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Entropy is the concepts from the science of information must be used in

the situation where undefined behaviors of the parameters are unknown.

The behavior of the casual parameters representing the processes under

investigation is a problem that the essay explores from many angles. The

provided uniformity criterion, which was developed utilizing the maximum

entropy of the metric, has high e�ciency and straightforward implementation

in manual computation, computer software and hardware, and a variety

of similarity, recognition, and classification indicators. The tools required to

automate the decision-making process in real-world applications, such as

the automatic classification of acoustic events or the fault-detection via

vibroacoustic methods, are provided by statistical decision theory to the noise

and vibration engineer. Other statistical analysis issues can also be resolved

using the provided uniformity criterion.

KEYWORDS

Shannon entropy, uncertainty, stochastic criteria, criterion of uniformity, probabilities

1. Introduction

The importance of a chosen criterion in creating a sound statistical choice cannot

be overstated [1]. The undefined behavior of random parameters is the most challenging

to investigate however, an appropriately established criterion, the ambiguity produced

ought to be minimized [2]. The “Entropy” concept is extensively used in the mathematics

and recently started to use in social sciences. Therefore, entropy concept is used for

the building models in the planning process [3]. Entropy can be used to gauge the

degree of disorder in a given system, resulting in a measurement of the degree of
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data uncertainty [4]. The strategy’s entropy, or level of

uncertainty, can be reduced by information collection [5]. The

less unknown the system’s condition is, the more knowledge

there is about entropy and information are frequently used as

indicators of uncertainty in probability distributions [6].

Despite being expressed in a complex mathematical

language, the idea of probability represents the characteristics

of probability that are frequently seen in daily life. For instance,

each set of spots produced by the simple die toss corresponds

to an actual random event whose probability is represented by

the positive real number. When a simple die is thrown, the

probability of two (or more) digits of spots is equal to the

product of their probabilities (relation). All conceivable numbers

of spots’ cumulative probability are normed to one link.

The theory of probability and mathematical statistics serve

as the mathematical foundation for both applied statistics

and statistical analytic techniques. Entropy is a measure

of uncertainty and probability distribution in mathematics

statistics. Information theory is quantitatively defined in

mathematics and is sometimes referred to as informational

or statistical entropy. Statistical and informational science has

long debated the functional link between entropy and the

corresponding probability distribution.

Numerous connections have been made based on the

characteristics of entropy. Characteristics, such as additivity,

extensivity in the Shannon information theory, are posited in the

conventional information theory and some of its extensions. It

is often referred to as Shannon’s entropy in mathematics. Here,

we took a mathematical statistics approach to the widely studied

decision subject. Our framework’s starting point is a normative

definition of uncertainty that connects a physical system’s

uncertainty measure to evidence via a probability distribution.

The paper is structured as follows: Section 2 analyses various

existing methods reviews employed so far. Section 3 is a detailed

explanation of the proposed methodology. The performance

analysis of the proposed method is estimated, and the outcomes

are projected in Section 4. At last, the conclusion of the work is

made in Section 5.

2. Shannon informational entropy

The following list includes several entropies that have been

proposed based on supported entropy features. The most well-

known of these entropies is the Shannon informational entropy,

or Boltzmann-Gibbs entropy (S = −
∑

i pi ln pi) [7]. which

is virtually and usually engaged in non-equilibrium dynamics

and equilibrium thermodynamics. The scientific community is

divided about whether Shannon entropy is a unique and valuable

indicator of statistical uncertainty or information [8]. The

maximum entropy density is obtained by maximizing Shannon’s

[9] entropy measure.

Jaynes’s maximization of entropy (maxent) principle

asserted that the Shannon entropy is the only reliable indicator

of uncertainty maximized in maxent [10]. One naturally

wonders what would happen if some of these features changed

because of this particular information property from the

Shannon postulates [11].

Some of the entropies are discovered via mathematical

reasoning that modifies Shannon’s logic [12]. Non-extensive

statistics (NES) were recently proposed using some entropy

for stochastic dynamics and thermodynamics of particular

non-extensive systems [13, 14]. NES has sparked a lot of

publications with very different perspectives on equilibrium and

non-equilibrium systems, leading to a lot of discussion [15]

among statistical physicists. In the discussion, some critical

issues include whether Boltzmann Gibbs-Shannon entropy

should be swapped out for another in a different physical

scenario. What may be maximized to have the maximum

probability distribution?

The entropy forms used in maxent applications must be

either explicitly posited or derived from the entropy’s claimed

properties [16]. The reliability of the calculated probability

distributions serves as evidence for the soundness of these

entropies. Ahmad et al. [17], the amount of information is

measured by decreasing the entropy of such a system. The

amount of information acquired in the complete clarification of

the state of a certain physical system is equal to the entropy of

this system as shown in Equation (1)

IX = H(X)− 0 = H(X). (1)

The average (or complete) information obtained from all

possible individual observations can be rewritten in the form

of the mathematical expectation of the logarithm of the state

probability with the opposite sign

IX = M[− ln P(X)]. (2)

For continuous random variables, expression (2) is written

in the form

IX = −

∫ ∞

−∞
f (x) ln[f (x)]dx, (3)

where, f (x) – distribution density of a random variable x.

Therefore, it is necessary that the statistics of the criterion

ensures the receipt of the maximum amount of information

from the available statistical material about the system. Let us

consider the limiting case when information about the system

is represented by a sample of independent random variables

X1and X2 of minimal volume n = 2. In the absence of other

data, the principle of maximum uncertainty postulates the use

of a uniform distribution on the interval [a; b] [18] where, a =

min{X1,X2} and b = max{X1,X2}. For definiteness, let us

consider a = 0 and b = 1.
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To compare two independent random variables X1 and X2,

evenly distributed in the interval [0; 1], we use two main metrics

δ1 =
X1
X2

and δ2 = X2 − X1, X1 ≤ X2. Note that besides

δ1 and δ2 other metrics are possible, which, in essence, are

functions δ1 and δ2. However, for any transformation of the

original random variable δ the loss of information is inevitable;

the total conditional entropy of the system does not exceed its

unconditional entropy [19]

H(δ|X) ≤ H(δ), X = X(δ). (4)

To compare the information content of metrics δ1 and δ2

[their entropies (3)] it is necessary to determine the distribution

density of f (δ1) and g(δ2). The density of the joint distribution of

ordered random variables, uniformly distributed in the interval

[0; 1], will be written in the form [3]

f (x, y) = 2!fx(x)fy(y) = 2 (5)

where, fx(x) = 1 and f y(y) = 1 – distribution density of

independent random variables x and y.

Let us consider transformation variables

y1 =
x1

x2
, y2 = x2.

or

x1 = y1x2 = y1y2 and x2 = y2.

The Jacobian of the transformation has the form [20]

J =
∂(x1, x2)

∂(y1, y2)
=

∣

∣

∣

∣

∣

y2 0

y1 1

∣

∣

∣

∣

∣

= y2.

Then the joint distribution density [21]

g(y1, y2) = f (x1, x2)J

∣

∣

∣

∣

∣

x1 = y1y2

x2 = y2
= 2y2.

where,

g(y1) =

∫ 1

0
g(y1, y2)dy2 =

∫ 1

0
2y2dy2 = 2

y22
2

∣

∣

∣

∣

∣

1

0
= 1.

That is, the metric δ1 obeys the uniform distribution law

on the interval [0; 1]. Figure 1 shows a histogram of the metric

distribution δ1.

It can be seen that when the hypothesis of a uniform

distribution is rejected, an error is made with probability

(attainable level of significance) p = 0.67. Therefore, the reasons

to reject the hypothesis that the metric is uniformly distributed

with density

f (δ1) = 1 (6)

are absent.

FIGURE 1

Checking for the uniformity of the metric distribution δ1.

FIGURE 2

Checking for the uniformity of a random variable υ = G (δ2).

Difference density δ2 = X2 − X1 of random variables X1 ≤

X2 [1].

g(δ2) =

∫ ∞

−∞
f (x2 − δ2, x1)dx1 =

∫ 1−δ2

0
2dx1

= 2x1

∣

∣

∣

∣

∣

1− δ2

0
= 2(1− δ2). (7)

Figure 2 shows the result of checking the uniformity of a

random variable υ = G(δ2), where G(δ2) – metric distribution

function δ2.

As the p-level is p = 0.15, then we can say that the results of

the experiment indicate an error when rejecting the hypothesis

of a uniform distribution of the random variable υ = G(δ2)

with probability of 0.15. This is more than a level of significance

α = 0.1. Therefore, the sufficient grounds for rejecting the

hypothesis of the uniform distribution of the random variable

υ = G(δ2) aren’t present.
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Thus, density (7) describes the law of distribution of the

modulus of the difference of independent random variables

uniformly distributed over the interval [0; 1].

Figure 3 shows a histogram of the metric distribution δ2,

from the nature of the density of which it can be seen that it

belongs to the class of beta distributions [22]

g(δ2) = δ2
a−1(1− δ2)

b−1, δ2 ∈ [ 0; 1]

with parameters a = 1 and b = 2, after substitution of which

we obtain expression (7). Thus, in one interval [0; 1] we have

distributions of two random metrics with different laws.

It was shown above that the informativeness of the criteria is

determined by the Shannon entropy (3), which for these metrics

will take the following values:

Hδ1 = −

∫ 1

0
f (δ1) ln[f (δ1)]dδ1 =−

∫ 1

0
ln 1dδ1 = 0.

Hδ2 = −

∫ 1

0
g(δ2) ln[g(δ2)]dδ2 = 0.5− ln 2 = −0.19.

It is not hard to see thatHδ1 > Hδ2 , meaning that according

to entropy the metric δ1 dominates the metric δ2.

The ratio of two independent ordered random variables,

uniformly distributed on the interval [0; 1], is more informative

than their difference. In practice, this conclusion means that to

construct a criterion based on a sample of independent random

variables uniformly distributed in the interval [0; 1], in the

absence of any additional conditions, preference should be given

to their ratio.

The uniform law can serve as the basis for the criteria

for making statistical decisions, while being a very simple

distribution to implement and tabulate. Therefore, its

identification (testing the hypothesis of a uniform distribution

law) is a topical research topic in order to determine the most

powerful goodness-of-fit criteria. Much attention has been paid

to this issue recently, and the result of a comprehensive analysis

was work [23], in which the authors investigated the power of

the known criteria for samples of size n ≥ 10.

Samples of a smaller size are considered to be small,

the theory of making statistical decisions on which, under

the conditions of non-asymptotic formulation of problems,

currently still needs to be scientifically substantiated and

developed. The complexity of the formulation and solution of

the problems of constructing the best estimates for a given

volume of statistical material is due to the fact that the

desired solution often strongly depends on the specific type

of distribution the sample size and cannot be an object of a

sufficiently general mathematical theory [24].

3. Methodology

The probabilistic model provides for the summation of

independent random variables, then the sum is naturally

described by the normal distribution. In our work, we consider

the limiting case when information about the system is

represented by a sample of minimum size. The principle

of maximum entropy stated that typical distributions of

probabilities of states of an uncertain situation are those it

increases the selected measure of uncertainty for specified

information in relation to the “behavior” of the situation. In the

absence of other data, the principle of maximum uncertainty

FIGURE 3

Histogram of the metric distribution δ2.
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postulates the use of a uniform distribution on the interval

[a; b]. Since it is customary to use entropy as a measure

of the uncertainty of a certain physical system. A stochastic

multi-criteria preference model (SMCPM) method integrated

with optimization approach will be developed for addressing

stochasticity of input information.

3.1. Stochastic similarity criterion

It is possible to construct a criterion of uniformity of random

variables (agreement), which is a convolution of particular

criteria of uniformity for making a statistical decision on it.

Moreover, the generalization of the theorem on the ratio of

the smaller of two independent random variables uniformly

distributed in the interval [0; 1] to the larger one consists in the

formulation and proof of the following theorem.

3.1.1. Theorem

Let a sample of independent random variables be given

x1, x2, ..., xn, uniformly distributed in the interval [0; 1] and let

them compose the corresponding variation series x
′

1 ≤ x
′

2 ≤

... ≤ x
′

n. Dividing all the members of this variation series (except

for x
′

n) by x
′

n, we will get υ1 ≤ υ2 ≤ ... ≤ υk, k = n − 1.

Proceeding in the same way with this and subsequent rows, as a

result we get a random variable V1, uniformly distributed in the

interval [0; 1].

3.1.2. Evidence

Sample volume case n = 2. A variation series was compiled

from the observations of the sample x1 ≤ x2 (here and below,

to simplify the notation, the terms of the variation series are not

marked with a prime). Probability density of joint distribution of

ordered random variables x1 ≤ x2 will be written as follows [25].

fx1,x2 (x1, x2) = 2!

2
∏

i=1

fxi (xi) = 2!, (8)

where fxi (xi) = 1 – distribution density of i observation in

the sample.

Let us introduce into consideration two statistics (by the

number of terms of the variational series)

υ1 =
x1

x2
and υ2 = x2. (9)

Since the inverse transformations of random variables in

Equation (9)

x1 = υ1υ2 and x2 = υ2 are one-to-one, then the joint

distribution density

fυ1,υ2 (υ1, υ2) = fx1,x2 (x1, x2)xi=xi(υ1,υ2) · |J| , (10)

where J = ∂(x1,x2)
∂(υ1,υ2)

=

∣

∣

∣

∣

∣

υ2 0

υ1 1

∣

∣

∣

∣

∣

= υ2 – Jacobian.

Then, taking into account (8), the joint distribution density

(10) will be written as follows

fυ1,υ2 (υ1, υ2) = 2!υ2. (11)

FIGURE 4

Histograms of distributions of statistics x1 ≤ x2 of beta distribution.
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Excluding the helper variable υ2 by integrating expression

(11) over the range of values of υ2, we will get the density of the

variable υ1

fυ1 (υ1) =

∫ 1

0
fυ1,υ2 (υ1, υ2)dυ2 =

∫ 1

0
2υ2dυ2 = 1! (12)

(the factorial sign is left to summarize the results).

Result (12) testifies to the uniform distribution law of

the variable υ1. Figure 4 shows histograms of distributions of

statistics x1 ≤ x2, fromwhich it can be assumed that statisticians

are subject to the law.

The test showed that the achieved significance levels for

the corresponding hypotheses with beta distribution parameters

α = 1, β = 2 for the statistic of x1(p = 0.66) and α = 2, β = 1

for the statistic of x2(p = 0.3) testify against their rejection [10].

Figure 5 shows the histogram and the result of checking

the uniformity of statistics υ1, from which it is clear that the

achieved level of significance (p = 0.2) also testifies against the

rejection of the hypothesis of its uniform distribution (or beta

distribution with parameters α = 1, β = 1).

Sample volume case n = 3. For it, the variational series has

the form x1 ≤ x2 ≤ x3. Let’s introduce statistics

υ1 =
x1

x3
, υ2 =

x2

x3
and υ3 = x3 (13)

unique inverse transformations for which have the form x1 =

υ1υ3, x2 = υ2υ3 and x3 = υ3.

Jacobian transformation

J =
∂(x1, x2, x3)

∂(υ1, υ2, υ3)
=

∣

∣

∣

∣

∣

∣

∣

υ3 0 0

0 υ3 0

υ1 υ2 1

∣

∣

∣

∣

∣

∣

∣

= υ2
3 .

The density of the joint distribution of the members of the

variation series υ1 ≤ υ2 ≤ υ3 taking into account the sample

size for (8) and (10) will take the form fυ1,υ2,υ3 (υ1, υ2, υ3) =

3!υ2
3 . The density of the joint distribution of statistics of υ1 ≤

υ2 is

fυ1,υ2 (υ1, υ2) =

∫ 1

0
fυ1,υ2,υ3 (υ1, υ2, υ3)dυ3

=

∫ 1

0
3!υ2

3dυ3 =2!. (14)

For these statistics, two statistics are entered V1 =
υ1
υ2

and

V2 = υ2, for which the one-to-one inverse transformations have

the form υ1 = V1V2 and υ2 = V2.

Jacobian transformation J =
∂(υ1, υ2)

∂(V1,V2)
=

∣

∣

∣

∣

∣

V2 0

V1 1

∣

∣

∣

∣

∣

= V2.

The density of the joint distribution of the members of the

variation series V1 ≤ V2 has the form f (V1,V2) = 2!V2.

Whence, by integrating with respect to the variable V2 we will

get the distribution density of statistics V1

f (V1) =

∫ 1

0
f (V1,V2)dV2 = 2

∫ 1

0
V2dV2 = 1 (15)

which testifies a uniform distribution of statistics V1in the

interval [0; 1].

It can be shown that the distributions of statistics υ1, υ2 and

their relationship V1 =
υ1
υ2

also obey the law of beta distribution

with attainable levels of significance pυ1 = 0.03, pυ2 = 0.33, and

pV1 = 0.75 according to parameters α = 1, β = 2; α = 2, β = 1

and α = 1, β = 1.

FIGURE 5

Histogram of statistics distribution υ1.
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It means that statistic V1 is uniformly distributed in the

interval [0; 1]. In accordance with the method of mathematical

induction, let us consider sample volume n − 1. The variation

series for it is x1 ≤ x2 ≤ ... ≤ xn− 1.

Let’s introduce the statistic

υ1 =
x1

xn−1
, υ2 =

x2
xn−1

, . . . υn−1 = xn−1, for which the

one-to-one inverse transformations have the form

x1 = υ1υn−1, x2 = υ2υn−1, . . . , xn−1 = υn− 1.

Jacobian transformation

J =
∂(x1, x2, ..., xn−1)

∂(υ1, υ2, ...υn−1)
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

υn−1 0 ... 0

0 υn−1 ... 0

... ... ... ...

υ1 υ2 ... 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= υ
n− 2
n−1 .

The density of the joint distribution of the members of

the variation series υ1 ≤ υ2 ≤ ... ≤ υn−1 taking into

account the sample size for (8) and (10) will take the form

fυ1,υ2,...,υn−1 (υ1, υ2, ..., υn−1) = (n − 1)!υn−2
n−1 . Where from the

density of the joint distribution of statistics υ1 ≤ υ2 ≤ ... ≤

υn− 2

fυ1,υ2,...,υn−2 (υ1, υ2, ..., υn−2) =

∫ 1

0
fυ1,υ2,...,υn−1

(υ1, υ2, ..., υn−1)dυn−1

= (n− 1)!

∫ 1

0
υ
n−2
n−1dυn−1 =(n− 2)!. (16)

The density of the joint distribution of the members of the

variation series υ1 ≤ υ2 ≤ ... ≤ υn−2 taking into account the

sample size for (8) and (10) will take the form

fV1,V2,...,Vn−2 (V1,V2, ...,Vn−2) = (n− 2)!Vn−3
n−2 (17)

Whence the density of the joint distribution of the members

of the variation series V1 ≤ V2 ≤ ... ≤ Vn−3 after integration

(17) according to Vn− 2

fV1,V2,...,Vn−3 (V1,V2, ...,Vn−3) = (n− 1)!

Carrying out similar transformations for all statistics V , we

will obtain the density of the final one

fV1 (V1) = 1, (18)

which indicates a uniform distribution in the interval [0; 1] of the

convolution υk – criteria (VIC criteria) for a sample size n− 1.

For sample volume n with variation series x1 ≤ x2 ≤ ... ≤

xn let’s introduce statistics υ2 =
x2
xn
, . . . υn = xn, for which the

one-to-one inverse transformations have the form

x1 = υ1υn, x2 = υ2υn, . . . , xn = υn.

Jacobian transformation

J =
∂(x1, x2, ..., xn)

∂(υ1, υ2, ...υn)
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

υn 0 ... 0

0 υn ... 0

... ... ... ...

υ1 υ2 ... 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= υn− 1
n .

The density of the joint distribution of the members of the

variation series υ1 ≤ υ2 ≤ ... ≤ υn taking into account the

sample size for (8) and (10) will take the form

fυ1,υ2,...,υn (υ1, υ2, ..., υn) = (n)!υn− 1
n .

Where from the density of the joint distribution of statistics

υ1 ≤ υ2 ≤ ... ≤ υn−1 is

fυ1,υ2,...,υn−1 (υ1, υ2, ..., υn−1) =

∫ 1

0
fυ1,υ2,...,υn (υ1, υ2, ..., υn)dυn

= (n)!

∫ 1

0
υn−1
n dυn =(n− 1)!. (19)

Further, by analogy with the sample volume n − 1 we

introduce statistics V , applying the same procedures for which,

it can be shown that the density of the finite of them

fV1 (V1) = 1, (20)

This testifies to the uniform distribution in the interval [0; 1]

of the convolution of the VIC criteria and for the sample size n.

For illustration, Figure 6 shows histograms of statistic-stick

distributions υ1 ≤ υ2 for sample volume n = 7.

It can see the complete identity of the distribution of

statistics x1 ≤ x2 (see Figure 4). Also identical to the distribution

υ1 Figure 5 shows the distribution of statistics V1, whose

histogram is shown in Figure 7.

The figure shows that the achieved level of significance p =

0.94 testifies against the rejection of the hypothesis of its uniform

distribution. Thus, the theorem has been proven theoretically

and empirically. The achieved level of significance, the decision-

making procedure is more flexible: the less is p(s) we see, the

stronger the set of observations testifies against the hypothesis

being tested [16]. On the other hand, the smaller the value s, the

more likely it is that the hypothesis being tested H is true [24].

For their simultaneous accounting, it is proposed to

introduce into consideration the relative-level

pH =
p(s)

s
|W . (21)

Then, when testing the hypothesis H0 with the alternative

H1 the effectiveness of their differentiation can be judged by

the value

W =
pH0 − pH1

pH0

. (22)
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FIGURE 6

Histograms of distributions of statistics υ1 ≤ υ2.

FIGURE 7

Histogram of statistics distribution V1.

4. Result and discussion

Figure 8 shows the results of testing for the uniformity of

the hypothesis H0 : F(x) = x, 0 x ∈ [0; 1] and alternatives

to the uniform law in the form of a hypothesis H1 : F(x) =

BI(1.5, 1.5, 1, 0) about the beta distribution of the first kind.

Similar results for samples up to without figures are

summarized in Table 1.

The table shows that the proposed criterion has a high

efficiency of distinguishing between hypotheses. H0 И H1 in the

specified range n. In the traditional assessment of the power of

the goodness-of-fit test, Table 2 shows its values for the right-

sided critical region and for a sample of n ≤ 10 with the number

of realizations 5,000 for each volume.

It can be seen from the table that the cardinality of the

convolution of the VIC test is higher than the cardinality

of the test ZA Zhang at n = 10, which is at the top of

preference among the criteria. Even with minimal sample sizes,

it is higher than that of the criterion ZA Zhang at n = 10,

which gives a tangible advantage in distinguishing between such
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FIGURE 8

Checking the uniformity of the sample volume n = 2.

TABLE 1 Achieved p-levels of the hypothesis H0 relatively to H1.

n H0 H1 W

p(s)H0
sH0 pH0 p(s)H1

sH1 pH1

2 0.46 7.7 0.060 0 261 0 1

3 0.63 6.2 0.102 0 392 0 1

4 0.53 7.1 0.075 0 428 0 1

5 0.37 9.1 0.041 0 479 0 1

6 0.88 3.7 0.238 0 420 0 1

7 0.17 11.5 0.015 0 449 0 1

8 0.77 4.9 0.157 0 546 0 1

9 0.23 10.6 0.022 0 487 0 1

10 0.26 10.1 0.026 0 509 0 1

close hypotheses. Thus, the uniformity check procedure, which

is simple to implement, can serve as a worthy tool in the study

of small-volume samples.

Sample volume n > 10 should be broken down into k = 5...7

intervals as for the Kolmogorov criterion or χ2. Calculate the

theoretical value for each interval F(x) and empirical F∋(x).

Then you build k of private VIC criteria

ϑk =

{

F(x)
F∋(x)

, ecπu F(x) ≤ F∋(x);
F∋(x)
F(x)

, ecπu F∋(x) > F(x).

These criteria are ranked υ1 ≤ υ2 ≤ ... ≤ υk and the

convolution is constructed as shown above.

4.1. Discussion

A principled approach to uncertainty reduction requires

not only deciding when to reduce uncertainty and how,

but also capturing the information necessary to make

that decision, executing the uncertainty reduction tactics,

and capturing the information they produce. Entropy can

be applied to emergency management constructed the

stable hierarchy organization from the perspective of the

maximum entropy. An entropy-based approach for conflict

resolution in IoT applications few other applications, such

as language model construction, and medical diagnosis

were also conducted by using entropy. When information

about the system is represented by a sample of independent

random variables X1 and X2 of minimal volume n = 2.

In the absence of other data, the principle of maximum

uncertainty postulates the use of a uniform distribution
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TABLE 2 Convolution power of the VIC test relative to the

hypothesisH1.

n α

0.15 0.1 0.05 0.025 0.01

10 0.21 0.14 0.07 0.04 0.01

9 0.21 0.14 0.07 0.04 0.01

8 0.21 0.14 0.07 0.04 0.01

7 0.20 0.14 0.07 0.04 0.01

6 0.20 0.14 0.07 0.04 0.01

5 0.21 0.13 0.07 0.03 0.01

4 0.19 0.13 0.07 0.03 0.01

3 0.18 0.13 0.06 0.03 0.01

2 0.17 0.11 0.06 0.03 0.01

on the interval [a; b] [18] where a = min{X1,X2} and

b = max{ X1,X2}.

5. Conclusion

Decision makers are often tasked with complicated

problems that have multiple objectives and uncertainties.

Decision analysis is an analytical framework with methods

to overcome these challenges and allow decision making

to be informative and effective. In conclusion, we note

that the given criterion of uniformity, built on the basis

of the maximum entropy of the metric, has not only high

efficiency, but also simplicity of implementation: in a

manual computing process, using a computer - software

and hardware, in various indicators similarity, recognition,

etc. The given criterion of uniformity can also be used to

solve other problems of statistical analysis. An information-

entropy-based stochastic multi-criteria preference model

was developed to systematically quantify the uncertainties

associated with the evaluation of contaminated site

remediation alternatives.
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