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Adaptive composite learning
dynamic surface control for
chaotic fractional-order
permanent magnet synchronous
motors

Chenhui Wang*

School of Mathematics and Statistics, Xiamen University of Technology, Xiamen, China

This paper aims to address the tracking problem of uncertain fractional-order

permanent magnet synchronous motors with parametric uncertainties. To

guarantee the system stability and o�set the e�ect of parametric uncertainties,

an adaptive backstepping composite learning neural control scheme based

on interval excitation is presented. Moreover, dynamic surface technique is

exploited to overcome the technical limitation of “explosion of complexity”

caused by standard backstepping framework. In virtue of stability analysis

and illustrative simulation, it is confirmed that the proposed control scheme

not only attenuates the tracking error as small as possible, but also achieves

satisfactory parametric convergence with high estimation precision.

KEYWORDS
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1. Introduction

Fractional calculus is an important mathematical discipline with a history of several

centuries. In recent decades, fractional differential equations have made great progress

in engineering, mechanics, physics, chemistry, and many other fields. Compared with

classical mathematical models governed by integer-order differential equations, most

fractional-order models have abundant advantages in describing thememory and genetic

characteristics of the process [1, 2]. In addition, owing to the particularity of fractional

calculus, fractional-order systems always exhibit rich dynamic behaviors [3–8].

Permanent magnet synchronous motor (PMSM) [9] has a great deal of advantages

such as low production cost, high energy consumption, strong robustness, compact

structure, superior performance, high inertia torque ratio, large power capacity. The
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existing results show that integer-order PMSM has chaotic

characteristics under some certain operating conditions. So far,

several chaos control methods [10–14] have been put forward to

attenuate the effect of chaotic oscillation and maintain the stable

operation of integer-order PMSM. Fractional order PMSM

[15–18] reflects the same complex chaotic dynamics, because

fractional calculus provides a powerful tool for describing the

genetic and infinite memory properties of different substances

more accurately and essentially. Thus, the establishment of a

chaos control scheme for fractional-order PMSM instead of the

traditional one is of vast significance.

Radial basis function network (RBFNN) [19] has been

widely concerned and applied due to its valuable characteristics

of approximation for coping with functional uncertainty in

controlled systems. The approximation ability of RBFNNs

can greatly reduce the difficulty of modeling procedure in

practical control problems and hence facilitates to simplify the

controller design. Although a majority of the existing neural

control approaches facilitates to realize error convergence, the

approximation abilities of RBFNNs are generally restricted for

the reason that the persistent excitation (PE) condition [20]must

be met during the overal adaptation process. Actually, the PE

condition for the implementation of traditional adaptive neural

control is very strict and sometimes even infeasible in practical

applications. In Wang and Hill [21], a neural control method

based on a practical PE condition was proposed to guarantee

the exponential stability of the closed-loop system as well as

the exact approximation of RBFNNs. However, the parametric

convergence rate via such a learning-based neural control

method or its outgrowths (e.g., [22–24]) is highly dependent on

the strength of PE, which may lead to very slow learning speed

in general. Aiming to overcome this limitation, several scholars

put forward useful composite learning control strategies [25–

30]. Composite learning significantly relaxes the PE condition

into the interval excitation (IE) condition. The essential idea of

this method is to synthesize the online data and the historical

data for the generation of a so-called prediction error and then to

configure a composite adaptive law integrated with the tracking

error and the prediction error for the better update of adaptive

parameters.

Based on the above theoretical background, this paper

studies the tracking issue of fractional-order PMSM. A

neural network-based adaptive composite learning control

approach is proposed, which can accurately estimate unknown

functions under certain parameter design conditions. It will

be proven that expected tracking performance and fast

parametric convergence are realized once the proposed method

is applied.

The main innovations of this work are worthy of emphasis

as 2-fold: (1) Relying on fractional-order Lyapunov stability

criterion, a novel fractional-order adaptive nerual-network

chaos controller is constructed to achieve robust tracking

performance. Compared with the existing researches [10–14] on

integer-order PMSM, the tracking control problem of fractional-

order PMSM dynamic model studied in the article is more

challenging and significant due to the memory and genetic

characteristics of fractional calculus. (2) A composite learning

algorithm is proposed. Different from the conventional adaptive

control methods [15–18] under the PE condition for fractional-

order PMSM, the proposed composite learning adaptive control

method relaxes the stringer PE condition into the IE condition

which is relatively easy to be implemented. It will be proven

that the designed composite learning algorithm not only updates

the adaptive parameters of RBFNNs via taking advantage of the

online data, but also effectively promote the estimation accuracy

of all unknown functions.

The architecture of this article is organized as below. In

Section 2, the fundamental background of fractional calculus,

radial basis function network, persistent excitation, and interval

excitation are recalled. Section 3 describes the considered

problem formulation, and then, an adaptive neural-network

controller based on composite learning scheme is systematically

elaborated. It is verified that the proposed method facilitates to

achieve satisfactory tracking performance and highly accurate

parametric estimation under interval excitation condition. In

Section 4, a numerical simulation is carried out to evaluate the

feasibility of the proposed approach. In Section 5, the whole

conclusion of the paper and the prospect of future research are

summarized.

2. Preliminaries

2.1. Fractional calculus

In this overall article, N (resp. R, Rn, R+, C) means the

family of all non-zero natural numbers (resp. real numbers, n

dimensional real vectors, positive numbers, complex numbers).

Given a k ∈ N, Ck is the family of all differentiable functions

with continuous i-order derivatives for all i = 1, 2, · · · , k. L∞

denotes the space of all bounded signals. sign(·) expresses the

signum function. The transpose of an x ∈ R
n is denoted by xT .

�r , {x ∈ R : |x| ≤ r, r ∈ R
+}.

Definition 1. Podlubny [2] The β-order Caputo fractional

derivative for a given differentiable function ϕ(t) is formulated by

t0D
β
t ϕ(t) =

1

Ŵ(k− β)

∫ t

t0

ϕ(k)(s)

(t − s)γ+1−k
ds

with k − 1 ≤ β < k in which k ∈ N. When t0 = 0, we write

D
βϕ(t) simply instead of t0D

β
t ϕ(t).

Definition 2. Podlubny [2] A mapping Eβ ,γ :C → C with

double parameters β , γ ∈ R
+ is called the Mittag-Leffler

function, defined as

Eβ ,γ (z) =

∞
∑

k=0

zk

Ŵ(βk+ γ )
, ∀z ∈ C.
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Particularly, E1,1(z) = ez . Let Eβ (z) , Eβ ,1(z) whenever

γ = 1.

Lemma 1. Podlubny [2] Given β ∈ (0, 2), γ ∈ R. For an

arbitrary z ∈ C, if the argument arg(z) satisfies

θ ≤ | arg(z)| ≤ π

with βπ/2 < θ ≤ min{π ,βπ}, then the value of Eβ ,γ (z) is

limited within the estimation range:

|Eβ ,γ (z)| ≤
C

1+ |z|
,

where C ∈ R
+ is a constant.

Lemma 2. Gong [4] Let V(t) be a continuous nonnegative

function. Suppose that

D
βV(t) ≤ −λV(t)+ ρ,

where λ > 0, ρ ≥ 0. Then

V(t) ≤ V(0)Eβ (−λt
β )+

Mρ

λ
,

where M = max{1,C}, C ∈ R
+ is defined as in Lemma 1.

Lemma 3. Podlubny [2] Let x(t) and y(t) be differentiable

functions, C ∈ R, β ∈ (0, 1). Then (1) D
βC = 0. (2)

D
β

(

mx(t)+ ny(t)
)

= mD
βx(t) + nDβy(t), where m, n ∈ R

are constants.

Lemma 4. Aguila-Camacho et al. [3] Let x(t) be a differentiable

function, β ∈ (0, 1). Then

1

2
D
βx2(t) ≤ x(t)Dβx(t).

2.2. Radial basis function network

Recall the notion of radial basis function network (RBFNN)

[19]. An RBFNN is represented by

f̂ (xxx(t)) =222T(t)999(xxx(t)), (1)

where f̂ (xxx(t)) ∈ R is referred to as the output of RBFNN,

xxx(t) ∈ R
n is referred to as the input of RBFNN, 222(t) =

[θ1(t), · · · , θm(t)]
T ∈ R

m is a weight vector with m being the

number of neural nodes, and999(xxx(t)) ∈ R
m is a vector of radial

basis functions, the jth coordinate ψj(xxx(t)) of999(xxx(t)) is usually

defined to be the Gaussian function, that is

ψj(xxx(t)) = exp

[

−
1

w2
j

(xxx(t)− ςςς j)
T(xxx(t)− ςςς j)

]

,

where ςςς j ∈ R
n describes the center of the receptive field,

wj ∈ R
+ means the width of ψj(xxx(t)).

Lemma 5. Sanner and Slotine [19] For any continuous function

f (xxx(t)) defined over a compact set�r and any small positive scalar

ε̄, one can find an RBFNN, denoted by222∗T999(xxx(t)), such that

sup
xxx(t)∈�r

|f (xxx(t))−222∗T999(xxx(t))| ≤ ε̄,

in which222∗ is the optimal RBFNN parameter, described by

222∗ = arg min
222(t)∈Rm

{

sup
xxx(t)∈�r

∣

∣

∣

∣

f (xxx(t))−222T(t)999(xxx(t))

∣

∣

∣

∣

}

.

Lemma 6. Kurdila et al. [20] Given an xxx(t) ∈ R
n. Then,

there exists a positive scalar ψ irrelevant with xxx(t) such

that the regressor 999(xxx(t)) defined in Equation (1) satisfies

max {‖999(xxx(t))‖, ‖999(ẋ̇ẋx(t))‖} ≤ ψ .

Definition 3. Pan et al. [25] Let µ > 0 be an excitation

strength and τ0 > 0 be a time duration. A time-varying vector

999(t) is said to be of persistent excitation (PE), provided that
∫ t
t−τ0

999T(τ )999(τ )dτ ≥ µIIIm×m for all t > τ0, where IIIm×m is

an m×m unit matrix.

Definition 4. Pan et al. [25] Let µ > 0 be an excitation strength

and τ0 > 0 be a time duration. A time-varying vector999(t) is said

to be of interval excitation (IE) over the interval [Te−τ0,Te] with

Te > τ0, if
∫ Te
Te−τ0

999T(τ )999(τ )dτ ≥ µIIIm×m.

3. Main results

3.1. Problem formulation

Permanent magnet synchronous motor (PMSM) is a sort of

special mechanical device whose dynamic behaviors manifest

exclusive chaotic attractor. An integer-order PMSM dynamic

system [10] can be modeled by































dω

dt
= σ

(

iq − ω
)

,

diq

dt
= γω − ωid − iq,

did
dt

= ud + ωiq − id,

(2)

where ω, id, and iq symbolize the angular velocity, the d-axis

current, and the q-axis current, respectively. σ and γ are two

positive coefficients.

Put ω = x1, iq = x2 and id = x3 in Equation (2),

respectively. By substituting the β-order derivative operator

D
β (·) with 0 < β < 1 for d(·)

dt
, we generalize the aforesaid

formulation into an uncertain fractional-order PMSM dynamic

system in the state-space form as follows:



























D
βx1(t) = f1(x̄̄x̄x1)+ σ

(

x2(t)− x1(t)
)

,

D
βx2(t) = f2(x̄̄x̄x2)+ γ x1(t)− x1(t)x3(t)− x2(t),

D
βx3(t) = f3(x̄̄x̄x3)+ ud(t)+ x1(t)x2(t)− x3(t),

y(t) = x1(t),

(3)
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where x̄̄x̄xi = [x1, · · · , xi]
T ∈ R

i (i = 1, 2, 3) is a measurable

state vector, fi :R
i → R (i = 1, 2, 3) is an unknown bounded

continuous nonlinear function, y(t) ∈ R is the system output,

and ud(t) ∈ R is the control input.

Let the initial values be x1(0) = x2(0) = x3(0) = 0.8. When

β = 0.98, σ = 3, and γ = 30, the chaotic attractor appears in

the dynamic behaviors of fractional-order PMSM, see Figure 1.

The system controller will be designed in the next subsection

such that the output signal y(t) is driven to track the desired

signal yd(t). To accomplish this tracking task, one needs to

invoke the following assumption.

Assumption 1. Both of the signals yd(t) andD
βyd(t) are known,

bounded and smooth.

3.2. Control design

Next, let us expound the backstepping control design process

for fractional-order PMSM.

Denote the virtual inputs by α1(t) and α2(t) for the first

subsystem and the second subsystem, respectively. Let α1(t) and

α2(t) pass the following fractional-order dynamic surfaces

D
βαi,c(t) = −ϕi(αi,c(t)− αi(t)), i = 1, 2 (4)

respectively, where ϕi ∈ R
+ are given constants, and

the filter outputs αi,c(t) satisfy the initial conditions αi,c(0) =

αi(0). Suppose that the parameters ϕi are selected suitably large.

According to Liu et al. [27, Lemma 3], there are constants ζi ∈

R
+ such that |αi,c(t)− αi(t)| ≤ ζi for all t ≥ 0.

Consider the following coordinate translation:

e1(t) = x1(t)− yd(t), (5)

ei+1(t) = xi+1(t)− αi,c(t) for i = 1, 2. (6)

In light of Lemma 5, the existence of optimal RBFNN

parameters222∗
fi
for i = 1, 2, 3 is guaranteed so that

fi(x̄̄x̄xi) =222∗T
fi
999 fi (x̄̄x̄xi)+ εfi (t), i = 1, 2, 3 (7)

respectively, in which εfi (t) represents the approximation

error variable, which satisfies |εfi (t)| ≤ ε̄i for some given scalar

ε̄i ∈ R
+. The parametric estimation error is taken as 2̃22fi (t) =

2̂22fi (t)−222
∗
fi
.

Step 1. From Equations (3) and (7), it holds

D
βx1(t) =222∗T

fi
999 fi (x̄̄x̄xi)+ εfi (t)+ σ

(

x2(t)− x1(t)
)

. (8)

Hence, owing to Equations (5), (6), and (8), computing the

fractional time derivative of e1(t) yields

D
βe1(t) = D

βx1(t)−D
βyd(t)

= f1(x̄̄x̄x1)+ σ
(

x2(t)− x1(t)
)

−D
βyd(t)

= f1(x̄̄x̄x1)+ (σ − 1)
(

x2(t)− x1(t)
)

+ (x2(t)− α1,c(t))

+ (α1,c(t)− α1(t))+ (α1(t)− x1(t))−D
βyd(t)

= 2̂22
T
f1 (t)999 f1 (x̄̄x̄x1)− 2̃22

T
f1 (t)999 f1 (x̄̄x̄x1)

+ εf1 (t)+ (σ − 1)
(

x2(t)− x1(t)
)

+ e2(t)+ z1(t)

+ α1(t)− x1(t)−D
βyd(t),

(9)

where z1(t) = α1,c(t)− α1(t) is the filter error.

The virtual control function for the first subsystem is defined

by

α1(t)=−k1e1(t)− 2̂22
T
f1 (t)999 f1 (x̄̄x̄x1)− (σ − 1)

(

x2(t)− x1(t)
)

+ x1(t)− e1(t)+D
βyd(t),

(10)

where k1 is a positive known constant.

Incorporating Equation (10) into Equation (9) infers

D
βe1(t) = −2̃22

T
f1 (t)999 f1 (x̄̄x̄x1)+ εf1 (t)− k1e1(t)

+ e2(t)− e1(t)+ z1(t).
(11)

It is worth noting that |z1(t)| ≤ ζ1. By Young inequality,

multiplying both sides of Equation (11) by e1(t) induces

e1(t)D
βe1(t) = −e1(t)2̃22

T
f1 (t)999 f1 (x̄̄x̄x1)+ e1(t)εf1 (t)

− k1e
2
1(t)+ e1(t)e2(t)− e21(t)+ e1(t)z1(t)

≤ −e1(t)2̃22
T
f1 (t)999 f1 (x̄̄x̄x1)+

1

2
e21(t)+

1

2
ε2f1

(t)

− k1e
2
1(t)+ e1(t)e2(t)− e21(t)+

1

2
e21(t)+

1

2
ζ 21

= −e1(t)2̃22
T
f1 (t)999 f1 (x̄̄x̄x1)− k1e

2
1(t)+ e1(t)e2(t)

+
1

2
ε̄21 +

1

2
ζ 21 .

(12)

In general, the traditional adaptation law can only make

sure that the parametric estimation error 2̃22f1 (t) is bounded

under the PE condition. However, the PE condition is sometimes

too stringent to be fulfilled, and thus, satisfactory parametric

convergence cannot be ensured. Motivated by this reason, a

composite learning approach will be studied in the sequel to

achieve higher precision of 2̂22f1 (t) with the removal of the

rigorous PE condition.

Define a mappingmmm1 :[0,+∞) → R
m×m by

mmm1(t) =

∫ t

t−τ1

999 f1 (x̄̄x̄x1(τ ))999
T
f1
(x̄̄x̄x1(τ ))dτ ,

where τ1 > 0 is a certain integration duration.
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FIGURE 1

Chaotic attractor of fractional-order PMSM with β = 0.98, σ = 3, and γ = 30. (A) 3D phase portrait. (B) Time evolution of x1. (C) Time evolution

of x2. (D) Time evolution of x3.

Suppose that mmm1(t) ≥ µ1III with µ1 > 0 standing for the

exciting strength, whenever 999 f1 (x̄̄x̄x1(t)) is of IE on t ∈ [Te1 −

τ1,Te1 ] for a time instant Te1 > τ1. Take into account the next

prediction error defined by

ε̂εε1(t) =

{

mmm1(t)2̃22f1 (t)− ε̃εεf1 (t), t < Te1

mmm1(t)2̃22f1 (Te1 )− ε̃εεf1 (Te1 ), t ≥ Te1

(13)

where ε̃εεf1 :[0,+∞) → R
m×1 is expressed as

ε̃εεf1 (t) =

∫ t

t−τ1

999 f1 (x̄̄x̄x1(τ ))εf1 (τ )dτ .

The fractional-order composite learning adaptation law is

designed as

D
β2̂22f1 (t) = ̺1e1(t)999 f1 (x̄̄x̄x1(t))− η12̂22f1 (t)− ̺1̟1ε̂εε1(t),(14)

where ̺1, η1, and̟1 ∈ R
+ are known constants.

Construct an auxiliary variableHHH1(t) by

HHH1(t) =mmm1(t)222
∗
f1
+ ε̃εεf1 (t). (15)

Apparently, it is observed from Equation (8) that

222∗T
f1
999 f1 (x̄̄x̄x1)+ εf1 (t) = D

βx1(t)− σ
(

x2(t)− x1(t)
)

. (16)

Multiply both sides of Equation (16) by999 f1 (x̄̄x̄x1). Then, it is

inferred that

999 f1 (x̄̄x̄x1)
[

999T
f1
(x̄̄x̄x1)222

∗
f1
+ εf1 (t)

]

= 999 f1 (x̄̄x̄x1)
[

D
βx1(t)− σ

(

x2(t)− x1(t)
)

]

. (17)

Invoking Equations (15) and (17), we can gain access to the

precise value ofHHH1(t) as

HHH1(t) =

∫ t

t−τ1

999 f1 (x̄̄x̄x1(τ ))
[

D
βx1(τ )− σ

(

x2(τ )− x1(τ )
)

]

dτ .

Consequently, the value of ε̂εε1(t) can be acquired precisely as

ε̂εε1(t) =mmm1(t)2̂22f1 (t)−mmm1(t)222
∗
f1
(t)− ε̃εεf1 (t)

=mmm1(t)2̂22f1 (t)−HHH1(t). (18)
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Substituting Equation (18) into Equation (14), one arrives at

D
β2̂22f1 (t) = ̺1e1(t)999 f1 (x̄̄x̄x1(t))− η12̂22f1 (t)

+ ̺1̟1

(

HHH1(t)−mmm1(t)2̂22f1 (t)
)

.
(19)

Consider the next quadratic Lyapunov function:

V1(t) =
1

2
e21(t)+

1

2̺1
2̃22

T
f1 (t)2̃22f1 (t). (20)

Invoking Lemmas 3 and 4, simple manipulation on the

fractional differentiation of Equation (20) renders

D
βV1(t) =

1

2
D
βe21(t)+

1

2̺1
D
β

(

2̃22
T
f1 (t)2̃22f1 (t)

)

≤ e1(t)D
βe1(t)+

1

̺1
2̃22

T
f1 (t)D

β2̃22f1 (t)

= e1(t)D
βe1(t)+

1

̺1
2̃22

T
f1 (t)D

β2̂22f1 (t).

(21)

Application of Young’s inequality gives

−2̃22
T
f1 (t)2̂22f1 (t) = −2̃22

T
f1 (t)222

∗
f1
− 2̃22

T
f1 (t)2̃22f1 (t)

≤
1

2
222∗T

f1
222∗

f1
+

1

2
2̃22

T
f1 (t)2̃22f1 (t)− 2̃22

T
f1 (t)2̃22f1 (t)

=
1

2
222∗T

f1
222∗

f1
−

1

2
2̃22

T
f1 (t)2̃22f1 (t).

(22)

Moreover, by using Young’s inequality and Lemma 6, it is

shown that

̟12̃22
T
f1 (t)ε̃εεf1 (t) ≤

1

2
2̃22

T
f1 (t)2̃22f1 (t)+

1

2
̟ 2
1 ε̃εε

T
f1
(t)ε̃εεf1 (t)

≤
1

2
2̃22

T
f1 (t)2̃22f1 (t)+

1

2
̟ 2
1 ε̄

2
1

max
τ∈[t−τ1,t]

‖999 f1 (x̄̄x̄x1(τ ))‖
2
(∫ t

t−τ1

dτ

)2

≤
1

2
2̃22

T
f1 (t)2̃22f1 (t)+

1

2
(̟1ε̄1ψ1τ1)

2

(23)

with ψ1 > 0 being a constant which is independent of x̄̄x̄x1(t)

and the number of neural nodes.

Considering Equations (12)–(14) and Equation (19)–(23),

we conclude

D
βV1(t)

≤ −e1(t)2̃22
T
f1 (t)999 f1 (x̄̄x̄x1)− k1e

2
1(t)+ e1(t)e2(t)+

1

2
ζ 21 +

1

2
ε̄21

+
1

̺1
2̃22

T
f1 (t)

[

̺1e1(t)999 f1 (x̄̄x̄x1)− η12̂22f1 (t)− ̺1̟1ε̂εε1(t)
]

= −k1e
2
1(t)+ e1(t)e2(t)−

η1

̺1
2̃22

T
f1 (t)2̂22f1 (t)

−̟12̃22
T
f1 (t)ε̂εε1(t)+

1

2
ζ 21 +

1

2
ε̄21

≤ −k1e
2
1(t)+ e1(t)e2(t)−

η1

2̺1
2̃22

T
f1 (t)2̃22f1 (t)

+
η1

2̺1
222∗T

f1
222∗

f1
+

1

2
ζ 21 +

1

2
ε̄21

−̟12̃22
T
f1 (t)

(

mmm1(t)2̃22f1 (t)− ε̃εεf1 (t)
)

= −k1e
2
1(t)+ e1(t)e2(t)−

η1

2̺1
2̃22

T
f1 (t)2̃22f1 (t)+

η1

2̺1
222∗T

f1
222∗

f1

−̟1µ12̃22
T
f1 (t)2̃22f1 (t)+̟12̃22

T
f1 (t)ε̃εεf1 (t)+

1

2
ζ 21 +

1

2
ε̄21

≤ −k1e
2
1(t)+ e1(t)e2(t)−

η1 + ̺1(2̟1µ1 − 1)

2̺1
2̃22

T
f1 (t)2̃22f1 (t)

+
η1

2̺1
222∗T

f1
222∗

f1
+

1

2
(̟1ε̄1ψ1τ1)

2 +
1

2
ζ 21 +

1

2
ε̄21

≤ −a1V1(t)+ e1(t)e2(t)+ b1,

(24)

where a1 = min {2k1, η1 + ̺1(2̟1µ1 − 1)}, b1 =

0.5̺−1
1 η1‖222

∗
f1
‖2 + 0.5̟ 2

1 ε̄
2
1ψ

2
1 τ

2
1 + 0.5ζ 21 + 0.5ε̄21 .

Step 2. According to Equations (3) and (7), we have

D
βx2(t) =222∗T

f2
999 f2 (x̄̄x̄x2)+ εf2 (t)+ γ x1(t)− x1(t)x3(t)− x2(t).

(25)

With the aid of Equations (6) and (25), we can derive

D
βe2(t) = D

βx2(t)−D
βα1,c(t)

= f2(x̄̄x̄x2)− x2(t)− x1(t)x3(t)+ γ x1(t)−D
βα1,c(t)

= 2̂22
T
f2 (t)999 f2 (x̄̄x̄x2)− 2̃22

T
f2 (t)999 f2 (x̄̄x̄x2)+ εf2 (t)

− x2(t)− x1(t)e3(t)− x1(t)z2(t)− x1(t)α2(t)

+ γ x1(t)−D
βα1,c(t),

(26)

where z2(t) = α2,c(t)− α2(t) is the filter error.

The virtual controller is provided as

α2(t) =
1

x1(t)
[k2e2(t)+

1

2
(x21(t)+ 1)e2(t)+ 2̂22

T
f2 (t)999 f2 (x̄̄x̄x2)

− x2(t)+ γ x1(t)+ e1(t)−D
βα1,c(t)]

(27)

with k2 > 0 being a design parameter.
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Substituting Equation (27) into Equation (26) induces

D
βe2(t) = −k2e2(t)−

1

2
(x21(t)+ 1)e2(t)− 2̃22

T
f2 (t)999 f2 (x̄̄x̄x2)

+ εf2 (t)− e1(t)− x1(t)z2(t)− x1(t)e3(t).

(28)

Multiply both sides of Equation (28) by e2(t). Employing

Lemma 4 and Young inequality, we argue

e2(t)D
βe2(t) = −k2e

2
2(t)−

1

2
(x21(t)+ 1)e22(t)

− e2(t)2̃22
T
f2 (t)999 f2 (x̄̄x̄x2)+ e2(t)εf2 (t)

− x1(t)e2(t)e3(t)− x1(t)e2(t)z2(t)− e1(t)e2(t)

≤ −k2e
2
2(t)−

1

2
(x21(t)+ 1)e22(t)− e2(t)2̃22

T
f2 (t)

999 f2 (x̄̄x̄x2)+
1

2
e22(t)+

1

2
ε̄22 − x1(t)e2(t)e3(t)

+
1

2
x21(t)e

2
2(t)+

1

2
ζ 22 − e1(t)e2(t)

≤ −k2e
2
2(t)− e2(t)2̃22

T
f2 (t)999 f2 (x̄̄x̄x2)− x1(t)e2(t)e3(t)

− e1(t)e2(t)+
1

2
ζ 22 +

1

2
ε̄22 .

(29)

Let 999 f2 (x̄̄x̄x2(t)) be of IE over the interval [Te2 − τ2,Te2 ] for

some τ2 > 0 and Te2 > τ2.

Define the following prediction error

ε̂εε2(t) =

{

mmm2(t)2̃22f2 (t)− ε̃εεf2 (t), t < Te2

mmm2(t)2̃22f2 (Te2 )− ε̃εεf2 (Te2 ), t ≥ Te2

(30)

where mmm2 :[0,+∞) → R
m×m and ε̃εεf2 :[0,+∞) → R

m×1

are formulated by

mmm2(t) =

∫ t

t−τ0

999 f2 (x̄̄x̄x2(τ ))999
T
f2
(x̄̄x̄x2(τ ))dτ ,

and

ε̃εεf2 (t) =

∫ t

t−τ2

999 f2 (x̄̄x̄x2(τ ))εf2 (τ )dτ ,

respectively. Presume that mmm2(t) ≥ µ2III, where µ2 is the

exciting strength.

Choose the composite learning-based adaptation law as

below:

D
β2̂22f2 (t) = ̺2e2(t)999 f2 (x̄̄x̄x2(t))− η22̂22f2 (t)− ̺2̟2ε̂εε2(t),

(31)

where ̺2, η2, and̟2 are given positive scalars.

Define the following auxiliary term:

HHH2(t) =mmm2(t)222
∗
f2
+ ε̃εεf2 (t). (32)

On account of Equation (25), it is trivially seen that

222∗T
f2
999 f2 (x̄̄x̄x2)+ εf2 (t) = D

βx2(t)− γ x1(t)+ x1(t)x3(t)+ x2(t).

(33)

Multiply both sides of Equation (33) by999 f2 (x̄̄x̄x2). Then, it is

inferred that

999 f2 (x̄̄x̄x2)
[

999T
f2
(x̄̄x̄x2)222

∗
f2
+ εf2 (t)

]

= 999 f2 (x̄̄x̄x2)
[

D
βx2(t)− γ x1(t)+ x1(t)x3(t)+ x2(t)

]

. (34)

Due to Equations (32) and (34), the computational result of

HHH2(t) is attainable, that is

HHH2(t)=

∫ t

t−τ2

999 f2 (x̄̄x̄x2)
[

D
βx2(τ )−γ x1(τ )+ x1(τ )x3(τ )+ x2(τ )

]

.

Accordingly, the precise value of ε̂εε2(t) is determined by

ε̂εε2(t) =mmm2(t)2̂22f2 (t)−HHH2(t).

Define the Lyapunov function by

V2(t) = V1(t)+
1

2
e22(t)+

1

2̺2
2̃22

T
f2 (t)2̃22f2 (t). (35)

By Lemmas 3 and 4, taking the fractional derivative of

Equation (35) leads to

D
βV2(t) = D

βV1(t)+
1

2
D
βe22(t)+

1

2̺1
D
β2̃22

T
f2 (t)2̃22f2 (t)

≤ D
βV1(t)+ e2(t)D

βe2(t)+
1

̺2
2̃22

T
f2 (t)D

β2̃22f2 (t)

= D
βV1(t)+ e2(t)D

βe2(t)+
1

̺2
2̃22

T
f2 (t)D

β2̂22f2 (t).

(36)

Analogs to Equations (22) and (23), it is easily verified that

−2̃22
T
f2 (t)2̂22f2 (t) ≤ −

1

2
2̃22

T
f2 (t)2̃22f2 (t)+

1

2
222∗T

f2
222∗

f2
, (37)

̟22̃22
T
f2 (t)ε̃εεf2 (t) ≤

1

2
2̃22

T
f2 (t)2̃22f2 (t)+

1

2
(̟2ε̄2ψ2τ2)

2 , (38)

in which ψ2 ≥ ‖999 f2 (x̄̄x̄x2(t))‖ is a positive constant irrelevant

with x̄̄x̄x2(t) and the number of neural nodes.
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By means of Equations (29), (31), and (36)–(38), we get

D
βV2(t)

≤ D
βV1(t)+ e2(t)D

βe2(t)+
1

2
ζ 22 +

1

2
ε̄22

+
1

̺2
2̃22

T
f2 (t)

[

̺2e2(t)999 f2 (x̄̄x̄x2)− η22̂22f2 (t)− ̺2̟2ε̂εε2(t)

]

≤ D
βV1(t)− k2e

2
2(t)− e1(t)e2(t)− x1(t)e2(t)e3(t)

−
η2

2̺2
2̃22

T
f2 (t)2̃22f2 (t)

+
η2

2̺2
222∗T

f2
222∗

f2
−̟2µ22̃22

T
f2 (t)2̃22f2 (t)+̟22̃22

T
f2 (t)ε̃εεf2 (t)

+
1

2
ζ 22 +

1

2
ε̄22

≤ −a1V1(t)+ e1(t)e2(t)+ b1 − k2e
2
2(t)− x1(t)e2(t)e3(t)−

e1(t)e2(t)+
η2

2̺2
222∗T

f2
222∗

f2

−
η2 + ̺2(2̟2µ2 − 1)

2̺2
2̃22

T
f2 (t)2̃22f2 (t)+

1

2
(̟2ε̄2ψ2τ2)

2

+
1

2
ζ 22 +

1

2
ε̄22

≤ −a2V2(t)− x1(t)e2(t)e3(t)+ b2,

(39)

where a2 = min {a1, 2k2, η2 + ̺2(2̟2µ2 − 1)}, b2 = b1 +

0.5̺−1
2 η2‖222

∗
f2
‖2 + 0.5̟ 2

2 ε̄
2
2ψ

2
2 τ

2
2 + 0.5ζ 22 + 0.5ε̄22 .

Step 3. In virtue of Equations (3) and (7), we know

D
βx3(t) =222∗T

f3
999 f3 (x̄̄x̄x3)+ εf3 (t)+ ud(t)+ x1(t)x2(t)− x3(t).

(40)

On the basis of Equations (3) and (6), it is not difficult to

check

D
βe3(t) = D

βx3(t)−D
βα2,c(t)

= 2̂22
T
f3 (t)999 f3 (x̄̄x̄x3)− 2̃22

T
f3 (t)999 f3 (x̄̄x̄x3)+ εf3 (t)+ ud(t)

+ x1(t)x2(t)− x3(t)−D
βα2,c(t).

(41)

Configure the actual control law as

ud(t) = −k3e3(t)+ x1(t)e2(t)− 2̂22
T
f3 (t)999 f3 (x̄̄x̄x3)+ x3(t)

− x1(t)x2(t)+D
βα2,c(t),

(42)

where k3 is a given positive scalar.

By substituting Equation (42) into Equation (41), it is

directly implied that

D
βe3(t) = −k3e3(t)+ x1(t)e2(t)− 2̃22

T
f3 (t)999 f3 (x̄̄x̄x3)+ εf3 (t).

(43)

Multiply both sides of Equation (43) by e3(t). Then

according to Lemma 4, it follows that

e3(t)D
βe3(t)

≤ −k3e
2
3(t)+ x1(t)e2(t)e3(t)− e3(t)2̃22

T
f3 (t)999 f3 (x̄̄x̄x3)+ e3(t)εf3 (t)

≤ −k3e
2
3(t)+ x1(t)e2(t)e3(t)− e3(t)2̃22

T
f3 (t)999 f3 (x̄̄x̄x3)

≤ −k3e
2
3(t)+ x1(t)e2(t)e3(t)− e3(t)2̃22

T
f3 (t)999 f3 (x̄̄x̄x3).

(44)

Define a mappingmmm3 :[0,+∞) → R
m×m by

mmm3(t) =

∫ t

t−τ3

999 f3 (x̄̄x̄x3(τ ))999
T
f3
(x̄̄x̄x3(τ ))dτ

with τ3 > 0 being the length of an integral interval.

Inspired by the similar argument in Step 2, we construct the

prediction error by

ε̂εε3(t) =

{

mmm3(t)2̃22f3 (t)− ε̃εεf3 (t), t < Te3

mmm3(t)2̃22f2 (Te3 )− ε̃εεf3 (Te3 ), t ≥ Te3

where ε̃εεf2 :[0,+∞) → R
m×1 is described as

ε̃εεf3 (t) =

∫ t

t−τ3

999 f3 (x̄̄x̄x3(τ ))εf3 (τ )dτ ,

respectively. Let the IE condition be fulfilled, that is, mmm3(t)

≥ µ3III with a positive scalar µ3 being the exciting strength,

which implies999 f3 (x̄̄x̄x3(t)) is of IE on t ∈ [Te3 − τ3,Te3 ] for some

Te3 > τ3.

Introduce the adaptation law from composite learning as

follows:

D
β2̂22f3 (t) = ̺3e3(t)999 f3 (x̄̄x̄x3(t))− η32̂22f3 (t)− ̺3̟3ε̂εε3(t) (45)

with ̺3, η3, and̟3 being positive design parameters.

To figure out the value of ε̂εε3(t), let us define an auxiliary

variableHHH3(t) by

HHH3(t) =mmm3(t)222
∗
f3
+ ε̃εεf3 (t). (46)

Equivalently, Equation (40) can be rewritten as

222∗T
f3
999 f3 (x̄̄x̄x3)+εf3 (t)=D

βx3(t)−ud(t)−x1(t)x2(t)+ x3(t).

(47)

Multiplying both sides of Equation (47) by 999 f3 (x̄̄x̄x3(t)), we

can see

999 f3 (x̄̄x̄x3(t))
[

999T
f3
(x̄̄x̄x3(t))222

∗
f3
+ εf3 (t)

]

= 999 f3 (x̄̄x̄x3(t))
[

D
βx3(t)− ud(t)− x1(t)x2(t)+ x3(t)

]

. (48)

From Equations (46) and (48), it is deduced that

HHH3(t) =

∫ t

t−τ0

999 f3 (x̄̄x̄x3(τ ))[D
βx3(τ )− ud(τ )

− x1(τ )x2(τ )+ x3(τ )]dτ .

(49)
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Thereby, calculating the accurate value of ε̂̂ε̂ε3(t) leads to

ε̂εε3(t) =mmm3(t)2̂22f3 (t)−HHH3(t).

Select the candidate of Lyapunov function V3 as the

following formula:

V3(t) = V2(t)+
1

2
e23(t)+

1

2̺3
2̃22

T
f3 (t)2̃22f3 (t). (50)

In virtue of Lemma 4, taking the fractional derivative of

Equation (50) implies

D
βV3(t) = D

βV2(t)+
1

2
D
βe23(t)+

1

2̺3
D
β2̃22

T
f3 (t)2̃22f3 (t)

≤ D
βV2(t)+ e3(t)D

βe3(t)+
1

̺3
2̃22

T
f3 (t)D

β2̃22f3 (t)

= D
βV2(t)+ e3(t)D

βe3(t)+
1

̺3
2̃22

T
f3 (t)D

β2̂22f3 (t).

(51)

Analogs to Equations (37) and (38), it is easily verified that

−2̃22
T
f3 (t)2̂22f3 (t) ≤ −

1

2
2̃22

T
f3 (t)2̃22f3 (t)+

1

2
222∗T

f3
222∗

f3
, (52)

̟32̃22
T
f3 (t)ε̃εεf3 (t) ≤

1

2
2̃22

T
f3 (t)2̃22f3 (t)+

1

2
(̟3ε̄3ψ3τ3)

2 , (53)

in whichψ3 ≥ ‖999 f3 (x̄̄x̄x3(t))‖ is a positive constant irrelevant with

x̄̄x̄x3(t) and the number of neural nodes.

Synthesizing Equations (39), (44), (45), and (51)–(53) with

Lemma 6, we arrive at

D
βV3(t)

≤ D
βV2(t)+ e3(t)D

βe3(t)

+
1

̺3
2̃22

T
f3 (t)

[

̺3e3(t)999 f3 (x̄̄x̄x3)− η32̂22f3 (t)− ̺3̟3ε̂εε3(t)
]

≤ D
βV2(t)− k3e

2
3(t)+ x1(t)e2(t)e3(t)−

η3

2̺3
2̃22

T
f3 (t)2̃22f3 (t)

+
η3

2̺3
222∗T

f3
222∗

f3
−̟3µ32̃22

T
f3 (t)2̃22f3 (t)+̟32̃22

T
f3 (t)ε̃εεf3 (t)

≤ −a2V2(t)− x1(t)e2(t)e3(t)+ b2 − k3e
2
3(t)+ x1(t)e2(t)e3(t)

−
η3 + ̺3(2̟3µ3 − 1)

2̺3
2̃22

T
f3 (t)2̃22f3 (t)

+
η3

2̺3
222∗T

f3
222∗

f3
+

1

2
(̟3ε̄3ψ3τ3)

2

≤ −a3V3(t)+ b3,

(54)

where a3 = min {a2, 2k3, η3 + ̺3(2̟3µ3 − 1)}, b3 = b2 +

0.5̺−1
3 η3‖222

∗
f3
‖2 + 0.5̟ 2

3 ε̄
2
3ψ

2
3 τ

2
3 .

By virtue of Equation (54) and Lemma 2, it is straightly

examined that

V3(t) ≤ V3(0)Eβ (−a3t
β )+

Mb3

a3

≤ V3(0)
C

1+ | − a3tβ |
+

Mb3

a3

≤ V3(0)C +
Mb3

a3
,

(55)

for all t ≥ 0, where C ∈ R
+ is a certain constant,

M = max{1,C}. Therefore, |ei| ≤

√

2
(

V3(0)C +Mb3/a3
)

and ‖2̃22i‖ ≤

√

2̺i
(

V3(0)C +Mb3/a3
)

for i = 1, 2, 3, which

indicates ei, ‖2̃22i‖ ∈ L∞. This demonstrates the boundedness of

the whole signals in the closed-loop system.

Given a sufficient small positive scalar ǫ = ǫ1 + ǫ2 where

ǫ1 ≥ Mb3
a3

and ǫ2 > 0. By Equation (55), as t → ∞, we have

0 < Eβ (−a3t
β ) ≤

C

1+ a3tβ
→ 0. (56)

Based on Equations (55) and (56), if all design parameters

are selected adequately, then there exists a certain T > 0 such

that Eβ (−a3t
β ) ≤ ǫ2 whenever t ≥ T and hence V3(t) ≤ ǫ.

Consequently, the dynamic errors ei and 2̃22i converge toward

a compact region of the origin, and the radius of the bounded

region can be adjusted as small as possible.

Summarizing the above arguments, we obtain the following

main result with respect to the system stability.

Theorem 1. Take into account the system Equation (3) with

Assumption 1. Suppose that the control scheme comprises the

virtual control functions Equations (10) and (27), the actual

control law Equation (42), together with the composite learning

laws (Equations 14, 45). Then, all the closed-loop signals are

bounded, and the error variables ei, 2̃22i (i = 1, 2, 3) converge

toward a small enough compact region of the origin.

Remark 1. In Xue et al. [8], a class of second-order command

filter was extended into fractional form:

{

D
βυ1(t) = ϕυ2(t),

D
βυ2(t) = −2λϕυ2(t)− ϕ(υ1(t)− α(t)),

(57)

where α(t) is the filter input, ϕ ∈ R
+, λ ∈ [0, 1]. The main

advantage of Equation (57) is that its approximation accuracy

for the input α(t) is much better than that of fractional-order

dynamic surface (Equation 4) used in this paper. However, in

contrast with Equation (57 which needs to satisfy that both

D
βα(t) and D

β
D
βα(t) are bounded, Equation (4) only requires

the boundedness ofDβα(t) and shows less conservation.

4. Simulation research

In this part, let us validate the efficiency of the proposed

control scheme.

Pay attention to the practical model of fractional-order

PMSM as follows:















D
βx1(t) = f1(x̄̄x̄x1)+ σ

(

x2(t)− x1(t)
)

,

D
βx2(t) = f2(x̄̄x̄x2)+ γ x1(t)− x1(t)x3(t)− x2(t),

D
βx3(t) = ud(t)+ x1(t)x2(t)− x3(t),

(58)
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FIGURE 2

Tracking performance of the output y with respect to the reference signal yd.

FIGURE 3

Approximation ability of f̂1 by using composite learning adaptive control.
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FIGURE 4

Approximation ability of f̂2 by using composite learning adaptive control.

where β = 0.98, σ = 3, γ = 30, f1(x̄̄x̄x1) = sin x1, and

f2(x̄̄x̄x2) = x1 − x22 are unknown functions. The initial value of

the full-state vector x̄̄x̄x3 is considered as x̄̄x̄x3(0) = [3, 3, 3]T . Let

the target signal be yd(t) = 2+ 0.5 sin(0.5t)+ 0.5 sin(t).

Due to the uncertainty of f1 and f2, we take advantage of

three RBFNNs f̂1 and f̂2 in the simulation to approximate f1

and f2, respectively. The single input of the first RBFNN f̂1 is

x1, and the radial basis function is composed of twenty-one

Gaussian functions which are uniformly distributed over the

interval [−2, 2].With respect to the second RBFNN f̂2, we regard

its input variables as x1 and x2, and eight Gaussian functions

evenly distributed on the interval [−2, 2] are given for each

input to induce the corresponding radial basis function. Thus,

the number of all neural-network nodes related to f̂2 is selected

as 8× 8 = 64.

The design parameters are now selected as follows. First, let

the input gain parameters are k1 = k2 = k3 = 15. Second, the

gain parameters of the dynamic surfaces are considered as ϕ1 =

ϕ2 = 80. Third, set the integration duration to be τd = 15 and

the finalization time instants for IE to be Te1 = Te2 = Te3 = 20.

At last, choose ̺i = 30 and ηi = ̟i = 0.001 with i = 1, 2, 3 for

the composite learning adaptive control.

The relevant performance results are illustrated in

Figures 2–4. Figure 2 shows that fast system response is

achieved and the output signal y(t) can track the target

trajectory yd(t) closely as desired. The approximation abilities

of the estimations f̂i for fi with i = 1, 2 via the designed

composite learning algorithm are displayed in Figures 3, 4,

respectively. By using the introduced composite learning

adaptive control method under the IE condition, one can

observe that excellent estimation preciseness is obtained, which

confirms the robustness of the introduced composite learning

neural control approach as well as its powerful capability of

chaos suppression.

5. Conclusion

In the article, the tracking control of fractional-order

PMSMs is studied by establishing an adaptive backstepping

composite learning neural control scheme. Neural networks

are applied to serve as functional approximations, and a

composite learning adaptive control algorithm is constructed

to guarantee the high estimation accuracy of adaptation

parameters. Employing the extended Lyapunov stability

criterion, it is proven that the proposed control method achieves

robust control performance and plays a vital role in tackling

the tracking control problem of uncertainty fractional-order

Frontiers in AppliedMathematics and Statistics 11 frontiersin.org

https://doi.org/10.3389/fams.2022.1059756
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Wang 10.3389/fams.2022.1059756

PMSMs. The simulation example reveals that the provided

control method can improve the tracking efficiency. In

future, we will focus on the study of fractional permanent

magnet motor system with complicated characteristics of

control input, such as input saturation, input dead-zone, and

input delay.
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