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In neuroscience, the structural connectivity matrix of synaptic weights

between neurons is one of the critical factors that determine the overall

function of a network of neurons. The mechanisms of signal transduction

have been intensively studied at di�erent time and spatial scales and both the

cellular and molecular levels. While a better understanding and knowledge of

some basic processes of information handling by neurons has been achieved,

little is known about the organization and function of complex neuronal

networks. Experimental methods are now available to simultaneously monitor

the electrical activity of a large number of neurons in real time. The analysis

of the data related to the activities of individual neurons can become a

very valuable tool for the study of the dynamics and architecture of neural

networks. In particular, advances in optical imaging techniques allow us to

record up to thousands of neurons nowadays. However, most of the e�orts

have been focused on calcium signals, that lack relevant aspects of cell activity.

In recent years, progresses in the field of genetically encoded voltage indicators

have shown that imaging signals could be well suited to record spiking

and synaptic events from a large population of neurons. Here, we present

a methodology to infer the connectivity of a population of neurons from

their voltage traces. At first, putative synaptic events were detected. Then, a

multi-class logistic regression was used to fit the putative events to the spiking

activities and a penalization term was allowed to regulate the sparseness

of the inferred network. The proposed Multi-Class Logistic Regression with

L1 penalization (MCLRL) was benchmarked against data obtained from in

silico network simulations. MCLRL properly inferred the connectivity of all

tested networks, as indicated by the Matthew correlation coe�cient (MCC).

Importantly, MCLRL was accomplished to reconstruct the connectivity among

subgroups of neurons sampled from the network. The robustness of MCLRL
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to noise was also assessed and the performances remained high (MCC > 0.95)

even in extremely high noise conditions (> 95% noisy events). Finally, we

devised a procedure to determine the optimal MCLRL regularization term,

which allows us to envision its application to experimental data.

KEYWORDS

network inference, e�ective connectivity, multi-class logistic regression, lasso

penalization, genetic encoded voltage indicator, patch clamp recording, in silico

simulation

1. Introduction

Emergent dynamics in neural networks are primarily

determined by the inter-connectivity among neurons. The

connectivity patterns can be studied using mathematical tools

derived from graph theory [1]. During the maturation process,

brain areas undergo profound changes that are reflected

in refinements of neuron properties, synapse specificity,

and the rearrangement of neural connections. The latter is

accompanied by changes in emergent activities. For instance,

while transiting to the mature stage, the hippocampus display

synchronous events while the Purkinje cells’ activities of the

cerebellum manifest as traveling waves. It has been shown

that the underlying network topology, i.e., the distribution of

connections, differs, with the presence of hub neurons, i.e., scale-

free organization, in the hippocampus and local connections,

i.e., regular network, in the cerebellum [2]. Since the set of

connections determines how network wide activities emerge

from neurons’ properties there is a great interest in determining

the connectome (i.e., all connection patterns) adopting the most

efficient technique.

We point out that, given the interest in studying neural

connectomes, different definitions of connectivity exist [2]. The

anatomical (or structural) connectivity is defined by the set of

synaptic connections that exist among the neurons. Instead,

functional connectivity considers the statistical interrelation

between the neuron’s activities. A typical example of functional

connectivity is given by the spike-cross-correlation that is

computed across pairs of spike trains. There are also several

types of algorithms used to estimate the strength of functional

connectivity, that depend also on the type of signals considered

for the analysis. Instead, effective connectivity is related to the

direct (or causal) influence of one node on another. The latter

can be estimated by stimulating one node and investigating the

information flow to the downstream neurons. As an alternative

approach, one can gain insights into the anatomical connectivity

setting a causal mathematical model relating neuron’s activities.

Then, statistical inference of the model parameters allows

an understanding of how the neurons influence each other.

The design of functional and especially effective connectivity

algorithms is much dependent on the brain scale considered.

Here we restrict our attention to the meso-scale, that is how the

neurons are wired together and how they transmit information

throughout the network.

Most of the existing connectivity algorithms rely on spike

train analysis as the gold standard technique to record from the

population of neurons, i.e., extra-cellular and genetic-encoded

calcium fluorescence, allowing access to high signal-to-noise

ratio signals. Since the analysis of spike trains considers only

the time point at which a spike is generated this reduces the

amount of data to store and process for each unit. However,

this approach comes also with some drawbacks. For instance,

the use of standard spike cross-correlation analysis involves

numerous false positives, connections inferred by the method

that, however, do not exist in the structural connectome [3, 4].

To circumvent this problem [4] combined the spike cross-

correlation analysis by incorporating synaptic-kernels in a

generalized linear model named GLMCC. The study showed

that GLMCC reduced significantly the number of false positives

with respect to standard approaches. However, since GLMCC

infers the impact of mono-synaptic contacts in a noisy cross-

correlogram, it also requires large recording time windows

(refer to Table 1 in Kobayashi et al. [4]), that can be out

of reach in standard experimental conditions. Moreover, long

recordings are hardly stationary and it is often difficult to

disentangle the contribution of non-stationary fluctuations on

the results.

Here, we make the hypothesis we can record spikes and

post-synaptic-potentials from all neurons of interest. The gold

standard to record such types of signals, in experiments, is

the patch clamp technique. However, the latter is well suited

to record the activities of up to a maximum of around

ten neurons [5]. Instead, a technique based on genetically

expressed molecules with fluorescent signals proportional to

voltage (Genetically Encoded Voltage Indicator, GEVI) appears

to be more indicated here. Recent works have shown that sub-

threshold signals can reliably be recorded together with action

potentials [6]. In cell culture experiments, it has been shown that

post-synaptic-potentials (PSPs) can be sensed with the GEVI

[7]. Importantly, the most distal synaptic inputs that reach a

neuron might be overlooked as noise because their amplitude

can be very low (order of 0.5 mV [8]). However, as we will see,
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the proposed inference algorithm is quite robust to noisy PSPs.

Thus, despite there are still some experimental issues to solve

[9] it can be envisioned that the GEVIs, or a similar technique,

will allow to record spikes and PSP signals at the population

level. Interestingly, spiking activities and PSP events could also

be obtained by combining different optical recording techniques

[10], e.g., calcium (i.e., spikes) together with neurotransmitter

(i.e., synaptic events) imaging recordings. As anticipated, a

fundamental step of the proposed framework consists of the

detection of spiking and PSP events. While spikes are easy to

detect because of the high voltage excursion, the same can be

much more challenging for PSPs. A distinctive property of PSPs

is the onset phase, which is characterized by a marked change in

the voltage derivative. The family of Perona-Malik (PM) filters

represent a proper tool to denoise data by preserving the onset

of a signal. Interestingly, we have contributed to improving

the performances of standard PM filters [11–13] involving a

new non-local diffusive term. A description of the improved

algorithm is given in the Supplementary material.

In this study, we skip the detection phase and extract all

events directly from the simulations. Then, to investigate the

robustness of the proposed methodology, we increased the

amount of falsely detected events (named ’instrumental noise’

here). A key ingredient of biological networks is sparseness. We

recognize a population sparsity (how many neurons are active

right now), a time sparsity (how often the cells fire), and a

connection sparsity (each neuron connects to a narrow subset

of neurons). Here, we focus our attention on the latter type of

sparseness. A logistic model is introduced linking the spiking

activities to the PSPs and an L1-penalization term is included

in the likelihood function to promote connectivity sparseness

in the inferred network. Here, we extended a previous study

[14], to include both excitatory and inhibitory neurons. The

inference worked well on small networks even considering the

mixed populations. The paper also analyses the impact of noise

on these networks, showing that the inference is quite robust to

extremely high noise levels. Then, the size of the networks was

increased to 100 neurons and different network organizations

(random, distance based, and clustered) were analyzed, again

yielding good results. It is worth noting that, in most of the

experiments, neurons are highly under-sampled, i.e., only a

very small number of neurons can be recorded from a given

neuronal population (refer to e.g., Pillow et al. [15], Stevenson

et al. [16], and Vidne et al. [17]). This problem was addressed

here by randomly selecting 20 out of 100 neurons running the

inference on these subsets. Again the results were very good in

terms of different metrics. Finally, we designed a simple data-

driven approach to find a proxy of the optimal penalization

term from experimental data. The proxy was defined as

the smallest penalization term satisfying Dale’s principle (i.e.,

neurons are either excitatory or inhibitory), and it worked

optimally on small and medium sized networks made of 20 and

100 neurons, respectively.

2. Methods

2.1. Statistical analysis

In all analyses, except if stated otherwise, the errors and

their error bars correspond to one standard deviation computed

over the samples. For the boxplots, we adopted the following

convention. The extremes of the boxes are relative to the first

and third quartiles, the whiskers to the 5th and 95th percentiles

and the red line corresponds to the mean.

2.2. Network simulation

The network model was implemented in the NEST

simulation ambient [18]. We simulated the activity of each

node using the single compartment neurons proposed by Hill

and Tononi [19]. The latter aimed to simulate the temporal

dynamics of the membrane potential by a biophysical plausible

set of equations. With respect to the fully-fledged Hodgkin

and Huxley model, the “Hill-Tononi” modeling allowed a

realistic simulation of the sub-threshold potential while the

generation of a spike was replaced by an integrate and fire

mechanisms. In the network, each node/neuron had the same

set of default parameters taken from the class of “cortical

excitatory” neurons (refer to Table 2 in Hill and Tononi [19]).

The nodes were split into two populations, relative to the

excitatory and inhibitory neurons. In this study, the ratio

between excitatory and inhibitory neurons was kept at 4:1 (80%

excitatory, 20% inhibitory). Each spike of a neuron determined

a post synaptic potential (PSP) in the contacted neuron(s) with

a fixed transmission delay (0.1 ms). In particular, excitatory

neurons caused excitatory post synaptic potentials (EPSPs)

described by the ‘AMPA’ model and the inhibitory neurons

caused inhibitory post synaptic potentials (IPSPs) described by

the “GABA-A” model (refer to Table 3 in Hill and Tononi [19]).

In order to facilitate the spread of activities throughout the

network, we increased all synaptic strengths to 4, decreased all

recovery time constants to 10 ms, injected a fixed current of 10

pA to each neuron, and included additional “AMPA” synaptic

inputs randomly distributed in time and governed by a Poisson

process with an average frequency of 30 Hz. The simulations

were typically run for 5–10 s (Tmax).

2.3. Graph theory

A graph G is a pair G = (V ,E), where V is the set of nodes or

vertices and E is the set of links or edges made by paired vertices:

the link e = {v1, v2} belongs to E if and only the two vertices

v1 and v2 are connected. The vertices are often labeled with the

natural numbers, so that V = {1, . . . , n}.
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A directed graph is a graph G = (V ,E) where the links have

a direction, also called arcs. Accordingly, E becomes a set of

ordered pairs of vertices, so that (v1, v2) ∈ E means that there

exists an arc starting from v1 and ending in v2, while (v2, v1) ∈ E

ensures the presence of the opposite arc.

The adjacency matrix A = (ai,j) of a graph of n nodes is

defined with |ai,j| is either 1 or 0, respectively when a connection
exists or not from the node i to j. The sparseness of a directed

graph G = (E,V) is given by the fraction of existing connections

with respect to the possible ones:

sparseness =
# of actual links

# of possible links
=

#E

# of possible links

=
∑

i

∑

j |ai,j|
n2

. (1)

A weighted graph is a directed graph in which each arc is given

a numerical weight, typically positive. A weighted graph may

be described by the square n × n matrix 2 = (θi,j) of the

weights of the directed edges. Summing up, V = {1, . . . , n},
E = {(i, j) : θi,j 6= 0}, and for the arc (i, j) ∈ E, θi,j is its weight.

In a random graph, each node is connected to a fraction of

the other neurons of the network without any specific constraint.

The amount of arcs in a random graph is typically determined

by the connectivity probability (Pconn). In our study, Pconn =
0.3 in the 20-neuron networks indicates that each neuron, on

average, connects to ≃ 6 neurons of the network. Instead, in a

distance based graph, the connectivity probability is not constant

anymore and depends on the reciprocal distances between nodes

so that 0 ≤ pij ≤ 1 represents the probability to connect node i

to node j. In this study, we defined the connectivity probability

in terms of a Gaussian function: pi,j = 1√
2πσ

e
−

−d2i,j

2 σ2 where

σ modulates the probability to connect neurons (i.e., a lower

sigma yields smaller patches of connected neurons), while di,j

stands for the distance between nodes i and j. In all simulations,

the neurons were placed in a unity square and σ = 0.2. In

the clustered 100-neurons networks, 25 neurons (excitatory or

inhibitory, randomly selected) were placed in each of the four

clusters located in the circles of centers (0.2,0.2), (0.2,0.8), (0.8,

0.2), (0.8, 0.8), and radius = 0.2. Then, the connectivity was

determined by the Gaussian function with σ = 0.2. For each

network type (random, Gauss, cluster), we tested 10 different

connectomes changing the seed of the generative algorithm.

2.4. Multi-class logistic regression

Similar to our previous report [14], once the detection of

spikes and PSPs have been performed, the definition of the

event-based model was obtained with a discretization of the

temporal events. The discretization time is chosen based on

considerations about the signals of interest. The conduction

delay (i.e., the time it takes for an action potential to propagate

throughout an axon) is typically small as the longest axons in

the central nervous system are on the order of 1 mm and the

conduction velocity in myelinated nerve fibers is≃ 100mm/ms,

resulting in a propagation delay of ≃ 0.01 ms. Then, synaptic

events are subject to temporal jitters that are on the order of

≤ 1ms (i.e., asynchronous release [20]). The discretization time

was therefore set to dt = 1 ms and the external processes were

defined as:

xti =







+1 if an action potential is observed;
0 otherwise;

(2)

and the internal processes for neuron i at time step t:

yti =















+1 if an EPSP is observed;
−1 if an IPSP is observed;
0 no PSP is observed;

(3)

where EPSP and IPSP correspond to the excitatory and

inhibitory post-synaptic potentials, respectively. A Markovian

property was assumed, such that for any i = 1, . . . , n the internal

processes yi = (yti )
Tmax
t=1 of neuron i were linked to the external

processes of the neurons at the proceeding time-step, so that, for

any internal activity a ∈ {−1, 0,+1} and t ∈ {1, . . . ,Tmax}

P
(

yti = a
∣

∣xsj , s < t, j ∈ {1, . . . , n}
)

= P
(

yti = a
∣

∣xt−1
j , j ∈ {1, . . . , n}

)

.

To model the network activity, we use a weighted directed

graph (V ,2) of the excitatory/inhibitory synaptic links between

neurons, so that, for j, i ∈ {1, . . . , n}, the null weight 2j→i = 0

means that there is no synaptic link from neuron j to i, while

2j→i > 0 modeled a synaptic link that started from neuron

j to i. When 2j→i > 0, an action potential xtj influenced the

internal process yt+1
i according to the nature of the neuron j

(excitatory/inhibitory).

Therefore, we divided the set of neurons V into two sets

V+ and V−, the sets of the excitatory and inhibitory neurons,

respectively, so that V = V+ ∪ V−. The excitatory and

inhibitory property was then applied to the synaptic links by

superscribing + and − to 2j→i, so that 2j→i = 2+
j→i if

the neuron j was excitatory, while 2j→i = 2−
j→i when j

was inhibitory.

A multi-class (or multinomial) logistic regression model

was used to compare the excitatory/inhibitory activity to

the baseline (no-PSP observed) with the weights 2 of the

excitatory/inhibitory synaptic links:

log
P
(

yti = +1
∣

∣xt−1
j , j ∈ {1, . . . , n}

)

P
(

yti = 0
∣

∣xt−1
j , j ∈ {1, . . . , n}

)
=

∑

j

2+
j→i x

t−1
j ;

log
P
(

yti = −1
∣

∣xt−1
j , j ∈ {1, . . . , n}

)

P
(

yti = 0
∣

∣xt−1
j , j ∈ {1, . . . , n}

)
=

∑

j

2−
j→i x

t−1
j ,

(4)
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which implied time-homogeneity in the window of observation:

for any internal activity a ∈ {−1, 0,+1} and t1, t2 ∈
{1, . . . ,Tmax}

P
(

y
t1
i = a

∣

∣x
t1−1
j , j ∈ {1, . . . , n}

)

= P
(

y
t2
i = a

∣

∣x
t2−1
j , j ∈ {1, . . . , n}

)

.

This is a well defined process when probabilities are positive

for each class [21], as in our context (i.e., P(yti = 0|xt−1
j ) > 0,

since the neurons are silent, yti = 0, most of the time).

The explicit conditional probabilities were then found by

solving the system Equation (4), for any i = 1, . . . , n,

π t
i,0 = P

(

yti = 0
∣

∣xt−1
j , j ∈ {1, . . . , n}

)

=
1

1+ e
∑

j 2
+
j→i x

t−1
j + e

∑

j 2
−
j→i x

t−1
j

;

π t
i,+1 = P

(

yti = +1
∣

∣xt−1
j , j ∈ {1, . . . , n}

)

=
e
∑

j 2
+
j→i x

t−1
j

1+ e
∑

j 2
+
j→i x

t−1
j + e

∑

j 2
−
j→i x

t−1
j

;

π t
i,−1 = P

(

yti = −1
∣

∣xt−1
j , j ∈ {1, . . . , n}

)

=
e
∑

j 2
−
j→i x

t−1
j

1+ e
∑

j 2
+
j→i x

t−1
j + e

∑

j 2
−
j→i x

t−1
j

,

that allowed us to write the log-likelihood of the internal process

yi = (yti )
Tmax
t=1 for each neuron i as

ℓi = ℓi(2
+,2−)

=
Tmax
∑

t=1

log
(

π t
i,0 yti=0 + π t

i,+1 yti=+1 + π t
i,−1 yti=−1

)

.

Since a direct estimation of 2 suffered from an unbalanced

number of internal events, we proceeded as in King and Zeng

[22] by counting with wa =
∑

t yti 6=a the number of internal

events that differed from a (a ∈ {0,+1,−1}) and weighted the

data to obtain the modified log-likelihood function:

ℓwi = ℓwi (2
+,2−)

=
Tmax
∑

t=1

wyti
log

(

π t
i,0 yti=0 + π t

i,+1 yti=+1 + π t
i,−1 yti=−1

)

.

The goal of our methodology is to find a sparse geometry of

the network. In terms of parameter estimation, this corresponds

to determining whether or not the 2j→i are different from

0. A robust approach to this problem is the classical LASSO

penalization, which introduces a penalty term for the 1-norm of

2j→i.

Summing up, the problem can be solved by minimizing the

penalized weighted log-likelihood function

L(2+,2−, λ) = −
n

∑

i=1

ℓwi (2
+,2−)+ λ

(

∑

i,j

|2j→i|
)

.

The penalization factor λ allowed for regulation of the number

of connections. Indeed, at low λ, the inferred graph had

numerous arcs while the increase of λ caused a decrease in the

number of admissible arcs/links. In order to test the robustness

of MCLRL, we introduced the concept of “instrumental” noise

(νstrum). For a given simulation, the idea was to increase

the detection noise by randomly flipping some of the “no

PSP is observed” into either an EPSP or an IPSP (refer to

Equation 3). The amount of “instrumental” noise was made

proportional to the endogenous Poisson noise (30 Hz). For

instance, in Figure 3, (0,1) indicates that no excitatory noise is

introduced (0) while the inhibitory one (1) has the same rate

(30 Hz) as the endogenous Poisson noise. In this specific case

(νstrum=(0,1)), the performances of the MCLRL algorithm were

assessed keeping the same (overall) noise level on the excitatory

and inhibitory connections.

2.5. Metrics

The Dale’s precision index (Dpi) of neuron i was defined as:

Dpi(i) = 1−
wrong(i)

total(i)
(5)

wherewrong represents the incorrect synaptic events assigned to

neuron i (e.g., inhibitory event to an excitatory neuron) and total

the overall amount of events. The mean Dale precision index

(Dpi) of the excitatory or the inhibitory population was defined

as:

Dpi = 1−

∑n
i=1

wrong(i)
total(i)

n
=

∑n
i=1

(

1− wrong(i)
total(i)

)

n

=
∑n

i=1 Dpi(i)

n
, (6)

where n is the number of neurons.

2.6. Confusion matrix

The performances of MCLRL can be quantified in terms

of some synthetic indexes [23] computed on the confusion

matrices obtained by comparing the inferred connectome (infer-

conn) to the structural one (struct-conn). Following a standard

convention, we call the true positive (TP) as the amount of

connections part of infer-conn and struct-conn, the false positive

(FP) as the amount part of infer-conn but not of struct-conn, the

true negative (TN) the amount neither part of infer-conn nor of

struct-conn and the false negative the amount absent in infer-

conn but part of struct-conn. In this study, we defined three types

of confusion matrices, for the excitatory, inhibitory, and overall

connections (all).

Simple quantities can be defined in terms of the confusion

matrices. For instance, the true positive rate (TPR), the false

positive rate (FPR) and the Youden index were defined as:
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FIGURE 1

Network activity and inference. (A) Representative voltage traces of three neurons of the network. The voltage trace of an illustrative neuron

(top, black trace) was modulated by excitatory and inhibitory inputs. An excitatory neuron (middle, red trace) had two spikes and elicited

excitatory post synaptic potentials in the target neuron (top, red marks). Similarly, an inhibitory neuron (blue trace) had also two spikes and

elicited inhibitory post synaptic potentials in the target neuron (top, blue marks). The rest of the synaptic inputs (gray marks) come either from

endogenous noise or from other neurons of the network. (B) The inference algorithm associated the excitatory and inhibitory events with spikes

of the corresponding neurons (excitatory, e and inhibitory, i). Two additional connections from neurons e1 and e2 (gray circles) were inferred by

the algorithm to explain the excitatory inputs [gray marks in panel (A)]. (C) The raster plot shows that spiking activity in the network was rather

sparse. Black symbols indicate spike events (x-axis spike timing, y-axis cell number). The mean firing rate (green trace) was computed with a 20

ms binsize.

TPR = Sensitivity =
TP

TP+ FN
(7)

FPR = 1− Specificity =
FP

FP+ TN
(8)

Youden index = Sensitivity+ Specificity− 1 (9)

The receiver operative curve (ROC), a gold standard in

binary classification, was obtained by varying the penalization

term λ (Section 2.4) and reporting TPR vs. FPR (refer to

Figure 2A). The “goodness” of a ROC can be evaluated using

different synthetic measures. For instance, the maximum of

the Youden index is frequently used as a reference point as it

corresponds to the maximum sensitivity and specificity. The

maximumof the Youden index is typically found at the “top-left”

coordinates of the ROC plot. Instead, the Area Under the Curve

(AUC) corresponds to the integral of TPR vs. FPR. However,

an accurate estimation of it would have required spanning the

entire x-axis up to FPR close to 1 that, however, is obtained for

very low λ values and is quite time consuming to compute. Three

different ROCs could be defined for excitatory, inhibitory, and

overall connections.

In this study, we relied on the Matthew correlation

coefficient (MCC) [4, 23] because it better weights the number

of false positives (FP) and false negatives (FN) with respect to

other indexes. MCC is defined as:

MCC =
TP · TN− FP · FN

√
(TP+ FP) · (TP+ FN) · (TN+ FP) · (TN+ FN)

(10)

Again, three different types of MCC were defined and

named MCC(exc), MCC(inh), and MCC(all), respectively, for

excitatory, inhibitory, and overall connections. As a function of

λ, MCC was low for small/big values of the penalization term λ.

Indeed, at small λ many false connections enter the connectome

(e.g., gray neurons in Figure 1B) causing an increase in FP and

a decrease in MCC. On the other side, at high λ many correct

connections are lost causing an increase in FN and a consequent

decrease in MCC.

3. Results

3.1. Optimal MCLRL inference on small
random networks

Simulations were performed for network activity with 16

excitatory and 4 inhibitory neurons (4:1 ratio). The goal here

was to verify that in small networks with mixed excitatory and

inhibitory neurons the proposed multi-class logistic regression

with lasso penalization performed similarly to the binary

logistic regression used in our previous report [14]. The

connectivity probability was set at 0.3., which yielded an

average of 6 connections per neuron (114 connections, on

average, per network, range: 101 − 133). At the single cell

level, the neuron’s activity was modulated by noisy events

(black/gray symbols) intermingled by excitatory and inhibitory

inputs (respectively red and blue symbols) originating from
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the network (Figure 1A). The multi-class logistic regression

with lasso penalization associates the excitatory and inhibitory

spiking activities to the synaptic events observed in the target

cell (T, Figure 1B). Additional connections (and possibly wrong

ones, refer to Section 2.6) from other neurons (e1 and e2)

could be inferred to explain the putative synaptic events (gray

marks, Figure 1A) occurring in the target cell. At the network

level spiking activity (black marks, Figure 1C) was sparse in

time and space. Across simulations, the population means firing

rates (i.e., averaged mean firing rates) were 2.75 ± 0.19 Hz and

2.77 ± 0.41 Hz, respectively, for the excitatory and inhibitory

neuron populations (n = 10 simulations). Given this premise,

the inference algorithm has to infer the right connections in a

highly noisy context. Indeed, each neuron receives a net synaptic

input from the network ≃ 16.5 Hz (≃ 6 synaptic contacts x

2.75 Hz) while the endogenous Poisson noise comes at 30 Hz

(Section 2.2).

In order to verify how the proposed inference algorithm

performed, we spanned the penalization weight λ (refer to

Section 2.4) from 0.1 to 10. In a representative example, with

respect to the Receiver Operative Curve (ROC) (Figure 2A), the

Youden index peak was close to one for λ ≃ 2.5. Similarly,

the Matthew correlation coefficient (MCC) reached the peak

(≃ 1) for the same λ value (Figure 2B). Note that MCC has the

characteristic bell shape, with lower values at the boundary of the

domain where low/high λ values imply a high/low sparseness of

the network (Section 2.6). For instance, when the penalization

term λ was ‘too small’, MCLRL associated most of the synaptic

events with any neurons of the network. In the latter case,

the inference returned several wrong connections (e.g., neurons

e1 and e2 in Figure 1B). These observations were consistent

across simulations with peak MCC values falling above 0.98

in all cases (n = 10, Figure 2C). The peak MCC was reached

at small but different λ (range: 1.43 to 2.5, λmax, Figure 2D)

and the λ at which MCC started to decay (i.e., measured

with respect to 0.99 of the peak, λknee) was quite variable

(range: 2.5 to 10). It was found that neither λmax nor λknee

correlated with network sparseness (not shown). As reported

in Figures 2C,D, the Youden index provided similar results

to MCC. In all inferred networks (n = 10), the MCC curves

of inhibition were systematically higher than the ones relative

to excitation.

3.2. MCLRL inference on small random
networks with a variable amount of noise

In order to clarify the impact of the detection noise on

the inference process, we tested different paradigms. As a

first test, we checked the MCLRL robustness to noise. To

this aim, we increased the “instrumental noise” (Section 2.4)

for the different networks (n = 10) of the previous Section.

Figure 3A shows that noise mostly affected the shape of the

Matthew curves while the peaks remained close to one. Note

that different repetitions of the same ‘instrumental noise’ on

the same network resulted in small deviations from the average

MCC curves (i.e., the error bars—1 standard deviation—are

barely visible). The latter result was somehow expected as

different repetitions of the same noise level determine flips

of the synaptic events at different time points, that do not

affect significantly the conditional probabilities relating spikes

to synaptic events (Section 2.4). Figure 3B shows that the MCC

peaks were high (> 0.96) up to the instrumental noise (2,4),

which corresponded to an additional noise of 60 Hz (excitation)

and 120 Hz (inhibition). Even when the noise frequency was

brought to 240 Hz (excitation) and 480 Hz (inhibition) the

performances were still good (condition (8,16)). Importantly,

the resilience to the noise of MCLRL was quite impressive as

in the latter condition the ratio between the genuine and noisy

events is on the order of 2% [i.e., 16.5/(480 + 240 + 30 + 16.5)].

In short, the latter tests suggested that high noise levels did

not affect the MCC peak but it caused a decrease in the left

and right arms of the MCC parabola and reduced the set of

optimal λ values. These results also explained why theMCC(inh)

curve was systematically higher than MCC(exc) (Section 3.1).

Indeed, since the inhibitory noise was not introduced in the

simulations,MCC(inh) remained high for any λ. Another source

of noise is relative to the incorrect detection of internal events.

There are different such cases we can analyze. The most trivial

one consists of missed detection of either excitatory and/or

inhibitory events. The latter includes the relevant physiological

case of synaptic failures (i.e., when a fraction of the presynaptic

spikes do not elicit PSPs). Another case is when synaptic events

are assigned to the wrong class. For instance, this can occur

when inhibitory events are misinterpreted as excitatory ones.

The latter happens when the IPSPs occur at voltages below

the reversal potential of the GABA-A receptor. We investigated

this on the same 20 neuron networks used before and we

tested different amounts of wrong detections, spanning from

20, 50to 90%. Again the results were pretty good in terms of

MCC peak (Figures 3C,D), though, when 90% of the inhibitory

events were misinterpreted as excitatory ones, a decrease in

the MCC peaks was observed. Note that, on average, the

latter 90% of noise had a greater impact on the MCC peak

than the (8, 16) instrumental noise tested before. The findings

indicate that MCLRL was robust with respect to different

types of noises. One might wonder in what conditions the

performances of MCLRL would significantly deteriorate. A key

ingredient of MCLRL is the proper estimation of the conditional

probabilities π t
i,.. linking the external (i.e., spikes) to the internal

(i.e., synaptic signal) events (Section 2.4). The performances

of MCLRL worsened when, for example, numerous neurons

fired synchronously (i.e., within the discretization time dt = 1

ms) that weakened the causal relationship between spikes and

synaptic events.
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FIGURE 2

Multi-Class Logistic Regression with L1 (MCLRL) inference on 20-neuron networks. (A) Receiver operative curve relative to a representative

simulation. The true positive rate reaches the value one with a false positive rate close to zero. (B) Matthew correlation coe�cient (MCC) relative

to the same simulation. MCC reaches a peak value close to one and decays steeply for λ ≥ 3. (C) The peak values of MCC and the Youden index

are comparably high in a set of simulations (n = 10). In 9 out of 10 simulations, MCC and Youden index reach the value 1. (D) The peak MCC and

Youden indexes are reached at small λ values. The λPEAK relative to the Youden indexes is much more spread with respect to the ones obtained

with MCC. Note, a small jitter (≤ 0.1%) is added to each data point for clarity. In all panels, the colors are relative to excitation (red), inhibition

(blue), and all connections (black).

3.3. Optimal MCLRL inference on large
random networks

In order to verify the inference also works on a larger

network we simulated the activity of 100 neurons with the

same 4:1 ratio between excitatory and inhibitory neurons.

The connectivity probability was lowered to 0.2 and the

recording time window was set to 5 s. Ten different networks

were simulated with the given parameters. In Figure 4A,

the activity of a representative network has been reported.

After an initial synchronous event, the network settled down

to a sparse activity regime. Again, the performances were

optimal with a peak Matthew correlation coefficient close to

one (Figure 4B). In addition, the decay of MCC at high λ

(λ ≥ 5) was smoother compared to the case of 20 neurons

(Figure 2). Overall, the simulated networks performances were
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FIGURE 3

MCLRL performances with varying levels of noise. (A) MCC curves (all) with the increasing noise level. The numbers enclosed in the parenthesis

indicate the scaling factor with respect to the endogenous Poisson noise rate. Note that the default curve (red) corresponds to the black curve

reported in Figure 2B. (B) The distribution of MCC peaks obtained across di�erent networks (n = 10, the same as Section 3.1) with di�erent seeds

(m=10 per network) of the given noise levels stay above 0.86 (mean > 0.96). (C) MCC curves (all) with incorrect detection of the inhibitory

events. The percentages 20, 50, and 90% indicated the fraction of inhibitory events that have been wrongly assigned to excitatory events. (D)

The distribution of MCC peaks obtained across di�erent networks (n = 10, the same as Section 3.1) and repetitions (m=10) of the given

percentage of inhibitory events flipped to excitatory events (mean > 0.95).

close to optimal, with peak Matthew correlation coefficient

MCCPEAK = (0.996 ± 0.004, 1 ± 0) and the corresponding

λPEAK = (2.58± 0.26, 0.23± 0.09).

3.3.1. Inference on sub-sampled networks

The inference of network connections from node activities

faced a set of problems that are also found in related

scientific questions when data sampling was far from optimal.

For instance, multi-unit recordings, nowadays, allow us to

simultaneously record signals from thousands of neurons. Still,

their activities are likely regulated by several neurons that have

not been recorded. The latter involves a set of multifaceted

problems. The unobserved neurons could act as common drivers

of the observed population and affect the inference process.

In addition, unobserved neurons in a feed-forward chain may
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FIGURE 4

Multi-Class Logistic Regression with L1 inference on 100 neurons. (A) Raster plot. After an initial transient synchronous event (t ≃ 200 ms) the

network activity is pretty sparse. The activities falling in the blue shaded area are discarded from the inference process. (B) The Matthew

correlation coe�cient increases and reaches the peak value MCCMAX = (0.995, 1, 0.996) and the corresponding λMAX = (2.5, 0.5, 2.5). In the

parenthesis the arguments are relative to excitation, inhibition and all connections. Note, when the inference is performed on the entire time

interval (0–5,000 ms) the peak MCC slightly decreases MCCMAX = (0.991, 1, 0.993).

also affect the outcome of the inference process. Disentangling

the partial contributions of the unobserved neurons may,

therefore, represent an intricate problem to solve. Here, we

addressed the question by running the MCLRL over groups of

20 neurons randomly sampled from networks of 100 neurons

of the previous Section. We found that also in this case MCLRL

managed to accurately infer the connectivity of the 20 neurons

networks (m = 10 repetitions) and the performances were

comparable to the previous results (refer to Section 3.1) with

MCCMAX = (0.995 ± 0.010, 1 ± 0, 0.995 ± 0.009) and the

corresponding λMAX = (2.05 ± 0.16, 0.5 ± 0, 0.5 ± 0, 2.05 ±
0.16). Since the neurons were randomly selected the fraction

of excitatory vs. inhibitory neurons varied from (65%, 35%) to

(90%, 10%), indicating that the MCLRL performance was not

affected by the type of connection.

3.4. MCLRL inference on large networks
with topological constraints

The previous results showed that MCLRL is robust to noise

and it scales well with the network size. So far we have considered

medium sized networks with excitatory and inhibitory neurons.

In order to simulate network activities with a higher realism,

one should also consider that neurons connect with a higher

probability to the nearby ones. In this case, the inference will

have to find more connections among neurons located close to

each other. At first, we randomly distributed 100 neurons (80/20

% E/I ratio) and the connection probability was determined by

a Gaussian function. Then, in order to exacerbate the concept,

we considered networks characterized by the presence of neural

assemblies and hubs. As in other fields, network organization

can play an important role in emergent dynamics [2]. For

instance, in cell cultures network bursts (i.e., events that involve

a large fraction of the network) originate from specific regions

of the network characterized by recurrent connections among

neurons [24]. We considered four clusters (Figure 5A) with

inter-cluster connectivity (i.e., the percentage of connections

across clusters) of (16.2 ± 2.7%) (m = 10 networks). The link-

length distribution was concentrated on small values compared

to the Gauss connectivity (Figure 5B). Interestingly, the peak

MCC (all) reached the value ≃ 1 for λ ≃ 2 in all considered

networks (Figure 5C). In addition, the MCC curves of the 4-

clusters networks had a larger plateau with a peak MCC ≃ 1.

Overall, the MCC curves relative to the random and Gaussian

networks were much more comparable (the former slightly

higher at small and large λ). These results indicate that the MCC

peak was not much affected by network sparseness. Instead,

the MCC plateau does depend on network sparsity (4 clusters

6.2 ± 0.3, random 19.7 ± 0.5, Gauss 15.2 ± 0.5, error is one

standard deviation). Indeed, for the four clusters, the number

of connections of the anatomical connectome was considerably

lower than in the other ones. As seen for inhibition (e.g.,
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FIGURE 5

Networks with topological constraints. (A) 4-clusters networks. Red/blue circles indicate excitatory/inhibitory neurons. The arrows point to the

connected neurons. (B) Link-length distribution of the Gauss and 4-clusters networks (C) MCC curves relative to the random (cyan), Gauss

(black) and the 4-clusters (green). Error bars are one standard deviation computed over 10 realizations of the same type of network. (D) The

MCC (all) of the sampled 20 neurons is high for the “less” and the “most” connected neurons in the network. Note that data points were slightly

jittered (≃ 0.1%) to increase readability.

Figures 1B, 4B), the inference performs much better in terms of

MCC when there are lesser connections to detect. Note that, the

spiking activity was reduced in the 4-clusters networks (MFR =
2.70 ± 0.09 Hz) with respect to the Gauss networks (MFR =
3.12 ± 0.09 Hz), presumably because of the lower sparseness

with respect to the Gauss networks. Finally, we performed an

additional analysis (similar to Section 3.3) by sampling 20 out of

the 100 neurons. Here, for each network, we selected two groups

of 20 neurons with opposite properties. In the first (second)

group, we selected the neurons that were less (most) connected

to the other neurons of the network. This choice resulted in 20-

neuron networks with sparseness in the 4-clusters 3.2±0.8 (less)

and 9.4 ± 2.5 (most). Instead, in the Gauss networks sparseness

was 8.9 ± 1.6 (less) and 26.8 ± 2.9 (most). Interestingly, the

subsampled networks had an MCC peak close to one in all

cases (Figure 5D). The performances of the “less” connected sub-

networks (triangle down) were only slightly worse compared

to the “most” connected sub-networks (triangle up). Moreover,

note that also λPEAK was in the same range as the values

obtained for the 100-neuron networks (Figure 5C).
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FIGURE 6

Network inference with the Dale precision index. (A) The Dale precision index of excitation and inhibition increases with increasing λ. In the

example, a specific 20-neurons network is considered and di�erent seeds of the instrumental noise [νstrum = (0, 1)] have been tested (m=10

repetitions). (B) The λs relative to the peak MCC are comparable to the one obtained with the Dpi plateau in 20-neurons networks. Each point is

relative to the excitation/inhibition lambdas of a di�erent network (n = 10, see Section 3.1), the mean λ and standard error of the mean are

obtained using 10 di�erent seeds for νstrum = (0, 1) [see panel (A)]. (C) For each network (1 to 10, x-axis) the max λDale between excitation and

inhibition is used. The inference works very well on all 20-neurons networks, with MCC Dale(20) > 0.98. The standard error of the mean is

obtained varying the seed of the instrumental noise. (D) The max λDale between excitation and inhibition is used for inference in the

100-neurons networks yielding MCC Dale(100) > 0.94) in all tested networks.

3.5. Practical considerations to infer
network connectivity from experimental
data

The results obtained so far indicate that MCLRL was quite

effective in inferring the connectivity of small to medium sized

networks. However, in the concrete context of experimental

data, it is not clear what λ should be used to infer the

network connectivity. Based on the previous results (Section

3.1), the optimal λ fell in the range of 1.43–2.5 but we also

found that the optimal λ could be located in a tiny interval

(Figure 3A). There are different possible routes in determining

the right λ inspecting how the inferred graph changes at

different λ. For instance, one could monitor the link length

distribution of the inferred links and fit it to a theoretical

distribution. Unfortunately, the latter distribution might be
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hard to define for a generic neural network, which prevents

its usage. Another possible approach consists in monitoring

the nature of synaptic connections. At the mature stage, a

neuronmakes either excitatory or inhibitory synapses with other

neurons of the network, a rule known as Dale’s principle in the

Neuroscience field [25]. At small λ, the inference returns many

more connections with respect to the structural connectome

and the neurons will have connections with mixed signs (i.e.,

excitatory and inhibitory), thus violating Dale’s principle. The

increase of λ selects the most reliable connections and it will

gradually satisfy Dale’s principle. Indeed, we found that Dale’s

precision index (Dpi, Section 2.5) increased with λ and reached

the plateau =1 for λ ∈ [1, 3] (Figure 6A), a range of values

compatible with the optimal MCC λ values (Figure 6B). In

order to properly compute the Dalton precision index (Dpi),

each neuron has to be labeled according to its category (either

excitatory or inhibitory). From an experimental point of view,

the neurons can be labeled based on their firing patterns (e.g.,

inhibitory neurons typically fire more robustly than excitatory

ones). Alternatively, the neurons could be labeled using different

fluorescent reporters. Importantly, one can also rely on our data

driven approach to label the neurons. Indeed, at high enough

λ, when MCC starts to decrease, MCLRL does not infer all

existing connections but all neurons are unambiguously labeled

as excitatory or inhibitory. Dale’s principle can thus be invoked

to estimate the right λ and we defined λDale as the first point

of the Dpi plateau (= 1 in panel A). At first, we tested the idea

on the 20-neuron networks presented before [Section 3.2 with

νstrum = (0, 1)]. Interestingly, λDale was comparable to the one

maximizing the MCC index (Figure 6B). Now, since the Dpi

plateaus of the excitatory and the inhibitory sub-populations

occur at different λDale (Figure 6A) we can either choose one

or the other. We found that adopting the maximum λDale

yielded high values of the MCC (exc) and MCC (inh) indexes

(Figure 6C). Then, we repeated the same simulations on the 100-

neuron networks (Section 3.3) with νstrum = (0, 1) and obtained

slightly lower, but still high MCC values (Figure 6D).

4. Discussion

In this study, we have introduced a multi-class logistic

regression with L1-penalization (MCLRL) to infer the excitatory

and inhibitory connections of a network from their voltage

traces. The MCLRL algorithm optimizes a likelihood function

that causally relates the synaptic responses to the spiking

activities of the network. The L1-penalization term instead was

introduced to promote sparseness in the connections of the

network, which is a distinctive property of all brain networks.

Thus, the penalization term provided a means to properly weigh

sparseness toward causality and thereby select the most reliable

links in the network. Interestingly, we found that MCLRL

recovers the correct connectome using very small samples of

activity (5–10 s). This result is of interest as neural signals

are not stationary. In addition, the method may allow to track

the changes in network connectivity across time. We have

demonstrated that MCLRL is quite robust to noise, indeed it

achieves to reconstruct with high fidelity the connectome, in 20

neurons networks, even when the fraction of genuinely detected

signals is less than 5% of the total events. Interestingly, when

scaling the network size to 100 neurons we found that MCLRL

still worked well on networks with different topologies. Finally,

we designed a simple data-driven procedure to determine the

penalization term λ. We introduced Dale’s precision index

(Dpi) which quantified how well the MCLRL inference properly

detects the excitatory and inhibitory nature of the connections

(Dale’s principle). Since, Dpi increases with increasing λ and

reaches a plateau (=1) we empirically selected the optimal λ

based on the first point of the plateau. Our results, on 20-

neurons and 100-networks, showed that this simple criterion

allowed us to ascertain a λ that was close to the optimal one

obtained by the maximization of MCC. Importantly, the latter

procedure yielded simple and effective criteria to select an

appropriate λ when working with experimental data.

Although we have characterized many aspects of MCLRL,

several others can be further explored. We found that a 5–

10 s time window was enough to obtain good performances.

Evidently, when the time window is shortened too much (e.g.,

1 s) the MCC curves will decrease. Interestingly, one could

investigate the interplay between noise level and recording time

windows. Preliminary results (not shown) indicate that larger

time windows can widen the MCC parabola, thus increasing

the region of “optimal” λ values. In this work, all neurons were

endowed with the same parameters (i.e., “cortical excitatory,”

Section 2.2), consequently they also fired almost at the same

rate. However, in more realistic networks there is a larger

heterogeneity in the firing properties of the neurons (e.g., the

inhibitory fast spiking inter-neurons fire at a much higher rate

than excitatory neurons), which could be worth investigating.

Concerning the realism of the simulation framework, we

foresee an ambitious application of the MCLRL algorithm to

the study of realistic in silico neural networks (e.g., cerebellum

[26], striatum [27], hippocampus [28], and the thalamo-cortical

circuit [29]). This research line will presumably require a

complete rewriting of the current code. Indeed, the MCLRL

algorithm has been implemented based on the sklearn library

for machine learning in Python [30], which however is not

well suited to address large scale problems. Instead, the PMLS

library1 has been optimized for these types of problems. PMLS

manages to solve a 100 million dimensional sparse problem that

corresponds to inferring the connectivity of networks made by

10,000 neurons.

1 https://github.com/sailing-pmls/pmls.readthedocs.io/blob/master/

docs/lasso-and-lr.md
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In addition it would be interesting to apply the proposed

MCLRL algorithm to experimental data. In this case, we could

test the full pipeline of analysis, using the refined Perona-Malik

algorithm (see Supplementary material) to preprocess the data

(gathering spikes and synaptic events) and run the MCLRL

algorithm with the penalization term λ optimized using the

Dale’s principle reported before. To this regard we have already

demonstrated the efficacy of our refined Perona-Malik algorithm

applied to calcium signals [11].

We also foresee significant applications of the proposed

MCLRL algorithm to the study of neural diseases. Nowadays,

there is an increasing interest in studying the impact of neural

diseases on brain function through computational models of

the brain. In Dyhrfjeld-Johnsen et al. [31], the consequences

of cell loss and axonal sprouting, that occur in temporal

lobe epilepsy, were studied in a computational model of

the dentate gyrus. As the simulated disease progressed, the

authors found that the network properties shifted from a

small world topology to a more regular one. It would be

interesting to parallel such computational studies running the

proposed MCLRL on experimental data to verify the model

predictions. A recent review [32] covered the implication

of graph changes in Parkinson’s and Alzheimer’s diseases,

which are both characterized by a progressive weakening of

network connectivity. Other works addressed the study of

bipolar/unipolar depression [33] and cognitive aging [34].

Importantly, most of the studies correlating brain diseases to

changes in the properties of a graph are based on macro-

scale recordings (e.g., EEG). The MCLRL algorithm however

takes explicitly into account spiking and synaptic activities,

which prevents a straightforward application of the proposed

methodology to macro-scale recordings. However, there have

been some efforts toward defining causal models relating,

for example, the EEG responses to trans-magnetic-stimulation

across brain states [35], it would be interesting to investigate

whether the same ideas of the MCLRL can be adapted to such

modeling approaches.
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