, the tumour mass can
potentially be reduced by the re-polarisation of M2 TAMs to
M1 TAMs.

Finally, since tumours are only detectable above a certain size
and therefore the M2→M1 re-polarisation is usually applied at
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FIGURE 13 | Results of varying the radius of the re-polarisation domain Rp ∈ {0,1x, 21x, 31x, 41x} with starting time tp = 0 in the absence of nutrients (i.e.,

σ (x, t) ≡ 0, ∀(x, t) ∈ Y × [0,T ] and 9p (σ ) ≡ 1, 9dc(σ ) ≡ 1, 9dM (σ ) ≡ 1 and 9M (σ ) ≡ 1, ∀σ and SMσ = 0). Left panel shows the change in the tumour spread and the

right panel shows the change in tumour mass with respect to Rp. Here the blue circles correspond to high ECM degradation rates by cancer cells (βlc = 3.0,

βFc = 1.5, αc = 0.625), the orange diamonds to medium degradation rates (βlc = 2.0, βFc = 1.0, αc = 0.42) and the red crosses to low degradation rates (βlc = 1.0,

βFc = 0.5, αc = 0.21). The environment controller β is set to (A) β = 0.75, (B) β = 0.7875, and (C) β = 0.825.
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later stages in tumour development, in Figure 10 we investigated
the temporal dependency of M2→M1 re-polarisation. There, we
showed that while the smallest tumour mass can be obtained
when the re-polarisation starts as soon as possible, in some cases,
it is possible to keep the tumour under control even when we re-
polarise at later times. For example, in Figure 10A, for high ECM
degradation levels, tumour mass did not change when tp ≤ 251t.
However, tumour mass slowly increased as we delayed the re-
polarisation time for medium and low ECM degradation. All
these theoretical results suggest that macrophages re-polarisation
protocols (through various immunotherapies, such as the use of
agonist anti-CD40 mAb [15]) might have to be adapted to the
tumour environment and the degradation levels of the ECM.

We emphasise that due to the complexity of this modelling
framework, which forced us to work with a nondimensionalised
model, the results in this study are only qualitative. Nevertheless,
they provide new theoretical hypotheses regarding the possible
roles of macrophage re-polarisation (within specific regions of
the solid tumours, and within specific time scales) in the context
of immunotherapies for cancer. Furthermore, while in this study
we considered a generic solid tumour rather than a specific one,
the findings here are in principle applicable to specific tumour
types such as gliomas as we have done it also in our recent
publication [114].

To conclude, we suggest that in addition to the re-polarisation
of M2 TAMs, we also need additional strategies targeting tumour
spread or tumour stroma in order to fully stop the tumour
from advancing. In this context, it is worth mentioning that
we started modelling the effect of vasculature (existing and
newly growing blood vessels) on the transport of nutrients and
immune cells into the tumour; but this will form the topic of
a future publication. Moreover, beyond the current modelling
approach, considering the time evolution of the vasculature

would also allow us to gain a more comprehensive insight into
the effects of nutrients on other immune cells (such as T cells),
the interplay between different cells [such as cancer, TAMs and
cancer-associated fibroblasts [115, 116]] and additional surplus
amount of cytokines secreted by other immune cells in the
tumour microenvironment. Furthermore, modelling an evolving
network of blood vessels would enable us to use it as a supply of
macrophages (and other cells) or create more complex hypoxic
and necrotic regions that would induce further heterogeneity in
all cell populations, ultimately leading to more realistic scenarios.
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