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COVID-19 and syphilis co-dynamic
analysis using mathematical
modeling approach

Shewafera Wondimagegnhu Teklu* and Birhanu Baye Terefe

Department of Mathematics, College of Natural and Computational Sciences, Debre Berhan University,

Debre Berhan, Ethiopia

In this study, we have proposed and analyzed a new COVID-19 and syphilis

co-infection mathematical model with 10 distinct classes of the human population

(COVID-19 protected, syphilis protected, susceptible, COVID-19 infected, COVID-19

isolated with treatment, syphilis asymptomatic infected, syphilis symptomatic

infected, syphilis treated, COVID-19 and syphilis co-infected, and COVID-19 and

syphilis treated) that describes COVID-19 and syphilis co-dynamics. We have

calculated all the disease-free and endemic equilibrium points of single infection

and co-infection models. The basic reproduction numbers of COVID-19, syphilis,

and COVID-19 and syphilis co-infection models were determined. The results of

the model analyses show that the COVID-19 and syphilis co-infection spread

is under control whenever its basic reproduction number is less than unity.

Moreover, whenever the co-infection basic reproduction number is greater than unity,

COVID-19 and syphilis co-infection propagates throughout the community. The

numerical simulations performed by MATLAB code using the ode45 solver justified

the qualitative results of the proposed model. Moreover, both the qualitative and

numerical analysis findings of the study have shown that protections and treatments

have fundamental e�ects on COVID-19 and syphilis co-dynamic disease transmission

prevention and control in the community.
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1. Introduction

Communicable diseases are illnesses caused by pathogenic microbial agents such as bacteria,

viruses, fungi, and parasites, which affect human beings throughout the world [1]. The novel

coronavirus (COVID-19) infection is a lethal disease that has been a major global public health

concern. The COVID-19 pandemic has affected various animals mostly infecting millions of

human beings in different nations throughout the world [2–6]. It has been spreading mainly

through sneezing, individuals interacting with each other in a certain time frame, or through

coughing [7]. Although different species of animals are thought to be the source of COVID-

19 transmission, bats have been shown to be coronavirus hosts [8]. Many nations throughout

the world have started to practice various prevention and control strategies such as lockdown

approach, quarantine, isolation, and closing schools [3, 9].

Syphilis is a major sexually transmitted disease and has been affecting millions of individuals

both in low- and high-income countries of the world [10]. It is a chronic systemic disease caused

by Treponema pallidum bacterium which is mainly transmitted through sex, blood contact,

and mother-to-child during birth [4, 10–16]. Diagnosis, treatment, and using a condom are

the basic control mechanisms of syphilis spreading in the community [10]. If left untreated,

syphilis progresses through four stages: primary, secondary, latent, and tertiary [17–19]. The

first three infection stages can transmit the disease to other susceptible groups of individuals,

the transmission can occur via sexual contact, and in most cases, the tertiary stage is not
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transmissible through sexual contact [19]. It can be a cause

of different cardiovascular and neurological diseases [17].

Approximately 90% of new syphilis substantial morbidity and

mortality data are recorded in low-income countries around the

world [11, 16]. Co-infection is an infection of an individual with

two or more microorganisms’ species [20, 21]. COVID-19 is an

opportunistic infection for people with a weak immune system

who were already infected by acute and chronic infections such as

pneumonia, TB, and HIV/AIDS.

Mathematical modeling approach research done by scholars

using a deterministic method [10, 14], a stochastic method [7, 22],

or a fractional order method [23–32] has made a great contribution

to linking the scientific approach with real-world physical situations

and also for the decision-making process for solving real-world

problems [33]. Different scholars have formulated and analyzed

mathematical models on COVID-19 transmission [7, 8, 22, 24–

26, 29, 30, 34–37], syphilis transmission [10, 17–19, 23], and other

infectious diseases transmission [20, 21, 27, 28, 33, 38–40]; however,

no one has done analysis on COVID-19 and syphilis co-infection

transmission dynamics.

Oshinubi et al. [41] proposed and analyzed a new age-

dependent compartmental model for COVID-19 transmission. The

qualitative analysis of the model includes the non-negativity and

boundedness of the model solutions in a given region, and

the existence, uniqueness, and stability of the model solutions.

Using parameter estimation from three different nations Kuwait,

France, and Cameroon, they carried out numerical simulations

and have shown the fundamental role of vaccination on COVID-

19 transmission. Babaei et al. [34] proposed and examined a

model for novel coronavirus transmission with Caputo’s fractional

order approach. The finding of the study shows that quarantine

has a very fundamental role to control transmission. Iboi et al.

[17] formulated and analyzed a new multi-stage syphilis model

to examine the role of transitory immunity loss in the spreading

process. The analysis shows that the disease-free and unique

endemic equilibrium points are globally asymptotically stable when

the corresponding basic reproduction number is less than unity

and greater than unity, respectively. The results show that high

treatment rates in the primary and secondary stages have a positive

effect on the remaining stages of infection. Nwankwo et al. [38]

formulated a mathematical model to examine the interaction

between HIV/AIDS and syphilis pathogens with syphilis treatment

on the co-infection of syphilis and HIV/AIDS where treatment

or HIV is not accessible. High treatment in the primary stage

has a fundamental role in reducing both single infections and

co-infections in the population. Teklu et al. [42] formulated a

six-compartmental COVID-19 transmission model to examine the

impacts of intervention measures. The results show that protection,

treatment, and vaccinations are fundamental to minimizing infection

in the population.

Because different scholars have been mainly concerned with

studying COVID-19 and syphilis single infections, no one has studied

syphilis and COVID-19 co-infection using a mathematical model

approach. Therefore, in this study, we are interested in filling the

gap by formulating and analyzing syphilis and COVID-19 model

intervention strategies.

The remaining part of the article is organized as follows. Section

2 presents COVID-19 and syphilis co-infection model construction.

Section 3 describes the qualitative model analysis. Section 4 presents

TABLE 1 Variables’ definitions.

State variables Definition

S Susceptible individuals for both COVID-19 and syphilis

Pc COVID-19 protected individuals

Ps Syphilis protected individuals

Ic COVID-19 infected individuals

Qc COVID-19 isolated with treatment individuals

Ias Syphilis asymptomatic infected individuals

Iss Syphilis symptomatic infected individuals

Ts Syphilis treated individuals

Ics COVID-19 and syphilis co-infected individuals

T Co-infected treated individuals

the numerical and sensitivity analyses. Section 5 presents the

discussions and conclusions of the whole research study.

2. Model construction

We have considered COVID-19 and syphilis co-infection by

separating the four syphilis infection stages (primary, secondary,

latent, and tertiary) into two, the asymptomatic and symptomatic

groups, and we have divided the population N (t) into 10 mutually

exclusive states, which are described in Table 1 as follows:

N (t) = Pc (t) + Ps (t) + S (t) + Ic (t) + Qc (t) + Ias (t) + Iss (t)

+ Ts (t) + Tcs (t) + T(t).

Assumptions and definitions of basic terms:

➢ Co-infectious humans do not transmit both

infections simultaneously.

➢ COVID-19 infection is transmitted to susceptible individuals

from Ic and Ics infectious groups at the transmission

rate as follows:

λc = β2(Ic + φ1Ics). (1)

➢ Syphilis infection is transmitted to susceptible individuals from

Ias, Iss, and Ics infectious groups at the force of infection

rate as follows:

λs = β1(Ias + φ2Iss + φ3Ics). (2)

Using variable and parameter definitions given in Tables 1, 2,

respectively, the flowchart of the COVID-19 and syphilis co-infection

model is represented in Figure 1.

Using the flowchart represented in Figure 1, the corresponding

system of differential equations of the complete co-infection model

(3) is written as follows:

dPc

dt
= τ13 − (β + λs + µ)Pc,

dPs

dt
= τ33 − (π + λc + µ)Ps,
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TABLE 2 Parameter definitions.

Parameters Biological definitions

3 The annual recruitment number of population in the

community

τ1 Portion of recruitment rate protected from COVID-19

τ2 Portion of recruitment rate susceptible to both COVID-19

and syphilis

τ3 Portion of recruitment rate protected from syphilis

β COVID-19 protection loss rate

π Syphilis protection loss rate

µ Natural death rate of individuals

θ1 Modification parameter

θ2 Modification parameter

θ3 Modification parameter

ρ Treatment rate of COVID-19 infectious

ǫ Progression rate of asymptomatic syphilis infectious to

symptomatic syphilis infectious

ε Treatment rate of COVID-19 and syphilis co-infections

γ Treatment rate of symptomatic syphilis infectious

δ Immunity lose rate against syphilis treatment

β1 Syphilis transmission rate

β2 COVID-19 transmission rate

ω1 COVID-19 infection induced death rate

ω2 Syphilis infection induced death rate

ω3 COVID-19 and syphilis co-infection induced death rate

θ Immunity lose rate against syphilis after treated from

co-infection

dS

dt
= τ23 + βPc + πPs + δTs + θT − (λs + λc + µ)S,

dIc

dt
= λcS+ λcPs − (θ1λs + ρ + µ + ω1)Ic, (3)

dQc

dt
= ρIc − µQc,

dIas

dt
= λsS+ λsPc − (θ2λc + ǫ + µ)Ias,

dIss

dt
= ǫIas − (θ3λc + γ + µ+ω2) Iss,

dIcs

dt
= θ2λcIas + θ3λcIss + θ1λsIc − (ε + µ+ ω3)Ics,

dTs

dt
= γ Iss − (δ + µ)Ts,

dT

dt
= εIcs − (θ + µ)T.

2.1. Qualitative properties of the model (3)

System (3) represents the human population; we

want to prove that all the solutions of the model

are non-negative and bounded, respectively, in the

following region:

� =
{

(Pc, Ps, S, Ic, Qc, Ias, Iss, Ts, Tcs, T) ∈ R
10
+ ,N ≤ 3

µ

}

(4)

Theorem 1: Let Pc (0) > 0, S (0) > 0, Ps (0) , Ic (0) >

0, Qc (0) > 0, Ias (0) > 0, Iss (0) > 0, Ts (0) > 0, Ics (0) >

0, T (0) > 0 be the initial solutions of the system (3), then

Pc (t) , Ps (t) , S (t) , Ic (t) , Qc (t) , Ias (t) , Iss (t) , Ts (t) , Tcs (t) , and

T (t) are positive in the region R
10
+ for any time t > 0.

Proof: Let τ = sup{t > 0 : Pc (t) > 0, S (t) > 0, Ps (t) , Ic (t) >

0, Qc (t) > 0, Ias (t) > 0, Iss (t) > 0, Ts (t) > 0, Ics (t) >

0, T (t) > 0}.

Since Pc (t) , Ps (t) , S (t) , Ic (t) , Qc (t) , Ias (t) , Iss (t) , Ts (t) ,

Tcs (t) , and T (t) are continuous, and we deduce that τ > 0. If τ =

+∞, then positivity holds, but, if 0 < τ < +∞, Pc (τ ) = 0 or

Ps (τ ) = 0 or S (τ ) = 0 or Ic (τ ) = 0 or Qc ( τ ) = 0 or Ias (τ ) = 0

Iss (τ ) = 0 or Ts (τ ) = 0 or Tcs (τ ) = 0 or T (τ ) = 0.

From model (3) first equation, we do have

dPc

dt
+ (β + λs + µ)Pc = τ13.

After some calculations of integration, we got

Pc (τ ) = a1Pc (0) + a1

∫ τ

0
e
∫

(β+λs+µ)dtτ13dt > 0, where

a1 = e−
∫

(β+λs+µ)dt > 0, Pc (0) > 0, Pc (τ ) > 0, so that

Pc (τ ) 6= 0.

From model (3) second equation, we have

dPs

dt
= τ33 − (π + λc + µ)Ps.

After some calculations of integration, we have

Ps (τ ) = b1Ps (0) + b1

∫ τ

0
e
∫

(π+λc+µ)dtτ33dt > 0, where

b1 = e−
∫

(π+λc+µ)dt > 0, Ps (0) > 0, Ps (τ ) > 0, so that

Ps (τ ) 6= 0.

From model (3) third equation, we have

dS

dt
= τ23 + βPc + πPs + δγTs − S(λs + λc + µ).

After some calculations, we have

S (τ ) = c1S (0)+c1
∫ τ

0 e
∫

(λs+λc+µ)dt(τ23 + βPc + πPs + δγTs)dt >

0, where

c1 = e−
∫

(λs+λc+µ)dt > 0, S (0) > 0, and by the definition of τ

we have Pc (t) > 0, Ps (t) , Ts (t) > 0, S (τ ) > 0, so that S (τ ) 6= 0.

Similarly, by proving the remaining state variable, we have

Ic (τ ) > 0, hence Ic (τ ) 6= 0, Qc (τ ) > 0 hence Qc (τ ) 6= 0,

Ias (τ ) > 0 hence Ias (τ ) 6= 0, Iss (τ ) > 0 hence Iss (τ ) 6= 0,Ts (τ ) > 0

hence Ts (τ ) 6= 0, Tcs (τ ) > 0 hence Tcs (τ ) 6= 0, and T (τ ) > 0 hence

T (τ ) 6= 0.

Thus, τ is not finite, and hence = +∞, which means all the

model solutions are non-negative.
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FIGURE 1

Flowchart of the model (3) with forces of infections λC and λs as in (1) and (2), respectively.

Theorem 2: The model feasible region � stated in (4) is bounded

in R
10
+ .

Proof: The total human being of the model (3) is as follows:

N (t) = Pc (t) + Ps (t) + S (t) + Ic (t) + Qc (t) + Ias (t)

+ Iss (t) + Ts (t) + Tcs (t) + T(t).

Differentiating both sides gives the following result

dN

dt
=

dPc

dt
+

dPs

dt
+

dS

dt
+

dIc

dt
+

dQc

dt
+

dIas

dt
+

dIss

dt
+

dTs

dt

+
dTcs

dt
+

dT

dt
.

= 3 − µN − ω1Ic − ω2Iss − ω3Ics, where τ1 + τ3 + τ2 = 1.

H⇒
dN

dt
≤ 3 − µ N.

After some steps, we have 0 ≤ N (t) ≤ 1
µ
, and hence, the model

solutions with positive initial solutions are bounded in �.

3. Model analysis in qualitative
approach

The complete COVID-19 and syphilis co-infection model (3)

depends on the results of the two sub-models analysis.

3.1. COVID-19 mono-infection model
analysis

From the complete model (3), we have the COVID-19 mono-

infection model taking values Ps = Ias = Iss = Ts = Ics = T = 0

as follows:

dPc

dt
= τ13 − (β + µ)Pc,

dS

dt
= τ23 + βPc − (λc + µ)S,

dIc

dt
= λcS− (ρ + µ + ω1)Ic, (5)

dQc

dt
= ρIc − µ Qc.

with N1 (t) = Pc (t) + S (t) + Ic (t) +Qc (t) as a total population and

λc = β2Ic.

3.1.1. COVID-19 infection-free equilibrium
The COVID-19 infection-free equilibrium of the model (5) at

Ic = 0 is E0c =
(

P0c , S
0 0, 0, 0

)

=
(

τ13
β+µ

, τ23(β+µ)+βτ13
µ(β+µ)

,

0, 0 ).
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3.1.2. COVID-19 mono-infection reproduction
number

This mono-infection model has one infectious class, Ic, and we

can obtain basic reproduction numbers without a method of the

next-generation matrix as follows:

dIc

dt
= λcS− (ρ + µ + ω1)Ic,

= β2IcS− (ρ + µ + ω1)Ic,

= (β2S− (ρ + µ + ω1))Ic,

= (
β23(τ2(β + µ)+ βτ1)

µ(β + µ)
− (ρ + µ + ω1))Ic,

= (ρ + µ + ω1)(
β23(τ2(β + µ)+ βτ1)

µ(β + µ)(ρ + µ + ω1))
− 1)Ic,

= (ρ + µ + ω1)(R
c
0 − 1)Ic, where

R
c
0 =

β2τ 23(β + µ)+ β2βτ13

µ(β + µ)(ρ + µ + ω1)
.

3.1.3. COVID-19 incidence equilibrium point
The COVID-19 incidence equilibrium point of the system (5) is

E∗c =
(

P∗c , S
∗, I∗c , Q∗

c

)

, where

P∗c =
τ13

β + µ
, S∗ =

τ33 (β + µ) + τ1β3,
(

λ∗c + µ
)

(β + µ)
,

I∗c =
(τ33 (β + µ) + τ1β3) λ∗c

(

λ∗c + µ
)

(β + µ) (ρ + µ + ω1)
,

Q∗
c =

(τ33(β + µ)+ τ1β3)ρλ∗c

µ(λ∗c + µ)(β + µ)(ρ + µ + ω1)
.

Theorem 3: The COVID-19 mono-infection model (5) has

a unique COVID-19 incidence (endemic) equilibrium point

wheneverRc
0 > 1.

Proof: Using equation (1), we have the following:

λ∗c = β1I
∗
c =

β1 (τ33 (β + µ) + τ1β3) λ∗c
(

λ∗c + µ
)

(β + µ) (ρ + µ + ω1)
.

Then the non-zero value of λ∗c after a simple simplification is

as follows:

λ∗c = µ(Rc
0 − 1) > 0, if and only if Rc

0 > 1.

Hence, the COVID-19 mono-infection model (5) has a unique

incidence equilibrium point if and only if Rc
0 > 1.

Theorem 4: COVID-19 infection-free equilibrium point of the

model (5) is locally asymptotically stable ifRc
0 < 1; otherwise, it

is unstable.

Proof: The Jacobean matrix of the model (5) at the COVID-19

infection-free equilibrium point is

J(E0c ) =











−(β + µ) 0 0 0

β −µ
−β2(τ23(β+µ)+βτ13)

µ(β+µ)
0

0 0 β2(τ23(β+µ)+βτ13)−µ(β+µ)(ρ+µ+ω1)
µ(β+µ)

0

0 0 ρ −µ











.

Further, the characteristics equation after a certain calculation

gives us as follows:

λ1 = − (β + µ) < 0 or λ2 = −µ < 0, or

λ3 = (ρ + µ + ω1)(R
c
0 − 1).

Thus, each eigenvalue of the Jacobian matrix is negative if R
c
0 <

1 implies the COVID-19 infection-free equilibrium point is locally

asymptotically stable whenever R
c
0 < 1.

Theorem 5: The COVID-19 infection-free equilibrium point

denoted by E∗c of the COVID-19 mono-infection model is globally

stable if Rc
0 < 1; otherwise, it is unstable.

Proof: Take the representative Lyapunov function l (Ic ) = aIc,

where a = 1
(ρ+µ+ ω1))

,

l (Ic) = aIc =
1

(ρ + µ + ω1)
Ic,

dl

dt
=

1

(ρ + µ + ω1)
((β2S− (ρ + µ + ω1))Ic),

≤
1

(ρ + µ + ω1)

(
β23(τ 2(β + µ)+ βτ1)− µ(β + µ)(ρ + µ + ω1)

µ(β + µ)
)Ic,

≤ (
β23(τ 2(β + µ)+ βτ1)− µ(β + µ)(ρ + µ + ω1)

µ(β + µ)(ρ + µ + ω1)
)Ic,

≤ µ(β + µ)(ρ + µ + ω1)(

β23(τ 2(β+µ)+βτ1)
µ(β+µ)(ρ+µ+ω1)

− 1

µ(β + µ)(ρ + µ + ω1)
)Ic,

≤ µ(β + µ)(ρ + µ + ω1)(
R

c
0 − 1

µ(β + µ)(ρ + µ + ω1)
)Ic,

≤ (Rc
0 − 1)Ic.

Thus, dl
dt

< 0, ifRc
0 < 1, and the equality dl

dt
= 0 holds ifRc

0 = 1,

and hence the COVID-19 infection-free equilibrium point is globally

asymptotically stable if Rc
0 < 1.

Theorem 6: The COVID-19 incidence denoted by E∗C of the

COVID-19 mono-infection model (5) is locally asymptotically stable

wheneverRc
0 > 1; otherwise, it is unstable.

Proof: The Jacobean of the system (5) at E∗C

J
(

E∗C
)

=











− (β + µ) 0 0 0

β − (β2Ic
∗ + µ) −β2S

∗ 0

0 β2I
∗
c β2S

∗ − (ρ + µ + ω1) 0

0 0 ρ −µ











.

From the Jacobean matrix, the characteristics equation, after

simplification, gives as follows:

(− (β + µ) − λ) (−µ − λ)
[(

−
(

β2I
∗
c + µ

)

− λ
)

(β2S
∗ − (ρ + µ

+ ω1)− λ)+ β2S
∗β2I

∗
c

]

= 0.

Then we do have the eigenvalues λ1 = −µ < 0 or λ2 =

− (β + µ) < 0 or

a0λ
2 + a1λ + a2 = 0 where

a0 = 1,

a1 =











β2 (τ33 (β + µ) + τ1β3) µ(Rc
0 − 1)

+µ(λ∗c + µ)(β + µ)(ρ + µ + ω1)

(λ∗c + µ)(β + µ)(ρ + µ + ω1)











+
(β2τ 23(β + µ)+ τ1β3)[(λ∗c + µ)µR

c
0 − 1]

(λ∗c + µ)(β + µ)
,

a2 =
β2(τ33(β + µ)+ τ1β3)µ(Rc

0 − 1)

(λ∗c + µ)(β + µ)(ρ + µ + ω1)
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+
(β2τ 23(β + µ)+ τ1β3)[(λ∗c + µ)µR

c
0 − 1]

(λ∗c + µ)(β + µ)

+
β2(τ23(β + µ)+ τ1β3)µ(Rc

0 − 1)

(λ∗c + µ)(β + µ)(ρ + µ + ω1)
.

Hence, all the coefficients of the characteristics equations

are positive when R
c
0 > 1; thus, the COVID-19

incidence equilibrium point has local asymptotic stability

when R
c
0 > 1.

3.2. Analysis of syphilis sub-model

The syphilis sub-model is obtained from the system (3) by

making Pc = Ic = Qc = Ics = T = 0 and is

as follows:

dPs

dt
= τ33 − (π + µ)Ps,

dS

dt
= τ23 + πPs + δγTs − S(λs + µ),

dIas

dt
= λsS− Ias(ǫ + µ), (6)

dIss

dt
= ǫIas − Iss (γ + µ+ω2 ) ,

dTs

dt
= γ Iss − Ts(δγ + µ).

With N2 (t) = Ps (t) + S (t) + Ias (t) + Iss (t) + Ts (t), and

λs = β1 (Ias + φ2Iss ).

3.2.1. Syphilis infection-free equilibrium
The syphilis infection-free equilibrium point of the model (6)

was obtained by making Ias = Iss = 0 and is given by E0s =
(

P0s , S
0, I0as, I

0
ss, T

0
s

)

=
(

τ33
π+µ

, τ23(π+µ)+τ3π3
µ(π+µ)

, 0, 0, 0
)

.

3.2.2. Syphilis sub-model reproduction number
The syphilis sub-model (6) has two infectious classes, which are

Ias, and Iss, then applying the next-generation matrix method stated

in [43, 44] to obtain the basic reproduction number of the system (6)

by computing FV−1 as follows:

F =

(

β1S
0 β1φ2S

0

0 0

)

,

H⇒ F =

(

β13(τ 2(π+µ)+τ3π)
µ(π+µ)

β1φ23(τ2(π+µ)+τ3π)
µ(π+µ)

0 0

)

,

and

V =

(

ǫ + µ 0

−ǫ γ + µ+ω2

)

.

Then, we applied Mathematica coding; we have

V−1 =

[

1
ǫ+µ

0
ǫ

(γ+µ+ω2)(ǫ+µ)
1

(γ+µ+ω2)

]

, and

FV−1 =

[

β13(τ 2(π+µ)+τ3π)
µ(π+µ)(ǫ+µ)

+

ǫβ1φ23(τ2(π+µ)+τ3π)

µ(π+µ)(γ+µ+ω2)(ǫ+µ)

β1φ23(τ2(π+µ)+τ3π)

µ(π+µ)(γ+µ+ω2)

0 0

]

.

Thus, the reproduction number of the syphilis sub-model (6) is

given by R
s
0 =

β13[(γ+µ+ω2)+φ2ǫ](τ2(π+µ)+τ3π)

µ(π+µ)(γ+µ+ω2)(ǫ+µ )
.

3.2.3. Syphilis incidence equilibrium point of the
system (6)

Making the model (6) equation to zero, we have

the syphilis incidence equilibrium point given by E∗s =

(P∗s , S
∗, I∗as, I

∗
ss, T

∗
s ), where

P∗s =
τ33

(π + µ)
,

S∗ =
(γ + µ+ω2) (ǫ + µ) (δγ + µ)(τ23 (π + µ) + τ33π)

(π + µ) ((γ + µ+ω2) (ǫ + µ) (λs + µ) (δγ + µ) − γ δγ ǫλs)
,

I∗as =
λs(γ + µ+ω2)(δγ + µ)(τ23 (π + µ) + τ33π)

(π + µ) ((γ + µ+ω2) (ǫ + µ) (λs + µ) (δγ + µ) − γ δγ ǫλs)
,

I∗ss =
ǫλs(δγ + µ)(τ23 (π + µ) + τ33π)

(π + µ) ((γ + µ+ω2) (ǫ + µ) (λs + µ) (δγ + µ) − γ δγ ǫλs)
,

T∗
s =

ǫλsγ (τ23 (π + µ) + τ33π)

(π + µ) ((γ + µ+ω2) (ǫ + µ) (λs + µ) (δγ + µ) − γ δγ ǫλs)
.

Theorem 7: The syphilis incidence equilibrium

point of syphilis in the model (6) is unique whenever

R
0
s > 1.

Proof: From the syphilis infection rate, we have

λ∗s = β1(I
∗
as + φ2I

∗
ss).

λ∗s = β1(
λs(γ + µ+ω2)(δγ + µ)(τ23 (π + µ) + τ33π)

(π + µ) ((γ + µ+ω2) (ǫ + µ)
(

λ∗s + µ
)

(δγ + µ)

−ǫγ δγ λ∗s )

+
ǫλ∗s φ2(δγ + µ)(τ23 (π + µ) + τ33π)

(π + µ) ((γ + µ+ω2) (ǫ + µ)
(

λ∗s + µ
)

(δγ + µ)

− γ δγ ǫλ∗s )

).

H⇒ λ∗s = (δγ + µ)

β13
[

(γ + µ+ω2) (τ2 (π + µ) + τ3π) + ǫφ2 (τ2 (π + µ)

+τ3π)]− µ (π + µ) [(γ + µ+ω2) (ǫ + µ)]

(π + µ)
(

(γ + µ+ω2) (ǫ + µ) (δγ + µ) − γ δγ ǫ
) .

H⇒ λ∗s =
(δγ + µ) µ(γ + µ+ω2) (ǫ + µ) (Rs

0 − 1)
(

(γ + µ+ω2) (ǫ + µ) (δγ + µ) − γ δγ ǫ
) .

H⇒ λ∗s = k1(R
s
0 − 1), where

k1 =
(δγ + µ) µ (π + µ) (γ + µ+ω2) (ǫ + µ)

(π + µ)
(

(γ + µ+ω2) (ǫ + µ) (δγ + µ) − γ δγ ǫ
) .

Hence, the syphilis sub-model (6) has a unique incidence

equilibrium if Rs
0 > 1.

Theorem 8: Syphilis infection-free equilibrium point of the

model (3) has local asymptotic stability ifRs
0 < 1; otherwise, it

is unstable.

Proof: Jacobean of the model (6) at the syphilis infection-free

equilibrium point is as follows:
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J
(

Es0
)

=















− (π + µ) 0 0 0 0

π −µ
−β13(τ2(π+µ)+τ3π)

µ(π+µ)
−β1φ23(τ2(π+µ)+τ3π)

µ(π+µ)
δγ

0 0 β13(τ2(π+µ)+τ3π)−µ(π+µ)(ǫ+µ)
µ(π+µ)

β1φ23(τ2(π+µ)+τ3π)
µ(π+µ)

0

0 0 ǫ − (γ + µ+ω2) 0

0 0 0 γ − (δγ + µ)















.

From the Jacobian matrix, the characteristics equation after

simplification is as follows:

(− (π + µ) λ ) (−µ − λ) (− (δγ + µ) λ)
[(

β13 (τ2 (π + µ) + τ3π) − µ (π + µ) (ǫ + µ)

µ (π + µ)
λ

)

(−(γ + µ+ω2)λ)− (
β1φ23ǫ (τ2 (π + µ) + τ3π)

µ (π + µ)
)

]

= 0.

Then the eigenvalues are λ1 = − (π + µ) < 0 or λ2 = −µ <

0 or λ3 = − (δγ + µ) < 0 or a0λ
2 + a1λ + a2 = 0.

where,

a0 = 1,

a1 = (γ + µ+ω2) + (ǫ + µ) +
β13 (τ2 (π + µ) + τ3π)

µ (π + µ )
,

a2 = (ǫ + µ) (γ + µ+ω2)(1− R
s
0).

Applying Routh–Hurwitz criteria stated in [33], each eigenvalue

of the matrix is negative wheneverRs
0 < 1; thus, the syphilis

infection-free equilibrium point has local asymptotic stability if

R
s
0 < 1.

Theorem 9: Syphilis infection-free equilibrium point E0s of

the model (6) has global stability if R
s
0 < 1; otherwise, it

is unstable.

Proof: Let the Lyapunov representative function be

given as l (Ias, Iss ) = aIas + bIss, where =
[(γ+µ)+φ2ǫ]

(ǫ+µ)(γ+µ+ω2)
,

b =
φ2

(γ+µ+ ω2)
.

H⇒ l (Ias, Iss ) =
[(γ + µ+ω2)+ φ2ǫ]

(ǫ + µ) (γ + µ+ω2)
Ias +

φ2

(γ + µ+ ω2)
Iss.

H⇒
dl

dt
=

[(γ + µ+ω2)+ φ2ǫ]

(ǫ + µ) (γ + µ+ω2)
(λsS− Ias (ǫ + µ))

+
φ2

(γ + µ)
(ǫIas − Iss(γ + µ+ ω2)),

≤
[(γ + µ+ω2)+ φ2ǫ]

(ǫ + µ) (γ + µ+ω2)
(β1 (Ias + φ2Iss) S

∗ − Ias (ǫ + µ))

+
φ2

(γ + µ)
(ǫIas − Iss(γ + µ+ ω2)),

≤
[(γ + µ+ω2)+ φ2ǫ]

(ǫ + µ) (γ + µ+ω2)
(β1IasS

∗ + β1φ2IssS
∗ − Ias (ǫ + µ))

+
φ2

(γ + µ)
(ǫIas − Iss(γ + µ+ ω2)),

≤ ([β1S
∗ − (ǫ + µ)]

[(γ + µ+ω2)+ φ2ǫ]

(ǫ + µ) (γ + µ+ω2)
+

φ2ǫ

(γ + µ+ω2)
)Ias

+ (
β1φ2[(γ + µ+ω2)+ φ2ǫ]S

∗

(ǫ + µ) (γ + µ+ω2)
− φ2) Iss,

≤ ([
[(γ + µ) + φ2ǫ]β1S

∗

(ǫ + µ) (γ + µ+ω2)
−

[(γ + µ+ω2)+ φ2ǫ]

(γ + µ+ω2)
])Ias

+ (
β1φ2[(γ + µ+ω2)+ φ2ǫ]S

∗

(ǫ + µ) (γ + µ+ω2)
− φ2) Iss,

≤
[(γ + µ+ω2)+ φ2ǫ]β13(τ2 (π + µ) + τ3π)

µ (π + µ) (ǫ + µ) (γ + µ+ω2)
Ias

−
[(γ + µ+ω2)+ φ2ǫ]

(γ + µ+ ω2)
Ias +

(
β1φ2[(γ + µ+ω2)+ φ2ǫ]3(τ2 (π + µ) + τ3π)

µ (π + µ) (ǫ + µ) (γ + µ+ω2)
− φ2) Iss.

≤ ([
[(γ + µ+ω2)+ φ2ǫ]β13(τ2 (π + µ) + τ3π)

µ (π + µ) (ǫ + µ) (γ + µ+ω2)
−m])Ias

+ (
β1φ2[(γ + µ+ω2)+ φ2ǫ]3(τ2 (π + µ) + τ3π)

µ (π + µ) (ǫ + µ) (γ + µ+ω2)
− φ2),where

m =
[(γ + µ+ω2)+ φ2ǫ]

(γ + µ+ω2)
> 1.

≤ m([
R

s
0

m
− 1])Ias + φ2(

R
s
0

φ2
− 1) Iss,

R
s
0

m
< 1,

R
0
s

φ2
< 1,

R
s
0

m
< 1,

R
s
0

φ2
< 1 implies R

s
0 < 1 since m

=
[(γ + µ+ω2)+ φ2ǫ]

(γ + µ+ω2)
> 1, and φ2 > 1.

Hence, the syphilis-free equilibrium point is globally stable if

R
s
0 < 1.

3.3. COVID-19 and syphilis co-infection
model analysis

3.3.1. The model (3) disease-free equilibrium
Making all the equations of (3) zero with Ic = Ias =

Iss = Ics = 0, the disease-free equilibrium point of (3)

is given by E0 =
(

P0c , P
0
s , S

0, I0c ,Q
0
c , I

0
as, I

0
ss, T

0
s , T

0
cs, T

0
)

=
(

τ13
(β+µ)

, τ33
(π+µ)

, 3(τ2(β+µ)(π+µ)+τ1β(π+µ)+τ3π(β+µ))
µ(β+µ)(π+µ)

, 0, 0, 0, 0 , 0 ,

0 , 0 ) .

3.3.2. The model (3) reproduction number
The COVID-19 and syphilis co-infection model (3)

reproduction number denoted by R
cs
0 is calculated using

next-generation matrix criteria, as stated in [44]. Since we
have four infectious groups, those are Ic, Ias, Iss, and Ics, and
we have

fi =









β2(Ic + φ1Ics) (S+ Ps)

β1(Ias + φ2Iss + φ3Ics)(S+ Pc)

0

β2(θ2Ias + θ3Iss)(Ic + φ1Ics) + θ1β1(Ias + φ2Iss + φ3Ics)Ic









.

H⇒ f =









β2(S
0 + P0s ) 0 0 φ1(S

0 + P0s )

0 β1(S
0 + P0c ) β1φ2(S

0 + P0c ) β1φ3(S
0 + P0c )

0 0 0 0

0 0 0 0









,
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and

vi = vi
− (x)−vi

+ (x)

=











Ic
(

θ1β1(Ias + φ2Iss + φ3Ics)+ ρ + µ+ω1

)

Ias
(

θ2β2(Ic + φ1Ics) + ǫ + µ
)

Iss
(

θ3β2(Ic + φ1Ics) + γ + µ+ω2

)

− ǫIas
Ics(ε + µ+ω3)











.

H⇒ v =











(ρ + µ+ω1) 0 0 0

0 (ǫ + µ) 0 0

0 −ǫ (γ + µ+ω2) 0

0 0 0 (ε + µ+ω3)











.

Then applying Mathematica, we have got

v−1 =











1
(ρ+µ+ω1)

0 0 0

0 1
(ε+µ)

0 0

0 0 1
(γ+µ+ω2)

0

0 0 0 1
(ε+µ+ω3)











,

and

fv−1 =













β2(S
0+P0s)

(ρ+µ+ω1)
0 0 φ1(S

0+P0s)
(ε+µ+ω3)

0 β1(S
0+P0c)

(ε+µ)
β1φ2(S

0+P0c)
(γ+µ+ω2)

β1φ3(S
0+P0c)

(ε+µ+ω3)

0 0 0 0

0 0 0 0













.

H⇒

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

β2(S
0+P0s)

(ρ+µ+ω1)
− λ 0 0 φ1(S

0+P0s)
(ε+µ+ω3)

0 β1(S
0+P0c)

(ε+µ)
− λ

β1φ2(S
0+P0c)

(γ+µ+ω2)
β1φ3(S

0+P0c)
(ε+µ+ω3)

0 0 0− λ 0

0 0 0 0− λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

Then, the corresponding eigenvalues are λ1 = 0 or λ2 = 0 or

λ3 =
β2(S

0+P0s)
(ρ+µ+ω1)

=
β23τ2

µ(ρ+µ+ω1)
+

β23τ1β
µ(β+µ)(ρ+µ+ω1)

+
β23τ3

µ(ρ+µ+ω1)
=

R
c
0+n or λ4 = β1(

τ23(β+µ)(π+µ)+τ1β3(π+µ)+τ3π3(β+µ)+τ13µ(π+µ)
µ(β+µ)(π+µ)(ε+µ)

)

= R
s
0 − m where, n =

β23τ3
µ(ρ+µ+ω1)

, m =

β13[ǫφ2(τ2(π+µ)+τ3π)−τ1((π+µ)γ+µ+ω2)]
µ(π+µ)(γ+µ+ω2)(ǫ+µ )

.

Therefore, the COVID-19–syphilis complete model

(3) reproduction number denoted by R
cs
0 is given by

R
cs
0 = max

{

R
c
0 + n ,Rs

0 −m
}

.

3.3.3. Model (3) disease-free equilibrium local
stability

Theorem 10: The full-model (3) disease-free equilibrium point

has local asymptotic stability ifRcs
0 < 1; otherwise, it is unstable.

Proof: The Jacobian of the COVID-19 and syphilis co-infection

model (3) at E0 is as follows:

J(E0) =





































a 0 0 0 0 b c 0 d 0

0 e 0 f 0 0 0 0 g 0

β π h i 0 j k l m 0

0 0 0 n 0 0 0 0 o 0

0 0 0 ρ h 0 0 0 0 0

0 0 0 0 0 p q 0 r 0

0 0 0 0 0 ǫ s 0 0 0

0 0 0 0 0 0 γ t 0 0

0 0 0 0 0 0 0 0 u 0

0 0 0 0 0 0 0 0 ε h





































,

where a = − (β + µ) , b = −β1Pc
0, c = −β1φ2Pc

0, d =

−β1φ3Pc
0, e = − (π + µ) , f = −β2Ps

0, g = −β2φ1Ps
0, h =

−µ, i = −β2 S0, j = −β1 S0, k = −β1φ2 S0, l = δγ ,m =

−(β1φ3+β2φ1) S
0, n = β2 (S+ Ps) − (ρ + µ+ω1), o = β2φ1(S +

Ps), p = β1(S+Pc)−(ǫ+µ), q = β1φ2(S+Pc), r = β1φ3( S
0+Pc

0), s =

−(γ + µ+ω2), t = − (δγ + µ) , u = − (ε + µ+ω3 ).

H⇒

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a− λ 0 0 0 0 b c 0 d 0

0 e− λ 0 f 0 0 0 0 g 0

β π h− λ i 0 j k l m 0

0 0 0 n− λ 0 0 0 0 o 0

0 0 0 ρ h− λ 0 0 0 0 0

0 0 0 0 0 p− λ q 0 r 0

0 0 0 0 0 ǫ s− λ 0 0 0

0 0 0 0 0 0 γ t − λ 0 0

0 0 0 0 0 0 0 0 u− λ 0

0 0 0 0 0 0 0 0 ε h− λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

By using square block matrix properties, we rewrite the above

determinant as follows:

∣

∣

∣

∣

A B

0 C

∣

∣

∣

∣

= 0, where

A =













a− λ 0 0 0 0

0 e− λ 0 f 0

β π h− λ i 0

0 0 0 n− λ 0

0 0 0 ρ h− λ













,B =













b c 0 d 0

0 0 0 g 0

j k l m 0

0 0 0 0 0

0 0 0 0 0













,

C =













p− λ q 0 r 0

ǫ s− λ 0 0 0

0 γ t − λ 0 0

0 0 0 u− λ 0

0 0 0 ε h− λ













,O =













0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0













.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a− λ 0 0 0 0 b c 0 d 0

0 e− λ 0 f 0 0 0 0 g 0

β π h− λ i 0 j k l m 0

0 0 0 n− λ 0 0 0 0 o 0

0 0 0 ρ h− λ 0 0 0 0 0

0 0 0 0 0 p− λ q 0 r 0

0 0 0 0 0 ǫ s− λ 0 0 0

0 0 0 0 0 0 γ t − λ 0 0

0 0 0 0 0 0 0 0 u− λ 0

0 0 0 0 0 0 0 0 ε h− λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= |A| |C| = 0.

From this, we do have

|A| = (a− λ) (e− λ) (h− λ)(n− λ)(h− λ),

|C| = (t − λ)(u− λ)(h− λ)(
(

p− λ
)

(s− λ)− qǫ), |A|

|C| =
[

(a− λ) (e− λ) (h− λ)(n− λ)(h− λ)
]

[

(t − λ)(u− λ)(h− λ)(
(

p− λ
)

(s− λ)− qǫ)
]

= 0.

Then, the eigenvalue of the full model is as follows:

λ1 = a or λ2 = e or λ3 = h or λ4 = n or λ5 = h or λ6 = t or

λ7 = u or λ8 = h or a0λ
2 + a1λ + a2 = 0, where,

a0 = 1,

a1 = (ρ + µ+ω1) (ǫ + µ)
(

1− R
cs
0

)

> 0,
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a2 = (ǫ + µ) φ2ǫ
[

1−R
cs
0

]

> 0, ifRcs
0 < 1.

Therefore, the co-infection model disease-free equilibrium point

has local asymptotic stability ifRcs
0 < 1.

3.3.4. The full-model endemic equilibrium and
stabilities

The COVID-19 and syphilis co-infection model endemic

equilibrium point is denoted by

E∗cs =
(

P∗c , P
∗
s , S

∗, I∗c ,Q
∗
c , I

∗
as, I

∗
ss, I

∗
cs, , T

∗
s ,T

∗
)

. The analysis of the

COVID-19-only mono-infection system (5) and the syphilis-only

sub-model (6) shows that there is no endemic equilibrium point

wheneverRc
0 < 1 andR

s
0 < 1, respectively, which means there is no

endemic equilibrium point ifRcs
0 < 1 for the co-infection model (3).

In other words, the COVID-19 and syphilis co-infection disease-free

equilibrium point have global stability ifRcs
0 < 1.

The explicit calculation of the co-infection model endemic

equilibrium in terms of model parameters is tedious analytically;

however, the model (3) endemic equilibriums correspond to

1. E∗1 =
(

P∗c , 0, S
∗, I∗c ,Q

∗
c , 0, 0, 0, , 0, 0

)

, ifRc
0 > 1 is the syphilis-free

(COVID-19 persistence) equilibrium point.

The analysis of the equilibrium E∗1 is similar to the endemic

equilibrium E∗c in the model (5).

2. E∗2 =
(

0, P∗s , S
∗, 0, 0, I∗as, I

∗
ss, 0, , T

∗
s , 0
)

, if Rs
0 > 1 is the COVID-

19-free (syphilis persistence) equilibrium point. The analysis of

the equilibrium E∗2 is similar to the endemic equilibrium E∗s in

Equation (6).

3. E∗cs =
(

P∗c , P
∗
s , S

∗, I∗c ,Q
∗
c , I

∗
as, I

∗
ss, I

∗
cs, , T

∗
s ,T

∗
)

is the COVID-19 and

syphilis co-existence persistence equilibrium point. It exists when

each component of E∗cs is positive wheneverR
cs
0 > 1 for this case,

we have shown its stability in the numerical simulation part given

in Section 4.

4. Sensitivity analysis and numerical
simulations

In this section, we carried out the sensitivity analysis to examine

the most sensitive parameters in the disease spreading and numerical

simulations to verify the qualitative results of the mathematical

model (3). Particularly, some numerical verification is considered

to illustrate the qualitative analysis and results of the preceding

sections. Here, we have taken some parameter values from literature

and assumed some of the parameter values that are not from

real data since there is a lack of mathematical modeling analysis

literature which have studied the COVID-19 and syphilis co-infection

transmission dynamics in the community. The fundamental problem

of numerical analysis of a mathematical model is how to estimate

parameters. Randomly choosing the values of parameters in the

model in plausible intervals followed by sensitivity to the parameters

is possible partially to overcome the limitations of parameters [41].

Here, the numerical simulation is used for checking the behaviors

of the full-model (3) solutions and the effects of parameters in

the transmission as well as the controlling of COVID-19 infection,

syphilis infection, and co-infection of COVID-19 and syphilis. For

numerical simulation purposes, we have applied MATLAB ode45

code with parameter values given in Table 3.

TABLE 3 Parameter values for numerical simulations.

Parameter Value References

µ 0.0000559 year−1 [17]

3 500 day−1 [45]

β 0.30 day−1 Assumed

π 0.21 day−1 Assumed

ρ 0.5 day−1 [45]

ǫ 0.40 year−1 [12]

ε 0.3 year−1 Assumed

γ 0.021 year−1 [38]

δ 0.2482 year−1 [34]

β1 8 year−1 [38]

β2 0.6 day−1 [45]

θ1 1.1 dimensionless Assumed

θ2 1.1 dimensionless Assumed

θ3 1.1 dimensionless Assumed

τ1 0.27 dimensionless Assumed

τ2 0.41 dimensionless Assumed

τ3 0.32 dimensionless Assumed

ω1 0.023 day−1 [45]

ω2 0.06849 year−1 [17]

ω3 0.07 year−1 Assumed

4.1. Analysis of sensitivity

Definition: The syphilis and COVID-19 co-infection model (3)

normalized forward sensitivity index for its variable reproduction

number is denoted by R
cs
0 its derivative depends on a parameter ζ

is defined by SEI
(

p
)

=
∂R

cs
0

∂ζ

∗
ζ

R
cs
0

[20, 21, 42].

The syphilis and COVID-19 co-infection model sensitivity

index values justify the significance of different parameters in the

single infections and co-infection spreading in the community. The

parameter which has the highest magnitude of the sensitivity index

value compared to other parameter index values is the most sensitive.

Here, we have calculated the sensitivity index values in terms of the

basic reproduction number R
cs
0 = max

{

R
s
0,R

c
0

}

. Using parameter

values stated in Table 3, the sensitivity index values of the model (3)

are calculated in Tables 4, 5.

Using parameter values in Table 3, we have computed R
cs
0 =

max
{

R
c
0,R

s
0

}

= max {2.7, 3.2} = 3.2 and biologically, it means

that syphilis infection, COVID-19 infection, and their co-infection

are spreading in the population. The sensitivity index values stated

in Table 4 explain that the recruitment rate 3 and the COVID-19

spreading rate β2 have a high direct impact on the COVID-19 basic

reproduction R
c
0. That means the recruitment rate and the COVID-

19 transmission rates are the most sensitive parameters where

stakeholders can control the transmission rate by applying prevention

and control measures. Similarly, the COVID-19 protection portion τ1

and the quarantine with treatment rate ρ also have an indirect impact

on the COVID-19 reproduction numberRc
0.
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TABLE 4 Sensitivity indexes of R
cs

0 = R
c

0.

Sensitivity index Values

SEI(β2) 1

SEI(3) 1

SEI(τ2) 0.50

SEI(β) 0.09

SEI(τ1) –0.56

SEI(µ) –0.13

SEI(ρ) –0.65

SEI(ω1) –0.07

TABLE 5 Sensitivity indexes of R
cs

0 = R
s

0.

Sensitivity index Values

SEI(β1) 1

SEI(3) 1

SEI(γ ) –0.65

SEI(ω2) –0.32

SEI(π) 0.12

SEI(τ2) 0.56

SEI(τ3) –0.64

SEI(φ2) 0.41

SEI(ǫ) 0.46

Sensitivity indices stated in Table 5 explain that the recruitment

rate3 and syphilis spreading rate β1 have a high direct impact on the

syphilis basic reproductionR
s
0. That means the recruitment rate and

syphilis transmission rates are the most sensitive parameters where

stakeholders can control the transmission rate by applying prevention

and control measures. Similarly, the syphilis protection portion τ3

and syphilis treatment rate γ have a high indirect effect on the syphilis

reproduction numberRs
0.

4.2. Results of numerical simulations

4.2.1. Behaviors of solutions of model (3) whenever
R

cs
0 < 1
In the numerical simulation given in Figure 2, we observed that

all the COVID-19 and syphilis co-infection model (3) solutions

converge toward the disease-free equilibrium point whenever Rc
0 =

0.71 and R
s
0 = 0.34 with β1 = 0.3 and β2 = 0.08, respectively. At

the co-infection disease-free equilibrium point, each solution curve of

themodel converges to zero while the susceptible group increases and

then becomes constant, implying that the disease-free equilibrium

point of the COVID-19 and syphilis co-infection model has global

asymptotic stability if Rcs
0 < 1. Biologically it means the COVID-

19 and syphilis co-infection diseases have been eradicated from

the community through time whenever R
cs
0 = max

{

R
c
0, R

s
0

}

=

0.71 < 1.

FIGURE 2

The complete model solutions behavior if Rcs
0 < 1 at β1 = 0.3 and

β2 = 0.08.

FIGURE 3

Behaviors of the full model solutions whenever Rcs
0 > 1 at β1 = 8 and

β2 = 11.

4.2.2. Behaviors of the model solutions whenever
R

cs
0 > 1
Figure 3 shows that all the COVID-19 and syphilis co-infection

model (3) solutions converge toward the endemic equilibrium point

whenever Rc
0 = 3.2 and R

s
0 = 2.1 with β1 = 8 and β2 = 11,

respectively. After 10 years, the full-model solutions converge to

the endemic equilibrium, while the susceptible population decreases

and then remains constant means the COVID-19 and syphilis co-

infection model endemic equilibrium point has local asymptotic

stability if Rcs
0 = max

{

R
c
0,R

s
0

}

= 3.2 > 1. Biologically, it means

that COVID-19 and syphilis co-infection disease spreads throughout

the community under consideration.

4.2.3. E�ects of protection measures on
reproduction numbers

The numerical simulation represented by Figure 4 shows that

when we maximize the COVID-19 rate of protection τ1, the

reproduction number R
c
0 decreases, implying that the COVID-19

spreading rate decreases. Its biological meaning is that whenever

the COVID-19 rate of protection τ1 > 0.7 the reproduction
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FIGURE 4

E�ect of COVID-19 protection rate on R
c
0.

FIGURE 5

E�ect of syphilis protection rate τ3 on R
s
0.

number Rc
0 < 1, that is, the COVID-19 infection will be eradicated

throughout the community.

Here, the numerical simulation represented by Figure 5 shows

that whenever we maximize the syphilis protection rate τ3, the

syphilis reproduction number R
s
0 decreases, implying that the

syphilis spreading rate decreases. Whenever τ3 > 0.686 then

R
s
0 < 1, biologically, it means the syphilis infection eradicate from

the community.

4.2.4. Impact of treatment on co-infected
population

The numerical simulation given in Figure 6 shows that whenever

the combined treatment rate ε of the COVID-19 virus and

syphilis microorganism Treponema pallidum bacterium co-infected

individuals Ics increases, the number of co-infected individuals

decreases; that is, whenever the value of ε increases from 0.3 to 0.8,

then the co-infected group Ics going down.

The numerical simulation given in Figure 7 shows that if the

treatment rate ρ of COVID-19 increases, then the number of

FIGURE 6

Impact of treatment rate ε on Ics.

FIGURE 7

Impact of treatment rate ρ on Ic.

infections in the population decreases; that is, whenever ρ value

increases from 0.2 to 0.8 then the infected group Ic decreases.

5. Discussions and conclusion

In this study, we have formulated and analyzed a new

deterministic mathematical model for gaining insight into the

effects of protections and treatments on the transmission dynamics

of COVID-19 and syphilis co-infection. Both the positivity and

boundedness of the complete model solutions have been discussed

to show that the model is both mathematically and biologically

meaningful. COVID-19 infection-free equilibrium point, COVID-

19 incidence equilibrium point, and local and global stabilities

of COVID-19 infection-free and COVID-19 incidence equilibrium

points have been examined. Syphilis infection-free equilibrium point,

syphilis incidence equilibrium point, and local and global stabilities

of syphilis-free and syphilis incidence equilibrium points have been
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carried out. Using data stated in Table 3, we have carried out

and discussed both sensitivity and numerical analyses of the full

COVID-19 and syphilis co-infection model. From the analytical

and numerical results, we observed that the model disease-free

equilibrium points have global asymptotic stability when the basic

reproduction numbers are less than unity. Biologically, this means

that diseases die out in the community, with the full-model solutions

converging to their endemic equilibrium point whenever their

basic reproduction number is greater than unity, the reproduction

numbers of both the COVID-19 infection and syphilis infection sub-

models decreasing when the corresponding protection and treatment

rates are maximized, and the numbers of co-infected individuals

decreasing when the co-infection treatment rate is increased.

Based on the findings of this study, we recommend public

health stakeholders concentrate on increasing both the COVID-

19 and syphilis protection rates, as well as the syphilis treatment

rate, the COVID-19 isolation with treatment rate, and the co-

infection treatment rate, in order to reduce and possibly eradicate

syphilis and COVID-19 co-infection transmission in the community.

Finally, since no other COVID-19 and syphilis mathematical

modeling approach literature has been formulated and analyzed,

this study is not exhaustive. Interested researchers can extend this

study in different manners, such as including syphilis mother-to-

child transmission, COVID-19 vaccination as a new compartment,

two-strain COVID-19 co-infection with syphilis, age structure for

both infections, the four infection stages of syphilis (primary,

secondary, latent, and tertiary), optimal control approach, stochastic

method, fractional order method, and applying appropriate real

population data.
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