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The study of bifurcations of differential-algebraic equations (DAEs) is the topic of interest

for many applied sciences, such as electrical engineering, robotics, etc. While some of

them were investigated already, the full classification of such bifurcations has not been

done yet. In this paper, we consider bifurcations of quasilinear DAEs with a singularity

and provide a full list of all codimension-one bifurcations in lower-dimensional cases.

Among others, it includes singularity-induced bifurcations (SIBs), which occur when

an equilibrium branch intersects a singular manifold causing certain eigenvalues of the

linearized problem to diverge to infinity. For these and other bifurcations, we construct the

normal forms, establish the non-degeneracy conditions and give a qualitative description

of the dynamics. Also, we study singular homoclinic and heteroclinic bifurcations, which

were not considered before.

Keywords: differential algebraic equation (DAE), slow-fast dynamics, fold, singular induced bifurcation, bifurcation

1. INTRODUCTION

Differential-algebraic equations (DAEs) play an important role in dynamical systemmodeling such
as power systems (cf. [1, 2]), nonlinear-circuits [3–7], robotics (cf. [8]), flight control systems [9],
multi-body systems [10], numeric PDEs ([11] and references in Kunkel and Mehrmann [12]).

We consider quasilinear DAEs of form

A(x,α)ẋ = f (x,α), (x,α) ∈ n × m, (1)

for smooth functions A :
n × m → n×n, f : n × m → n of the phase variable x ∈ n and

the parameter α ∈ m.
In the presence of singularities, that is, points (x,α) such that detA(x,α) in Equation (1)

vanishes, it is not possible to describe the local behavior of a DAE in terms of an explicit ODE.
Regularization of such a singular DAE often leads to an ODE with higher dimensional manifolds
of equilibria in phase space, which can manifest bifurcations without parameters (cf. [13]). System
with singularities possessing the Hamiltonian structure were studied in [14–18].

In parametrized problems, a stability change due to the divergence of an eigenvalue was first
analyzed by Venkatasubramanian [19, 20] and later addressed by many others [9, 20–25]. The
change of stability, termed singularity-induced bifurcations (SIB), occurs when an equilibrium
branch intersects a singular manifold, which results in the divergence of at least one eigenvalue
through infinity.

Main efforts in studying such singularity-crossing equilibria have been given by trying to
characterize the SIBs in terms of the linearized problems, such as using the matrix pencils
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{A(x∗,α∗),−Dxf (x
∗,α∗)} associated to Equation (1) at the point

of singularity (x∗,α∗) (cf. [20, 26]). Different sufficient conditions
have been given in the framework of the tractability index (cf. [27,
28]) and the geometric index [26, 29, 30] among others. However,
theymay not provide a necessary and sufficient characterization of
the local flow around such singularity-crossing sequilibria.

Besides SIBs, there can be other singular behavior induced by
the presence of singularities such as the change of the singularity
surface itself (fold) or bifurcations of singular equilibria that
change significantly the dynamics near the singularity.

Quasilinear DAEs (Equation 1) have a strong connection to
another important class of dynamical systems–fast-slow systems.
Indeed, a system

εẋ = f (x, y), ẏ = g(x, y)

is a fast-slow system for small ε. Setting ε to zero we obtain the
so-called slow system:

0 = f (x, y), ẏ = g(x, y), (2)

in which the first equation defines the slow manifold and the
second one determines the dynamics, restricted onto it. System
(2) is a DAE that can be brought to the form of an ODE
system via time-differentiation of the algebraic equation and the
substitution of ẏ from the second one:

fx(x, y)ẋ = −fy(x, y)g(x, y), ẏ = g(x, y). (3)

That is, the slow system can be reduced to the form (Equation 1),
so our research here contributes also to the studies of bifurcations
in slow-fast systems (see [31]). The correspondence between the
terms and notions can be viewed in the following way:

• A singularity set in DAEs corresponds to a fold set of a
slow manifold;

• a fold of the singularity surface corresponds to a cusp of a
slow manifold.

In this paper, we will call bifurcations that are caused by the
presence of singularities singular bifurcations, which is a more
general consideration of possible scenarios, which may or may
not involve equilibria directly. That is, we consider bifurcations
caused by singularities including SIBs but not exclusively so.

To make a clear impression of the realm of all possible
bifurcations, we focus on low-dimensional quasilinear DAEs of
form (Equation 1) for which x ∈ or x ∈ 2. Our goal is to
provide a list of all possible singular bifurcations of codimension
1 in such systems.

The paper is organized as follows. In Section 2 the basic
notions for the study of one-dimensional quasilinear DAEs are
given, all possible codimension-one bifurcations are studied and
the behavior in higher-codimension bifurcations is described. In
Section 3 the main notions are given for a two-dimensional case,
for which the full list of possible codimension-one bifurcations
is provided. Section 4 contains the rigorous derivation of the
dynamical behavior near some local singular bifurcations from
Section 3.

2. QUASILINEAR DAES:
ONE-DIMENSIONAL CASE

Consider a quasilinear DAE (Equation 1) for n = 1, it is given by

g(x,α)ẋ = f (x,α), (x,α) ∈ × m, (4)

for smooth functions f : × m → and g : × m → .
Note that in this case, the singular set is precisely the set of zeros
of g given by

6α = {x ∈ : g(x,α) = 0}, (5)

which under a regularity assumption on g, is composed of
isolated points. We will call every such point a singularity. The
set of zeros of f that are not zeros of g

Eα = {x ∈ : f (x,α) = 0, g(x,α) 6= 0}, (6)

will be called the equilibrium set. Under a similar regularity
assumption, this set is also composed of isolated points. Each
such point is an equilibrium of system (Equation 4).

Definition 2.1. A point x ∈ is called a singular equilibrium if
it lies in the intersection of the singular set6α given by Equation
(5) with the zeros set of f (x,α) for some α ∈ m.

Definition 2.2. For a fixed parameter value α = α0, we will call
the point x0 a simple equilibrium if it is a simple zero of f and not
a zero of g:

f (x0,α0) = 0, f ′x(x0,α0) 6= 0, g(x0,α0) 6= 0.

Analogously, we will call x0 a simple singularity if it is a simple
zero of g and not a zero of f :

f (x0,α0) 6= 0, g(x0,α0) = 0, g′x(x0,α0) 6= 0.

Definition 2.3. A simple singularity point x0 is called incoming
(outgoing), if there exists a small neighborhood U of x0 such that
for any initial condition x ∈ U the solution x(t) reaches x0 in
finite forward (backward) time.

Remark 2.4. The incoming or outgoing simple singularities are
known in the DAE literature as the standard singular pointswhich
was introduced in [32]. They behave like an impasse point, where
solutions are no longer defined being either attractive or repelling
(cf. [32, 33]).

For a simple equilibrium point x0 there exists a small
neighborhood |x−x0| < ε such that g(x,α0) 6= 0, and the system
(Equation 4) can be rewritten as

ẋ =
f (x,α0)

g(x,α0)
: = f̃ (x,α0), where f̃ (x0,α0) = 0. (7)

Thus, the stability type of the equilibrium (x0,α0) is completely
determined by the sign of the derivative

λ : = ∂x f̃
∣

∣

(x0 ,α0)
=

g∂xf − f ∂xg

g2

∣

∣

(x0,α0)
=
∂xf

g

∣

∣

(x0 ,α0)
6= 0, (8)
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FIGURE 1 | The local flow around a simple equilibrium for λ > 0 (unstable, left)

and for λ < 0 (stable, right), where λ is given by Equation (8).

FIGURE 2 | The local flow around a simple singularity point for λ > 0 (left) and

for λ < 0 (right), where λ is given by Equation (10).

which is non-zero by the assumption that x0 is a simple
equilibrium for α = α0. If λ < 0, then the equilibrium x0 is
stable; if λ > 0, then it is unstable (see Figure 1).

For a simple singularity x0, there exists a small neighborhood
in which f (x,α0) 6= 0 and the system (Equation 4) can be
rewritten as

g̃ẋ = 1, for g̃ =
g(x,α)

f (x,α)
with g̃(x0,α0) = 0. (9)

Thus, the following derivative

λ = g̃x
∣

∣

(x0 ,α0)
=

gxf − gfx

f 2

∣

∣

(x0 ,α0)
=

gx

f

∣

∣

(x0 ,α0)
6= 0, (10)

determines the type of the singularity at (x0,α0). More precisely,
if λ > 0, then the simple singularity point x0 is outgoing; if λ < 0,
then it is incoming. See Figure 2, we put here and further below
the double arrow to reflect the fact that the trajectory reaches the
singularity in finite time, and the velocity grows to infinity.

It is clear from Definition 2.2, that simple equilibria
and simple singularities persist under generic parametric
perturbations. Indeed, the condition f ′x(x0,α0) 6= 0 implies that
by the Implicit Function Theorem, there exists locally a unique
function x∗(α) with x∗(α0) = x0, which fulfills the equation
f (x,α) = 0. Moreover, this equilibrium maintains the same
stability type, as the exponent λ in Equation (8) preserves its sign.
In a similar way, one can deduct the corresponding property for
a simple singularity.

Theorem 2.5. If in an open set U ⊂ system (Equation 4)
possesses a finite set of equilibria and a finite set of singularities and
all of them are simple, then the system is structurally stable in U.

Proof: Under sufficiently small perturbations, every simple
equilibrium and every simple singularity stays in a small
neighborhood of its initial position, remain simple, are
distributed in the same order on the line and keep their stability
types. Also, neither of these points reaches the boundary of
U. The intervals bounded by these equilibria and singularities
can be homeomorphically conjugated, with the direction of
motion preserved.

However, when the conditions of Theorem 2.5 are violated, one
may encounter bifurcations. There are three such possibilities of
singular bifurcations1:

A1. A non-simple equilibrium: f (x,α) = 0, f ′x(x,α) = 0;
A2. A non-simple singularity: g(x,α) = 0, g′x(x,α) = 0;
A3. A singular equilibrium: f (x,α) = 0, g(x,α) = 0.

These cases are not exclusive to each other. They can happen
simultaneously, either at the same or different points, which
increases the codimension of the problem. In the following, we
assume that the bifurcation conditions occur at a0 = 0 and
x0 = 0, which can be achieved by appropriate translation of
coordinates and parameters.

We start with formulating the simplest possible cases, i.e. the
cases of codimension-1.

A1.1. A codimension one non-simple equilibrium: f (0, 0) = 0,
f ′x(0, 0) = 0, f ′′x(0, 0) 6= 0, g(0, 0) 6= 0;

A2.1. A codimension one non-simple singularity: g(0, 0) = 0,
g′x(0, 0) = 0, g′′x(0, 0) 6= 0, f (0, 0) 6= 0;

A3.0,0. A transcritical singularity (codimension-1 singular
equilibrium2): f (0, 0) = 0, g(0, 0) = 0, f ′x(0, 0) 6= 0,
g′x(0, 0) 6= 0.

The case A1.1 is completely analogous to the usual fold
bifurcation in dynamical systems without singularities. Indeed,
since g(x,α) 6= 0 in a small neighborhood of (x0,α0) = (0, 0),

we can rewrite the system (Equation 4) using the function f̃ as
defined in Equation (7), where

f̃ (0, 0) = f̃ ′x(0, 0) = 0, f̃ ′′xx(0, 0) =
f ′′xx

g

∣

∣

(0,0)
6= 0.

Proposition 2.6. Assume that for system (Equation 4) the
conditions of case A1.1 are fulfilled for α = 0 at x = 0, and
f ′α(0, 0) 6= 0. Then for all small α by an invertible change of
coordinate and parameter, the system can be brought near the
origin to the following normal form:

η̇ = β + sη2 + O(η3), (11)

where s = sign
f ′′xx
g

∣

∣

(0,0)
(cf. Figure 3 left).

This result immediately follows from Kuznetsov [34],
Theorem 3.2. Similarly, one can derive the normal form
for the non-simple singularity in case A2.1.

Proposition 2.7. Assume that for the system (Equation 4) the
conditions of case A2.1 are fulfilled for α = 0 at x = 0, and
g′α(0, 0) 6= 0. Then, for all small α by an invertible change of
coordinate and parameter, the system can be brought near the
origin to the following normal form:

(β + sη2 + O(η3))η̇ = 1, (12)

1We do not consider cases of infinite sets of equilibria or singularities, as it violates

the assumption that functions f and g are smooth.
2Two zeros represent that the left- and right-hand sides of the equation are not

degenerate. One codimension is added, because both functions vanish at the same

point. The generalization of this case, case A3.m, n is given at Page 5.
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FIGURE 3 | The equilibrium fold bifurcation (left) and the singularity fold

bifurcation (right) in normal form (Equations 11, 12), respectively, where we

have taken s = −1 in both cases.

where s = sign
g′′xx
f

∣

∣

(0,0)
(cf. Figure 3 right).

Proof: In some small neighborhood of the origin, we have
f (x,α) 6= 0 for all small α. Then, the system can be rewritten
in the form (Equation 9) with

g̃(0, 0) = g̃′x(0, 0) = 0, g̃′′xx(0, 0) =
g′′xx

f

∣

∣

(0,0)
6= 0.

We expand g̃ in Taylor series in x as g̃ = g0(α) + g1(α)x +

g2(α)x
2+O(x3) with g0(0) = g1(0) = 0 and g2(0) = a 6= 0. Using

a parameter-dependent coordinate shift of the form x = y+ δ(α)
with δ(0) = 0, we can rewrite g̃ as:

g̃(y+ δ(α),α) = (g0(α)+ g1(α)δ(α)+ O(α2))+ (g1(α)

+ 2g2(α)δ(α)+ O(α2))y+ (g2(α)+ O(α))y2

+ O(y3),

where the linear term can be neglected by an appropriate choice
of δ. Indeed, the coefficient of the linear term vanishes at α =

δ = 0, and its derivative with respect to δ at zero is given by
2a 6= 0. By the Implicit Function Theorem, there exists a function

δ(α) = δ1α + O(α2) with δ1 = −
g′1,α(0)

2a . Thus, we have

[

g′0,α(0)α + O(α2)+ a(α)y2 + O(y3)
]

ẏ = 1

with a(0) = a, which becomes (12) using the scaling

y =
1

|a(α)|1/3
η, β =

1

|a(α)|1/3
(g′0,α(0)α + O(α2)).

Moreover, as g′0,α(0) =
g′α
f
(0, 0) 6= 0, all the transformations

are invertible.

The bifurcation occurs in the following way, if s = −1: for
β = 0 there exists a locally unique non-simple singularity point,
which disappears when β < 0 and is replaced by a pair of
incoming and outgoing simple singularity points when β > 0
[see Figure 3 (right)].

The following Proposition states the normal form of the
transcritical singularity bifurcation in case A3.0,0.

Proposition 2.8. If the system (Equation 4) satisfies the conditions
of transcritical singularity, case A3.0.0, at (x,α) = (0, 0), and

A : = (g′xf
′
α − f ′xg

′
α)
∣

∣

(0,0)
6= 0,

then there exists an invertible change of coordinate and parameter,
which brings system (Equation 4) near the origin to the
normal form

ηη̇ = β + sη + O(η2), (13)

where

s = sign
f ′x
g′x

∣

∣

(0,0)
.

(cf. Figure 4).

Proof: As g′x(0, 0) 6= 0, the implicit equation g(x,α) = 0 can be
locally uniquely resolved with respect to x for small x and α. That
is, there exists a smooth function x∗(α) such that g(x∗(α),α) ≡ 0

with x∗(0) = 0 and x∗(α) = −
g′α
g′x

∣

∣

(0,0)
α + O(α2). Consider a

parameter-dependent shift of coordinate x = x∗(α) + y. Then,
the left-hand side of Equation (4) is transformed as

g(x∗(α)+ y,α) = g′x(x
∗(α),α)y+ O(y2) = (g1 + O(α))y+ O(y2)

= (g1 + O(α))y(1+ O(y)), (14)

where g1 = g′x(0, 0) 6= 0. The right-hand side function f becomes

f (x∗(α)+ y,α) = f (x∗(α),α)+ f ′x(x
∗(α),α)y+ O(y2)

=
A

g1
α + O(α2)+ (f1 + O(α))y+ O(y2), (15)

where f1 = f ′x(0, 0).
We choose the neighborhood small enough for term (1 +

O(y)) in formula (Equation 14) to stay always positive. Then, we
reparametrize time by formula dt/(1 + O(y)) = dτ , and also
divide by a non-zero coefficient (g1 + O(α)), system (Equation
4) is transformed as:

yẏ =
A

g21
α + O(α2)+

(

f1

g1
+ O(α)

)

y+ O(y2). (16)

It leads to Equation (13) by scaling y →
∣

∣

∣

f1
g1

+ O(α)
∣

∣

∣
η and setting

β =
A

f 21
α + O(α2). (17)

Notice that as A 6= 0, the new small parameter β

diffeomorphically depends on α.

Example 2.9. The following systems demonstrate examples of
cases A1.1, A2.1 and A3.0,0, respectively.

(x+ 1)ẋ = x2 + α, x,α ∈ (18)

(x2 + α)ẋ = x+ 1, x,α ∈ (19)

(x+ x2 + α)ẋ = x− x2 + 2α, x,α ∈ . (20)
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FIGURE 4 | Transcritical singularity bifurcation of Equation (13): s > 0 (left);

s < 0 (right). Both feature a transition from an incoming to an outgoing

singularity as β changes from the negative to the positive, where β changes

according to Equation (17). The dashed (solid) lines indicate unstable (stable)

equilibrium and singularity points.

More precisely, consider the system (Equation 18) with f (x,α) =
x2 + α and g(x,α) = x + 1 at (x,α) = (0, 0). It satisfies the
non-simple equilibrium conditions, case A1.1:

f (0, 0) = f ′x(0, 0) = 0, f ′′xx(0, 0) = 2 6= 0, g(0, 0) = 1 6= 0,

f ′α(0, 0) = 1 6= 0.

By Proposition 2.6, the normal form of this bifurcation is given

by Equation (11) with s = sign
f ′′xx
g

∣

∣

(0,0)
= 1.

For the system (Equation 19) at the non-simple singularity
point (x,α) = (0, 0), one has

g(0, 0) = g′x(0, 0) = 0, g′′xx(0, 0) = 2 6= 0, f (0, 0) = 1 6= 0,

g′α(0, 0) = 1 6= 0.

By Proposition 2.7, the normal form here is (12) with s =

sign
g′′xx
f

∣

∣

(0,0)
= 1.

The system (Equation 20) at point (x,α) = (0, 0) satisfies the
conditions of the transcritical singularity:

f (0, 0) = g(0, 0) = 0, f ′x(0, 0) = 1 6= 0, g′x(0, 0) = 1 6= 0,
∣

∣

∣

∣

g′x g′α
f ′x f ′a

∣

∣

∣

∣

(0,0)

= 1 6= 0.

By Proposition 2.8, the normal form of this bifurcation is

Equation (13) with s = sign
f ′x
g′x

∣

∣

(0,0)
= 1.

Besides the codimension-1 bifurcations listed by A1.1–
A3.0,0, one can describe generic unfoldings of bifurcations of
higher codimension in a similar way. These bifurcations admit
invertible changes of coordinates (shifts), that bring them to
the corresponding normal forms. We do not give a proof here,
because it is straightforward: similar to cases A1.1 and A2.1
there always exists the parameter-dependent shift of coordinates
x → y + δ(α) such that the term that vanishes at α =

0 and has the highest power in the Taylor expansion (ym or
yn below), is eliminated for all small α. We distinguish the
following bifurcations:

A1.m. A codimension-m equilibrium: f (0, 0) = 0, f
(i)
x (0, 0) = 0

for 1 ≤ i ≤ m and f
(m+1)
x (0, 0) 6= 0, g(0, 0) 6= 0. The normal

form is:

ẏ = β0+β1y+β2y
2+. . .+βm−1y

m−1+sym+1+O(ym+2) (21)

A2.n. A codimension-n singularity: g(0, 0) = 0, g
(i)
x (0, 0) = 0 for

1 ≤ i ≤ n and g
(n+1)
x (0, 0) 6= 0, f (0, 0) 6= 0. The normal form

of this bifurcation is:

(α0 + α1y+ α2y
2 + . . .+ αn−1y

n−1 + syn+1 +O(yn+2))ẏ = 1
(22)

A3.m, n. A codimension-(1 + m + n) singular equilibrium:

f (0, 0) = 0, f
(i)
x (0, 0) = 0 for 1 ≤ i ≤ m, g(0, 0) = 0,

g
(j)
x (0, 0) = 0 for 1 ≤ j ≤ n and f

(m+1)
x (0, 0) 6= 0, g

(n+1)
x (0, 0) 6=

0. Its normal form is:

(α0 + α1y+ · · · + αn−1y
n−1 + syn+1)ẏ = β0 + β1y+ · · ·

+ βmy
m + ym+1.

(23)

In the formulas above coefficient s is equal to either +1 or −1,
and all αi and βi are small unfolding parameters.

Lemma 2.10. In one-dimensional system (Equation 4) the higher-
order bifurcations occur in the way that under small perturbations
the following dynamics is observed, depending on the case A1–A3.

Case A1.m: For any combination of integers {a1, a2, . . . , ak}, such

that A =
k
∑

i=1
ai ≤ m+ 1 and A has the same parity with m+ 1,

there exists a small perturbation of normal form (21), such that
it has locally k equilibria with coordinates x1 < x2 < . . . < xk,
and every xi is simple if ai = 1 or non-simple of codimension
ai − 1, if ai > 1.

Case A2.n: For any combination of integers {b1, b2, . . . , bl}, such

that B =
l
∑

j=1
bi ≤ n+ 1 and A has the same parity with n, there

exists a small perturbation of normal form (22), such that it has
locally l singularities with coordinates y1 < y2 < . . . < yl, and
every yj is simple if bj = 1 or non-simple of codimension bj − 1,
if bj > 1.

Case A3.m, n: For any two combinations of integers
{a1, a2, . . . , ak} and {b1, b2, . . . , bl} described above, and
any two sets of local coordinates: x1 < x2 < . . . < xk and
y1 < y2 < . . . < yl, there exists a small perturbation of normal
form (23), such that it has:

1) an equilibrium at the point xi, if xi does not coincide with
any of yj; the equilibrium is simple if ai = 1 or non-simple of
codimension ai − 1, if ai > 1.

2) a singularity at the point yj, if yj does not coincide with any
of xi; the singularity is simple if bj = 1 or non-simple of
codimension bj − 1, if bj > 1.

3) a singular equilibrium at point xi if xi = yj for some j; this
point is degenerate of codimension ai + bj + 1.

Proof: First, we consider cases A1.m and A2.n. Take a set of
integers {a1, a2, . . . , ak} as described above in the respective case,
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and select small x1 < x2 < . . . < xk (this means, that |xi| < ε for
some ε). Then, construct the following polynomial:

P(y) = (y− x1)
a1 (y− x2)

a2 . . . (y− xk)
ak . (24)

It has k roots at coordinates xi with multiplicity ai each. If we
open the parentheses in formula (24), the resulting polynomial
will be a small perturbation of the order-(m + 1) polynomial
standing in the right-hand side of normal form (21) or the order-
(n+1) polynomial in the left-hand side of normal form (22). The
statement of Lemma on equilibria or singularities respectively,
directly follows.

Now take case A3.m, n and the respective sets of integers
{a1, a2, . . . , ak} and {b1, b2, . . . , bl} and coordinates: x1 < x2 <
. . . < xk and y1 < y2 < . . . < yl. We construct two polynomials:

P(y) = (y− x1)
a1 (y− x2)

a2 . . . (y− xk)
ak ,

Q(y) = (y− y1)
b1 (y− y2)

b2 . . . (y− yl)
bl .

(25)

Polynomial P(y) is the small perturbation of the right-hand
side and polynomial Q(y) is the small perturbation of the left-
hand side of normal form (23). At the same time, this system
possesses equilibria, singularities and singular equilibria exactly
as described in the Lemma.

3. QUASILINEAR DAES:
TWO-DIMENSIONAL CASE

Consider the two-dimensional quasilinear DAEs of form
(Equation 1), where A is everywhere nonsingular except on the
singular set6α . The simplest possible form of such DAEs is given
by (cf. [35])

{

g(x, y,α)ẋ = f1(x, y,α)

ẏ = f2(x, y,α),
(26)

for (x, y) ∈ 2, α ∈ m and g : 2× m → , f1, f2 :
2× m →

are smooth functions.
In this case, the singular set

6 = {(x, y) : g(x, y,α) = 0}

is the zero curve of g. This curve is the boundary of two domains:

6+ = {(x, y) : g(x, y,α) > 0}, 6− = {(x, y) : g(x, y,α) < 0}.

We assume that g is such that gx has finitely many zeros on 6.
This means that ∇g is zero also at finitely many points of 6.
Every point of 6 with ∇g 6= 0 belongs to the closure of both
6+ and6−.

In order to describe the dynamics of such a two-dimensional
system, we introduce the basic dynamical elements, such as
special points and cycles.

Definition 3.1. A point (x, y) is called

• an equilibrium if f1(x, y,α) = f2(x, y,α) = 0; and
g(x, y,α) 6= 0;

FIGURE 5 | Dynamics around a simple singular equilibrium: the case of a

folded node. The solid green and red lines mark the incoming and outgoing

sectors, respectively. The dashed green and red lines mark the stable and

unstable sectors, respectively.

• a singular equilibrium if g(x, y,α) = f1(x, y,α) = 0.
• a fold point or a fold, if g(x, y,α) = gx(x, y,α) = 0;

Remark 3.2. The fold points given by Definition 3.1 are also
referred to as non-standard algebraic singular points in DAE
terminology (cf. [32, 33]). The singular equilibria are also called
as non-standard in some literature, e.g., in [32], or standard (as
extended in [33]) geometric singular points.

Making time transformation dτ : = dt
g for g 6= 0 in Equation

(26), one obtains the desingularized system:

{

ẋ = f1(x, y,α)

ẏ = f2(x, y,α)g(x, y,α).
(27)

The correspondence between the systems is the following: every
trajectory Ŵ of system (Equation 27) contains one or more
trajectories of system (Equation 26). The intersection points of
Ŵ with singularity curve g = 0 (if any) split Ŵ into connected
pieces Ŵ1,Ŵ2, . . . that are trajectories of Equation (26) with the
same direction of time as Ŵ for every Ŵi ⊂ 6+ and with the
opposite direction of time if Ŵi ⊂ 6−. It is clear that both
equilibria and singular equilibria of system (Equation 26), given
by Definition 3.1, are equilibria of the ODE system (Equation 27)
in the usual sense.

Remark 3.3. Transforming the time by formula dτ : = dt
−g

creates another desingularized system, in which the time flows in
the opposite direction on every trajectory of Equation (27). The
trajectories of system (Equation 26) follow the trajectories of this
system in6− and flow in the opposite direction in6+.

Consider a point M ∈ 6 and trajectory Ŵ ∋ M of ODE
system (Equation 27), see [36] for details. The trajectory will
intersect 6 transversely if it is not an equilibrium state and if
its tangent vector (f1, f2 · g)

⊤|M = (f1, 0)
⊤ is not orthogonal to

∇g = (gx, gy)
⊤, i.e. f1 · gx 6= 0. Locally, Ŵ is split by M into two

components, Ŵ1 and Ŵ2 such thatM = Ŵ(0), Ŵ1 ⊂ Ŵ(t) for t < 0
and Ŵ2 ⊂ Ŵ(t) for t > 0. If f1 · gx > 0, then Ŵ crosses6 from6−
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to6+, Ŵ2 ⊂ 6+ is the trajectory of Equation (26), and Ŵ1 ⊂ 6−

is the trajectory of Equation (26) with time reversal. In this case
we call pointM outgoing. When f1 ·gx < 0, the direction of time is
preserved on Ŵ1 ⊂ 6+ and reversed on Ŵ2 ⊂ 6−, and point M
is called incoming. Inequalities f1 · gx > 0 and f1 · gx < 0 are open
conditions, thus curve6 consists of incoming6inc and outgoing
6out zones, separated by points where f1 · gx = 0, those are either
singular equilibria f1 = 0 or fold points gx = 0.

Definition 3.4. A limit cycle of system (Equation 27) is called a
limit cycle of system (Equation 26), if it has no intersections with
the singularity curve6. Otherwise, it is called a folded limit cycle.

The limit cycle is a periodic orbit of system (Equation 26). A
folded limit cycle consists of more than one orbit of system
(Equation 26).

3.1. Structurally Stable Objects
Definition 3.5. An equilibrium of system (Equation 26) is called
simple or hyperbolic, if the linearization matrix of desingularized
system (Equation 27) in this point does not have eigenvalues on
the imaginary axis.

Definition 3.6. A singular equilibrium (x0, y0) of system
(Equation 26) is called simple, if the following inequalities
are fulfilled:

f2(x0, y0,α) 6= 0, gx(x0, y0,α) 6= 0, det
∂(f1, g)

∂(x, y)

∣

∣

∣

∣

(x0 ,y0 ,α)

6= 0,

(28)
and the linearization matrix of desingularized system (Equation
27) in this point does not have eigenvalues on the imaginary axis.

Definition 3.7. A fold (x0, y0) of system (Equation 26) is called
simple, if the following inequalities are fulfilled in it:

f1(x0, y0,α) 6= 0, gy(x0, y0,α) 6= 0, gxx(x0, y0,α) 6= 0. (29)

3.1.1. Simple Equilibria
Simple equilibria lie outside the singularity curve. A topological
type of an equilibriumM is determined by eigenvalues λ1 and λ2
of the linearization matrix

AEQ =

(

f1x f1y
gf2x gf2y

)

. (30)

For real λ1 and λ2,M is saddle if λ1λ2 < 0 and node if λ1λ2 > 0.
If the eigenvalues are a complex-conjugate pair, the equilibrium
is a focus. A node or a focusM is stable if

M ∈ 6+, Re λ1,2 < 0 or M ∈ 6−, Re λ1,2 > 0, (31)

and unstable if

M ∈ 6+, Re λ1,2 > 0 or M ∈ 6−, Re λ1,2 < 0. (32)

Simple equilibria persist under small perturbations, because
they remain equilibria and retain their topological type in the
desingularized system. Thus, in the original system, they lie
outside the singularity curve 6, and their topological type also
does not change.

3.1.2. Simple Singular Equilibria
In a similar way we classify simple singular equilibria using
eigenvalues λ1,2 of linearization matrix

AsEQ =

(

f1x f1y
gxf2 gyf2

)

. (33)

Definition 3.8. Let λ1,2 be the eigenvalues of AsEQ in Equation
(33) evaluated at a simple singular equilibrium M of Equation
(26). Then, M is called a folded node, if λ1,2 ∈ and λ1λ2 > 0;
a folded saddle, if λ1,2 ∈ and λ1λ2 < 0; and a folded focus, if
λ1,2 /∈ .

The dynamics near a folded node and a folded saddle is
determined by eigendirections corresponding to eigenvalues λ1,2
and respective invariant manifolds. The following lemma states
that these eigendirections are never tangent to 6 at simple
singular equilibria.

Lemma 3.9. In a folded node and a folded saddle, the
eigendirections, corresponding to eigenvalues λ1,2 are transverse to
the singularity curve6.

Proof: We prove the lemma by contradiction. Assume that for
some eigenvalue λ1 its eigenvector is tangent to6. Then, tangent
to6 vector (gy,−gx)

⊤ is the eigenvector of matrix AsEQ:

(

f1x − λ1 f1y
gxf2 gyf2 − λ1

)(

gy
−gx

)

=

(

f1xgy − f1ygx − λ1gy
gxλ1

)

= 0,

which implies either gx = 0 or λ1 = 0, both conditions contradict
the assumption that the considered singular equilibrium
is simple.

To describe the dynamical properties of all three types of singular
equilibria, we consider a small neighborhood U of M. Locally,
U is divided by curve 6 into two disconnected parts given by
6+

loc
⊂ 6+ and6−

loc
⊂ 6−.

Folded node. Consider a folded node M with λ2 < λ1 < 0
(for the case 0 < λ1 < λ2 the statement will be the same with6+

and 6− interchanged). It has a leading direction eL defined by
the eigenvector corresponding to λ1 and a non-leading direction
enL defined by the eigenvector corresponding to λ2. There exists
a semi-stable smooth invariant manifold WnL(M) tangent to enL

at point M. Its existence follows from the desingularized system
(Equation 27), this system has at M a stable or a completely
unstable node equilibrium, that possesses a smooth strong stable
(unstable) manifold. After coming back to the original system, a
part of this manifold lying in 6− changes the direction of time,
so that the manifold becomes a semi-stable manifoldWnL(M).

Manifold WnL(M) and 6 intersect transversely according
to Lemma 3.9. They divide neighborhood U into four sectors,
we will call them incoming, stable, outgoing and unstable. The
incoming sector lies in 6+

loc
every initial condition from this

sector reaches 6inc in forward time and leave U in backward
time. The stable sector also lies in 6+

loc
and contains the leading

direction eL. The trajectories from this sector reachM tangent to
eL in forward time and reach6out in backward time.
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FIGURE 6 | Dynamics around a simple singular equilibrium: the case of a

folded saddle. The solid green and red lines mark the incoming and outgoing

sectors, respectively. The dashed red lines mark the unstable sector.

In a similar way, we describe the dynamics in6−
loc
: it is divided

by WnL(M) into unstable and outgoing sectors. In the outgoing
sector trajectories leave U in forward time and reach 6out in
backward time. In the unstable sector the trajectories reach 6inc

in forward time and pointM in backward time. All four types of
behavior are illustrated at Figure 5.

Folded saddle. In a folded saddle M the eigenvalues of the
desingularized linearization matrix are λ1 < 0 < λ2. Point
M belongs to two smooth invariant manifolds: W− tangent
to eigendirection e− corresponding to λ1 and W+ tangent to
eigendirection e+ corresponding to λ2. They divide6

+ into three
sectors: incoming, saddle and outgoing. The incoming sector
is bounded by 6inc and W−, all orbits from it reach 6inc in
forward time and leave U in backward time. The saddle sector
is bounded byW+ andW−, all orbits leave U in both directions
of time. The outgoing sector is bounded by 6out and W+, the
orbits in it leave U in forward time and reach 6out in backward
time. All above describes the dynamics also in 6−, where the
outgoing sector is bounded by 6out and W− and the incoming
sector is bounded by 6inc and W+. The stable manifold of M
is Ws(M) = M ∪ (W− ∩ 6+) ∪ (W+ ∩ 6−), the unstable is
Wu(M) = M ∪ (W+ ∩ 6+) ∪ (W− ∩ 6−), both manifolds are
C0 inM (see Figure 6).

Folded focus. Near a folded focus all orbits reach 6out in
backward time and6inc in forward time (see Figure 7).

Under small (smooth) perturbations, simple singular
equilibria persist and retain their topological type. The reasons of
it are that matrix (Equation 33) is non-degenerate at such point,
and by the Implicit Function Theorem equation g = 0, f1 = 0 has
a unique solution for small α, provided that it exists for α = 0.
Also, as the topological type of such an equilibrium persists in
the desingularized system, it also persists in the original one.

3.1.3. Simple Fold
Near the simple fold point M(x0, y0), where (g = gx = 0, gxx 6=

0, gy 6= 0), equation g(x, y) = 0 of the singularity curve6 can be

locally explicitly resolved as a function y = ψ(x) = −
gxx(M)

gy(M)
x2+

O(x3), y0 = ψ(x0). The fold point is a local maximum or

FIGURE 7 | Dynamics around a simple singular equilibrium: the case of a

folded focus.

FIGURE 8 | Left: the flow of desingularized ODE system (Equation 27); Right:

the flow of the original system. The part of Ŵ lying in 6− reverses time. The

solid points indicate simple fold points where no change of flow direction is

detected.

minimum of this function. Consider the desingularized system
(Equation 27) and its solution with initial condition (x0, y0). At
the pointM its y component f2(x0, y0)g(x0, y0) vanishes, thus the
trajectory is tangent to6, see Figure 8.

The simple fold is either 6+-convex, when gxx(M)gy(M) > 0
and 6−-convex, when gxx(M)gy(M) < 0. Also, it persists under
small perturbations. Indeed, for system of equations g = gx = 0
we have

∂(g, gx)

∂(x, y)
(x0, y0)=

(

0 gy
gxx gxy

)

(x0, y0) = −gxx(x0.y0)gy(x0, y0) 6= 0

(34)
so that by the Implicit Function Theorem the system can be
uniquely solved with respect to (x, y) for all small α. This solution
gives a unique fold point in a small neighborhood of point
M. In addition, condition f1(x, y) 6= 0 is fulfilled in some
small neighborhood of the fold point, also for small α, thus no
other objects (regular or singular equilibria) appear there under
small perturbations.

3.1.4. Regular and Folded Limit Cycles
The limit cycles, regular and folded, both correspond to limit
cycles of the desingularized system (Equation 27). By standard
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FIGURE 9 | Dynamics around a stable limit cycle (top left), an unstable limit

cycle (bottom left) and a folded limit cycle (right) of Equation (26).

methods (the Poincaré crossection) one defines the multiplier
µ > 0 of such an orbit. A regular cycle is simple (structurally
stable), if its multiplier differs from one. A folded cycle is
structurally stable also if µ 6= 1, and, in addition, it intersects the
singularity curve only transversely. The possible types of simple
limit cycles are illustrated in Figure 9.

3.2. Bifurcations
The bifurcations in two-dimensional DAEs are divided in three
main groups: geometric (bifurcations of the singularity set), local
and global bifurcations.

3.2.1. Geometric Bifurcations
Geometric bifurcations are related to the reconstruction of the
topology of the singularity set 6. It means that after arbitrary
small perturbations the set 6 is topologically not equivalent
to itself at the initial parameter value. This happens when its
branches appear, disappear or interact with each other. Among
codimension-one bifurcations, there are those, related to failure
of local existence of a unique branch of6, i.e. existence of a point
(x, y), where ∇g(x, y) = 0. At the same time, the Hessian should
be non-zero at the bifurcation moment, so that the codimension
is not higher than one:

∇g(x, y) = 0, detD2g(x, y) 6= 0 (35)

Depending on the sign of the Hessian, two cases are possible [37]:
T1. Hyperbolic bifurcation. gx = gy = 0 and D2g(x, y) < 0.

For example, g(x, y,α) = x2 − y2 − α at (0, 0, 0) (see Figure 10).
T2. Elliptic bifurcation. gx = gy = 0 and D2g(x, y) > 0. For

example, g(x, y,α) = x2 + y2 − α (see Figure 11).

3.2.2. Local Bifurcations
Local bifurcations occur to simple objects described in
subsection 3.1, when they lose their simple properties. From the
list below, bifurcations L1, L6, L8 occur outside the singularity
curve 6 and thus they are unfolded as in regular ODEs.
Bifurcations L2, L7, L9 involve the curve 6, but after the

FIGURE 10 | Hyperbolic singularity curve bifurcation of Equation (26).

FIGURE 11 | Elliptic singularity curve bifurcation of Equation (26).

FIGURE 12 | Singular saddle-node type 1: g = f1 = 0, f1xgy − f1ygx = 0,

gx 6= 0.

desingularization procedure, they become bifurcations L1, L6,

L8 respectively, in the ODE system (Equation 27) and their
unfolding can be described accordingly. The rest, bifurcations
L3–L5, either are unfolded in a different way in regular systems
or do not have regular analogs at all. The latter are studied in
detail in Section 4.

L1. Saddle-node. This bifurcation occurs when at the
equilibrium point M the eigenvalues of the linearization matrix
(30) are λ1 = 0 and λ2 6= 0, i.e. when f1xf2y − f1yf2x = 0.
Like in a regular ODE system, a codimension-one saddle-node
under small perturbations either disappears so that in some small
neighborhood there are no equilibria, or splits into two simple
equilibria, a saddle and a node.

L2. Singular saddle-node of type I. According to the
classification by C. Kuehn [38]. This bifurcation corresponds to
the existence of a singular equilibrium, for which linearization
matrix (33) has eigenvalues λ1 = 0 and λ2 6= 0. This happens
when f1xgy − f1ygx = 0. A codimension-one singular equilibrium
of type I under small perturbations either disappears or splits into
two simple singular equilibria – a folded saddle and a folded node,
see Figure 12.

L3. Singular saddle-node of type II. According to the
classification by C. Kuehn [38]. This bifurcation occurs when
a singular equilibrium point M (f1 = g = 0) also satisfies
regular equilibrium condition f2 = 0. A small perturbation
of a codimension-one singular saddle-node of type II leads to
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FIGURE 13 | The singular saddle-node bifurcation of type II at

(ξ∗, η∗,α∗ ) = (0, 0, 0) for 14 > 0 and f1x > 0. As α changes from negative to

positive, the local flow changes from the left figure to right figure.

FIGURE 14 | A cubic fold bifurcation g = gx = gxx = 0, f1 6= 0.

FIGURE 15 | A singular equilibrium-fold bifurcation g = gx = f1 = 0, gxx 6= 0.

the appearance of a simple equilibrium and a simple singular
equilibrium. They appear in combinations either node + folded
saddle, or saddle + folded node. For the derivation of the normal
form refer to Lemma 4.1 below. The bifurcation is illustrated
on Figure 13, see also [9, 20–23, 39], where such a bifurcation
was studied.

L4. Cubic fold.A fold point g = gx = 0, gy 6= 0, is non-simple
of codimension one (a cubic fold) if gxx = 0 and gxxx 6= 0. Under
small perturbations the cubic fold generically either disappears
or splits into a pair of simple folds with the opposite convexity, as
stated by Lemma 4.3. The bifurcation is illustrated in Figure 14.

L5. Singular equilibrium-fold This bifurcation occurs when
at a pointM both conditions of a fold and a singular equilibrium
are fulfilled, i.e. g = gx = f1 = 0 and f2 6= 0, f1x 6= 0, gxx 6= 0,
gy 6= 0. Under small perturbations, a singular equilibrium-fold
splits into a simple fold and a simple singular equilibrium, see
Lemma 4.4 for details. The bifurcation is illustrated at Figure 15.

L6. Transition between folded node and folded focus. This
bifurcation occurs at a singular equilibrium, when the two
eigenvalues of the linearization matrix (Equation 33) coincide. In
small perturbations they either become a real (folded node) or a
complex-conjugated (folded focus) pair of different eigenvalues.

FIGURE 16 | Dynamics around a double limit cycle (left) and a folded double

limit cycle (right) of Equation (26).

Note that the similar transition for a regular equilibrium is not
considered a bifurcation—the local flows around a node and
a focus can be topologically conjugated. However, in the case
of a singular equilibrium, the local flows near a folded node
and a folded focus are not similar: near the folded node there
exists a subset of points such that their trajectories reach the
singular equilibrium in forward or backward time, while in the
neighborhood of a folded focus there are no such orbits (see
Subsection 3.1.2 for details).

L7. Andronov-Hopf bifurcation. This standard bifurcation
occurs when a stable (unstable) focus equilibrium has a pair of
pure imaginary eigenvalues (of matrix Equation 30). Under small
perturbations such a weak focus either becomes a simple stable
(unstable) focus, or unstable (stable) focus and a stable (unstable)
limit cycle is born.

L8. Folded Andronov-Hopf bifurcation. This bifurcartion
takes place, when linearisation matrix (Equation 33) has a pair of
pure imaginary eigenvalues [40]. This bifurcation corresponds to
a regular Andronov-Hopf in the desingularized system (Equation
27), in which a limit cycle is born from a focus equilibrium. In the
original system (Equation 26) under small perturbations a folded
limit cycle is born from a folded focus.

L9. Double limit cycle. Existence of a limit cycle with
multiplier equal to +1. Under small perturbations this cycle
either disappears or is split into stable and unstable simple
limit cycles, see Figure 16.

L10. Folded double limit cycle. This bifurcation corresponds
to the existence of a double limit cycle in the desingularized
system (Equation 27), that intersects the singularity curve. Under
small perturbations such a cycle either disappears or is split into
a pair of simple folded limit cycles.

3.2.3. Global Bifurcations
This is the class of bifurcations, in which special orbits
(homoclinic or heteroclinic) exist in the system. They are usually
destroyed by small perturbations. Such orbits can be regular,
when they have no intersections with the singularity curve 6, or
folded if such an intersection point exist.

G1. A homoclinic orbit to a saddle. In the desingularized
system (Equation 27) there exists a homoclinic loop Ŵ to a saddle
equilibrium, that is also an equilibrium in system (Equation 26).

G1a. Regular. This is the standard homoclinic bifurcation,
when the image of Ŵ does not intersect 6. Upon small
perturbations it either just disappears, or disappears with the
creation of a limit cycle.
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G1b. Folded. The image of Ŵ in Equation (26) has
intersections with 6. Under small pertubations, such a
homoclinic loop gives rise to a folded limit cycle.

G2. A homoclinic orbit to a folded saddle a homoclinic
orbit Ŵ exists in the desingularized system (Equation 27). In the
original system (Equation 26) this equilibrium lies at6.

G2a. Regular. In the original system (Equation 26) the image
of Ŵ does not intersect 6. Under small perturbations, when the
folded saddle disappears, a regular limit cycle is born.

G2b. Folded. In the original system (Equation 26) the image
of Ŵ has intersections with 6. Under small perturbations, when
the folded saddle disappears, a folded limit cycle is born.

G3. A homoclinic orbit to a fold point. In the desingularized
system (Equation 27) there exists a simple limit cycle L. In the
original system (Equation 26) the image of curve L is tangent to
6 at a simple fold point F.

G3a. Regular. The image of curve L does not have common
points with6 other than F. Under small perturbations, cycle L in
system (Equation 27) persists, and in system (Equation 26) this
curve becomes either a regular or a folded limit cycle.

G3b. Folded. The image of curve L have intersections with
6 other than F. Under small perturbations, cycle L in system
(Equation 27) persists, and in system (Equation 26) it becomes
a folded limit cycle.G4. A homoclinic orbit to a saddle-node. In
the desingularized system (Equation 27) there exists a homoclinic
orbit L to a saddle-node equilibrium M. In system (Equation
26) point M does not belong to singularity curve 6. Upon the
disappearance of the equilibrium a limit cycle is born in system
(Equation 27).

G4a. Regular. The image of L in system (Equation 26) does
not intersect the singularity curve 6. Upon the disappearance of
the equilibrium a limit cycle is born also in the original system
(Equation 26).

G4b. Folded. The image of L in system (Equation 26)
intersects transversely the singularity curve 6. Upon the
disappearance of the equilibrium a folded limit cycle is born.

G5. A homoclinic orbit to a singular saddle-node of type

I. In the desingularized system (Equation 27) there exists a
homoclinic orbit L to a saddle-node equilibrium M. In system
(Equation 26) pointM is a singular equlibrium (a singular saddle-
node of type I). Upon the disappearance of the equilibrium a
periodic orbit is born in system (Equation 27).

G5a. Regular. The image of L in system (Equation 26) does
not intersect the singularity curve 6. Upon the disappearance
of the singular equilibrium a limit cycle is born in the original
system (Equation 26).

G5b. Folded. The image of L in system (Equation 26)
intersects transversely the singularity curve 6. Upon the
disappearance of the singular equilibrium a folded limit cycle
is born.

G6. A heteroclinic connection. This bifurcation corresponds
to the existence of such an orbit L in system (Equation 27) that

• passes through two different fold points of system (Equation
26). In system (Equation 26) a piece of L that lies between
the fold points, is a heteroclinic connection of two folds (see
Figure 17).

FIGURE 17 | Dynamics around a regular heteroclinic connection (left) and a

folded heteroclinic connection (right) of Equation (26).

• passes through one fold point F of system (Equation 26) and
tends to an equilibrium in forward or backward time, without
passing through other fold points that differ from F. This is
a heteroclinic connection of a fold and a regular or singular
equilibrium in system (Equation 26)

• tends to different equilibria in both forward and backward
time, without passing through any of folds of system (Equation
26). This is a heteroclinic connection between two equilibria,
two singular equilibria or between an equilibrium and a
singular equilibrium.

All the heteroclinic connections listed above can be
either regular, when they do not intersect the singularity
curve, or folded, when such an intersection exists.
Under small perturbations heteroclinic connections are
generically broken.

4. LOCAL BIFURCATIONS L3–L5

In this section the character of those local bifurcations, that do
not have analogs in regular ODEs is studied in detail. These
bifurcations are L3: Singular saddle-node of type II, L4: Cubic
fold and L5: Singular equilibrium-fold from subsection 3.2.2.

We introduce the following notations:

11 = det
∂(f1, f2)

∂(x, y)

∣

∣

∣

∣

(0,0,0)

, 12 = det
∂(f1, g)

∂(x, y)

∣

∣

∣

∣

(0,0,0)

,

13 = det
∂(g, gx)

∂(y,α)

∣

∣

∣

∣

(0,0,0)

, 14 =
∂(f1, f2, g)

∂(x, y,α)

∣

∣

∣

∣

(0,0,0)

,

15 =
∂(f1, g, gx)

∂(x, y,α)

∣

∣

∣

∣

(0,0,0)

.

(36)

4.1. L3: Singular Saddle-Node of Type II
This bifurcation occurs at point M(0, 0) when both conditions
for an equilibrium and a singular equilibrium are fulfilled in it
for α = 0. This means that g(0, 0, 0) = f1(0, 0, 0) = f2(0, 0, 0) =
0. We assume that the following inequalities also hold, so that
the codimension is equal to one and that the parametric family
is transversal:

f1x(0, 0, 0) 6= 0, gx(0, 0, 0) 6= 0,11 6= 0, 12 6= 0, 14 6= 0.

(37)

Lemma 4.1. Assume that genericity (codimension one +
transversality) conditions (37) are fulfilled at a singular saddle-
node type II point M. Then in a generic unfolding point M splits
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into a pair of structurally stable points, a regular and a singular
equilibria. They are either a saddle and a folded node or a node
and a folded saddle.

Proof: First of all, we note that equations f1 = f2 = g = 0 have
a solution x = y = α = 0, and by the transversality condition
14 6= 0 no other solution exists nearby, thus for small α 6= 0
no other singular saddle-nodes of type II exist in some small
neighborhood of the origin.

Condition 11 6= 0 implies that for all small α equations
f1 = f2 = 0 have a unique equilibrium solution

(xe(α), ye(α)) =
1

11

(

det
∂(f1, f2)

∂(y,α)

∣

∣

∣

∣

(0,0,0)

,− det
∂(f1, f2)

∂(x,α)

∣

∣

∣

∣

(0,0,0)

)

α

+ O(α2). (38)

Similarly, as12 6= 0, equations f1 = g = 0 have a unique singular
equilibrium solution:

(xs(α), ys(α)) =
1

12

(

det
∂(f1, g)

∂(y,α)

∣

∣

∣

∣

(0,0,0)

,−det
∂(f1, g)

∂(x,α)

∣

∣

∣

∣

(0,0,0)

)

α

+ O(α2). (39)

At the bifurcation moment α = 0 the linearization matrix (33)
at the singular saddle node has eigenvalues λ1 = f1x 6= 0
and λ2 = 0. Upon a small perturbation, linearization matrices
(30) and (33) of, respectively, the equilibrium and the singular
equilibrium, will have real eigenvalues λ1 = f1x(0, 0, 0) + O(α)
and λ2 = O(α), so they have either node or saddle type. The sign
of the first eigenvalue at each point is given for small α by the
sign of derivative f1x(0, 0, 0). The product of eigenvalues is equal
to the determinant of the linearization matrix. At the equilibrium
the determinant is:

detAEQ = g(xe(α), ye(α),α)(11 + O(α)) = 14α + O(α2),

and at the singular equilibrium:

detAsEQ = f2(x
s(α), ys(α),α)(12 + O(α)) = −14α + O(α2).

Thus, the bifurcation occurs in the following way:

When14α > 0, the equilibrium is a node (stable if f1x < 0 and
unstable if f1x > 0), and the singular equilibrium is a folded
saddle;
When 14α < 0, the equilibrium is a saddle, and the singular
equilibrium is a folded node.

Example 4.2. Consider
{

(x− x3)ẋ = y− x+ α

ẏ = y
. (40)

Then, for α = 0 we have f1 = f2 = g = 0, i.e. a singular saddle-
node of type II at the origin (x, y) = (0, 0). By formulas (36), it
follows that f1x = −1, gx = 1,11 = −1,12 = −1 and14 = −1,
the conditions (37) are fulfilled. For small α this bifurcation point
unfolds into an equilibrium EQ: (xe, ye) = (α, 0) + O(α2) and a
singular equilibrium sEQ: (xs, ys) = (0,−α) + O(α2). For α > 0
EQ is a stable node and sEQ is a folded saddle. For α < 0, EQ is
a saddle and sEQ is a folded node.

4.2. L4: Cubic Fold
The cubic fold bifurcation occurs at point M(0, 0) for α =

0 if conditions g = gx = gxx = 0 are fulfilled at it. In
addition, to keep the codimension of the problem equal to one
and to construct a transversal parametric family, we assume the
following inequalities to hold:

f1 6= 0, gy 6= 0, gxxx 6= 0, 13 6= 0 (41)

Lemma 4.3. Assume that genericity (codimension one +
transversality) conditions (Equation 41) are fulfilled at a cubic fold
point M. Then in a generic unfolding point M splits into a pair of
simple folds, or disappears.

Proof: For system of equations g = gx = 0 the Implicit Function

Theorem are not fulfilled, because
∂(g, gx)

∂(x, y)

∣

∣

∣

∣

(0,0,0)

= 0. Then we

look for a solution of this system in the form

x = β1α
δ1 + o(αδ1 ), y = β2α

δ2 + o(αδ2 )

for positive α, and

x = β1(−α)
δ1 + o((−α)δ1 ), y = β2(−α)

δ2 + o((−α)δ2 )

for negative α. The equations take form

0 = gyβ2α
δ2 + gαα +

1

6
gxxxβ

3
1α

3δ1 + h.o.t.

0 = gxyβ2α
δ2 + gxαα +

1

2
gxxxβ

2
1α

2δ1 + h.o.t.
(42)

and respectively

0 = gyβ2(−α)
δ2 − gα(−α)+

1

6
gxxxβ

3
1 (−α)

3δ1 + h.o.t.

0 = gxyβ2(−α)
δ2 − gxα(−α)+

1

2
gxxxβ

2
1 (−α)

2δ1 + h.o.t.
(43)

For them to be solvable it is required that δ1 = 1/2, δ2 = 1. Then
for α > 0 from (42) we have

β21 =
213

gygxxx
, β2 = −

gα

gy
(44)

and for α < 0 from (43):

β21 = −
213

gygxxx
, β2 =

gα

gy
. (45)

Then, two simple folds exist for perturbations
213

gygxxx
α > 0,

and the cubic fold disappears, and no folds exist locally, when
213

gygxxx
α < 0.

4.3. L5. Singular Equilibrium-Fold
The singular equilibrium-fold bifurcation occurs at pointM(0, 0)
for α = 0 if conditions g = gx = f1 = 0 are fulfilled at it. In
addition, to keep the codimension of the problem equal to one
and to construct a transversal parametric family, we assume the
following inequalities to hold:

gy 6= 0, gxx 6= 0, 12 6= 0, 13 6= 0, 15 6= 0 (46)
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Lemma 4.4. Assume that genericity (codimension one +
transversality) conditions (Equation 46) are fulfilled at a singular
equilibrium-fold point M. Then in a generic unfolding point M
splits into a simple folds and a simple singular equilibrium.

Proof: By the transversality condition 15 6= 0, system of
equations g = gx = f1 = 0 has locally no solutions for α 6= 0,
then the singular equilibrium-fold disappears under such small
perturbations.

The genericity condition 12 6= 0 implies that system of
equations f1 = g = 0 has locally a unique singular equilibrium
solution for small α:

(xs(α), ys(α)) =
1

12

(

det
∂(f1, g)

∂(y,α)

∣

∣

∣

∣

(0,0,0)

,− det
∂(f1, g)

∂(x,α)

∣

∣

∣

∣

(0,0,0)

)

α

+ O(α2). (47)

Also, the genericity condition 13 6= 0 implies that a
unique fold solution of system g = gx = 0 exists for
small α:

(xf (α), yf (α)) =
1

13

(

det
∂(g, gx)

∂(y,α)

∣

∣

∣

∣

(0,0,0)

,− det
∂(g, gx)

∂(x,α)

∣

∣

∣

∣

(0,0,0)

)

α + O(α2). (48)
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