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In this paper, we present a novel validated penalization method for bias

reduction to estimate parameters for the logistic model when data are

missing at random (MAR). Specific focus was given to address the data

missingness problem among categorical model covariates. We penalize a

logit log-likelihood with a novel prior distribution based on the family of the

LogF(m,m) generalized distribution. The principle of expectation-maximization

with weights was employed with the Louis’ method to derive an information

matrix, while a closed form for the exact bias was derived following the Cox

and Snell’s equation. A combination of simulation studies and real life data

were used to validate the proposed method. Findings from the validation

studies show that our model’s standard errors are consistently lower than

those derived from other bias reduction methods for the missing at random

datamechanism. Consequently, we conclude that inmost cases, ourmethod’s

performance in parameter estimation is superior to the other classical methods

for bias reduction when data are MAR.

KEYWORDS
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1. Introduction

Statistical model parameter estimation is a major process requiring improved

methods because its a basis for informed decisions, which in most cases rely on data.

Complete and incomplete data alike may suffer from biases that may arise from the

methods of estimations. Careful scrutiny and efforts have been made to generate some

remarkable reduction in bias of estimated model parameters [1, 2]. Penalizing the log-

likelihood with a suitable prior distribution is known to reduce bias in model parameters.

Bias reduction under conditions of missing data in the estimated parameters has received

little research attention in the past, drawing a few studies, also with different focus

in scope and coverage. Furthermore, recent studies that have attempted to derive bias

reduction methods, under missing data conditions have tried only for the case of

missingness in the outcome variable [3, 4].

The estimation process of the logistic regression requires that datasets are complete,

besides observing a set of other model assumptions. However, in reality and for various

reasons, it is difficult for some vital studies to generate complete datasets. Commonly,
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missing data are handled by using list-wise deletion method

which drops any data item containing missing values. However,

dropping cases reduces the sample size [5] and this plays

negatively on the predictability and application of the fitted

model. For the logistic model, it is well-known that with a small

sample size the maximum likelihood estimates will be biased.

In 1993, Firth proposed a method which resulted in the second

order [O(n−2)] bias reduction of the estimates [6]. Moreover,

data separation, especially for the case of a binary outcome is

yet another problem since the estimates are obtained using an

iterative process such as the Newton-Raphson method. In 2006,

Heinz found that Firth’s method could also solve the separation

problem to a certain level of efficiency [7–9]. Moreover in 2016,

Carlisle noted that the separation problem could also be handled

by using a well-tested prior distribution [10].

A recent study with a focus on bias reduction was by

Little and Rubin [11]. Previously in 1990, Ibrahim [12]

proposed an estimation method for incomplete covariates for

a generalized linear model (GLM) by using the expectation-

maximization (EM) algorithm. Followed by Ibrahim and Lipsitz

[13], who applied the EM algorithm to estimate the logistic

regression parameters when some of the responses were missing.

Consequently, Das et al. [14] proposed a bias reduction for

the logistic model under MAR assumption following the Firth

approach by applying Ibrahim’s EM method which achieved a

second order bias reduction. In addition, Maity et al. adopted

the Lipsitz and Ibrahim EM algorithm, and they came up with

another bias reduction method for the logistic model under

the incomplete response problem and the MNAR mechanisms,

which attempted to reduce the bias as well as the separation

problem [15, 16]. Overall, however, chronology shows sparsity

of studies that focus specifically on achieving more accurate

parameter estimates under the incomplete covariates’ data since

most of the attempts have focussed on the missing data in the

outcome variable.

Our current study is guided by the success derived from

other related complete data studies from which the choice of

a penalty distribution is drawn. For the complete case, it was

demonstrated that the LogF(m,m) family of distributions could

provide a reliable penalty of the logit model [17]. Incidentally,

no study has tested this hypothesis for the bias reduction under

the missing at random (MAR) data problem.

2. Motivating example

In an exploratory analysis, we analyzed data from a survey

meant to determine intensive care unit (ICU) admission risk

factors in a study conducted at the Royal Hospital in the

Sultanate of Oman [18]. To motivate the need of bias reduction

method for estimated parameters, we considered only the

significant covariates which are the independent predictors of

the ICU admission for the COVID-19 patients. The selected

covariates were; having conjuctivitis, being unconscious and

having a neurological problem, whereas the response variable

was whether the patient was admitted to the ICU. The

proportion of missing data for each explanatory variable are;

conjuctivitis (34%), unconscious (2%), and neurological (4%).

We explored by fitting a logistic model for ICU admission. The

results are summarized in Figure 1.

It was observed that, for example being unconscious could be

interpreted as not significant under the Ibrahim’smethod yet it is

significant under the Firth’s method for bias reduction. Further,

the predictor, neurological, under both the Ibrahim’s and Firth’s

methods could not be considered significant with noticeably

higher standard errors under the Firth than Ibrahim’s method.

Therefore, what method is best suited for drawing reliable

statistical inference to such a problem?Why do the twomethods,

that are thought to reduce bias in the model parameters perform

differently on the same data? Could penalization improve

the performance in parameter estimation? To address these

questions, we propose and validate a novel bias reduction

method, as demonstrated in the preceeding sections.

Consequently, in this current study, we propose a novel

method to reduce bias in the model parameters through

penalizing the log-likelihood function, based on the EMmethod

of weight for estimation of incomplete binary categorical

covariates. Moreover, we also derive a closed form for the

bias for estimated parameter by applying the Cox and Snell’s

equation, which is based on the Taylor’s series [19]. The

information matrix was developed using the Louis’ method

[20]. The main contribution of this study is the novel method,

which is quite competitive in parameter estimation under the

MAR data mechanism. The method is validated to respond to

questions such as; can penalization result in bias reduction of

the estimated parameters when the binary response is complete,

but some categorical covariates are stochastically missing? What

is the better penalty function to apply? How competitive is

the novel approach compared to the available methods? Using

the proposed method, and as an application, what are the

determinants of ICU admission due to COVID-19?

The rest of the paper is organized as follows; in Section 3, we

present theoretical methods as the building blocks for the study,

Section 4 provides some results focussing on model validation

through simulation as well as application using the real life data,

and in Section 5, we present a discussion and draw conclusions

for the study.

3. Methods

3.1. Definitions and notation

Three importantmissingnessmechanisms have been defined

[21] and these are mainly being attributed to the data rather

than the distribution of missingness [22, 23]. Among them is the
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FIGURE 1

Bias reduction under the Ibrahim and firth methods. (A) Beta vs. P by method. (B) Beta vs. P by risk.

missing at random (MAR) mechanism, which is the main focus

of this study, briefly defined here:

Definition 1. Let y = (y1, y2, · · · , yn) be a realization of the

random sample from an infinite population with density f (y; θ0).

Let δi be an indicator function defined by

δi =

{

1 if yi is observed

0 if yi otherwise

Let’s assume P(δi = 1|yi) = π(yi,φ) for some parameter φ

and that π(.) is a known function. Thus, if instead of observing

(δi, yi) directly, we do observe (δi, yi,obs), where the yobs =

yobs(y, δ) and yi,obs is defined as

yi,obs =

{

yi if δi = 1

∗ if δi = 0

The missing data mechanism is MAR if

p(δ|y) = p(δ|yobs)

for all y1 and y2 satisfying yobs(y1, δ) = yobs(y2, δ).

This implies that under the MAR mechanism, the response

mechanism p(δ|y) depends on y only through yobs. If we let

y = (yobs, ymis), then by the Bayes’ theorem p(ymis|yobs,δ) =
p(δ|ymisyobs)
p(δ|yobs)

= p(ymis|yobs). Consequently, the two other

mechanisms can be defined as missing completely at random

(MCAR), which occur when p(δ|y) 6∝ y, whereas not missing

at random (NMAR) occurs when p(δ|y) 6= p(δ|yobs). Our study

focusses on the MAR data mechanism. However, though the

MNARmay have been more plausible, it is known to rely mainly

on unstable model assumptions. Moreover, every MCAR data

are by default also MAR, and the MNAR data are not ignorable.

Let θ be the parameter vector for data model, and 9 is the
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parameter vector for missingness mechanisms, so the full-

likelihood can be written as:

L(θ ,9 , yobs, δ) =

∫

fY (yobs, ymis|θ)f(M|y)(δ|y(obs), y(mis),9)

dy(mis)

Theorem 1. The missingness mechanisms is ignorable for the

direct likelihood inference(m, yobs) if the following two condition

hold:

• Parameter distinctness: two parameters θ and9 are distinct,

in the sense that the joint parameter space (θ ,9) say, �θ ,9 ,

is the product of the parameter space �θ of θ and the

parameter space �9 of 9 that is, �θ ,9= �θ ×�9 .

• Factorization of the full likelihood with (yobs, δ) factors as:

Lfull(θ ,9|yobs,δ) = Lignore(θ |yobs) × Lrest(9|yobs, δ) ∀

θ ,9 ∈ �θ ,9 (1)

Corollary 1.1. If the missing data are MAR at (δ, yobs) with θ

and 9 distinct, then we can say that the missingness mechanisms

is ignorable for the likelihood inference.

Penalized regression methods have been used to assess the

best fit for the complete-case [24].

Definition 2. Assume a regression model, y = Xβ and a loss

function of the parameter estimate θ , therefore Q(θ), the resulting

loss function will be the summation of the squared error loss and

a penalty term. The penalized regression is defined as

Q(θ) = L(θ |X)+ ωp(θ) = (y− Xβ)
′
(y− Xβ)+ ωp(β)

where, Y ∈ ℜn,Xnxp,β ∈ ℜp, and ω is a lagrange

coefficient. The ωp(β) penalty term may also be referred to as a

regularization term.

3.2. The EM by the method of weights

Let y1, y2, ..., yn be independent Bernoulli random variables

and x, the matrix of regressors of order n × d, where d

is the number of regressors. For completely observed data,

πi = (P(yi = 1|x,β) where β = (β0,β1,β2, ...,βp)
′ are

the unknown parameters [12]. The logistic model relates πi to

x as log
πi

(1− πi)
= x′β , and the likelihood written as L =

5n
i= 1P(yi|x,β).

Let P(x|α) be the marginal density of x where α is the indexing

nuisance parameter. Therefore, for θ = (β ,α) the complete log

likelihood is:

ℓ(θ , x, y) =
∑

i

ℓ(θ , xi, yi) =
∑

i

ℓyi|xi (β)+ ℓxi (α) (2)

Where, ℓyi|xi (β) = log(P(yi|xi,β)) and ℓxi (α) =

log(P(xi|α)). Suppose further that xi = (xobs,i, xmis,i), then the

E-step at the (t + 1)th iteration of the log-likelihood using EM

algorithm becomes:

Q(θ |θ (t)) =
n
∑

i= 1

∑

xmis,i(j)

w
(t)
ij ℓ(θ; xi, yi)

=

n
∑

i= 1

∑

xmis,i(j)

w
(t)
ij log[P(yi|xi,β)]

+

n
∑

i= 1

∑

xmis,i(j)

w
(t)
ij log[P(xi|α)]

= Q(1)(β|θ (t))+ Q(2)(α|θ (t))

(3)

Where, θ (t) is the estimate obtained at the tth iteration in the

EM. Note that in the equation above, the inner sum is taken over

all possible distinct missing pattern indexing j for each subject i.

By using the Bayes’ theorem, the weight w(ij) can be written as

w
(t)
ij = P(xmis, i(j)|xobs,i, yi, θ

(t))

=
P(yi|xmis, i(j), xobs,i, θ

(t))P(xmis,i(j), xobs,i|θ
(t))

∑

xmis,i(j) P(yi|xi, θ
(t))P(xi|θ (t))

(4)

The E-step is a sum of two functions with different

parameters, while the M-step involves two separate

maximizations. Maximizing Q(1) gives the score function:

U(β) =
∑n

i= 1
∑

xmis,i,(j) wijxi(yi − πi) and the

information matrix I(β) = x′π(1 − π)wx, where

the maximization is done iteratively using the relation

β(t+1) = β(t) + I(β(t))−1U(β(t)).

Based on this approach, we proposed a novel method for bias

reduction for the logistic model under MAR assumption as in

the proceeding sections.

Theorem 2 (monotonicity property). Every EM algorithm

increases ℓ(θ |yobs) at each iteration that is:

ℓ(θ (t+1)|yobs) ≥ ℓ(θ (t)|yobs)

This theorem implies that as the EM algorithm iterates, the

(t + 1)th guess (θ)(t+1) will never be less than tth guess θ t .

This satisfies the monotonicity property of the EM algorithm.

That is ℓ(θ |yobs) is non-decreasing on each iteration of the

EM algorithm, and is strictly increasing on any iteration, such

that the Q-function increases, that is Q(θ (t+1)|θ (t), yobs) >

Q(θ (t)|θ (t), yobs)

Proof: Let Y be the complete data which can be factored as:

f (Y|θ) = f (yobs, ymis|θ) = f (yobs|θ)f (ymis|yobs, θ) (5)
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where f (Yobs|θ) is the density of the Yobs and f (Ymis|Yobs, θ) is

the density of the missing data given the observed data.

Then, the log-likelihood decomposition corresponding to (1) is:

ℓ(θ |Y) = ℓ(θ |Yobs,Ymis) = ℓ(θ |Yobs)+ lnf (Ymis|Yobs, θ) (6)

We seek to estimate θ by maximizing the incomplete data

likelihood ℓ(θ |Yobs) with respect to θ for fixed Yobs, (4) can be

arranged as follows:

ℓ(θ |Yobs) = ℓ(θ |Y)− lnf (Ymis|Yobs, θ) (7)

Then, we take the expectation of both side in (5) over the

distribution of the missing data Ymis, given the observed data

Yobs and current estimate of θ say θ (t) we end up with:

ℓ(θ |Yobs) = Q(θ |θ (t) −H(θ |θ t) (8)

where

Q(θ |θ t) =

∫

[ℓ(θ |Yobs,Ymis)]f (Ymis|Yobs, θ
t)dYmis (9)

and

H(θ |θ t) =

∫

[lnf (Ymis|Yobs, θ]f (Ymis|Yobs, θ
t)dYmis. (10)

Note that by Jensen’s inequality

H(θ |θ t) ≤ H(θ t , θ t) (11)

By considering a sequence of iterates θ (0), θ (1), · · · , where

θ (t+1) = M(θ (t)) for some M(.). Then the difference between

two successive iterations is:

ℓ(θ (t+1)|Yobs)− ℓ(θ (t)|Yobs) = [Q(θ (t+1)|θ (t))− Q(θ (t)|θ (t))]

−[H(θ (t+1)|θ (t))− H(θ (t)|θ (t))] (12)

Since the EM algorithm chooses θ (t+1) to maximize

Q(θ |θ (t)) with respect to θ . Hence, the difference between the

twoQ functionwill always be positive and the difference between

the H function will be always negative by (8). Therefore, we can

conclude that: ℓ(θ (t+1)|yobs) ≥ ℓ(θ (t)|yobs).

Corollary 2.1. Suppose that for some θ∗ in the parameter space

of θ , ℓ(θ∗|Yobs) ≥ ℓ(θ |Yobs) for all θ . Then for every generalized

EM algorithm,

ℓ(M(θ∗)|Yobs) = ℓ(θ∗|Yobs)

Q(δ(θ∗)|θ∗) = Q(θ∗|θ∗)

and

f (Ymis|Yobs, δ(θ
∗)) = f (Ymis|Yobs, θ

∗)

almost everywhere.

3.3. LogF(1,1) penalty when data are
missing at random

The LogF(1, 1) was derived from a generalized LogF(a, b)

distribution, which is a well known flexible family of

distributions based on the log of an F-variate [25–27], where a =

b for an approximately normalized distribution. The generalized

LogF(a, b) distribution is defined as:

fa,b(t) =
1

B(a, b)

e−bt

(1+ e−t)a+b

−∞ < t <∞

(13)

where, B(a, b) is the beta function and both a, b > 0. The link

with logistic order statistics makes things more apparent, in a

way that a and b control skewness and affect tails. However, the

fa,b(t) is symmetric if a = b = 2m, hence the logF distribution,

maybe defined as below:

f2m,2m(t) =
1

B(2m, 2m)

e−2mt

(1+ e−t)4m

−∞ < t <∞

(14)

The model in Equation (14) is also referred to as Type

III generalized logistic distribution. Thus, taking logs of the F

random variable with equal degrees of freedom parameterized

as (2m, 2m) gives rise to an almost symmetric generalization of

the logistic distribution. It should be noted in Equation (13) that

when both a and b tend to infinity, then the logF distribution

tends to the normal distribution [28]. Conversely, we can say

that when m in Equation (14) tends to infinity, then the logF

distribution tends to the normal distribution.

Greenland and Mansournia [17] proposed a method where

the likelihood of the logistic model is penalized by a class of

logF prior to reduce bias of order O(n−1) for the complete-

data. In our study, we introduced a similar class of LogF() prior,

but for the MAR assumption and validated its performance in

reducing bias in the estimation of the logistic model parameters.

So we maximized

L∗(β) = L(β)













1

π

e

(

β

2

)

(1+ eβ )













, where
1

π

e

(

β

2

)

(1+ eβ )
is logF(1,1)

prior with the penalized log-likelihood function of ℓ∗(β) =

ℓ(β) + log[logF(1, 1)]. Further, following the Firth approach,

we penalized the likelihood function by the logF(1,1). Thus,

applying the Expectation-Maximization (EM) principle, the E-

step at the (t + 1)th iteration of the log-likelihood becomes:

Q(θ |θ (t)) =
n
∑

i= 1

∑

xmis ,i(j)

w
(t)
ij

(

logP(yi|xi,β)+ log
1

π
+

β

2
− log(1+ eβ )

)

+

n
∑

i= 1

∑

xmis ,i(j)

w
(t)
ij logP(xi|α) (15)
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Given that yi comes from a Bernoulli distribution, with

variable πi and penalty logF(1, 1), then Equation (15) becomes

(16), which was then differentiated with respect to β to

give the score function, U(β) for the Q(1)(.) function from

Equation (3).

Q(1)(β|θ (t)) =
n
∑

i= 1

∑

xmis,i(j)

w
(t)
ij

(

logP(yi|xi,β)+ log
1

π
+

β

2
− log(1+ eβ )

)

(16)

The derivation of the score function was done algebraically

from P(y|x,β) = (πi)
yi (1− πi)

1−yi , where πi =
e
x′iβ

1+ex
′
iβ
. For the

M-step, the score function U(β) is, thus:

U(β) =
n
∑

i= 1

∑

xmis,i,(j)

wij

(

xi(yi − πi)+
1− eβ

2(1+ eβ )

)

while the maximization was done iteratively using a relation we

derived using the Taylor expansion series for the log-likelihood

function:

β(t+1) = β(t) + I(β(t))−1U(β(t)) (17)

The marginal distribution of x is multinomial, a

generalization of the Bernoulli distribution. Thus, the value

of a random variable can be one of the K mutually exclusive

and exhaustive states with their probabilities. Consequently,

using the Cox and Snell equation [19] we derived a closed form

for the bias with the sth component Bias(β̂s) of the estimates

defined as:

Bias(β̂s) =
∑

r,t,u

1

2
IrsItu

(

Krtu + 2Jt,ru
)

where r, t, u, s = 1, 2, ..., d

(18)

where:

Krst = E





∑

j

∂3logPj(yj,β)

∂βrβsβt





and

Jt,ru = E





∑

j

∂ logPj(yj,β)

∂βt

∂2logPj(yj,β)

∂βrβu





and I.. is the inverse of the Fisher information matrix.

On developing the terms in respect to the LogF(1, 1)

penalty and substituting in Equation (18), we obtain

the bias expression as presented in Equation (19). This

expression, basically represents an exact bias formula that is

derived after a series of steps with the LogF(1, 1) penalized

log-likelihood function.

Bias(β̂s) =
∑

r,t,u

{





n
∑

i= 1

∑

xmis ,i(j)

wij
xirxisπi

(1+ ex
′β̂s )
+

eβ̂s

(1+ eβ̂s )2





+

n
∑

i= 1

(

xir(yi − πi)+
1− eβ̂s

2(1+ eβ̂s )

)(

xir(yi − πi)+
1− eβ̂s

2(1+ eβ̂s )

)′





n
∑

i= 1

∑

xmis ,i(j)

wij
xitxiuπi

(1+ ex
′
iβ̂s )
+

eβ̂s

(1+ eβ̂s )2





+

n
∑

i= 1

(

xit(yi − πi)+
1− eβ̂s

2(1+ eβ̂s )

)(

xit(yi − πi)+
1− eβ̂s

2(1+ eβ̂s )

)′





n
∑

i= 1

∑

xmis ,i(j)

wijxirxitxiu
ex
′
ir β̂s + e2x

′
ir β̂s

(1+ ex
′
ir β̂s )4





+2





n
∑

i= 1

∑

xmis ,i(j)

wijxit(yi − πi)









n
∑

i= 1

∑

xmis ,i(j)

wij
−xirxiue

x′β̂s

(1+ ex
′β̂s )2





}

(19)

From Equation (19), the bias notation involves the derivative
of the log-likelihood function to the third derivative, so that we
say the bias corrects the estimated parameters with logF(1,1)
penalty up to O(n−1). Further, our proposal for the LogF(1,1)
is premised on some new derived theory. That is, when we
vary the parameterization in Equation (13) such that a 6=

b 6= 2m we are led to a skewed distribution. Hence, when
the logF(a, b) is used as a penalty in the logistic model’s log-
likelihood function, it may not necessarily result in reduced bias
of the parameters under the MAR assumption. Conversely, when
penalizing the log-likelihood with logF(2m, 2m) the resultant
parameters are said to be with reduced bias. Thus, the
motivation to propose the logF(2m, 2m) penalization of the log-
likelihood of the logit model, when data are missing at random.
The bias expression is parameterized with (r, t, u, s) ∈ 1 : p
parameters, the outcome yi follows a Bernoulli density and
πi is the expected value. Furthermore, the Bias(β̂) = β̂ −

β could have been derived from the first order ploynomial
L′(β) = 0. However, for more accuracy, we preferred to
use the second order polynomial function L′(β) + (β̂ −
β)L′′(β) = 0. Further simplification of this bias function,
led us to an estimate of the exact bias expression presented
in Equation (19). The idea is that with a better penalty term
such as the one proposed in this study for the case of logistic
regression, the estimated model parameters are generated with
a reduced bias as estimated in Equation (19). We will show
by numerical experimental and real life application in the
subsequent Section 4. However, in Section 3.4 we briefly show
how the information matrix of the penalized likelihood function
was derived.
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3.4. Estimating the information matrix
using the Louis’ method

The Louis method [20] was used to calculate the information
matrix of the proposed method. This method gives the
information gained from the observed and missing data, while
maintaining the notation of the EM algorithm by using the
following formula:

I(θ |obs) =E(I(θ |com)|obs)− E(U(θ |com)U ′(θ |com)|obs)+

E(U(θ |com)|obs)E(U ′(θ |com)|obs)

=− Q̈(θ̂ , θ̂)− E(U(θ |com)U ′(θ |com)|obs)+
∑

i

Q̇(θ̂ , θ̂)Q̇(θ̂ , θ̂)′

(20)

Where comp and obs represent complete and observed
data, and θ = (β ,α). The dots on Q represent the order

of the derivative. The function U(θ |com) =
∑

i

∂ℓ(θ , xi, yi)

∂θ
is the score function based on the complete data and

Q̈(θ̂ , θ̂) =
∑n

i= 1

∑

xmis ,i(j)
w
(t)
ij ∂2

ℓ(θ , xi, yi)

∂θ∂θ ′
, and Q̇(θ̂ , θ̂) =

∑n
i= 1

∑

xmis ,i(j)
w
(t)
ij ∂

ℓ(θ , xi, yi)

∂θ
.

Applying these formulae in Equation (20) with the proposed
LogF(1, 1) penalty, the information matrix becomes:

I(θ |obs) =
n
∑

i= 1

∑

xmis ,i(j)

w
(t)
ij

(

x2i πi

1+ ex
′
iβ
+

eβ

(1+ eβ )2

)

+

n
∑

i= 1

(

xi(yi − πi)+
1− eβ

2(1+ eβ )

)(

xi(yi − πi)+
1− eβ

2(1+ eβ )

)′

(21)

Since

E(U(θ |com)U ′(θ |com)|obs) = x3i πi

(

E(yi − πi)

1+ exiβ

)

With

E(yi) = πi −→ E(U(θ |com)U ′(θ |com)|obs) = 0

. Moreover, the observed information matrix can also be obtained
by using the Hessian matrix, which is just the negative second
derivative of the log-likelihood function.

4. Statistical validation results

4.1. Simulation study

In this section, we present results of the simulation studies
to validate and compare the performance of our proposed
method against the current classical methods developed by Firth
and Ibrahim. The choice for the Firth Method is premised on
his proposal to impose the Jeffreys prior penalty function in
standard regression as a way of bias reduction of the MLE.

The Ibrahim method was chosen because he showed that
when data are MAR, the E-step of the EM algorithm can
be expressed as a weighted complete log-likelihood when the
unobserved covariates are assumed to come from a discrete
distribution. We based the validation studies on examining the
standard errors of the estimated parameters to avoid the complex
computations involved in our derived bias expression [6, 12].
We employed simulation studies for several sample sizes and
missigness proportions. Firstly, we simulated three categorical
covariates, x1, x2, x3 from a discrete Bernoulli probability mass
function f (x) = px(1 − p)(1−x); ∀ x = {0, 1} else 0 and
obtained the response y from the Bernoulli distribution with the
probability model log(πi/1 − πi) = −1 + (0.5)x1 + (0.7)x2 +
(0.5)x3. Throughout the simulation study, the response variable is
kept fully observed, while some missing values were imposed to
the three categorical covariates. The missigness mechanism was
MAR for all covariates, while the logistic model assumptions for
categorical data were addressed before fitting all the models for
the simulated data set. To ensure compliance with the model
assumptions, the variance inflation factor was calculated and
found to be less than five for all the covariates in all simulated
cases. The other logit model assumption that requires large
sample size was considered to exclude smaller sample (n <

45) as well as lower proportions of missingness because we

required proportions of missingness that are large enough to
create differences in the estimated model parameters. Therefore,
during the simulation studies, we varied both the sample size and
the missigness proportion (%) with n = {45, 60, 80, 120} and
p = {20, 25, 30, 35}, respectively.

The study followed the steps described in Algorithm 1 to

validate the proposed method against the existing methods. The
symbol n represents sample size, p percentage or proportion
of missing data, y a vector of the outcome and X a matrix of
categorical covariates.

Require: X, y, n, d return β̂ , SE

1: data← (X, y)

2: do

3: ampute← data, p

4: complete.data← expand.data

5: fit.model← logF

6: calculate← β̂ , SEs

7: n← n

8: p← p

9: repeat until convergence

Algorithm 1. Validation algorithm for the LogF method.

From Table 1, the first column of the table represents the
sample size (n), the second column represents, the proportion
of the missigness, the parameter of interest, and the bias
reduction method, while the last two columns show, the
estimated parameter (β̂), the standard error of the estimated
parameters. The simulation results show that the Ibrahim’s
method over estimates the model parameters in most of the
scenarios, but as the sample size increases some estimates
tend to get closer to the true values. For example, the true
parameter for variable x2 is β2 = 0.7, while the results from the
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Ibrahim’s method were {0.8349, 1.0002, 0.4185, 0.6875}, implying
better performance with increased sample size. This tendency
is consistent throughout the various simulations conducted,
except for very few cases, which may be attributed to the
randomness used to generate the dataset and the proportion of
the missing data.

Further, for the small sample size the Firthmethod performed
better, and this may be mainly attributed to its ability to solve
the separation problem in the smaller samples. For example,
with n = 45, we found that the corresponding estimate for
x2 was (0.7023) which is very close to the true estimate (β2 =

0.7), however with n = 45, the same estimate for x2 was
(0.5806). The estimates obtained from our proposed method, the
logF were in many cases closer to the true estimates, especially
as the sample size and proportion of missingness increased.
For instance, estimates for β2 = 0.7 as the sample size and
missingness increase were β̂2 = {0.8313, 1.002, 0.4185, 0.6875}.
The ability to outperform other methods under situations
when the sample size increases is a strong attribute toward
applicability of our method, since this represents the real
world situations.

Several methods have been developed to compute standard
errors of parameter estimates by using the EM algorithm. Some
methods are known to be specific on the incomplete data
problem [29], whereas others are more general [20]. In Louis’
method, the observed information matrix is computed on the
last iteration of the EM procedure using only the complete-
data gradient and second derivative matrix. The observed
information matrix needs to be inverted in order to obtain
estimates of the covariance matrix. However, since the Louis’
method for estimating standard errors is quite technical [30]
and given the fact that the purpose of our simulation is simply
to validate the proposed method, we opted for a faster, and
reliable alternative of examining the SEs of the estimates. The
alternative approach uses the negative of the second derivative
matrix of the incomplete-data log-likelihood as an estimate
of the information matrix, which can be inverted in order
to obtain an estimate of the covariance matrix. Overall, the
smallest standard errors were observed from the proposed logF

penalized method, thus demonstrating its superiority over both
Ibrahim and Firth methods in reducing bias under the MAR
assumption.

4.2. Application of bias reduction with
LogF(1,1) prior on the COVID-19 data

In this section, we validated our method based on a real-
life data problem for determining the potential risk factors of
COVID-19 patient being admitted to the Intensive Care Unit
(ICU). Thus, we compare between our proposed method logF

against the proposed by Ibrahim and Firth when data are MAR.
The survey data were collected between January 2020 and June
2020 from the Royal Hospital in the Sultanate of Oman [18].
The study aimed to assess the risk factors associated with
admissions to the intensive care unit, ICU for the COVID-
19 hospitalized patients. Details of this data were described
in the section for the motivation of this study. As presented
in Figure 1, the covariates include; having conjuctivitis, being
unconscious and having a neurological problem. The response

TABLE 1 Validation of the LogF method using standard errors.

Sample Missing (%) Parameter Method Estimate (β̂) SE

45 20 β0 Ibrahim −1.1854 0.6968

Firth −1.0699 0.6978

LogF −1.1854 0.3000

β1 Ibrahim 0.5439 4.8729

Firth 0.5255 0.7926

LogF 0.5474 0.3076

β2 Ibrahim 0.8349 4.8873

Firth 0.7023 0.8190

LogF 0.8313 0.3075

β3 Ibrahim 0.6908 0.7120

Firth 0.6245 0.7514

LogF 0.6908 0.2962

60 25 β0 Ibrahim −1.4385 6.2972

Firth −1.2450 0.6752

LogF −1.4385 0.2720

β1 Ibrahim 0.4059 3.3549

Firth 0.3225 0.7109

LogF 0.4059 0.2516

β2 Ibrahim 1.0002 3.5720

Firth 0.8887 0.6834

LogF 1.0002 0.2590

β3 Ibrahim 0.9168 3.3415

Firth 0.7548 0.6868

LogF 0.9168 0.2501

80 30 β0 Ibrahim −0.8624 0.4669

Firth −1.1256 0.6064

LogF −0.8624 0.1994

β1 Ibrahim 0.3883 0.5229

Firth 0.8095 0.6072

LogF 0.3883 0.2050

β2 Ibrahim 0.4185 0.5138

Firth 0.6287 0.6128

LogF 0.4185 0.2051

β3 Ibrahim 0.5782 0.5182

Firth 0.5288 0.6016

LogF 0.5782 0.2047

120 35 β0 Ibrahim −1.0091 0.4647

Firth −1.0872 0.5351

LogF −1.0091 0.1832

β1 Ibrahim 0.4762 0.4306

Firth 0.4110 0.5210

LogF 0.4762 0.1638

β2 Ibrahim 0.6875 0.4332

Firth 0.5806 0.5161

LogF 0.6875 0.1646

β3 Ibrahim 0.6781 0.4281

Firth 0.6032 0.5119

LogF 0.6781 0.1627
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TABLE 2 Performance of LogF against the Ibrahim and Firth methods.

Method Variable Estimate (β̂) SE P-value

Intercept 0.2442 0.0581 0.0001

CCA Conjunctivitis 0.0442 0.0832 0.0596

Unconscious 0.1453 0.1268 0.0254

Neurological −0.0188 0.1137 0.0869

Intercept −1.3876 0.2603 0.0001

Ibrahim Conjunctivitis 1.3036 0.5327 0.0144

Unconscious 1.2628 0.8026 0.1156

Neurological 1.6943 1.3083 0.1953

Intercept −1.6314 0.3237 0.0001

Conjunctivitis 1.2775 0.6016 0.0345

Firth Unconscious 2.5074 1.0381 0.0057

Neurological 1.6251 1.8230 0.0251

Intercept −1.0285 0.1304 0.0001

LogF Conjunctivitis 0.1105 0.1781 0.0001

Unconscious 0.6315 0.2210 0.0001

Neurological −0.2040 0.2102 0.0001

variable was whether the patient was admitted to an intensive
care unit or not. In the study, the proportions of missing data
for each explanatory variable were as follows; conjuctivitis (34%),
unconscious (2%), and neurological (4%). We explored by fitting
a logistic model for the ICU admission and compared results
with the complete case analysis (CCA). The main objective
of the study was to obtain estimates for the model based on
our proposed method, the logF penalty, and to compare the
estimates with those obtained from Ibrahim and Firth methods,
by examining their standard errors. The results are summarized
in Table 2.

From Table 2, it can be observed that, the parameter
estimates under all the methods; CCA, Ibrahim, Firth, and
logF give different values of the coefficients. They show that
lowest standard errors are achieved for the proposed method,
implying that narrower confidence intervals for all the three
covariates can be obtained using the proposed method, hence
reduced bias. For the Ibrahim’s method, every unit increase
in conjuctivitis, being unconscious and having a neurological
there is an increase in the log-odds of patient’s ICU admission
by 1.3036, 1.2628, and 1.6943, respectively. Whereas, using
the Firth’s method, for every unit increase in conjuctivitis,
being unconscious and having a neurological, the log-odds of
ICU admission would increase by 1.2775, 2.5074, and 1.6251,
respectively.

Figure 2 demonstrates the variation of estimated parameters
(β̂), their confidence intervals computed from the SEs, the
probability values and the different methods of estimation.
Clearly, the parameter estimates were smallest under the logF

method of bias reduction as compared to the other methods.
Conceptually, under the logF method of bias reduction, all
variables were statistically significant, a distinct result from
other comparable methods of bias reduction, besides the
ones derived from the Firth method. Moreover, results of

FIGURE 2

Validation of LogF against CCA, Ibrahim, and Firth methods.

the complete case analysis (CCA) and Ibrahim’s method
each indicate only one different significant parameter,
smaller SEs under the CCA than the Ibrahim’s method.
Interestingly, the SEs for the Intercept were smallest under the
CCA, followed by the LogF method, possibly because CCA
analyses only complete data, yet LogF first imputes before
parameter estimation.

5. Discussion

In this study, we have demonstrated the importance of bias
reduction of estimates for the logistic model under the missing
at random mechanism. We conducted model validation studies
using both simulation and real life COVID-19 patient data
analysis and presented summary statistical results. Our novel
method for bias reduction is robust as it relies on the penalization
theory of the likelihood function to achieve the efficiency in the
parameter estimates for the missing at random data mechanism
[6, 31–33]. The fact that we penalized the log-likelihood function

by the LogF(1, 1) prior and then, derived the closed form of
the bias using the Cox and Snell’s equation [19] shows how
broadbased the novel method is. Besides, the information matrix
was derived using the Louis’ method [20, 34, 35]. The simulation
studies conducted show results, which reveal that irrespective
of the sample size, the proposed method based on the LogF

penalty provides more accurate estimates, characterized by lower
standard errors of the model estimates. Furthermore, the results
from real life COVID-19 data also support the conclusion that the
proposed LogF outperforms both the Firth and Ibrahimmethods.
These results from the application agree with the clinician’s
theory that admission to ICU for the COVID-19 patient is
significantly explained by the three factors that is, conjuctivitis,
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unconsciousness and having a neurological condition [36, 37].We
also note that using the complete case analysis alone in modeling
may lead to incorrect logit model, as it may be determined that
a predictor is not significant, when actually the reverse is true or
otherwise.

6. Conclusion

In this study, we have proposed a bias reduction method
for the logit model when data are missing at random. Its
theoretical aspects have been validated using simulation and
real life data problems. The method is based on penalization
of the log-likelihood function with Log-F(1,1) penalty chosen
for its almost near to normal distribution for the missing at
random mechanism. Its related information matrix and the exact
form of the bias for that model were derived theoretically. The
method is novel, it can efficiently be used to estimate logit model
parameters when data are MAR. The results from statistical
validation studies show better performance for the novel method
when the categorical covariate data are missing at random than
other methods. Therefore, we can conclude that the new method
shows greater superiority in reducing the bias under MAR in
contrast to the current bias reduction methods in estimated
parameters by Ibrahim and Firth. The approach yields more
efficient estimates in contrast to the existing classical methods,
especially for larger sample sizes and missingness proportions.
We recommend further research on bias reduction in parameters
under other missing data mechanisms for other generalized linear
models. The other research consideration is parameter estimation
when the model covariates are not all categorical.
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