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Interpretable Transformed ANOVA
Approximation on the Example of the
Prevention of Forest Fires
Daniel Potts* and Michael Schmischke

Faculty of Mathematics, Chemnitz University of Technology, Chemnitz, Germany

The distribution of data points is a key component in machine learning. In most cases,

one uses min-max-normalization to obtain nodes in [0, 1] or Z-score normalization

for standard normal distributed data. In this paper, we apply transformation ideas in

order to design a complete orthonormal system in the L2 space of functions with the

standard normal distribution as integration weight. Subsequently, we are able to apply the

explainable ANOVA approximation for this basis and use Z-score transformed data in the

method. We demonstrate the applicability of this procedure on the well-known forest fires

dataset from the UCI machine learning repository. The attribute ranking obtained from the

ANOVA approximation provides us with crucial information about which variables in the

dataset are the most important for the detection of fires.

Keywords: ANOVA, high-dimensional, approximation, interpretability, normal distribution

1. INTRODUCTION

In machine learning, the scale of our features is a key component in building models. When we
work with data from applications, we have to accept it as it is. In most cases, we cannot control
where the nodes are lying. Let us, e.g., take recommendations in online shopping. We are only able
to analyze the customers that actually exist and what they bought in the shop. However, the features
may lie on immensely different scales. If we measure, e.g., the time a customer spent in the shop in
seconds, as well as their age in years, the result will be a scale that contains values with thousands
of seconds and a scale ranging from up to 90 years. Bringing those features on similar scales trough
normalization may significantly improve performance of our model.

Two common methods for data normalization are min-max-normalization and Z-score
normalization, see, e.g., [1]. The former method will yield data in the interval [0, 1] and is especially
useful if there is an intrinsic upper and lower bound for the values, e.g., when considering age.
If we come back to our previous example, the time a customer spends in the shop would be less
suitable since the values may have a wide range and we will probably have very few people with a
significantly small or large time. In this case, the Z-score normalization makes much more sense. It
tells us how many standard deviations our value lies away from the mean of the data resulting in a
distribution with zero mean and variance one.

The explainable ANOVA approximation method introduced in [2–4] is based on the well-
known multi-variate analysis of variance (ANOVA) decomposition, see, e.g,., [5–10], and relies on
the existence of a complete orthonormal system in the space which is suitable for fast matrix-vector
multiplication algorithms in grouped transformations, c.f. [11]. Until now, this method was always
applied with min-max-normalization since it relied on the space L2([0, 1]

d) of square-integrable
functions over the cube with the half-period cosine basis. It is our goal to modify the approach in
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order to create the possibility to work with standard normal
distributed data, i.e., data that has been obtained trough
Z-score normalization.

We aim to achieve this by using the transformation ideas
from [12] and [13] in order to construct a complete orthonormal
system in the space

L2(R
d,ω) :=

{

f : Rd → R :

∥

∥f
∥

∥

L2(Rd)

:=
√

∫

Rd

∣

∣f (x)
∣

∣

2
ω(x) dx <∞

}

(1)

with the probability density of the standard normal distribution

ω(x) :=
d

∏

i=1

1√
2π

e−x2i /2 = (2π)−d/2 e−‖x‖22/2. (2)

The cumulative distribution function of the standard normal
distribution is given by

8 : R → [0, 1], 8(x) = 1

2

[

1+ erf

(

x√
2

)]

, (3)

(see Figure 1) for visualization, with the error function defined as

erf(x) = 2√
π

∫ x

0
e−t2 dt.

Combining this transformation with the half-period cosine basis
allows for fast multiplications in the grouped transformations
and makes the ANOVA approximation method applicable for
Z-score normalized data.

As an example, we apply this approach to a dataset about
the detection of forest fires, see [14, 15]. Constructing a model

FIGURE 1 | Cumulative distribution function 8 of the standard normal

distribution from Equation (3).

with the capability of efficiently predicting the size of the fire
in this dataset may provide a way of predicting the occurrences
of fires. This creates the possibility of efficiently implementing
appropriate counter-measures. In our time of climate change
with massive forest fires every year, e.g., in Australia or the
USA, this is an extremely current topic. With the interpretation
capabilities of the ANOVA method, c.f. [4], we are additionally
able to explain the importance of our features and give reasonable
explanation for the predictions.

2. TRANSFORMED HALF-PERIOD COSINE

In this section, it is our goal to construct a complete orthonormal
system in the space L2(R

d,ω) from Equation (1) with the
product density ω(x) from Equation (2). This is the probability
density function of the standard normal distribution, i.e., the
normal distribution with zero mean and variance one. We have
∫

Rd ω(x) dx = 1, as well as supx∈Rd ω(x) = (2π)−d/2 which

implies ω ∈ L∞(Rd).
We aim to construct the basis using transformation ideas

from [12, 13] and the half-period cosine basis on L2([0, 1]
d). The

orthonormal basis functions on L2([0, 1]
d) are given by

φcosk (x) =
√
2
‖k‖0

d
∏

i=1

cos(πkixi), k ∈ N
d
0 (4)

with ‖k‖0 :=
∣

∣supp k
∣

∣ for supp k := {s ∈ {1, 2, . . . , d} : ks 6= 0}
and

∣

∣supp k
∣

∣ the cardinality of supp k. We start from a given

function f : Rd → R, f ∈ L2(R
d,ω), and aim to transform it

onto the cube [0, 1]d. As transformation from the interval [0, 1]
to R, we apply the inverse cumulative distribution function 8−1

in each variable to obtain

ψ : [0, 1]d → R
d, ψ(x) =











8−1(x1)
8−1(x2)

...
8−1(xd)











(5)

with the inverse transformation being

ψ−1
: R

d → [0, 1]d, ψ−1(x) =











8(x1)
8(x2)

...
8(xd)











. (6)

The transformation is related to inverse transform sampling,
see, e.g., [16]. As a result, we have the commutative diagram in
Figure 2. This allows us to transform the half-period cosine to a
complete orthonormal system on L2(R

d,ω) with the help of the
following lemma.

Lemma 2.1. Let g, h ∈ L2([0, 1]
d), u, v ∈ L2(R

d,ω) with
probability density ω from Equation (2), and transformation ψ ,
ψ−1 as in Equations (5) and (6), respectively. Then

〈g ◦ ψ−1, h ◦ ψ−1〉L2(Rd ,ω) = 〈g, h〉L2([0,1]d)
〈u, v〉L2(Rd ,ω) = 〈u ◦ ψ , v ◦ ψ〉L2([0,1]d)
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FIGURE 2 | Commutative diagram of the function and the transformations.

and subsequently
∥

∥h
∥

∥

L2([0,1]d)
=

∥

∥h ◦ ψ−1
∥

∥

L2(Rd ,ω)
and

‖u ◦ ψ‖L2([0,1]d) = ‖u‖L2(Rd ,ω).

Proof: Let g, h ∈ L2([0, 1]
d) and u, v ∈ L2(R

d,ω). Then we insert
the definition and perform a change of variables as follows

〈g ◦ ψ−1, h ◦ ψ−1〉L2(Rd ,ω)

=
∫

Rd
g(ψ−1(x)) h(ψ−1(x))ω(x) dx

=
∫

[0,1]d
g(t) h(t)ω(ψ(t))

∣

∣detψ ′(t)
∣

∣ dt.

As functional determinant we obtain
∣

∣detψ ′(t)
∣

∣ =
∏d

i=1

√
2π eerf

−2(2ti−1) and subsequently

ω(ψ(t))
∣

∣detψ ′(t)
∣

∣ =
d

∏

i=1

1√
2π

e−erf−2(2ti−1) ·
√
2π eerf

−2(2ti−1)

= 1.

This proves the first equality. For the second equality, we use an
analogous procedure.

Lemma 2.1 is not surprising since we have based the
transformation on the cumulative distribution function 8

from Equation (3). In the following, we obtain the new
orthonormal system.

Theorem 2.2. The functions (φtrafok )k∈Nd
0
with

φtrafok (x) := (φcosk ◦ ψ−1)(x) =
√
2
‖k‖0

d
∏

i=1

cos
(

πki8(xi)
)

(7)

form a complete orthonormal system in L2(R
d,ω).

Proof: We have that 8 from Equation (3) is a bijection
and Lemma 2.1 shows that f 7→ f ◦ ψ−1 is an isometric
isomorphism between L2(R

d,ω) and L2([0, 1]
d). Now,

an isometric isomorphism between two spaces maps an
orthonormal basis in one space to an orthonormal basis in the
other. We obtain that (φtrafok )k∈Nd

0
is an orthonormal basis in

L2([0, 1]
d).

FIGURE 3 | Transformed basis functions φtrafo
k for k = 1 (solid), k = 2 (dotted),

and k = 3 (dashed), in one dimension.

In summary, we have constructed a complete orthonormal
system (φtrafok )k∈Nd

0
on the weighted space L2(R

d,ω) using

transformation ideas from [13] and the well-known half-period
cosine basis (φcosk )k∈Nd

0
on L2([0, 1]

d). The basis functions are

visualized in Figure 3.

3. INTERPRETABLE ANOVA
APPROXIMATION

In this section, we briefly summarize the interpretable ANOVA
(analysis of variance) approximation method and the idea
of grouped transformations, see [2, 11]. The approach was
considered for periodic functions, but has been expanded to non-
periodic functions in [3, 4]. In this paper, we focus on functions
f : Rd → R from L2(R

d,ω) with probability density ω from
Equation (2). Since ω is the density of the standard normal
distribution, this function space is of a high relevance. It allows
us, e.g., to work with data from applications that has been Z-
transformed, i.e., data with zero mean and variance one, see,
e.g., [1]. Since the transformed half-period cosine (φtrafok )k∈Nd

0
,

see Theorem 2.2, is a complete orthonormal system in the space
L2(R

d,ω), we have

f (x) =
∑

k∈Zd

ck
(

f
)

φtrafok (x), ck
(

f
)

= 〈f ,φtrafok 〉L2(Rd ,ω), (8)

and through Parseval’s identity
∥

∥f
∥

∥

2

L2(Rd ,ω)
=

∑

k∈Zd

∣

∣ck
(

f
)∣

∣

2
.

The classical ANOVA decomposition, c.f. [5–7, 9], provides
us with a unique decomposition in the frequency domain as
shown in [2]. We denote the set of coordinate indices with [d] =
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{1, 2, . . . , d}. The ANOVA terms are defined as

fu(x) = fu(xu) :=
∑

k∈Zd

supp k=u

ck
(

f
)

φtrafok (x).

The function can then be uniquely decomposed as

f (x) =
∑

u⊆[d]

fu(x)

into
∣

∣P([d])
∣

∣ = 2d ANOVA terms where P([d]) is the
power set of [d]. Here, the exponentially growing number of
terms shows an expression of the curse of dimensionality in
the decomposition.

It is our goal to obtain information on how important the
ANOVA terms fu are with respect to the function f . In order to
measure this, we define the variance of a function f as

σ 2(f ) :=
∥

∥f
∥

∥

2

L2(Rd ,ω)
−

∣

∣c0
(

f
)
∣

∣

2 =
∑

k∈Zd\{0}

∣

∣ck
(

f
)
∣

∣

2
.

Note that, we have the special case σ 2(fu) =
∥

∥fu
∥

∥

2

L2(Rd ,ω)
, u ⊆ [d].

The relative importance with respect to f is then measured via
global sensitivity indices (GSI) or Sobol indices, see [7, 17, 18],
defined as

̺(u, f ) := σ 2(fu)

σ 2(f )
. (9)

From the GSI we get a motivation for the concept of effective
dimensions, specifically the superposition dimension as one
notion of effective dimension. For a given α ∈ [0, 1] it is
defined as

d(sp) := min















s ∈ [d] :
1

σ 2(f )

∑

u⊆[d]
|u|≤s

σ 2(fu) ≥ α















. (10)

The superposition dimension d(sp) tells us that we can explain the
α-part of the variance of f by terms fu with u ≤ d(sp).

Using subsets of ANOVA terms U ⊆ P([d]), it is our goal to
find a way to circumvent the curse of dimensionality for efficient
approximation. In order to achieve this, we aim to truncate the
ANOVA decomposition by taking only the ANOVA terms in
U into account. The truncated ANOVA decomposition is then
defined as

TU f (x) =
∑

u∈U
fu(x).

A specific idea for the truncation comes from the superposition
dimension d(sp) in Equation (10). The idea is to take only variable
interactions into account that contain ds or less variables, i.e., the
subset of ANOVA terms is

U(d, ds) :=
{

u ⊆ [d] : |u| ≤ ds
}

. (11)

Here, we call ds a superposition threshold. Since ds does not
necessarily have to coincide to the superposition dimension
d(sp), we call it superposition threshold. A well-known fact from
learning theory is that the number of terms inU(d, ds) grows only
polynomially in d for fixed ds < d, i.e.,

∣

∣U(d, ds)
∣

∣ ≤
(

ed

ds

)ds

which has reduced the curse of dimensionality.
In the following, we argue why the truncation by a

superposition threshold ds works well in relevant cases. For the
approximation of functions that belong to a space Hs(Rd,ω) ⊆
L2(R

d,ω) that characterizes the smoothness s > 0 by the decay
of the basis coefficients ck

(

f
)

, we can show upper bounds on the

superposition dimension d(sp) for α ∈ [0, 1], see, e.g., [2]. In fact,
there are types of smoothness that are proven to yield a low upper
bound for the superposition dimension specifically dominating-
mixed smoothness with POD (product and order-dependent)
weights, c.f. [2, 19–22].

In terms of real data from applications, the situation is
much different. Here, we cannot make the assumption that in
complete generality we have a low superposition dimension.
However, there are many application scenarios where numerical
experiments successfully showed that this is indeed the case, see,
e.g., [5]. Since we generally do not have a-priori information, we
work with low superposition thresholds ds for truncation and
validate on our test data.

3.1. Approximation Procedure
In this section, we briefly discuss how the approximation is
numerically obtained and how we can interpreted the results. In
this section, we assume a given subset of ANOVA terms U ⊆
P([d]). This set may be equal to or a subset of U(d, ds). We have
given scattered data in the form of a set X = {x1, x2, . . . , xM} ⊆
R
d of standard normal distributed nodes and values y ∈ R

M ,
M ∈ N. Moreover, we assume that there is an L2(R

d,ω)
function f of form Equation (8) with f (xi) ≈ yi which we want
to approximate.

First, we truncate f to the set U such that f ≈ TU f . However,
there are still infinitely many coefficients and, therefore, we
perform a truncation to partial sums on finite support index sets

I∅ = {0}, and Iu = {1, 2, . . . ,N|u| − 1}|u| (12)

with order-dependent parametersN|u| ∈ N, |u| = 1, 2, . . . , ds, for
every ANOVA term fu, u ∈ U. Using the projections PuIu = {k ∈
N
d
0 : ku ∈ Iu, kuc = 0} with uc := [d] \ u, we obtain

fu(x) ≈
∑

k∈PuIu

ck
(

f
)

φtrafok (x).

Now, taking the union I(U) =
⋃

u∈U PuIu yields

f (x) ≈
∑

k∈I(U)

ck
(

f
)

φtrafok (x).
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However, the coefficients ck
(

f
)

are unknown and it is our goal
to determine approximations to them. We aim to achieve this by
solving the regularized least-squares problem

f̂ = (f̂k)k∈I(U) = argmin
ĝ∈R|I(U)|

∥

∥y− F(X , I(U))ĝ
∥

∥

2

2
+ λ

∥

∥ĝ
∥

∥

2

2
, (13)

c.f. [2, 3, 11], with the basis matrix F(X , I(U)) =
(φtrafok (x))x∈X ,k∈I(U). For the approximate coefficients, we

have f̂k ≈ ck
(

f
)

and we define the resulting approximation as

S(X , I(U))f :=
∑

k∈I(U)

f̂k φ
trafo
k .

We solve problem Equation (13) using the iterative LSQR solver
[23]. In order to apply LSQR, we rewrite Equation (13) by
observing the equality

∥

∥y− F(X , I(U))ĝ
∥

∥

2

2
+ λ

∥

∥ĝ
∥

∥

2

2
=

∥

∥

∥

∥

(

y

0

)

−
(

F(X , I(U))√
λI

)

ĝ

∥

∥

∥

∥

2

2
(14)

with 0 the zero vector inR|I(U)| and I ∈ R|I(U)|,|I(U)| the identity
matrix. Note that, we always have a unique solution in this case
since the matrix

(

F(X , I(U))√
λI

)

has full column rank. However, the solution depends on the
regularization parameter λ.

We apply the matrix-free variant of LSQR, i.e., we never
explicitly construct the matrix F(X , I(U)). The grouped
transformations introduced in [11] provide oracle functions for
themultiplications of F(X , I(U)) and its transposed FT(X , I(U))
with vectors. For our specific basis functions φtrafok the grouped
transformations are based on the non-equispaced fast cosine
transform or NFCT, see [24, 25]. The transformation uses
parallelization to separate our multiplication into smaller, up to
ds-dimensional NFCTs which results in an efficient algorithm.
For more details we refer to [11].

One key fact is that the nodes X have to be distributed
according to the probability density ω of the space such that the
Moore–Penrose inverse F†(X , I(U)) is well-conditioned. In our
case, ω is the density of the standard normal distribution, i.e.,
the nodes X have to be distributed accordingly. For a detailed
discussion on the properties of those matrices we refer to [26, 27]
where our basis is a special case.

We use the global sensitivity indices ̺(u, S(X , I(U))f ),
u ∈ U, from the approximation S(X , I(U))f (x) to compute
approximations for the global sensitivity indices ̺(u, f ) of the
function f . Here, we do not consider the index to be a good
approximation if the values are close together, but rather if there
order is identical, i.e., we have

̺(u1, f ) ≤ ̺(u2, f ) H⇒ ̺(u1, S(X , I(U))f ) ≤ ̺(u2, S(X , I(U))f )

for any pair u1, u2 ∈ U. We assume that this is the case for
our choices of index sets I(U). In particular, the quality of the
approximation corresponds to the accuracy of this assumption.

In order to rank the influence of the variables x1, x2, . . . , xd we
use the ranking score

r(i) =

∑

u∈{v∈U : i∈v}
|{v ∈ U : |u| = |v| , i ∈ v}|−1

̺(u, S(X , I(U))f )
∑

u∈U

(

∑

j∈u

∣

∣{v ∈ U : |u| = |v| , j ∈ v}
∣

∣

−1
)

̺(u, S(X , I(U))f )

. (15)

for i = 1, 2, . . . , d which was introduced in [4]. Note that this
score has order-dependent weight and is normalized such that
∑

i∈[d] r(i) = 1. Computing every score r(i), i ∈ [d] provides
an attribute ranking with respect to U showing the percentage
that every variable adds to the variance of the approximation. We
then conclude that if we have a good approximation S(X , I(U))f ,
the corresponding attribute ranking will be close to the attribute
ranking of the function f .

3.2. Active Set
In this section, we describe how to obtain a set of ANOVA terms
U for approximation. We are still working with the scattered
data X ⊆ R

d and y ∈ R
M , M ∈ N. The values y may also

contain noise. Our first step is to limit the variable interactions
by a superposition threshold ds ∈ [d] which may have been
estimated by known smoothness properties (or different a-priori
information) or set to a sensible value if nothing is known. It
is also possible to determine an optimal value through cross-
validation. We choose the order-dependent parameters N|u|,
|u| = 1, 2, . . . , ds, c.f. Equation (12), to obtain I(U(d, ds)) and
with the procedure described in Section 3.1, the approximation
S(X , I(U(d, ds)))f .

From the approximation S(X , I(U(d, ds)))f we can then
calculate the global sensitivity indices ̺(u, S(X , I(U(d, ds)))f ),
u ∈ U(d, ds), and an attribute ranking r(i), i ∈ [d], see Equation
(15). Then we are able to apply the strategies proposed in [4] to
truncate terms from the set U(d, ds).

One obvious method is the truncation of an entire variable
xi, i ∈ [d], if the attribute ranking r(i) shows that its
influence is insignificant. Specifically, that would translate to
an active set U∗ = {u ∈ U(d, ds) : i /∈ u}. This leads to a
reduction in dimensionality of the problem and greatly simplifies
our model.

A different method is active set thresholding where we chooses
a threshold vector ε ∈ (0, 1)ds and reduce the ANOVA terms to
the set

U∗(ε) :=
{

u ∈ U(d, ds) : ̺(u, S(X , I(U(d, ds)))f ) > ε|u|
}

.

Here, ε|u| denotes the |u|th entry of the vector ε. The parameter
vector ε allows control over how much of the variance may be
sacrificed in order to simplify the model function.

In summary, it is necessary to interpret the information from
the approximation S(X , I(U(d, ds)))f and decide on strategies
for truncating the set of ANOVA terms. One may also use
different strategies to obtain an active set or any combination
of the multiple approaches, see, e.g., [3, 4]. Of course, it is also
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TABLE 1 | Attributes of the forest fires dataset and their corresponding groups.

No. Group Name Description

1 spatial (S) X x-coordinate (1 to 9)

2 Y y-coordinate (1 to 9)

3 temporal (T) month month of the year (1 to 12)

4 day day of the week (1 to 7)

5 FWI FFMC FFMC code

6 DMC DMC code

7 DC DC code

8 ISI ISI index

9 meteorological (M) temp outside temperature in ◦C

10 RH outside relative humidity in %

11 wind outside wind speed in km/h

12 rain outside rain in mm/m2

TABLE 2 | Codes of the FWI with their base components from the weather data

according to [28].

Name Components

Fine Fuel Moisture Code (FFMC) temperature, relative humidity, wind, rain

Duff Moisture Code (DMC) temperature, relative humidity, rain

Drought Code (DC) temperature, rain

Initial Spread Index (ISI) wind, FFMC

possible to repeat the procedure multiple times, i.e., through
cross-validation.

4. FOREST FIRE PREVENTION

We now apply the previously described method to the dataset
[14] from the UC Irvine machine learning repository. The
dataset contains information about forest fires in theMontesinho
national park in the Trás-os-Montes northeast region of Portugal.
The data was collect from 2002 to 2003. Specifically, we have
d = 12 attributes about the fires and the target variable is the
area of the forest that was destroyed by it. If we obtain an efficient
model, it can be possible to predict the risk for a future forest fire
using parameters that can be easily measured. This information
can then be used to prepare appropriate countermeasures. The
dataset has been thoroughly considered in [15] and we compare
to the results they obtained. The authors considered several
different methods: the naive average predictor (Naive), multiple
regression (MR), decision tree (DT), random forest (RF), neural
network (NN), and support vector machine (SVM).

We group the 12 attributes into 4 categories as in [15], i.e.,
spatial, temporal, FWI system, and meteorological data, (see
Table 1). The spatial attributes describe the spatial location of
the fire in a 9 by 9 grid of our considered region. The temporal
attributes are the month of the year and the day of the week
when the fire occurred. The forest fire weather index (FWI), c.f.
[28], is the Canadian system for rating fire danger and the dataset

TABLE 3 | MAD and RMSE (in brackets) for the best performing model in the

corresponding attribute subset (underline—overall best result, bold—best result

for this selection).

Attribute selection

Model S T FWI S T M FWI M

Naive 18.61 (63.7) 18.61 (63.7) 18.61 (63.7) 18.61 (63.7)

MR 13.07 (64.5) 13.04 (64.4) 13.00 (64.5) 13.01 (64.5)

DT 13.46 (64.4) 13.43 (64.6) 13.24 (64.4) 13.18 (64.5)

RF 13.31 (64.3) 13.04 (64.5) 13.38 (64.0) 12.93 (64.4)

NN 13.09 (64.5) 13.92 (68.9) 13.08 (64.6) 13.71 (66.9)

SVM 13.07 (64.7) 13.13 (64.7) 12.86 (64.7) 12.71 (64.7)

ANOVA 12.75 (45.77) 12.81 (46.7) 12.76 (46.09) 12.65 (45.69)

The applied methods are the naive average predictor (Naive), multiple regression (MR),

decision tree (DT), random forest (RF), neural network (NN), and support vector machine

(SVM) from [15]. Our method is denoted with ANOVA.

TABLE 4 | Optimal parameter choices for the experiments from Table 3.

Attribute selection N1 N2 |I| λ

S T FWI 2 6 149 e9

S T M 2 10 261 e10

FWI 2 4 23 e8

M 2 8 47 e7

FIGURE 4 | Attribute ranking r(i), i = 1, 2, . . . , 12, of the approximation with all

twelve attributes using N1 = N2 = 2 and λ = 1.0.

collects several components of it, see also Table 2. Moreover, four
meteorological attributes which are used by the FWI index were
selected. The target variable describes the area that was burned by
the fire.

In terms of pre-processing, we apply a Z-score transformation
to the variables and the logarithmic transformation log(1 + ·)
to the burned area. The Z-score transformation achieves that
our data has zero mean and unit variance. The logarithmic
transformation on the target is opportune since it shows a
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FIGURE 5 | Global sensitivity indices ̺(u,S(Xtrain,I(U(12, 2)))f ),

u ∈ I(U(12, 2)), of the approximation with all twelve attributes using

N1 = N2 = 2 and λ = 1.0 (sorted). The green indices belong to sets u such

that ∃s ∈ {3, 7, 9} with s ∈ u.

positive skew with a large number of fires that have a small size.
We denote the data (X , y) with X = {x1, x2, . . . , xM} ⊆ R

12,
M = 517, and y ∈ R

M . In the following, we do not use all of
the variables, but build models based only on some groups as
denoted in Table 1, e.g., STM says that we use spatial, temporal,
and meteorological attributes without the FWI.

Table 3 shows the overall results of our experiment (ANOVA)
combined with the benchmark data from [15]. Each value, our
ANOVA results, as well as the others, were obtained by averaging
over executing a 10-fold cross-validation 30 times. This results
in a total of 300 experiments. We used a superposition threshold
of ds = 2, c.f. Equation (11), and, therefore, needed to detect
optimal choices for the parameters N1 and N2 from Equation
(12), (see Table 4). Every experiment utilized 90% of the data
as training set (Xtrain, ytrain) and 10% of the data as test set
(Xtest, ytest). The best performingmodel was selected based on the
mean absolute deviation

MAD = 1

|Xtest|

|Xtest|
∑

i=1

∣

∣(ỹ)i − (ytest)i
∣

∣ (16)

with ỹ the predictions of our model for the data points in the
test set Xtest. As a second error measure, we use the root mean
square error.

RMSE = 1√
|Xtest|

√

√

√

√

|Xtest|
∑

i=1

∣

∣(ỹ)i − (ytest)i
∣

∣

2
. (17)

We are able to outperform the previously applied method for
every subset of attributes in bothMAD and RMSE error. Notably,
the difference in the RMSE that penalizes larger deviations in the
burned area stronger than the MAD is much more significant.

While we replicated the setting of [15] for benchmark
purposes, it remains our goal to identify the most important
attributes for the detection of forest fires. Therefore, we now use
all 12 attributes of the dataset in obtaining our approximation
and subsequently interpret the results. Figure 4 shows the
attribute ranking r(i), i = 1, 2, . . . , 12, and Figure 5 the global
sensitivity indices ̺(u, S(Xtrain, I(U(12, 2)))f ), u ∈ U(12, 2),
after computing for an approximation with N1 = N2 = 2
and λ = 1.0.

The attributes 3, 7, and 9 are clearly the most important.
They represent the month of the year (3), the DC code of the
FWI (7), and the outside temperature (9). Using only these three
attributes and superposition threshold ds = 2, we computed an
approximation with N1 = 2, N2 = 10, and λ = e8. The resulting
model yielded an MAD of 12.64 and an RMSE of 45.57 with 30
times of 10-fold cross validation as before. In summary, we know
that the most important information of our problem is contained
in only three attributes and we also obtained a better performing
model using only those three attributes.
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