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Schistosomiasis is a neglected disease a�ecting almost every region of the

world, with its endemicity mainly experience in sub-Saharan Africa. It remains

di�cult to eradicate due to heterogeneity associated with its transmission

mode. A mathematical model of Schistosomiasis integrating heterogeneous

host transmission pathways is thus formulated and analyzed to investigate the

impact of the disease in the human population. Mathematical analyses are

presented, including establishing the existence and uniqueness of solutions,

computation of the model equilibria, and the basic reproduction number

(R0). Stability analyses of the model equilibrium states show that disease-free

and endemic equilibrium points are locally and globally asymptotically stable

whenever R0 < 1 and R0 > 1, respectively. Additionally, bifurcation analysis is

carried out to establish the existence of a forward bifurcation around R0 = 1.

Using Latin-hypercube sampling, global sensitivity analysis was performed to

examine and investigate the most significant model parameters in R0 which

drives the infection. The sensitivity analysis result indicates that the snail’s

natural death rate, cercariae, and miracidia decay rates are the most influential

parameters. Furthermore, numerical simulations of the model were done to

show time series plots, phase portraits, and 3-D representations of the model

and also to visualize the impact of themost sensitive parameters on the disease

dynamics. Our numerical findings suggest that reducing the snail population

will directly reduce Schistosomiasis transmission within the human population

and thus lead to its eradication.

KEYWORDS

schistosomiasis, heterogeneous host, mathematical analysis, sensitivity analysis,

global stability

1. Introduction

Schistosomiasis which is also known as Bilharzia, Bilharziasis, and snail fever, is

one of the neglected tropical diseases (NTD) common in some tropical and subtropical

countries, in areas where there is no access to safe drinking water, adequate hygiene,

and appropriate sanitation (sewage disposal). It is a water-based disease that is
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transmitted through contact with water infested with cercariae

and it affects about 240 million people worldwide andmore than

700 million people live in an area where the disease is endemic

[1]. Schistosomiasis infection is also known as a parasite disease

that is caused by schistosomiasis organisms (blood fluke). The

two main forms of schistosomiasis infection are urogenital

and intestinal which are caused by five schistosomiasis species

responsible for human or animal infections namely, Schistosoma

mansoni, Schistosoma intercalatum, Schistosoma haematobium,

Schistosoma mekonai, and Schistosoma japonicum [1]. There

are two stages of schistosomiasis infection namely; acute and

chronic stages. Acute schistosomiasis infection referred to as

Katayama Syndrome is a clinical manifestation of infection

caused by trematode worms [2].

When non-immune persons are exposed to schistosomiasis

infection, there is an incubation period symptoms of infection

include abdominal pain, blood in stool or urine, wasting,

anemia, dysuria [2]. Chronic schistosomiasis infection is caused

by schistosome, which has severe long-term implications [3].

The symptoms of the chronic stage are growth retardation,

renal failure, ascites, grand mal epilepsy, decreased fitness,

anemia, portal hypertension, transverse myelitis, bladder

carcinoma, and infertility [2]. Normally, snails harbor cercariae

and shed the infective stage (cercariae) of the parasite

(schistosome) in the freshwater [4]. Hence, there is an

increase in the prevalence of Schistosomiasis as a result

of freshwater habitats such as dams and irrigation, which

enhances snail habitation and thus, increases transmission.

Despite the progressive achievements in schistosomiasis control

over the years, Schistosomiasis is still one of the most

devastating parasitic diseases ravaging the entire world. Guiro

et al. [5] proposed a mathematical model for schistosomiasis

control, considering two population hosts, humans, and

snails with delays. Their results suggest that an effective

education campaign and reasonable coverage level of drug

treatment will help in the control of Schistosomiasis. A

mathematical model for the human-cattle-snail transmission

of Schistosomiasis in Hubei Province, China was studied by

Chen et al. [6]. Their results show that to control or eliminate

Schistosomiasis in Hubei Province, China. Environmental

factors need to be considered to lower (narrow) cattle-

snail transmission. Since chemotherapy alone cannot end

the spread of the causative parasite (schistosome), additional

interventions and control strategies must be combined to

lower re-infection, reduce the prevalence, and move toward

the elimination of Schistosomiasis [7]. Many researchers have

considered the use of molluscicides and different kinds of

environmental modifications to control snails to reduce or

eliminate schistosomiasis prevalence [7–9]. Interested readers

can also see the following references [10–20] for other published

works that have used mathematical models to gain insight

into the transmission dynamics of Schistosomiasis and other

infectious diseases in the human population and various

suggestion for their control/elimination.

Given the aforementioned above, our study presents

a mathematical modeling work that examines qualitative

mathematical analysis for the prevention and control of the

spread of Schistosomiasis through the control of snails. This

is in addition to chemotherapy, molluscicides, and other

environmental factors already studied in the previous research

works and also the inclusion of the acute and chronic

infected populations (compartments). The present study also

investigates if mammals such as cattle contribute to the spread

of Schistosomiasis infection within the population. The model

described in this work considers three population hosts that is:

humans, cattle, and snails.

The paper is organized as follows: Section 2 gives the

Model formulation, Section 3 the Mathematical model analysis

is presented, Section 4 presents the Sensitivity analysis of

parameters in the model, Section 5 presents the Results of

the numerical simulations and finally, Section 6 gives a brief

Discussion and Conclusion.

2. Model formulation

The life cycle of the schistosome parasite is formulated

mathematically. The populations considered are the human

population, other mammal population, and snail population

with the Cercariae C(t) and Miracida M(t). Cercariae C(t) is

a larva worm that the infected snails shed into the aquatic

environment, while the MiracidaM(t) are eggs that the infected

mammals (human and other mammals) shed in the stream

when they come to the river for human activities such as

fishing, swimming, fetching water, and/or drinking of water by

other mammals. In this study, other mammals include cattle,

mice, and dogs that the schistosome parasite can infect. The

total human population, Nh(t), at time, t, is divided into the

sub-populations; susceptible, Sh(t), acute infected, IA(t), and

chronic infected, Ich(t) humans. The other mammal population,

Na(t), is subdivided into susceptible mammals, Sa and infected

mammals, Ia, while the snail population, Ns(t) is made up

of susceptible snails, Ss(t) and infected snails Is(t). Human

recruitment and natural death rates are assumed to be 3h and

µh, respectively. The susceptible humans, Sh(t), become infected

through contact with fresh water contaminated with Cercariae

from infected snails. The force of infection is given by

βhαhC

C0 + ε1C
, (1)

where βh is the human transmission rate, αh is the adult parasite

production rate for humans, C0, is the half-saturation constant

of Cercariae within the environment and ε1 is the limitation of

the growth velocity of the pathogens for Cercariae. Susceptible
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humans become acutely infected upon infection and enter into

class, IA(t). In the acutely infected sub-population, a proportion

of them may recover with partial immunity depending on the

mass drug administration program within the community and

return to the susceptible class at a rate, ψ . On the other hand,

some human may develop a chronic infection at a rate, k and

move to class, Ich. Chronically infected humans may succumb

to infection at a rate, δh. Shedding of infection within the

environment by acute infected and chronic infected humans is

assumed to occur at rate NEτ1γh and NEτ1γhσ , respectively.

Here, NE is the number of eggs shed by mammals (both human

and other mammals), τ1 is the probability of eggs developing

into Miracidium, γh is the infected human shedding rate and σ

is a parameter that influences the shedding rate of the chronically

infected humans. For the other mammals, the recruitment rate

is assumed to be 3a while the natural death rate is µa. The

susceptible mammals are infected through contact with fresh

water contaminated with Cercariae from infected snails and the

force of infection is given by

βaαaC

C0 + ε1C
, (2)

where βa is the other mammal transmission rate, αa, is the

adult parasite production probability for other mammals. The

other mammals shed the eggs that hatch into the water at a rate,

NEτ1γa where γa is the other mammals shedding rate. Death

due to infection among other infected mammals is assumed to

be at a rate, δa. Furthermore, susceptible snails are recruited at

a rate, 3s and death due to natural causes of snails is at a rate,

µs. Susceptible snails become infected by contact with miracidia

from the viral shedding of infected humans and other mammals

and the force of infection is given by

βsαsM

M0 + ε2M
, (3)

where βs, is the snail transmission rate, αs is the Miracidial

penetration probability for snails, ε2, is the limitation of the

growth velocity for the Miracidium and M0, is the half-

saturation constant for Miracida within the environment. Death

due to infection of snails is assumed to be at a rate, δs. Infected

snails shed larva worm in the environment at a rate, τ2γs

where τ2 is the density of Cercariae for snails and γs is the

snail shedding rate. Finally, the decay rates for the Cercariae

and Miracida are µc,µM , respectively. The study assumes that

there is no immigration of infectious humans, other mammals,

and snails within their populations. Also, susceptible humans,

other mammals and snails are recruited at a constant rate. The

dynamics of infection are presented in the model flow diagram

in Figure 1. This leads to the following system of non-linear

differential equations:
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















dSh
dt

= 3h −
βhαhShC

C0 + ε1C
− µhSh + ψIA,

dIA

dt
=
βhαhShC

C0 + ε1C
− (k+ µh + ψ)IA,

dIch
dt

= kIA − (µh + δh)Ich,

dSa

dt
= 3a −

βcαaCSa

C0 + ε1C
− µaSa,

dIa

dt
=
βaαaCSa

C0 + ε1C
− (µa + δa)Ia,

dM

dt
= NEτ1(γh(IA + σ Ich)+ γaIa)− µmM,

dSs

dt
= 3s −

βsαsMSs

M0 + ε2M
− µsSs,

dIs

dt
=

βsαsMSs

M0 + ε2M
− (µs + δs)Is,

dC

dt
= τ2γsIs − µcC

(4)

with initial conditions

Sh(0) > 0, IA(0) ≥ 0, Ih(0) ≥ 0, Sa(0) > 0, Ia(0) ≥ 0,

Ss(0) > 0, Is(0) ≥ 0,M(0) ≥ 0,C(0) ≥ 0.

All the parameters are assumed to be non-negative over the

modeling time frame.

3. Mathematical methods

3.1. Invariant region

A biologically feasible population model such as model

system (4) should always have positive solutions. To show that

all solutions of model system (4) are non-negative, we let Nh,

Na and Ns be the total human population, other mammals

population and snail populations, respectively, where, Nh(t) =

Sh(t) + IA(t) + Ich(t), Na(t) = Sa(t) + Ia(t), and Ns(t) =

Ss(t)+Is(t), respectively with the initial conditionsNh(0),Na(0),

Ns(0),M(0), and C(0).

Adding the human, other mammals and snail populations

give the respective total populations as Nh
′(t) = 3h − δhIch −

Nhµh,Na
′(t) = 3a−δaIa−Naµa andNs

′(t) =3s−δsIs−Nsµs.

In the absence of infection which implies that the disease-related

death rates for chronically infected human, δh, other infected

mammals, δa and infected snail, δs are negligible, we assume that

the total populations, Nh,Na and Ns are asymptotically stable

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2022.1020161
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Madubueze et al. 10.3389/fams.2022.1020161

FIGURE 1

Flow diagram for the dynamics of Schistosomiasis infection.

and yield

Nh
′(t) ≤ 3h − Nhµh,

Na
′(t) ≤ 3a − Naµa,

Ns
′(t) ≤ 3s − Nsµs. (5)

Solving (5) using the inequality theorem by Birkhoff and

Rota [21] and integrating with the initial conditions Nh(0),

Na(0), Ns(0), C(0), andM(0) gives

Nh ≤
3h

µh
−

(3h − µhNh0

µh

)

exp (−µht),

Na ≤
3a

µa
−

(3a − µaNa0

µa

)

exp (−µat),

Ns ≤
3s

µs
−

(3s − µsNs0

µs

)

exp (−µst).

As t→ ∞, the total populations for humans, othermammals

and snails approach Nh ≤
3h

µh
, Na ≤

3a

µa
and Ns ≤

3s

µs
,

respectively. Since IA, Ich ≤ Nh(t), Ia ≤ Na(t), and Is ≤ Ns(t)

it implies that the Cercariae (C) and Miracidia (M) populations

can be written as

C′(t) ≤
γsτ23s

µs
− µcC,

M′(t) ≤ NEτ1

[γh(1+ σ )3h

µh
+
γa3a

µa

]

− µmM. (6)

Applying the inequality theorem by Birkhoff and

Rota [21] with the initial conditions C(0) = C00 and

M(0) = M00 yields

C(t) ≤
3sγsτ2

µsµc
−

[γsτ23s − µsµcC00

µsµc

]

exp (−µct),

and

M(t) ≤ NEτ1

[3hγh(1+ σ )

µhµm
+
3aγa

µaµm

]

−

[NEτ1(3hγhµa(1+ σ )+3aγaµh)− µhµaµmM00

µhµaµm

]

exp (−µmt).

As t→ ∞, the Cercariae and Miracidia populations tends to

C(t) ≤
3sγsτ2

µsµc
and M(t) ≤ NEτ1

[3hγh(1+ σ )

µhµm
+

3aγa

µaµm

]

respectively.

This shows that all the feasible solutions Nh(t), Na(t), Ns(t),

C(t) andM(t) are bounded and the region,

Z =

{

(Sh, IA, Ich, Sa, Ia,M, Ss, Is,C) ∈ R
9
+ | Nh ≤

3h

µh
,

Na ≤
3a

µa
, Ns ≤

3s

µs
, M ≤ Mmax,C ≤ Cmax

}

is positively invariant. Thus, we conclude that for all t > 0,

model system (4) is biologically feasible and well-posed in Z .
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3.2. Positivity of the solution

We show that the solutions of the model system (4) are

positive for all time by proving the following theorem:

Theorem 3.1. With positive initial conditions, the solution set of

model system (4), [Sh(t),IA(t),Ich(t), Sa(t), Ia(t), M(t), Ss(t), Is(t),

C(t)], is positive for all time, t > 0.

Proof. From the first equation of the model Equation (4),

we have

Sh
′ = 3h−

βhαhCSh
C0 + εcC

−µhSh+ψIA ≥ −

(

βhαhC

C0 + εcC
+ µh

)

Sh.

(7)

Integrating with initial condition Sh(0), we obtain

Sh(t) ≥ Sh(0)exp{

∫ t

0
−(yh + µh)dt} > 0 (8)

with yh =
βhαhC

C0 + ε1C
.

In a similar way with ya =
βaαaC

C0 + ε1C
and ys =

βsαsM

Mo + ε2M
,

IA(t) ≥ IA(0)exp{−(k+ µh + ψ)t} > 0,

Ich ≥ Ich(0)exp{−(µh + δh)t} > 0,

Sa(t) ≥ Sa(0)exp{

∫ t

0
−(ya + µa)dt} > 0,

Ia(t) ≥ Ia(0)exp{−(µa + δa)t} > 0,

Ss(t) ≥ Ss(0)exp{

∫ t

0
−(ys + µs)dt} > 0,

Is(t) ≥ Is(0)exp{−(µs + δs)t} > 0,

C(t) ≥ C(0)exp{−µct} > 0,

M(t) ≥ M(0)exp{−µmt} > 0. (9)

Therefore, we conclude that the solution set [Sh(t), IA(t),

Ich(t), Sa(t), Ia(t), M(t), Ss(t), Is(t), C(t)] of model Equation (4)

is positive for all t > 0. This shows that the model is well-posed

and biologically meaningful since the sub-population cannot

be negative.

3.3. Existence of disease-free equilibrium

We examine the stability of the disease-free equilibrium

state of the schistosomiasis model system (4) in terms of basic

reproduction number. The disease-free equilibrium, E0, is the

equilibrium state in the absence of schistosomiasis disease in the

environment. At equilibrium state,

dSh
dt

=
dIA

dt
=

dIch
dt

=
dSa

dt
=

dIa

dt
=

dSs

dt
=

Is

dt
=

dM

dt

=
dC

dt
= 0.

This is solved simultaneously for the schistosomiasis model

Equation (4) to yield the disease-free equilibrium,

E0 = (S0h, I
0
A, I

0
ch, S

0
a, I

0
a , S

0
s , I

0
s ,M

0,C0)

=

(

3h

µh
, 0, 0,

3a

µa
, 0,
3s

µs
, 0, 0, 0

)

. (10)

3.3.1. The basic reproduction number

The basic reproduction number of the schistosomiasis

model system (4) denoted by R0, is a threshold parameter that

is interpreted biologically as the average number of infected

individuals created by one infected individual introduced in a

susceptible population during the course of its infectious period

[22, 23]. We compute R0 using the next-generation matrix

approach by Van den Driessche and Watmough [22]. Applying

the approach, let F and V denote the Jacobian matrices for

the rates of appearance of new infections and the transfer of

infections in and out of the infected compartments, respectively

at DFE, E0, so that

F =































0 0 0 0 0
βhαhS

0
h

C0
0 0 0 0 0 0

0 0 0 0 0
βaαaS

0
a

C0
0 0 0 0 0 0

0 0 0
βsαsS

0
s

M0
0 0

0 0 0 0 0 0































and

V =



















f 0 0 0 0 0

−k g 0 0 0 0

0 0 h 0 0 0

−A −Aσ −B µm 0 0

0 0 0 0 q 0

0 0 0 0 −D µc



















, (11)

where

f = k+ µh + ψ , h = µa + δa, g = µh + δh, q = µs + δs,

A = NEγhτ1,B = NEγaτ1,D = γsτ2.
(12)

The basic reproduction number, R0, for the model system

(4) is defined as the spectral radius of the operator,FV−1, where

V−1 is the inverse matrix of V . This gives

R0 =

√

βsαs3sD

qµcµsM0

(

βhαh3hA(kσ + g)

fgµhC0µm
+
βaαa3aB

hµaC0µm

)

=
√

Rsch + RsA + Rsm (13)

for

Rsch = Rs × Rch, RsA = Rs × RA, Rsm = Rs × Rm,
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Rs =
βsαsD3s

µcqM0µs
,

Rm =
βaαaB3a

hµmC0µa
, Rch =

βhαhAkσ3h

fgµmC0µh
,

RA =
βhαhA3h

fµmC0µh
. (14)

Here, the reproduction numbers, RA, Rch, Rm, and Rs, are

the reproduction numbers for the acutely infected humans,

chronic infected humans, other infected mammals and infected

snails contribute, respectively. This shows that the basic

reproduction number, R0 of the schistosomiasis model system

(4) comprises of four parts, that is, RA, Rch, Rm, Rs. Importantly,

whenever R0 < 1, it implies that the disease will fizzle out in the

population and whenever R0 > 1, it means that the disease will

persist in the population.

3.4. Local stability of the disease-free
equilibrium

We prove the local stability of the disease-free equilibrium,

E0, for the Schistosomiasis model system (4) using the

Jacobian method.

Theorem 3.2. The disease-free equilibrium state, E0, of the

schistosomiasis model system (4) is locally asymptotically stable

when R0 < 1 and unstable for R0 > 1.

Proof. We compute the Jacobian matrix of the model system (4)

at the equilibrium state, E0, as follows.

J(E0) =





















































































−µh ψ 0 0 0 0 0 0 −
βhαhS

0
h

C0

0 −f 0 0 0 0 0 0
βhαhS

0
h

C0

0 k −g 0 0 0 0 0 0

0 0 0 −µa 0 0 0 0 −
βaαaS

0
a

C0

0 0 0 0 −h 0 0 0
βaαaS

0
a

C0

0 A σA 0 B −µm 0 0 0

0 0 0 0 0 −
βsαsS

0
s

M0
−µs 0 0

0 0 0 0 0
βsαsS

0
s

M0
0 −q 0

0 0 0 0 0 0 0 D −µc





















































































,

(15)

where f , g, h, q,A,B,D are defined in (12). The eigenvalues of

(15) are λ1 = −µh, λ2 = −µa, λ3 = −µs and the roots of the

characteristics equation

λ6 + Pλ5 + Qλ4 + Rλ3 + Uλ2 + Vλ+W = 0 (16)

where














































































































P = µc + µm + q+ h+ g + f ,

Q = µc(µm + f + g + h+ q)+ µm(f + g + h+ q)

+f (g + h+ q)+ g(h+ q)+ hq,

R = µmµc(f + g + h+ q)+ (µcf + µmf )(g + h+ q)

+(µmg + µcg + fg)(h+ q)+ hq(µc + f + g),

U = µmµcqf (1− RsA)+ µmµcqh(1− Rsm)

+µmµcf (g + h)

+(µmµcg + µcfg + µmfg)(h+ q)

+(µchq+ µmhq)(f + g)+ fghq,

V = µmµcgq(1− Rsch − RsA)

+µmµcfhq(1− RsA − Rsm)

+µmµcqhg(1− Rsm)+ fgh(µmµc

+µcq+ µmq),

W = fghqµmµcM0C0µsµaµh(1− R20).

(17)

With the definitions of reproduction numbers in (14), we

have by Routh-Hurwitz criteria in Kim et al. [24] and the

conditions in Heffernan et al. [25] that the polynomial in (16)

has negative real roots provided that P > 0, Q > 0, R > 0,

U > 0, V > 0,W > 0, PQ > R, QU > W, UV > RW and this

happens when R0 < 1. With negative real eigenvalues, it implies

that the disease-free equilibrium state, E0, for Schistosomiasis

model system (4) is locally asymptotically stable if R0 < 1

otherwise it is unstable.

3.5. Existence of endemic equilibrium

For the endemic equilibrium, let

λ∗c =
C∗

C0 + ε1C∗
, λ∗m =

M∗

M0 + ε2M∗
, (18)

in model system (4). We have at equilibrium state that

S∗h =
3h − (µh + k)I∗A

µh
, I∗A =

λ∗c βhαh3h

βhαh(µh + k)λ∗c + fµh
,

I∗ch =
k

g
I∗A, S∗a =

3a − hI∗a
µa

,

I∗a =
λ∗c βaαa3a

βaαaλ
∗
c h+ hµa

, S∗s =
3s − qI∗s
µs

,

I∗s =
βsαs3sλ

∗
m

βsαsqλ
∗
m + µsq

, C∗ =
D

µc
I∗s ,

M∗ =
A(I∗A + σ I∗

ch
)+ BIa∗

µm
. (19)

Substituting S∗
h
, I∗A, I

∗
ch
, S∗a , I

∗
a , S

∗
s , I

∗
s ,M

∗, and C∗ into λ∗c =

C∗

C0 + ε1C∗
and λ∗m =

M∗

M0 + ε2M∗
and solve simultaneously,

we obtain

λ∗m =
µcµsqC0λ

∗
c

βsαs(D3s − µcqC0λ
∗
c − D3sε1λ

∗
c )
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with λ∗c as solution of the polynomial

λ∗c (Xλ
∗2
c + Yλ∗c + Z) = 0, (20)

where

X = Ah3hβaβhαhαa(kσ + g)[µcµsqC0ε1 + βsαsµcqC0

+βsαsD3sε1]+ βaβhαhαag(µh + k)

× [µcµsqC0(µmhM0 + ε2B3a)

+βsαsB3a(D3sε1 + µcqC0)],

Y = (g + kσ )βhαhAh3h[3sβsαsD(ε1µa − βaαa)

+µcqC0µa(βsαs + µsε2)]+ (µh + k)βhαhg

× (µcµsqC0µmhM0µa − βsαsBD3a3sβaαa)

+µcµsqfgC0βaαaµh(µmhM0 + ε2B3a)

+ βsαsBfg3a3sβaβhαhαa

+µcµsqfgC0βaαaµh(µmhM0 + ε2B3a)

+βsαsBfg3aβaαaµh

× (D3sε1 + µcqC0),

Z = µcµsqC0µmfghM0µaµh(1− R20). (21)

Solving (20) for λ∗c , it can be seen that one of the solutions

is λ∗c = 0 which represents the disease-free equilibrium state,

while the other solution of the polynomial (20) is the endemic

equilibrium state of the model system (4) that is given by

λ∗c =
−Y +

√

Y2 − 4XZ

2X
,

and it is positive whenever R0 > 1. We further use Descarte’s

rule of signs to discuss the existence of possible positive roots

of Equation (20) especially when R0 < 1. The results are

summarized in Table 1. Hence, the following theorem.

Theorem 3.3. System (4) has the following

endemic equilibrium:

• If R0 > 1, then the system has one positive unique endemic

equilibrium state.

• If R0 < 1, then the system has zero or two endemic

equilibria.

In case (4), there is possibility of backward bifurcation of the

model system (4) as it may contain endemic equilibrium with

TABLE 1 No. of possible positive real roots for (20).

Cases X Y Z R0 No. of possible

positive real

roots

1 + + − R0 > 1 1

2 + − − R0 > 1 1

3 + + + R0 < 1 0

4 + - + R0 < 1 0, 2

DFE when R0 < 1. This is further determine by carrying out a

bifurcation analysis in the following subsection.

3.6. Bifurcation analysis

The stability of endemic equilibrium state is established

using Center Manifold Theory by Chavez et al. [26]. The theory

shows the direction of bifurcation, whether it is a forward

or backward bifurcation. A forward bifurcation indicates that

the disease-free and endemic equilibrium states are locally

asymptotically stable if R0 < 1 and R0 > 1, respectively, which

implies the existence of global stability of the equilibrium states.

A backward bifurcation means there is a co-existence of disease-

free and endemic equilibrium when R0 < 1. Therefore, we apply

the theory in Chavez et al. [26] by re-writing the state variables

as follows

Sh = x1, IA = x2, Ich = x3,M = x4, Sc = x5, Ic = x6,

Ss = x7, Is = x8,C = x9

such that the model system (4) can be rewritten as

dX

dt
= F(X)

where F = (f1, f2, f3, f4, f5, f6, f7, f8, f9)
T is the right hand side of

model system (4).

Let the bifurcation parameter be βs = β∗s at

R0 = 1 so that the Jacobian matrix, J(E0), of (15)

will have a simple zero eigenvalue and negative real

eigenvalues. The left and right eigenvectors associated

with a simple zero eigenvalue of the Jacobian matrix

(15) are w = (w1,w2,w3,w4,w5,w6,w7,w8,w9) and

v = (v1, v2, v3, v4, v5, v6, v7, v8, v9), respectively, where

w1 = −
(µh + k)

µh
w2, w3 =

k

g
w2,

w4 = −
βaαaS

0
af

µaβhαhS
0
h

w2, w5 =
fβaαaS

0
a

hβhαhS
0
h

w2,
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w6 = −
qfC0µc

βhαhµsDS
0
h

w2, w7 =
fC0µc

βhαhS
0
h
D
w2,

w8 =
qM0fC0µc

βhβsαhαsDS
0
h
S0s

w2, w9 =
fC0

βhαhS
0
h

w2,

v1 = v4 = v6 = 0, v3 =
σ f

(kσ + g)
v2,

v5 =
Bfg

hA(kσ + g)
v2, v7 =

D

q
v9, v8 =

fg

A(kσ + g)
v2,

v9 =
βhαhS

0
h
hA(kσ + g)+ BfgβaαaS

0
a

C0hA(kσ + g)
v2. (22)

We state and prove the following theorem

Theorem 3.4. Model system (4) undergoes a forward bifurcation

at R0 = 1.

Proof. To determine the direction of the bifurcation, Theorem

4.1 in Castillo-Chavez and Song [27] is used to compute the

bifurcation coefficients, m and n, of model system (4). The

non-zero associated partial derivatives of F at the disease-free

equilibrium, E0, are

∂2f2(E0)

∂x1∂x9
=
βhαh

C0
,

∂2f2(E0)

∂x29
= −

2βhαhε1S
0
h

C20
, ,

∂2f5(E0)

∂x4∂x9
=
βaαa

C0
,

∂2f5(E0)

∂x29
= −

2βaαaε1S
0
a

C20
,

∂2f7(E0)

∂x6∂x8
=
βsαs

M0
,

∂2f7(E0)

∂x28
= −

2βsαsε2S
0
s

M2
0

,

∂2f7

∂βs∂x8
=
αsS

0
s

M0
.

Now applying the concept of Castillo-Chavez and Song [27],

the value ofm gives

m = v2

[

w1w9
∂2f2(E0)

∂x1∂x9
+ w2

9
∂2f2(E0)

∂x29

]

+ v5

[

w4w9
∂2f5(E0)

∂x4∂x9
+ w2

9
∂2f5(E0)

∂x29

]

+ v7

[

w6w8
∂2f7(E0)

∂x6∂x8
+ w2

8
∂2f7(E0)

∂x28

]

. (23)

Upon substituting the eigenvectors and partial derivatives,

we obtain

m = −v2w
2
2G (24)

where

G =
(µh + k)f

µh
+

2ε1f
2

βhαhS
0
h

+
Bfg

hA(kσ + g)

[

β2aα
2
a f

2S02a

µhβ
2
h
α2
h
S02
h

+
2βaαaε1f

2S02a

β2
h
α2
h
S02
h

]

+

[

βhαhS
0
h
hA(kσ + g)+ BfgβaαaS

0
c

hA(kσ + g)

]

FIGURE 2

Bifurcation plot for the dynamics of Schistosomiasis.

[

qC0f
2µ2cM0

µsβ
2
h
α2
h
fS02
h

+
2ε2fµc

M0

]

. (25)

Also for n, we have

n = v7w8
∂2f7(E0)

∂βs∂x8

=
fµc

βhβsαhαsS
0
s

[

βhαhhA(kσ + g)S0
h
+ BfgβaαaS

0
a

hA(kσ + g)

]

v2w2 > 0.

(26)

A forward bifurcation exists since m < 0 in (24) and n > 0

in (26). Therefore, a forward bifurcation exists for the model (4)

at R0 = 1. This completes the proof.

With the existence of forward bifurcation, a unique endemic

equilibrium, E1, exists and is locally asymptotically stable

whenever R0 > 1 and unstable when R0 < 1. Hence, there is

possibility of global stability of the equilibrium states. A forward

bifurcation plot is shown in Figure 2.

3.7. Global stability of the model

In this subsection, the global behavior of the disease-

free and endemic equilibria of the system (4) is established

by constructing a suitable Lyapunov functions and applying

LaSalle’s invariance principle.

3.7.1. Global stability of disease-free
equilibrium, E0
Theorem 3.5. The disease-free equilibrium, E0, of the

schistosomiasis model system (4) is globally asymptotically

stable when R0 < 1 otherwise unstable.
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Proof. Constructing a Lyapunov function using a matrix-

theoretic method by [28] gives

L =
A(kσ + g)

µmfg
IA+

Aσ

gµm
Ich+

B

hµm
Ia+

D

qµc
Is+

1

µm
M+

1

µc
C

(27)

where the letters, A, B, and D are defined in (12).

Taking the derivative of Equation (27) along the

trajectory yields

L′ =
A(kσ + g)

µmfg

(

βhαhCSh
C0 + ε1C

− fIA

)

+
Aσ

gµm
(kIA − gIch)

+
B

hµm

(

βaαaCSa

C0 + ε1C
− hIa

)

+
D

qµc

(

βsαsSsM

M0 + ε2M
− qIs

)

+
1

µm
(AIA + Aσ Ich + BIa − µmM)+

1

µc
(DIs − µcC).

(28)

Expanding Equation (28) and simplifying in terms of

reproduction numbers (RA,Rch,Rm,Rs) gives

L′ = (RA + Rch + Rm − 1)C + (Rs − 1)M

−
βhαhA(kσ + g)

µmfg

(

(S0
h
− Sh)C0 + ε1S

0
h
C

C0(C0 + ε1C)

)

−
Bβaαa

hµm

(

(S0a − Sa)C0 + ε1S
0
aC

C0(C0 + ε1C)

)

C

−
Dβsαs

qµc

(

(S0s − Ss)M0 + ε2S
0
sM

M0(M0 + ε2M)

)

M. (29)

With S0
h
≥ Sh, S

0
a ≥ Sa, S

0
s ≥ Ss, we have

L′ ≤ (RA + Rch + Rm − 1)C + (Rs − 1)M.

Since RA + Rch + Rm ≤ 1, Rs ≤ 1 from the definition of

the reproduction number in (13) and (14), this yields L′ ≤ 0

if R0 < 1. Hence by LaSalle’s invariance principle, the disease-

free equilibrium is globally asymptotically stable if R0 ≤ 1. This

completes the proof.

3.7.2. Global stability of endemic equilibrium,
E1

To prove the stability of the endemic equilibrium (E1) we

state and prove the following theorem

Theorem 3.6. The endemic equilibrium, E1, of the

schistosomiasis model system (4) is globally asymptotically

stable whenever R0 > 1 and ψ = 0.

TABLE 3 PRCC values and significance.

Symbol PRCC P-value Keep?

βs 0.513775674 0.0000 TRUE

βh 0.481893775 0.0000 TRUE

βa 0.024026121 0.4503 FALSE

γa 0.001059474 0.9734 FALSE

γh 0.532874887 0.0000 TRUE

γs 0.513588913 0.0000 TRUE

µc −0.526427244 0.0000 TRUE

µm −0.516304961 0.0000 TRUE

µs −0.776046728 0.0000 TRUE

τ1 0.433204750 0.0000 TRUE

τ2 0.444561365 0.0000 TRUE

TABLE 2 Parameter values used for the numerical simulation of model system (4).

Symbol Parameter value (day−1) References Symbol Parameter value (day−1) References

βh 0.09753 Kalinda et al. [29] δa 0.0039 [30]

βa 0.133 Feng et al. [30] δs 0.0004012 [31]

βs 0.001 Assumed σ 1.01 [32]

3h 254 Kanyi et al. [33] γa 0.00232 [34]

3a 200 Assumed γh 6.96 [35]

3s 3, 000 Zhang et al. [10] γs 2.6 [31, 34]

k 0.0262 Abokwara and Madubueze[32] τ1 0.00232 [34]

µh 0.0000384 Feng et al. [30] τ2 0.0026 [34]

µa 0.000392 Xiang et al. [36] NE 300 [31]

µc 0.004 Chiyaka and Garira [31] ε1 0.2 [31]

µs 0.000569 Chiyaka and Garira [31] ε2 0.2 [31]

µm 0.9 Chiyaka and Garira [31] M0 1× 106 Assumed

δh 0.0039 Gao et al. [37] C0 9× 107 [31]

ψ 0.2546 Ding et al. [38] αh 0.406 Assumed

αa 0.0406 Assumed αs 0.615 [34]
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Proof. The global stability of the endemic equilibrium is proved

by constructing the Volterra-Lyapunov function

H =
I∗A + σ I∗

ch

σ I∗
ch

[

Sh − S∗h − S∗h ln
Sh
S∗
h

]

+
I∗A + σ I∗

ch

σ I∗
ch

[

IA − I∗A − I∗A ln
IA

I∗A

]

+
βhαhS

∗
h
λ∗c

kI∗A

×

[

Ich − I∗ch − I∗ch ln
Ich
I∗
ch

]

+
BI∗aβhαhS

∗
h
λ∗m

βaαaS
∗
aλ

∗
cAσ I

∗
ch

[

Sa − S∗a − S∗a ln
Sa

S∗a

]

+
BI∗aβhαhS

∗
h
λ∗m

βaαaS
∗
aλ

∗
cAσ I

∗
ch

×

[

Ia − I∗a − I∗a ln
Ia

I∗a

]

+

[

Ss − S∗s − S∗s ln
Ss

S∗s

]

FIGURE 3

Tornado plot for the dynamics of Schistosomiasis infection on the R0 showing the model parameters with their PRCC values.

TABLE 4 Pairwise PRCC comparisons (Unadjusted P-values).

βs βh γh γs µc µm µs τ1 τ2

βs 0.3463 0.559 0.9955 0 0 0 0.02086 0.0457

βh 0.1269 0.3492 0 0 0 0.1711 0.2909

γh 0.5552 0 0 0 0.003792 0.009809

γs 0 0 0 0.02117 0.04632

µc 0.7575 0 0 0

µm 0 0 0

µs 0 0

τ1 0.7547

τ2

TABLE 5 Pairwise PRCC comparisons (FDR adjusted P-values).

βs βh γh γs µc µm µs τ1 τ2

βs 0.4055 0.6098 0.9955 0 0 0 0.03176 0.06414

βh 0.1692 0.4055 0 0 0 0.22 0.3611

γh 0.6098 0 0 0 0.006501 0.01605

γs 0 0 0 0.03176 0.06414

µc 0.7791 0 0 0

µm 0 0 0

µs 0 0

τ1 0.7791

τ2
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+

[

Is − I∗s − I∗s ln
Is

I∗s

]

+
βhαhS

∗
h
λ∗c

Aσ I∗
ch

×

[

M −M∗ −M∗ ln
M

M∗

]

+
βsαsλ

∗
mS

∗
s

DI∗s

[

C − C∗ − C∗ ln
C

C∗

]

, (30)

where λ∗c , λ
∗
m, A, B, and D are defined in (12) and (18).

Taking the time derivative of H along the solutions of the

schistosomiasis model Equation (4) yields

H
′ =

I∗A + σ I∗
ch

σ I∗
ch

[

1−
S∗
h

Sh

]

(3h − βhαhShλc − µhSh + ψIA)

+
I∗A + σ I∗

ch

σ I∗
ch

[

1−
I∗A
IA

]

(βhαhShλc − fIA)

+
βhαhS

∗
h
λ∗c

kI∗A

[

1−
I∗
ch

Ich

]

(kIA − gIch)

+
BI∗aβhαhS

∗
h
λ∗m

βaαaS
∗
aλ

∗
cAσ I

∗
ch

[

1−
S∗a
Sa

]

(3a − βaαaλcSa − µaSa)

+
BI∗aβhαhS

∗
h
λ∗m

βaαaS
∗
aλ

∗
cAσ I

∗
ch

[

1−
I∗a
Ia

]

(βaαaλcSa − hIa)

+

[

1−
S∗s
Ss

]

(3s − βsαsλmSs − µsSs)+

[

1−
I∗s
Is

]

× (βsαsλmSs − qIs)

+
βhαhS

∗
h
λ∗c

Aσ I∗
ch

[

1−
M∗

M

]

(AIA + Aσ Ich

+ BIa − µmM)+
βsαsλ

∗
mS

∗
s

DI∗s

×

[

1−
C∗

C

]

(DIs − µcC). (31)

At endemic equilibrium state, we have

3h = βhαhS
∗
hλ

∗
c + µhS

∗
h − ψI

∗
A, f =

βhαhS
∗
h
λ∗c

I∗A
,

g =
kI∗A
I∗
ch

, 3c = βaαaλ
∗
c S

∗
a + µaS

∗
a ,

h =
βaαaλ

∗
c S

∗
a

I∗a
, 3s = βsαsλ

∗
mS

∗
s + µsS

∗
s ,

q =
βsαsλ

∗
mS

∗
s

I∗s
, µm =

AI∗A
M∗

+
Aσ I∗

ch

M∗
+

BI∗a
M∗

,

µc =
DI∗s
C∗

. (32)

Substituting Equation (32) into (31) and expanding and

simplifying gives

H
′ =

µhS
∗
h
(I∗A + σ I∗

ch
)

σ I∗
ch

[

2−
S∗
h

Sh
−

Sh
S∗
h

]

+
BI∗aβhαhλ

∗
mS

∗
h
µa

βaαaAσλ
∗
c I

∗
ch

[

2−
S∗a
Sa

−
Sa

S∗a

]

+ µsS
∗
s

[

2−
S∗

Ss
−

Ss

S∗s

]

+ ψI∗A

(

I∗A + σ I∗
ch

σ I∗
ch

)[

S∗
h

Sh
+

IA

I∗A
− 1−

IA

I∗A

S∗
h

Sh

]

+
βhαhS

∗
h
λ∗c I

∗
A

σ I∗
ch

[

3+
λc

λ∗c
−

S∗
h

Sh
−

Sh
S∗
h

λc

λ∗c

I∗A
IA

−
M

M∗

−
IA

I∗A

M∗

M

]

+ βhαhS
∗
hλ

∗
c

[

4+
λc

λ∗c
−

S∗
h

Sh
−

Sh
S∗
h

λc

λ∗c

I∗A
IA

−
IA

I∗A

I∗
ch

Ich
−

M

M∗
−

Ich
Ich

M∗

M

]

+
BI∗aβhαhλ

∗
mS

∗
h

Aσ I∗
ch

×

[

3+
λc

λ∗c
−

S∗a
Sa

−
Sa

S∗a

λc

λ∗c

I∗a
Ia

−
M

M∗
−

Ia

I∗a

M∗

M

]

+ βsαsλ
∗
mS

∗
s

[

3+
λm

λ∗m
−

S∗s
Ss

−
Ss

S∗s

λm

λ∗m

I∗s
Is

−
C

C∗

−
C∗

C

Is

I∗s

]

. (33)

TABLE 6 Parameters di�erent after FDR adjustment.

βs βh γh γs µc µm µs τ1 τ2

βs FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE

βh FALSE FALSE TRUE TRUE TRUE FALSE FALSE

γh FALSE TRUE TRUE TRUE TRUE TRUE

γs TRUE TRUE TRUE TRUE FALSE

µc FALSE TRUE TRUE TRUE

µm TRUE TRUE TRUE

µs TRUE TRUE

τ1 FALSE

τ2
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Using the assumption thatψ = 0 and
λc

λ∗c
,
λm

λ∗m
≤ 1, we have

by Arithmetic-Geometric Theorem that

2 −
S∗
h

Sh
−

Sh
S∗
h

≤ 0, 2−
S∗a
Sa

−
Sa

S∗a
≤ 0, 2−

S∗s
Ss

−
Ss

S∗s
≤ 0,

3 +
λc

λ∗c
−

S∗
h

Sh
−

Sh
S∗
h

λc

λ∗c

I∗A
IA

−
M

M∗
−

IA

I∗A

M∗

M
≤ 4−

S∗
h

Sh

−
Sh
S∗
h

I∗A
IA

−
M

M∗
−

IA

I∗A

M∗

M
≤ 0,

4 +
λc

λ∗c
−

S∗
h

Sh
−

Sh
S∗
h

λc

λ∗c

I∗A
IA

−
IA

I∗A

I∗
ch

Ich
−

M

M∗
−

Ich
I∗
ch

M∗

M
≤ 5

−
S∗
h

Sh
−

Sh
S∗
h

I∗A
IA

−
IA

I∗A

I∗
ch

Ich
−

M

M∗
−

Ich
Ich

M∗

M
≤ 0,

3 +
λc

λ∗c
−

S∗a
Sa

−
Sa

S∗a

λc

λ∗c

I∗a
Ia

−
M

M∗
−

Ia

I∗a

M∗

M
≤ 4−

S∗a
Sa

−
Sa

S∗a

I∗a
Ia

−
M

M∗
−

Ia

I∗a

M∗

M
≤ 0,

FIGURE 4

Monte Carlo simulations for the eight parameters that have

PRCC values that are significant as evidenced by Table 3.

Parameter values were taken from Table 2. Each run consists of

1,000 simulations of randomly drawn parameters.

3 +
λm

λ∗m
−

S∗s
Ss

−
Ss

S∗s

λm

λ∗m

I∗s
Is

−
C

C∗
−

C∗

C

Is

I∗s
≤ 4−

S∗s
Ss

−
Ss

S∗s

I∗s
Is

−
C

C∗
−

C∗

C

Is

I∗s
≤ 0. (34)

This implies that L′ ≤ 0 in the region, Z. Applying

LaSalle’s invariance principle, the endemic equilibrium state of

the schistosomiasis model system (4) is globally asymptotically

stable in Z if R0 > 1 and ψ = 0. This means that with

different initial conditions at ψ = 0, the global stability of the

schistosomiasis model system (4) will always converge to the

disease-free and endemic equilibrium states whenever R0 < 1

and R0 > 1, respectively. The numerical simulations are carried

out in the next section.

FIGURE 5

(A) Dynamics of Schistosomiasis infection among the infected

human classes, Ia(t) and Ich(t) for varying snail death rate, µs. (B)

Dynamics of Schistosomiasis infection among the infected

classes, Ia(t) and Is(t) for varying snail death rate, µs. All other

parameters for this simulation are given in Table 2.
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4. Sensitivity analysis

4.1. Parameter values

To perform numerical simulations, parameters for the

model are mainly sourced from literature, as shown in Table 2.

Parameters that are represented by probabilities are assumed to

be within the range of [0 − 1]. Any parameters that are outside

the prescribed range are properly sampled from a uniform

distribution within ranges defined in Table 2.

4.2. Sensitivity analysis results

Sensitivity analysis examines the relative change of the

mathematical model output (variable) when the model

FIGURE 6

Dynamics of Schistosomiasis infection among: (A) the Miracidia,

(M(t)) and (B) the Cercariae classes, (C(t)), for varying snail death

rate, µs. All other parameters for this simulation are given in

Table 2.

parameter(s) are altered or changed. It helps in determining and

identifying the model parameters that require special attention.

To carry out the sensitivity analysis of the basic reproduction

number R0, we adopt the Latin Hypercube Sampling (LHS)

scheme and Partial Rank Correlation Coefficients (PRCCs)

technique used by Blower and Dowlatabadi [39] to compute

and identify the biological implication of each model parameter

on R0. See also the following published articles [40–45] with

similar analyses for different epidemic models where the LHS

techniques have been applied. We performed 1,000 simulations

per run and examined and evaluated the PRCC of the model

parameters concerning R0. The PRCC values indicate the

degree of monotonicity between the parameters of the model

and R0. Thus, juxtaposing the PRCC values gives us a clear

picture on the contribution of each parameter of the model

on R0. Table 3 and the Tornado plot of Figure 3 give the

model parameters with their PRCCs. The parameters with the

potential of increasing(decreasing) the value of R0, are those

with positive(negative) PRCCs. Thereby, increasing parameters,

βs,βh,βa, γh, γa, γs, τ1, τ2, increases the value of R0 which

in turn increase the spread of schistosomiasis disease within

the population (see Table 2 and Figure 3). On the other hand,

parameters µc,µm,µs with negative PRCCs influence the

reduction of the burden of schistosomiasis disease within the

population. When these parameters are increased, we observe

a reduction in the value of R0, hence the endemicity of the

Schistosomiasis within the population is also reduced. The

natural death rate for the snail population is the most sensitive

parameter with respect to R0 with a PRCC value of 0.776046728.

The implication of this is that increasing snail death rate

reduces the spread of Schistosomiasis within the population. To

examine the significance of the model parameters, we compute

the p-value of PRCC of each model parameter using the Fisher

Transformationmethod as shown in Table 3. Table 3 reveals that

the parameters, βs,βh, γh, γs,µc,µm,µs, τ1, τ2 have significant

p-values while the parameters, βa, γa, have insignificant p-

values. This implies that the shedding and transmission rates of

the other mammals, γa and βa, are non-monotonically related

to R0, though they can still produce changes in the transmission

dynamics of schistosomiasis infection.

The pairwise comparison of the significant parameters

of Table 3, whose p < 0.05 is given in Tables 5, 6. The

pairwise comparison is carried out to observe the model

parameters with notable influence on increasing the burden

of the schistosomiasis infection in the population, as well as

to establish whether there exists any difference between the

processes describing the compared parameters. We presented

the outcome of the pairwise PRCC comparison between the

unadjusted p-values (Table 4) and the false discovery rate (FDR)

adjusted p-values in Tables 5, 6. According to Table 6, whenever

the p-values of the compared pair of significant parameters

are <0.05, it is interpreted to be significant (TRUE) otherwise

it is insignificant (FALSE). It is also important to note from
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Table 6 that the pairs with significantly different (TRUE) are

more sensitive parameters.

The effect of the most sensitive parameters on R0

is presented in Figures 3, 4 as scatter plots to support

results in Table 2. These plots show how parameters,

βs, γs, γh, τ1,µc,µm,µs, τ2 monotonically increase or

decrease R0. The most noticeable result is the scatter plot

for snail death µs which is the most sensitive parameter. The

sensitivity result reveals that the spread of schistosomiasis

infection will be controlled and eradicated in the population

if more snails die. If the Miracidia and Cercariae (µm,µc)

are cleared within the population, we will observe a

reduction in the contact rates of human to Cercariae (βh),

snail to Miracidia (βs), probability of egg developing into a

Miracidium (τ1) and the density of Cercariae in the environment

(τ2).

FIGURE 7

Phase portraits for the dynamics of Schistosomiasis infection when R0 < 1. All other parameters in Table 2.

FIGURE 8

Phase portraits for the dynamics of Schistosomiasis infection when R0 > 1. All other parameters in Table 2.
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5. Numerical simulation results

5.1. Time series trajectories

To support the analytical results presented in this paper,

we present numerical simulations in the form of time series

plots and phase plots on the dynamics of Schistosomiasis. The

simulations presented are produced using MATLAB software.

Figures 5A,B, present the time series plots for the acute infected

class IA(t), chronic infected class, Ich(t), infected animals Ia(t),

and infected snails, Ia(t), while varying the snail death rate,

µs. The snail death rate, µs is considered for simulation as it

is the most sensitive parameter. It is observed that when the

death rate of the snail population is increasing, the peak of

IA(t), Ich(t), and Ia(t), shifts to the right in a reduced manner.

On the other hand, Figures 6A,B present the dynamics of

Miracidia,M(t) and Cercariae, C(t). We observe that an increase

in the snail death rates leads to a decrease in the population

of the Miracidia. Also, the populations of Is(t) and C(t)

reduce drastically as the snail population’s death rate increases.

This indicates that reducing the snail population reduces the

time it will take to infect human and mammal populations,

including Cercariae that will be cleared in the population. This

eventually reduces the number of Schistosomiasis cases within

the population.

5.2. Phase portraits

Figures 7, 8 present the phase portraits of the infection sub-

populations when R0 > 1 and R0 < 1, respectively. When R0 <

1, it can be seen that solutions tend to disease-free equilibrium

over time. This means that Schistosomiasis infection can be

contained within the population over time provided thatR0 < 1.

On the other hand when R0 > 1, the solutions lead to an

endemic equilibrium as seen by a decrease in the susceptible

population and an increase in the infected population. It is also

observed that as Miracidia initially increase, Cercariae increases

as well and reaches a peak. Thereafter, Miracidia decreases

gradually as Cercariae continues to increase. This means that

Schistosomiasis infection will persist within the population

whenever R0 > 1.

5.3. E�ects of parameters on R0

Using contour plots, Figures 9A,B depict that R0 attains

a lower value when the probability of eggs developing into

Miracidium is minimal and the snail death rate is high as

shown by the contour plot and the 3-D representation. Figure 9C

shows R0 vs. varying the natural decay rates of Miracidium,

(µm) and Cercariae (µc). It can be seen that if the decay

rates are effectively increased, the reproduction number, R0

FIGURE 9

Contour plots showing the e�ects of (A) τ1 vs. µs (B) τ2 vs. µs (C)

µc vs. µm.

can be reduced to below one, implying that the disease-free

equilibrium can be achieved. The implication of Figures 9A–C

is that there is a possibility of approaching a disease-free

equilibrium if these parameters are controlled accordingly.

However, this may be difficult to attain due to the lack of

proper control measures that can simultaneously increase the

decay rates. Generally, it can be seen that the control of

snails is very important in the reduction of the spread of

Schistosomiasis within the population. Therefore, measures
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need to be put in place so that all breeding areas for snails are

identified and dealt with appropriately without harming other

aquatic organisms.

6. Conclusion

In this paper, a deterministic mathematical model of

transmission dynamics of Schistosomiasis disease that

incorporates acute and chronic infected humans is formulated.

The main objective of the model is to study the impact of snail

control on the dynamics of Schistosomiasis. The model analysis

comprised of establishing the invariant region, the positivity of

solutions, the existence of disease-free and endemic equilibrium,

bifurcation analysis and computation of the basic reproduction

number, R0 using the next-generation approach. We proved

that whenever R0 < 1, the disease-free equilibrium is globally

asymptotically stable, whichmeans that the disease will fizzle out

within the population over time. The endemic equilibrium was

found to be globally asymptotically stable implying that if not

controlled, Schistosomiasis will persist within the population.

We also carried out a sensitivity analysis of the parameters

governing the basic reproduction number, R0, using the Latin

Hypercube Sampling (LHS) scheme-Partial Rank Correlation

Coefficient (PRCC) technique. The results of the sensitivity

analysis revealed that the spread of schistosomiasis infection

can be controlled and eradicated in the population by increasing

the natural death rate of the snail population. It also established

that there is need to increase the decay rates of Miracidia

and Cercariae within the environment by applying a control

measure. Therefore, the results of our study effectively conclude

that the most effective method to control the transmission

dynamics and spread of schistosomiasis disease is by rapidly

killing of infected snails and applying control measures that will

clear the parasite, miracidia and cercariae, in the environment.

One limitation of our model is that it was not fitted to

real-life data. Instead, our model was parameterized using

accurate parameter estimates from existing literature on

Schistosomiasis dynamics with inclusive heterogeneity in the

disease transmission. Secondly, the assumption of mammals

could bemade specific by considering only cattle in themodeling

framework. To bypass this complexity, we carried out a global

sensitivity analysis to vary the parameter values and establish

the uncertainty in the model parameters. Notwithstanding this

limitation, we maintain that our findings remain valid and

applicable if followed by policymakers to help eradicate the

spread of Schistosomiasis.

Future work may look at an optimal control analysis of the

model presented in the presence of different control strategies.

The model may also be extended to include infection dynamics

in the presence of snail age stratification.
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