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Plant disease incidence rate and impacts can be influenced by viral interactions

amongst plant hosts. However, very few mathematical models aim to

understand the viral dynamics within plants. In this study, we will analyze the

dynamics of two models of virus transmission in plants to incorporate either

a time lag or an exposed plant density into the system governed by ODEs.

Plant virus propagation model by vector (PVPMV) divided the population into

four classes: susceptible plants [S(t)], infectious plants [I(t)], susceptible vectors

[X(t)], and infectious vectors [Y(t)]. The approximate solutions for classes S(t),

I(t), X(t), and Y(t) are determined by the implementation of exhaustive scenarios

with variation in the infection ratio of a susceptible plant by an infected vector,

infection ratio of vectors by infected plants, plants’ natural fatality rate, plants’

increased fatality rate owing to illness, vectors’ natural fatality rate, vector

replenishment rate, and plants’ proliferation rate, numerically by exploiting

the knacks of the Adams method (ADM) and backward di�erentiation formula

(BDF). Numerical results and graphical interpretations are portrayed for the

analysis of the dynamical behavior of disease by means of variation in physical

parameters utilized in the plant virus models.

KEYWORDS

plant virus propagation model by vector (PVPMV), Adams method (ADM),

backward di�erentiation formula (BDF), ordinary di�erential equations (ODEs),

virus transmission, time lag

Introduction

Plants provide food for humans and many other animals. They also provide

medicines, clothing fibers, and are necessary for a healthy atmosphere. Plants, on the

other hand, are susceptible to diseases, which are mostly triggered by viruses. The plant

is frequently killed by these viruses. As a result, virus-related crop losses cost billions

of dollars annually. Virus propagation is primarily carried out by a vector; insects

which bite infectious plants become infected and subsequently infect susceptible plants.

Seasonal behavior is common among insect vectors. They are most active throughout

the summer and almost nearly dormant during the winter. Chemical pesticides are
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often employed as a control to battle vectors. Regrettably, these

chemicals are not only overpriced, but they are also harmful to

humans, animal life, as well as environment. Another option is

to introduce a predator species, or just boost the population of

one that already exists, to predate upon the insects as well as limit

the virus’s transmission. The vector population can be controlled

with a combination of pesticides and predators. An effective

mathematical model can be exploited to study the dynamics

of pathogenic plant diseases. Indeed, mathematical analysis and

numerical simulations are quite valuable in comprehending the

dynamics of plant disease propagation and evaluating the impact

of various disease control techniques.

Several mathematical models have been established to

provide a detailed exposition of how to analyze, interpret, and

forecast plant pathogenic farming epidemics as a mechanism

for formulating and testing crop countermeasures and control

measures [1–4]. A variety of epidemiology models based

upon those used mostly in animal or human epidemiology

have been created to assess the population ecosystem of viral

infections [5–10]. The delay differential equations can be

used to define relatively different formulations of epidemic

proliferation. The application of delayed differential equations

in epidemiological studies extends back to Van Der Plank’s

pioneering work [11], when these models were first proposed

to represent plant diseases. The work of Van Der Plank

seemed to have a limited impact on epidemic models, owing

to the model hypotheses being particularly specific to plant

pathology. However, a version of the Van Der Plank model

has been shown to be well-suited to characterize human/animal

diseases [12]. Stella et al. investigated the dynamics of the

plant epidemic model and the presence and stability of

distinct model equilibria. In the absence of delay, the Routh-

Hurwitz criterion is employed to assess the stability of the

disease free and epidemic equilibrium. In the existence of

delay, the stability of epidemic equilibrium is also studied

[13]. The bifurcation modulation of a fractional mosaic virus

TABLE 1 Description and default parameters setting of for non-linear

PVPMV [25].

Parameters Description Value

N Total density of plants 100

γ Rate of infection of a susceptible plant by an

infected vector

0.01

γ1 Infection ratio of vectors by infected plants 0.01

υ Plants’ natural fatality rate 0.1

r Vectors’ natural fatality rate 0.2

� Vector replenishment rate 10

c Plants’ increased fatality rate owing to illness 0.1

m Plants’ proliferation rate 5

δ Time delay 2

infectious disease model of Jatropha curcas with agricultural

understanding and an executing delay was examined by Liu

et al. Hopf bifurcation generated by the executing delay

is explored for the unconstrained system by examining the

corresponding characteristic equation [5]. Basir et al. developed

a mathematical model that included multiple time delays as

well as a Holling type-II functioning responses. The basic

reproductive number and delays in time are used to determine

the presence and stability of the equilibria. The delayed system’s

cost-effectiveness was assessed using the optimal control theory

[14]. Ray et al. proposed a mathematical model to analyze

TABLE 2 Scenarios for model A and model B of non-linear PVPMV.

Model A Model B

Scenario 1 for the rate of infection of a susceptible plant by an infected vector

C-1 γ = 0.001 γ = 0.001

C-2 γ = 0.004 γ = 0.004

C-3 γ = 0.006 γ = 0.006

C-4 γ = 0.007 γ = 0.007

C-5 γ = 0.009 γ = 0.009

Model A Model B

Scenario 2 for the rate at which an infected plant infects a susceptible vector

C-1 γ1 = 0.001 γ1 = 0.001

C-2 γ1 = 0.002 γ1 = 0.002

C-3 γ1 = 0.003 γ1 = 0.003

C-4 γ1 = 0.004 γ1 = 0.004

C-5 γ1 = 0.005 γ1 = 0.005

Model A Model B

Scenario 3 for disease’s additional fatality rate

C-1 c= 0.1 c= 0.1

C-2 c= 0.2 c= 0.2

C-3 c= 0.3 c= 0.3

C-4 c= 0.4 c= 0.4

C-5 c= 0.5 c= 0.5

Model A Model B

Scenario 4 for the plants’ natural fatality rate

C-1 r= 0.1 r= 0.1

C-2 r= 0.2 r= 0.2

C-3 r= 0.3 r= 0.3

C-4 r= 0.4 r= 0.4

C-5 r= 0.6 r= 0.6

Model A Model B

Scenario 5:υ plants’ natural fatality rate for model A, � vector

replenishment rate for model B

C-1 υ = 0.1 � = 10

C-2 υ = 0.2 � = 100

C-3 υ = 0.3 � = 110

C-4 υ = 0.4 � = 210

C-5 υ = 0.5 � = 250
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the dynamics that included the incubation period as a time

delay component for the vector-borne plant epidemic. The

occurrence and stability of equilibrium have been investigated

based on the reproduction number. Hopf bifurcation causes

stability variations in the delaying and non-delaying systems

[15]. Abraha et al. studied a mathematical model that included

two time delays in agricultural pest management as well as

the effect of farmer awareness. They assumed that the number

of healthy parasites in the particular crop is proportionate

to the growth of self-aware individuals. A saturation term is

used to model the effects of awareness. The basic reproductive

FIGURE 1

Working procedure of design approach for non-linear PVPMV.

number, as well as time delays, are used to determine the

presence and stability of the equilibrium. Whenever time

delays reach the optimum values, stability transitions occur

due to Hopf-bifurcation. The delayed system’s cost-effectiveness

was analyzed using adaptive control theory [16]. Phan et al.

designed a system of differential equations including delay to

represent the cell-to-cell propagation of infection by cereal

and barley yellow dwarf pathogens throughout the plant. The

model may capture a broad range of biologically pertinent

phenomena through disease-free, epidemic, bilateral mortality

equilibria, and a persistent periodical orbit by including a

ratio-dependent incident function and logistic proliferation

of healthy cells [17]. Blyuss et al. developed and analyzed

a mathematical model for controlling the mosaic disease

with natural microbiological biostimulants that, in addition

to promoting plant development, also protect plants from

infection via an RNA interference mechanism. They revealed

how characteristics of biostimulants affect disease dynamics,

and in particular, how they determine whether the mosaic

disease is eliminated or preserved at a consistent level, by

measuring the resilience of the system’s equilibria [18]. Alemneh

et al. introduced and assessed/analyzed an eco-epidemiological

model of maize streak virus infection dynamics in order to

evaluate the optimal strategy for preserving maize populations

from the disease. To obtain an optimum controlling strategy,

they applied the Pontryagin’s maximum criterion to derive the

Hamiltonian, control characterization, adjoint variables and the

optimization system [19]. Amelia et al. presented amathematical

model of the yellow virus’s spread in red chili plants, using

the logistical function to predict the increase of insects as

disease vectors. By calculating the dominating eigenvalue of

the next generational matrix, we may determine the value

of the fundamental reproduction number namely R0 of the

model [20]. Kendig et al. investigated a mathematical model

TABLE 3 Numerical outcomes of non-linear PVPMV model A for case-1 of scenario 2.

Time (Days) ADM Case 1 BDF Case 1

S I X Y S I X Y

0 90.0000 10.0000 47.0000 47.0000 90.0000 10.0000 47.0000 47.0000

3 46.2099 53.7901 44.1326 30.5029 45.8928 54.1072 44.0134 30.1343

6 44.9054 55.0946 41.4564 22.0639 45.0189 54.9811 41.3998 21.8527

9 49.4698 50.5302 40.4576 16.9624 49.6415 50.3585 40.4446 16.8286

12 54.5650 45.4350 40.4169 13.6554 54.7283 45.2717 40.4251 13.5665

15 59.1522 40.8478 40.8143 11.4206 59.2932 40.7068 40.8314 11.3592

18 63.0405 36.9595 41.3740 9.8525 63.1582 36.8418 41.3936 9.8086

21 66.2645 33.7355 41.9611 8.7120 66.3616 33.6384 41.9803 8.6795

24 68.9206 31.0794 42.5148 7.8546 69.0006 30.9994 42.5323 7.8298

27 71.1121 28.8878 43.0115 7.1912 71.1783 28.8217 43.0270 7.1718

30 72.9859 27.0141 43.4595 6.6495 72.9307 27.0692 43.4460 6.6652
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FIGURE 2

(A) Dynamics of susceptible plants for the varition in γ1 using ADM for model A. (B) Dynamics of susceptible plants for the varition in γ1 using

BDF for model A.

FIGURE 3

(A) Dynamics of infected plants for the varition in γ1 using ADM for model A. (B) Dynamics of infected plants for the varition in γ1 using BDF for

model A.
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FIGURE 4

(A) Dynamics of susceptible vectors for the varition in γ1 using ADM for model A. (B) Dynamics of susceptible vectors for the varition in γ1 using

BDF for model A.

FIGURE 5

(A). Dynamics of infected vectors for the varition in γ1 using ADM for model A. (B) Dynamics of infected vectors for the varition in γ1 using BDF

for model A.
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FIGURE 6

(A) Dynamics of susceptible plants for the varition in υ using ADM for model A1. (B) Dynamics of susceptible plants for the varition in υ using

BDM for model A1.

FIGURE 7

(A) Dynamics of infected plants for the varition in υ using ADM for model A1. (B) Dynamics of infected plants for the varition in υ using BDF for

model A1.
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FIGURE 8

(A) Dynamics of infected plants for the varition in υ using ADM for model A1. (B) Dynamics of infected plants for the varition in υ using BDF for

model A1.

FIGURE 9

(A) Dynamics of susceptible vectors for the varition in r using ADM for model A1. (B) Dynamics of susceptible vectors for the varition in r using

BDF for model A1.
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depicting the propagation of two viruses in a plant density,

parameterized assuming empirically determined transmitting

values, and discovered that nutrient pathogen communication

could influence disease transmission. Thus, epidemic dynamics

were regulated by interactions that affected propagation through

viral density-independent pathways [21]. Shaw et al. compared

themodel based on individual and ordinary differential equation

mathematical models to investigate the impact of insect vector

living cycle and behavioral factors on the transmission of

vector borne plant viruses. They discovered that evacuating

virus infected species proved more effective than removing

vector-infested species in terms of reducing infection [22].

The interactions within the plants, vectors and predators were

described by Charpentier et al. using a system of ordinary

differential equations. They used direct and indirect approaches

to find the controls that minimize the optimization function

subjected to population factors [23]. Jittamai et al. presented a

mathematical framework to analyze the dynamics for Cassava

Mosaic Virus, which is accelerated by both contaminated

cuttings plantings and whitefly propagation. The model was

used by the authors to determine the optimal cost-effective

disease control strategy [24]. Charpentier recently presented two

plant virus propagation models to illustrate the two perspectives

of incorporating the delays. He numerically studied the models’

stability [25].

Numerical techniques are generally employed in science

as well as engineering to solve mathematical problems where

exact solutions are difficult or impossible to obtain. Analytical

solutions are only possible for a limited differential equation.

For solving ordinary differential equations, there are a variety

of analytical approaches. Even though, there are many ordinary

differential equations (ODEs) whose solutions can be obtained

in closed form using known analytical techniques, necessitating

the progression and application of numerical methods in order

TABLE 4 Numerical outcomes of non-linear PVPMV model A1 for case-1 of scenario 5.

Time (Days) ADM Case 1 BDF Case 1

S I X Y S I X Y

0 90.000 10.0000 47.0000 47.0000 90.0000 10.0000 47.0000 47.0000

3 7.253847 92.7462 13.9510 60.1967 13.8285 86.1715 14.7278 59.4199

6 28.1173 71.8826 10.0509 53.2016 33.6215 66.3785 10.7929 52.4597

9 32.5847 67.4153 11.5980 45.6751 35.5494 64.4506 12.0058 45.2673

12 27.8969 72.1031 10.8913 43.1003 34.2496 65.7504 11.5894 42.4022

15 32.9806 67.0194 11.3024 40.8883 38.2692 61.7308 12.0642 40.1265

18 33.1879 66.8121 11.5152 39.6871 38.5764 61.4236 12.2555 38.9467

21 33.4720 66.5280 11.5338 39.1260 39.1839 60.8161 12.3340 38.3258

24 33.9535 66.0464 11.6013 38.7608 39.5901 60.4099 12.4137 37.9484

27 34.0761 65.9239 11.6318 38.5669 39.7538 60.2462 12.4507 37.7480

30 34.1658 65.8342 11.6456 38.4635 39.8670 60.1330 12.4722 37.6369

TABLE 5 Numerical outcomes of non-linear PVPMV model A2 for case-1 of scenario 1.

Time (Days) ADM Case 1 BDF Case 1

S I X Y S I X Y

0 90.0000 10.0000 10.0000 47.0000 90.0000 10.0000 10.0000 47.0000

3 85.2381 17.0689 8.8230 39.7728 82.4143 20.0025 9.23605 39.4695

6 85.9571 18.0416 8.87925 36.8224 82.6595 21.6085 9.86141 36.1337

9 88.3295 16.933 8.82304 35.5548 85.0741 20.6993 10.1945 34.4088

12 90.7455 15.3976 8.47258 35.1839 87.6295 19.2833 10.0901 33.6603

15 92.7167 13.9604 7.9416 35.3571 89.7366 17.9531 9.71931 33.5382

18 94.2317 12.6973 7.3321 35.8644 91.3260 16.8256 9.24056 33.7840

21 95.2509 11.7055 6.7767 36.4903 92.4830 15.8834 8.7472 34.2194

24 96.00428 10.8327 6.2490 37.1941 93.3156 15.0854 8.28247 34.7336

27 96.5393 10.0799 5.7780 37.8979 93.9153 14.3967 7.8615 35.2635

30 96.9228 9.4206 5.36171 38.5714 94.3505 13.7927 7.4860 35.7768
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FIGURE 10

(A) Dynamics of susceptible plants for the varition in γ using ADM for model A2. (B) Dynamics of susceptible plants for the varition in γ using

BDF for model A2.

FIGURE 11

(A) Dynamics of infected plants for the varition in γ using ADM for model A2. (B) Dynamics of infected plants for the varition in γ using BDF for

model A2.
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FIGURE 12

(A) Dynamics of susceptible vectors for the varition in γ using ADM for model A2. (B) Dynamics of susceptible vectors for the varition in γ using

ADM for model A2.

to obtain the numerical solutions of a differential equation under

the predefined initial condition. Various researchers have been

intrigued by developing numerical techniques for solving initial

value problems in ODEs in current years. Many researchers

exploited various numerical techniques to approximate the

solution of several mathematical models, yielding superior

findings than a few of the existing ones in the literature,

such as [26–30]. Recently research workers concentrated their

efforts on numerically solving various mathematical models

in the field of epidemiology such as COVID-19 [31], HIV

model [32], tuberculosis transmission model [33], predator-

prey mathematical model [34], mathematical model of cancer

treatment [35]. Although the precision and stability of the

aforementioned techniques are significant, they need a lot

of memory and a long computation time. As a result, the

numerical treatments for such approaches provide significant

challenges that must be overcome in order to guarantee the

precision and consistency of the solution. Therefore, ADM can

be used to reliably confront one- and multi-dimensional stiff

and non-stiff problems. The discrepancy between the predicted

and corrected values might be used as one indicator of the

error being made at each step. This gives a rather simple way

to regulate the step size used in the integration. The widely

used multistep ADM may approximate the solution of a first-

order differential equation. In comparison to the equivalent-

order Runge–Kutta method, these methods generally preserve

reasonably good stability and accuracy properties while being

more computationally efficient. When used with high order

systems, this can significantly reduce computing time and effort.

The most widely used techniques for treating stiff and non-stiff

ODEs are implicit multistep techniques that utilize the BDF

method. These methods were first used to confront a complex

problem by Curtis and Hirschfelder [36]. Numerous implicit

approaches have been created over time and are the subject of

in-depth literature discussion; see [37–43]. To that end, the goal

of this study is to apply the precise and stable ADM [44–48] and

BDF methods to determine an initial value problem solution.

The paramount characteristics of this study are as follows: -

• The dynamics of two models of virus transmission

in plants are investigated numerically to incorporate

either a time lag or an exposed plant density

into the system governed with non-linear

delayed ODEs.

• The approximate solutions for classes S(t), I(t), X(t), and

Y(t) are determined by the implementation of exhaustive
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FIGURE 13

(A) Dynamics of infected vectors for the varition in γ using ADM for model A2. (B) Dynamics of infected vectors for the varition in γ using ADM

for model A2.

TABLE 6 Numerical outcomes of nonlinear PVPMV model B for case-1 of scenario 3.

Time (Days) ADM Case 1 BDF Case 1

S I X Y S I X Y

0 30.0000 5.0000 42.0000 9.0000 30.0000 5.0000 42.0000 9.0000

3 81.2187 20.0001 34.8550 15.7049 80.6520 20.5766 34.4587 16.0901

6 64.5971 36.5518 23.2982 27.0091 64.1159 37.0125 22.9842 27.3170

9 54.1651 46.1322 16.9357 33.2329 53.9550 46.3141 16.8181 33.3472

12 50.4141 49.2806 14.8998 35.1928 87.6295 19.2833 10.0901 33.6603

15 49.4357 50.0592 14.3831 35.6677 49.4218 50.0701 14.3756 35.6742

18 49.2174 50.2283 14.2635 35.7644 49.2146 50.2304 14.2619 35.7655

21 49.1758 50.2592 14.2378 35.7775 49.1754 50.2595 14.2375 35.7775

24 49.1714 50.2617 14.2332 35.7752 49.1714 50.2616 14.2331 35.7751

27 49.1733 50.2597 14.2328 35.7718 49.1733 50.2596 14.2328 35.7717

30 49.1753 50.2578 14.2331 35.7694 49.1753 50.2577 14.2331 35.7693

scenarios with variation in the infection ratio of a

susceptible plant by an infected vector, infection ratio

of vectors by infected plants, plants’ natural fatality rate,

plants’ increased fatality rate owing to illness, vectors’

natural fatality rate, vector replenishment rate, and plants’

proliferation rate.

• The approximate solutions of the non-linear plant virus

propagation by a vector (PVPMV) are determined by
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FIGURE 14

(A) Dynamics of susceptible plants for the varition in c using ADM for model B. (B) Dynamics of susceptible plants for the varition in c using BDF

for model B.

TABLE 7 Numerical outcomes of non-linear PVPMV model B1 for case-1 of scenario 5.

Time (Days) ADM Case 1 BDF Case 1

S I X Y S I X Y

0 30.0000 5.0000 42.0000 9.0000 30.0000 5.0000 42.0000 9.0000

3 97.0808 2.6966 42.3118 8.23704 97.0728 2.70300 85.5535 10.1141

6 97.7627 2.0623 43.5322 6.7690 97.5514 2.24878 109.2329 10.9489

9 98.2168 1.6433 44.6376 5.52769 97.6434 2.15890 121.877 11.7585

12 98.5571 1.3297 45.5658 4.52489 97.5842 2.21071 128.3769 12.6420

15 98.8229 1.0848 46.3316 3.71820 97.4567 2.32606 131.4595 13.6115

18 99.0345 0.8898 46.9610 3.0663 97.2924 2.4755 132.6472 14.6478

21 99.2048 0.7329 47.4786 2.5363 97.1064 2.6450 132.7857 15.7296

24 99.3428 0.6057 47.9050 2.1033 96.9074 2.82649 132.3457 16.8395

27 99.4555 0.5019 48.2568 1.7477 96.7010 3.0148 131.5909 17.9620

30 99.5478 0.4168 48.5477 1.4548 96.4914 3.2060 130.6708 19.0838

exploiting the knacks of the Adams method (ADM) and

backward differentiation formula (BDF) for sundry cases.

• Numerical and graphic interpretations of outcomes

illustrate the significance/potential of these numerical

methods as efficient, accurate, stable and viable

computational procedures.

The remaining layout of the paper is as follows:

Section Mathematical models presents mathematical

models with relevant descriptions, Section Learning

methodologies describes learning methodologies for the

problem, Section Results and discussion provides results

and discussion based on the numerical simulations,
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FIGURE 15

(A) Dynamics of infected plants for the varition in d using ADM for model B. (B) Dynamics of infected plants for the varition in d using BDF for

model B.

and Section Conclusions concludes with future

research recommendations.

Mathematical models

Two plant virus models are presented here in this

section. The mathematical model of plant virus propagation

by a vector with a constant plant density is first presented.

Second, a saturated and non-constant plant density plant virus

propagation model is presented.

Plant virus propagation model by a
vector: Model A

We investigate two models of vector-borne plant virus

transmission. Both of these are basic, and the objective is to

explore how different techniques of introducing the delay affect

the outcomes. There are two plant densities in the first, model

A: susceptible [S(t)], healthier and susceptible to infection, and

infectious [I(t)], previously infected. Because we assume that

plants may not recover, we should not have a recovered class.

There are also two vector populations: susceptible [X(t)] and

infectious [Y(t)]. This model is a simplified form of the models

provided in [49, 50].

Model A assumes that: plants as well as vectors that are

new to this field, are susceptible, and the overall plant density

remains stable at N because a farmer may replace any dead

plants with healthy new ones, that the interaction among both

the vector as well as plant is a mass movement, that the viruses

decapitate plants but not the vectors who do not contract the

disease, and the disease cannot be recovered from either plants

or vectors. The model’s parameters are the γ infection ratio

of a susceptible plant by an infected vector, γ1 infection ratio

of vectors by infected plants, υ plants’ natural fatality rate, c

plants’ increased fatality rate owing to illness, r vectors’ natural

fatality rate, and vector replenishment rate (according to birth

or/and emigration).

Model A is represented by the system of ODEs as

follows [25]:

S′ (t) = υ (N − S (t)) + cI (t) − γY (t) S (t) , (1)

I′ (t) = γY (t) S (t) − (c+ υ) I (t) , (2)

X′ (t) = � − γ1I (t)X (t) − rX (t) , (3)

Y ′ (t) = γ1I (t)X (t) − rY (t) . (4)
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FIGURE 16

(A) Dynamics of susceptible vectors for the varition in d using ADM for model B. (B) Dynamics of susceptible vectors for the varition in d using

BDF for model B.

There are two delays in virus transmission via a vector.

One is being the time required for the virus to propagate

throughout the plant after it has been infected. The other is

the time required for the virus to propagate within the vector

after it has been infected. Because the virus is not reproducing

in the vector, the second is significantly smaller than the first.

For the sake of simplicity, we’ll assume that the second delay

is zero.

We will incorporate the delays in two ways: the first is based

on the premise that a susceptible needs the time delay to become

infectious after coming into contact with an infectious [50, 51].

This is supposed to be model A1 [25]:

S′ (t) = υ (N − S (t)) + cI (t) − γY (t − δ) S (t − δ) , (5)

I′ (t) = γY (t − δ) S (t − δ) − (c+ υ) I (t) , (6)

X′ (t) = � − γ1I (t)X (t) − rX (t) , (7)

Y ′ (t) = γ1I (t)X (t) − rY (t) . (8)

It would be possible to replace the exposed density [E(t)]

with a delay-accounting density. After coming into contact with

an infectious, a susceptible become exposed or dormant, unable

to infect. The exposed becomes infectious at the rate η = 1/δ .

Then the model A2 will be:

S′ (t) = υ (N − S (t)) + cI (t) − γY (t) S (t) + υE (t) , (9)

E′ (t) = γY (t) S (t) − υE (t) − ηE (t) , (10)

I′ (t) = ηE (t) − (c+ υ) I (t) , (11)

X′ (t) = � − γ1I (t)X (t) − rX (t) , (12)

Y ′ (t) = γ1I (t)X (t) − rY (t) . (13)

Epidemic models involving an exposed class are widely

known for plant virus propagation [52, 53]. Models

containing exposed densities have the advantage of not

requiring the initial/staring conditions to be presented at an

interval equal to the delay, as delay differential equations

(DDEs) require.

Plant virus propagation model by vector:
Model B

We construct a further plant virus propagation model which

is based on the models presented in [54, 55], but revised

to include healthy vectors and mass response interactions

for the disease. It takes into account four different densities:
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FIGURE 17

(A) Dynamics of infected vectors for the varition in d using ADM for model B. (B) Dynamics of infected vectors for the varition in d using BDF for

model B.

susceptible plants [S(t)], infectious plants [I(t)], susceptible

vectors [X(t)] and infectious vectors [Y(t)]. Because the plants

grow in a logistical manner, the overall plant density does

not remain constant. All emerging vectors are subject to

susceptible, and their growth rate is continuously attributed

to births as well as emigration. Plants are unable to recover

and insects do not contract the disease, as it does in

model A.

Model B, which propagates plant viruses is as follows [25]:

S′ (t) = mS (t)

(

1−
S (t) + I (t)

N

)

−
γ S (t)Y (t)

1+ βS (t) + aY (t)
, (14)

I′ (t) = γ S (t)Y (t) − (r + c) I (t) , (15)

X′ (t) = � − γ1I (t)X (t) − rX (t) , (16)

Y ′ (t) = γ1I (t)X (t) − rY (t) . (17)

Here, m represents the plants’ proliferation rate, N

their maximum capacity of carrying, and γ the rate of

infection of a susceptible plant by an infected vector,

r represents the plants’ natural fatality rate, and c

represents the virus’s additional fatality rate. � represents

the rate at which susceptible vectors are recruited, γ1

represents the rate at which an infected plant infects a

susceptible vector, and r represents the vectors’ natural

fatality rate.

We will incorporate the delay in two different ways, just like

we did with model A. The first assumes that a susceptible takes

the time delay to get infected after coming into contact with

an infected [50, 51]. Then model B∗ may be expressed in the

form [25]:

S′ (t) = mS (t)

(

1−
S (t) + I (t)

N

)

−
γ S (t − δ)Y (t − δ)

1+ βS (t − δ) + aY (t − δ)
, (18)

I′ (t) =
γ S (t − δ)Y (t − δ)

1+ βS (t − δ) + aY (t − δ)
− (r + c) I (t) , (19)

Y ′ (t) = γ I (t) − rY (t) . (20)

In the alternative version, we uphold [54, 55] in which the

plant ceases being susceptible immediately after interaction with

an infected insect, but it requires a delay period to become
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FIGURE 18

(A) Dynamics of susceptible plants for the varition in � using ADM for model B1. (B) Dynamics of susceptible plants for the varition in � using

BDF for model B1.

infected. Because the plant could die at any time, the surviving

rate is directly proportional e−rδ , where r is the plant’s fatality

rate and δ is the delay. Then model B1 will be of the form [25]:

S′ (t) = mS (t)

(

1−
S (t) + I (t)

N

)

−
γ S (t)Y (t)

1+ βS (t) + aY (t)
, (21)

I′ (t) = e−rδ γ S (t − δ)Y (t − δ)

1+ βS (t − δ) + aY (t − δ)

− (r + c) I (t) , (22)

X′ (t) = � − γ1I (t)X (t) − rX (t) , (23)

Y ′ (t) = γ1I (t)X (t) − rY (t) . (24)

A susceptible plant is infected by an infected vector at time

(t − δ) in model B∗, as well as the susceptible plant becomes

infective at time t. A susceptible plant is infected by an infected

vector that takes t to infect in model B1, with e−rδ indicating the

average rate of infectious susceptible who survived in time t.

Incorporating an exposed density [E(t)], as before, is an

alternate with the same boon and bane. The model B2 with

exposed class is as follows [25]:

S′ (t) = mS (t)

(

1−
S (t) + I (t)

N

)

−
γ S (t)Y (t)

1+ βS (t) + aY (t)
, (25)

E′ (t) = γY (t) S (t) − υE (t) − ηE (t) , (26)

I′ (t) = ηE (t) − (c+ υ) I (t) , (27)

X′ (t) = � − γ1I (t)X (t) − rX (t) , (28)

Y ′ (t) = γ1I (t)X (t) − rY (t) . (29)

Learning methodologies

Adams method

The Adams method (ADM) is a two-step procedure for

solving an ODE [56–61]. First, to use an explicit approach,

the predictive step determines a crude approximation of the

target number. The corrector step streamlines the preceding

approximation using a different mechanism, usually an

implicit one.
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FIGURE 19

(A) Dynamics of infected plants for the varition in � using ADM for model B1. (B) Dynamics of infected plants for the varition in � using BDF for

model B1.

The predictor-corrector technique, which is based on set of

Equations (1)–(4), is represented as follows:

dS

dt
= f (t, S, I, Y) , S (t0) = S (0) ,

dI

dt
= f (t, Y , S, I) , I (t0) = I (0) ,

dX

dt
= f (t, I, X) , X (t0) = X (0) ,

dY

dt
= f (t, I, X, Y) , Y (t0) = Y (0) , (30)

To obtain a two-step predictor solution for first equation

of set (30) for the non-linear plant virus propagation model by

vector, use the following expression:

Sk+1 = Sk +
6

4
hf

(

tk, Sk
)

−
1

2
hf

(

tk−1, Sk−1

)

,

We have the following two-step corrector equation after

evaluating the first equation in the nonlinear plant virus

propagation model by vector:

Sk+1 = Sk +
1

2
hf

(

tk+1, Sk+1

)

+ f
(

tk, Sk
)

,

Backward di�erentiation method

The backward differentiation formula (BDF) is a collection

of implicit approaches for solving ordinary differential

equations numerically [62–64]. They are linear multi-step

algorithms that use information from previously determined

time points to approximating the derivative of a function for

a particular function and time, improving the precision of

the approximations. These techniques are particularly useful

for solving stiff differential equations [65]. In 1952, Charles F.

Curtiss and Joseph O. Hirschfelder introduced the methods for

the first time.

Consider the initial value problem as:

dz

dt
= g (t, z) , z (t0) = z0,

BDF can be written in generic form as follows:

l
∑

m=0

cmzn+m = hαg
(

tn+l, zn+l

)

,

where the step size is denoted by h, g is being calculated

for an unknown zn+l. BDF techniques are implicit
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FIGURE 20

(A) Dynamics of susceptible vectors for the varition in � using ADM for model B1. (B) Dynamics of susceptible vectors for the varition in � using

BDF for model B1.

and may require non-linear equations to be solved

at each step. The coefficients cm as well as α are

considered to obtain order l, which is the highest

feasible order.

Table 1 [25] lists the default settings for the non-linear

PVPMV parameters, while the nomenclature describes the

parameters. These default settings utilizing in all of the scenarios

of non-linear PVPMV.

Results and discussion

The approximate numerical outcomes for model A [25]

having a constant plant density and model B [25] having a non-

constant plant density are presented in this study. The ADM and

BDF methods are used to explore the dynamics of first order

non-linear plant virus propagation models by a vector for three

variants of models A and B, respectively with inputs from [0,

30] and step size 0.1 for cases 1–5 of each distinct scenarios

of nonlinear PVPMV. As shown in Table 2, the approximate

solution for the variants of model A is obtained by creating

different scenarios with cases 1–5 and varying the γ infection

ratio of a susceptible plant by an infected vector, γ1 infection

ratio of vectors by infected plants, υ plants’ natural fatality rate,

c plants’ increased fatality rate owing to illness, r vectors’ natural

fatality rate, and � vector replenishment rate. Similarly, the

approximate solution for the variants of model B is determined

by using the impact of variation inmwhich represents the plants’

proliferation rate, γ the rate of infection of a susceptible plant

by an infected vector, r represents the plants’ natural fatality

rate, and c represents the disease’s additional fatality rate. �

represents the rate at which susceptible vectors are recruited, γ1

represents the rate at which an infected plant infects a susceptible

vector, and r represents the vectors’ natural fatality rate as

shown in Table 2. Figure 1 depicts the working procedure of the

designed approach for non-linear PVPMV.

Case study-I: Model A [25]

The three different models of plant virus propagation by

a vector based on the system of ODEs without delay (model

A), with delay (model A1), and without delay but including

exposed class [E(t)] (model A2) as presented in Equations (1–

4), (5–8), and (9–13) are numerically solved employing the

ADM and BDF methods invoking he Mathematica routine

with inputs [0, 30] and step size 0.1. Numerical outcomes and
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FIGURE 21

(A) Dynamics of infected vectors for the varition in � using ADM for model B1. (B) Dynamics of infected vectors for the varition in � using BDF

for model B1.

TABLE 8 Numerical outcomes of nonlinear PVPMV model B2 for case-1 of scenario 4.

Time (Days) ADM Case 1 BDF Case 1

S I X Y S I X Y

0 30.0000 5.0000 42.0000 9.0000 30.0000 5.0000 42.0000 9.0000

3 86.3176 12.1709 12.3955 34.3073 86.6904 11.9595 12.0366 34.5894

6 73.7772 17.7705 24.1041 25.7580 74.2162 17.6038 23.6978 26.0241

9 61.1327 21.313 35.7658 19.2102 61.5174 21.2481 35.4136 19.3792

12 51.7536 21.8141 44.2058 15.5981 51.9920 21.8310 43.9967 15.6787

15 46.8476 20.9704 48.3739 14.0416 46.9494 21.0005 48.2913 14.0724

18 45.1048 20.2721 49.7273 13.5023 45.1322 20.2880 49.7077 13.5115

21 44.7574 19.9889 49.9509 13.3643 44.7596 19.9935 49.9503 13.3661

24 44.7835 19.9234 49.9091 13.3482 44.7814 19.9241 49.9111 13.3481

27 44.8401 19.9201 49.8597 13.3550 44.8386 19.9199 49.8609 13.3547

30 44.8703 19.9244 49.8356 13.3608 44.8697 19.9243 49.8361 13.3607

simulations are determined for five distinct scenarios of each

model comprising cases 1–5 for non-linear PVPMV and selected

random scenarios from each model for discussion. We first

presented the dynamical behavior of S(t), I(t), X(t) and Y(t)

classes of scenario 2 for model A of non-linear PVPMV. The

numerical outcomes of non-linear PVPMV model A for case-1

of scenario 2 against the classes S(t), I(t), X(t) and Y(t) are listed

in Table 3.

Figures 2A,B illustrate the dynamics of susceptible plants

utilizing the ADM and BDF methods, respectively, for the
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FIGURE 22

(A) Dynamics of susceptible plants for the varition in r using ADM for model B2. (B) Dynamics of susceptible plants for the varition in r using BDF

for model B2.

variation in infection ratio of the vectors by infected plants,

i.e., γ1 for model A. It has been discovered that increasing

the value of γ1 causes the susceptible density of plants to

drop. The impacts of infected plants are shown in Figures 3A,B

for varied values of γ1. As can be seen from the graph,

increasing the value of γ1 increases the density of infected plants.

Figures 4A,B demonstrate that how the behavior of susceptible

vectors changes as the value of γ1 changes. For higher values

of γ1 there is an increase in the density of infected vectors.

Figures 5A,B show the effects of infected vectors for various

values of γ1. Increasing the value of γ1 increases the density of

infected plants, as shown in the graphic.

The dynamics of plants’ natural fatality rate i.e., υ is

explored for all four classes S(t), I(t), X(t) and Y(t) using the

strength of ADM and BDF methods for scenario 5 of the

model A1. As seen in Figures 6A,B, raising the value of υ

causes the density of susceptible plants to grow. The density

of infected plants decreased as the value of υ increased, as

seen in Figures 7A,B. Figures 8A,B show the effects of plants’

natural mortality rate i.e., υ for class X(t) of model A1. As can

be seen in the graphs, increasing the value of υ will increase

the number of susceptible vectors. For class Y(t) of model

A1, the influence of plants’ natural fatality rate, i.e., υ is also

computed. The rate of infected vectors reduces as the value of

the infected vectors increases, as seen in Figures 9A,B. Table 4

shows the numerical outcomes of non-linear PVPMV model

A1 for case-1 of scenario 5 against the classes S(t), I(t), X(t)

and Y(t).

Similarly, the dynamics for all four classes S(t), I(t), X(t) and

Y(t)are analyzed by varying the infection ratio of a susceptible

plant by an infected vector which is denoted by γ for scenario

1 of model A2 and graphical illustrations are presented in

Figures 10–13, respectively. Numerical outcomes classes S(t),

I(t), X(t) and Y(t) in model A2 for case-1 of scenario 1 are

computed and provided in Table 5. Figures 10A,B depict the

influence of the infection ratio of a susceptible plant by an

infected vector on susceptible plants using the ADM and BDM

methods, respectively. It is permissible to observe that when

the value of γ rises, the density of susceptible plants decreases.

Figures 11A,B describe the effects of the infection ratio of

a susceptible plant by an infected vector on infected plants.

One may observe that the density of infected plants increased

in correlation with the value of γ . Figures 12A,B illustrate

progressive increase in the density of susceptible vectors as the

value of γ increases, whereas Figures 13A,B demonstrate the

opposing behavior in the case of infected vectors.
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FIGURE 23

(A) Dynamics of infected plants for the varition in r using ADM for model B2. (B) Dynamics of infected plants for the varition in r using BDF for

model B2.

Case study-II: Model B

The three segregated models of plant virus transmission by a

vector, as described in Equations (14–17), (21–24), and (25–29),

are numerically solved employing the ADM and BDF methods

invoking the Mathematica routine. We construct five distinct

scenarios incorporating cases 1–5 for non-linear PVPMV

and chosen random scenarios from each model are used to

determine numerical outcomes and simulations. For model B of

non-linear PVPMV. We first described the dynamical behavior

of the S(t), I(t), X(t), and Y(t) classes in scenario 3 for the

variation in disease’s additional fatality rate i.e., c. for model B.

For all four classes S(t), I(t), X(t), and Y(t) numerical outcomes

are determined and provided in Table 6 for case-1 of scenario 3

of model B. Figures 14A,B illustrate the dynamics of susceptible

plants using the ADM and BDF methods for the variability in

the disease’s additional fatality rate i.e., c. It has been discovered

that as the value of c is elevated, the susceptible density of plants

increases. The impact of disease’s additional fatality rate i.e., c

on infected plants can be seen in Figures 15A,B. It is clear from

Figures that increasing the value of c will result in reduction

the density of infected plants. Figures 16A,B demonstrate the

behavior of susceptible vectors for the variation in disease’s

additional fatality rate of model B. One may see that the density

of susceptible vectors will increase as the value of c is increased.

The influence of disease’s additional fatality rate on infected

vectors is presented in Figures 17A,B. It is observed from Figures

that increasing the value of c causes the density of infected

vectors to decrease.

Secondly, the dynamics of susceptible vectors’ recruited

rate i.e., � is investigated for all four classes S(t), I(t), X(t),

and Y(t) utilizing the strength of ADM and BDF methods

for scenario 5 of the model B1 and numerical outcomes of

all four classes S(t), I(t), X(t), and Y(t) for the case-1 of

scenario 5 is listed in Table 7. Figures 18A,B portrayed the

behavior of susceptible plants density for the different values

of �, and it is noticed that the number of susceptible plants

decreases for the higher values of �. Figures 19A,B illustrated

that as the value of � increases, the number of infected

plants goes up. The dynmics of susceptible vectors for the

variation in vectors’ recruited rate i.e., c are presented in

Figures 20A,B. One may witness that in Figures 20A,B the

density of susceptible vectors goes in continous behavior for the

first two cases and next three cases vectors density increased

in the range of 0 to 10 days then steadily decreased and

shows their steady behavior for next 20–30 days. As a result,
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FIGURE 24

(A) Dynamics of susceptible vectors for the varition in r using ADM for model B2. (B) Dynamics of susceptible vectors for the varition in r using

BDF for model B2.

for higher values of �, the density of susceptible vectors

increases. Figures 21A,B portrayed the impact of susceptible

vectors’ recruited rate on infected vectors for model B1. The

infected vectors show a steady behavior for the first two

cases, also a steady behavior for the next three cases in 0–5

days, and then a gradual increase in 5–30 days, as shown in

Figures 21A,B.

Finally, the dynamics of vectors’ natural fatality rate i.e.,

r is investigated for all four classes S(t), I(t), X(t), and Y(t)

utilizing the strength of ADM and BDF methods for scenario

4 of the model B2. The respective numerical outcomes for

case-1 of scenario 4 is provided in Table 8. The impact of

vectors’ natural fatality rate on susceptible plants is presented

in Figures 22A,B As observed in graphical representation, the

density of susceptible plants increased up to 90, then decreased

between 3 and 10 days before returning to their steady state

behavior. Also, the density of susceptible plants increased for the

higher value of r as shown in Figures 22A,B, while the infected

plants depicted reverse behavior as shown in Figures 23A,B.

The influence of vectors’ natural fatality rate r on susceptible

vectors can be observed in Figures 24A,B for model B2. The

number of susceptible vectors appears to decrease as the value

of r increases. Similarly, the dynamics of infected vectors

is portrayed in Figures 25A,B utilizing the ADM and BDF

fro model B2, respectively. The number of infected vectors

dropped as the natural fatality rate r of the vectors increased in

model B2.

Conclusions

In this paper, we analyzed the dynamics of two models

of virus transmission in plants to incorporate either a time

lag or an exposed plant density into the system governed

with non-linear delayed ODEs. The presented models may

effectively predict susceptible plants [S(t)], infected plants

[I(t)], susceptible vectors [X(t)], and infectious vectors [Y(t)].

Numerical analysis of the plant virus propagation model

by a vector (PVPMV) is conducted through exhaustive

scenarios with variation in different parameters used in

the models. The approximate solution of the non-linear

PVPMV is determined by exploiting the knacks of the

Adams method (ADM) and backward differentiation formula

(BDF) method We found delayed models to have a greater

degree of realism since they account for the time between

contact and infection. Processes are affected by delay
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FIGURE 25

(A) Dynamics of infected vectors for the varition in r using ADM for model B2. (B) Dynamics of infected vectors for the varition in r using BDF for

model B2.

and mathematically delay influences the dynamics along

with stability. Moreover, the presented study proved to be

extremely useful in controlling the plant outbreak in the

subsequent seasons.

The dynamics of non-linear fluid dynamic models may

be investigated in the future utilizing the strength of Adams

predictor corrector method and BDF method [66–69].
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Nomenclature

Symbols

N Total plant density r Plants’ natural fatality rate

c Plants’ increased fatality rate m Plants’ proliferation rate

S(t) Susceptible plants X(t) Susceptible vectors

I(t) Infected plants Y(t) Infectious plants

S(t0) Initial conditions for S(t) X(t0) Initial conditions for X(t)

I(t0) Initial conditions for I(t) Y(t0) Initial conditions for Y(t)

Greek Letters

γ Infection ratio of a susceptible plant by an infected vector, γ1 Infection ratio of vectors by infected plants

υ Plants’ natural fatality rate � Vector replenishment rate

δ Time delay

Abbreviations

ODEs Ordinary differential equations ADM Adams method

COVID-19 Coronavirus disease of 2019 BDF Backward differentiation formula

HIV Human immunodeficiency virus PVPMV Plant virus propagation by a vector

DDEs Delay differential equations
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