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Power laws (PLs) have been found to describe a wide variety of natural (physical,

biological, astronomic, meteorological, and geological) and man-made (social, financial,

and computational) phenomena over a wide range of magnitudes, although their

underlying mechanisms are not always clear. In statistics, PL distribution is often found

to fit data exceptionally well when the normal (Gaussian) distribution fails. Nevertheless,

predicting PL phenomena is notoriously difficult because of some of its idiosyncratic

properties, such as lack of well-defined average value and potentially unbounded

variance. Taylor’s power law (TPL) is a PL first discovered to characterize the spatial

and/or temporal distribution of biological populations. It has also been extended to

describe the spatiotemporal heterogeneities (distributions) of human microbiomes and

other natural and artificial systems, such as fitness distribution in computational (artificial)

intelligence. The PL with exponential cutoff (PLEC) is a variant of power-law function

that tapers off the exponential growth of power-law function ultimately and can be

particularly useful for certain predictive problems, such as biodiversity estimation and

turning-point prediction for Coronavirus Diease-2019 (COVID-19) infection/fatality. Here,

we propose coupling (integration) of TPL and PLEC to offer a methodology for quantifying

the uncertainty in certain estimation (prediction) problems that can be modeled with

PLs. The coupling takes advantage of variance prediction using TPL and asymptote

estimation using PLEC and delivers CI for the asymptote. We demonstrate the integrated

approach to the estimation of potential (dark) biodiversity of the American gut microbiome

(AGM) and the turning point of COVID-19 fatality. We expect this integrative approach

should have wide applications given duel (contesting) relationship between PL and

normal statistical distributions. Compared with the worldwide COVID-19 fatality number

on January 24th, 2022 (when this paper is online), the error rate of the prediction with

our coupled power laws, made in the May 2021 (based on the fatality data then alone), is

approximately 7% only. It also predicted that the turning (inflection) point of the worldwide

COVID-19 fatality would not occur until the July of 2022, which contrasts with a recent

prediction made by Murray on January 19th of 2022, who suggested that the “end of

the pandemic is near” by March 2022.

Keywords: Taylor’s power law (TPL), power law with exponential cutoff (PLEC), potential (dark) biodiversity,

long-tail skewed distribution, turning point of COVID-19, COVID-19 fatality prediction
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INTRODUCTION

A power law (PL) describes a non-linear functional relationship
between two variables—one varies as a power of another (e.g.,
f (x) = axb) and has certain properties, such as scale invariance,
lack of well-defined average value, and universality [1–4]. The
scale invariance is exhibited by a simple log-transformation of
PL into a straight-line (linear) on log-log scale {e.g., ln[f (x)] =
ln(a)+ b ln(x)}, and it also specifies that all PLs with a particular
scaling exponent are equivalent up to constant factors, e.g.,

f (cx) = a(cx)b = cbf (x) ∝ f (x). The lack of well-
defined average value refers to a reality that arithmetic mean
or average is a poor indicator for the majority of the power-
law variables (e.g., the average income of a population that
includes a billionaire). A PL usually has a well-defined mean only
for a certain range of its scaling exponents, and the variance
of PL seems disproportionally large and is frequently not well
defined, which explains the association between PL phenomena
and black swan behavior. This also makes many classic statistical
methods that are based on the normal distribution and/or on the
homogeneity of variance inapplicable to data of PL phenomena.
The third property of PL is the universality that is to do with
the scale invariance or the equivalence of PLs with a particular
scaling exponent. In dynamic systems, diverse systems with
the same power-law scaling exponents (also known as critical
exponents) can exhibit identical scaling behavior and share the
same fundamental dynamics as they approach criticality, such as
phase transitions. Systems with the same critical exponents are
classified as belonging to the same universality class [1–6].

Taylor’s power law (TPL), first discovered by entomologist and
ecologist L. R. Taylor [7] in investigating the spatial distribution
of insect populations more than a half-century ago [5, 8–12], has
been expanded far beyond its original domains of agricultural
entomology and population ecology [1, 2, 5, 6, 13–19]. The TPL
is one form of PLs that describe the distributions of a wide variety
of natural and man-made phenomena over a wide range of
scales [20–22]. PL patterns have been discovered/rediscovered in
astronomy, biology and ecology, computer science, criminology,
economics, finance, geology, mathematics, meteorology, physics,
statistics, and especially in inter-disciplinary fields [3, 4].

Taylor’s power law, as one of the most well-known PLs in
ecology and biology, shares the three general properties of PLs
mentioned above. It differs from other PLs in choosing its
two variables: the mean (M) and variance (V) of population
abundances (counts) [5, 7, 11], i.e.,V = aMb. It has also been
rediscovered in many other fields beyond its original domain
of population ecologies, such as epidemiology, genomics and
metagenomics, and computer science [5, 6, 14, 15, 20–23]. It
was extended to community ecology, especially the community
and landscape ecology of human microbiomes [6, 23, 24]. In
the present study, we take the advantage of TPL in modeling
the relationship between mean and variance for quantifying the

Abbreviations: AGM, American Gut Microbiome; DAR, Diversity-area

relationship; DTR, Diversity-time relationship; FTR, Fatality-time relationship;

MAD, Maximal accrual diversity; PLEC, Power law with exponential cutoff; SAR,

Species-area relationship; STR, Species-time relationship; TPL, Taylor’s power law.

uncertainty of natural phenomenon. This should be feasible
because variance is arguably the most commonly used statistic
moment for characterizing the uncertainty (variation) of random
variables. The approach is particularly advantageous if the
distribution of random variable follows PL distribution, but it
should still be applicable otherwise since TPL holds across a wide
range of mean-variance relationships as signaled by a wide range
of its scaling parameter (b).

Species-area relationship (SAR) is another classic PL in
ecology, which relates the number of species (species richness:
S) and the area (A) of species habitat, in the form of S = cAz .
Ma [25, 26] further extended the SAR to a general diversity-
area relationship (DAR) by replacing species number (richness)
with the general diversity measured in Hill numbers. Ma [25–
27] further introduced PL with exponential cutoff (PLEC) model
to describe DAR and proposed the concept of maximal accrual
diversity (MAD). Based on the PLECmodel for DAR,Ma derived
the estimation of MAD. MAD can be considered as a proxy
of potential (dark) diversity, which includes both local diversity
and the portion of diversity that are absent locally but present
regionally (or in regional species pools). In other words, potential
diversity measures both visible and invisible (dark) diversities
and is of obvious significance for biodiversity conservation.
Similar to SAR/DAR, there is so-called species-time relationship
(STR) or diversity-time relationship (DTR) [26]. The PLEC
version of DTR was successfully applied to predict the inflection
points (tipping points) of COVID-19 infections [28].

Power law with exponential cutoff, as a variant of PL,
has more general applications beyond the abovementioned
SAR/DAR/STR/DTR/COVID-19 predictions [25–28]. PL
behaves (grows or declines) exponentially, especially at late
stages, and the PLEC possesses an exponential cutoff parameter
that ultimately tapers off the unlimited growth or decline
ultimately. Therefore, the PLEC model is of important practical
significance when prediction or estimation is needed. However,
existing PLEC modeling can only provide point estimation and
not the interval of the estimation (i.e., uncertainty quantification
of the estimation).

The present article is aimed to integrate the TPL with the
PLEC model with the objective to improve the predictive power
of the PLEC model by quantifying the uncertainty of estimation
(prediction) with TPL. Specifically, by harnessing the capacity of
TPL in estimating the variance (SD), we develop an approach to
offering CIs for the estimation of PLEC quantities (see Figure 1).
We demonstrate our method with the estimations of potential
American gut microbiome (AGM) diversity and COVID-19
fatalities. The demonstrated approach can be potentially suitable
for a predictive mathematical model as long as the variance
and mean of its dependent variable can be quantified with the
TPL model.

MATERIALS AND METHODS

Taylor’s Power Law
Compared with other PLs, TPL has two somewhat unique
characteristics, both of which are determined by the two variables
(variance and mean) it aims to quantify. The first is that
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FIGURE 1 | A diagram illustrating the coupling of TPL and PLEC models: for predicting COVID-19 fatality [(A) the left block] and American gut microbiome diversity

[(B) the right block]. The top pair of boxes in both case studies illustrates the format of input data, the middle boxes specify the power law models, and the bottom

boxes list the formulae for computing the CIs.

its scaling parameter (exponent) that measures the population
(community) spatial heterogeneity or temporal stability. This has
to do with the fact that the variance (V) to mean (M) ratio
(V/M) is a measure of the dispersion of data points (population
abundances or counts), while dispersion, aggregation, and
heterogeneity essentially characterize the same or similar system
properties [6, 16]. For example, the TPL scaling parameter (b)
can be used to measure heterogeneity at population, community,
and landscape levels, respectively, depending on the level, the
TPL model is constructed. The second characteristic of TPL is
also related to the variance and mean: the relationship can be
utilized for designing sampling schemes since the variance (level
of variation or heterogeneity) determines the sampling efforts
(sample sizes) necessary for estimating the population (species)
abundances reliably {e.g., [12, 17]}. We take the advantages of
TPL in this study to improve the quality of prediction/estimation
because variance or SD is the foundation for computing CI
of estimation.

Taylor’s power law is one form of PLs, and it establishes the
relationship between the variance and the mean of a random
variable Y (e.g., population counts or abundances of biological
populations) as a power function:

Var(Y) = V = aMb (1)

where V andM are the variance and mean of random variable Y ;
a and b are the parameters that can be estimated by fitting TPL to
the variance-mean pairs of a series of spatial or temporal samples
of populations. TPL can be fitted by a simple log-transformation

{e.g., [5, 7]}, which generates:

ln(V) = ln(a) + b ln(M) (2)

Alternatively, non-linear optimization techniques, such as
Marquardt’s algorithm [29] or Simplex optimization [30], can be
used to fit TPL directly (i.e., Eq. 1). However, log-transformed
linear fitting (Eq. 2) may actually have an advantage from the
perspective of scale-invariance as mentioned in the introduction
section previously.

Ma [23] extended TPL to the community level by specifying
Y as species abundance,M as the mean species abundance (size)
per species in a community, and V is the corresponding variance.
By regressing V-M across a series of communities (samples),
one obtains type-I TPL extension (TPLE) for community
spatial heterogeneity and type-II TPLE for community temporal
stability. Similarly, there were type-III for mixed-species spatial
heterogeneity and type-IV for mixed species temporal stability.
The four TPLEs have the exactly same mathematical form as
the original TPL [1] and [2], but the variables and parameters
are defined and interpreted differently. Taylor [5] conjectured
that TPL is only applied to integers, such as population counts
(abundances), and it works poorly for ratios and very poorly for
bounded ratios.

In this study, we take the advantages of TPL/TPLEs to estimate
variance (V) corresponding to mean (M). The variance or its
squared root (SD) provides necessary quantities for estimating
CIs of PL or PLEC models as introduced below.
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Power Law With Exponential Cutoff Model
Power law with exponential cutoff is a variant of PL model, and it
was initially used to extend another classic PL in ecology, i.e., the
SAR [31, 32]. The PL model for SAR is:

S = cAz (3)

where S is the number of species and A is the area of habitat
occupied by S species.

Ma [25] extended the SAR to the general DAR by replacing the
species richness (number of species) with general biodiversity (in
Hill numbers).

qD = cAz (4)

where qD is diversity measured in the q-th order Hill numbers, A
is the area, and c and z are parameters.

The PLEC model for DAR is:

qD = cAz exp(dA), (5)

where d is a third parameter (taper-off parameter) and should be
negative in DAR scaling models, and exp(dA) is the exponential
decay term that eventually overwhelms the PL behavior at a very
large value of A. The PLEC was originally introduced to SAR
modeling by Plotkin et al. [33] and Ulrich and Buszko [34] (also
see [35]), and Ma [25] extended it to DAR.

Ma [25] further derived the asymptote of the PLECmodel and
termed it as the MAD or potential diversity.

Amax = −z/d (6)

qDmay have a maximum in the following form:

Max(qD) = c(−
z

d
)
z
exp(−z) = cAz

max exp(−z) (7)

There are similar STR and corresponding DTR [27, 32].
STR/DTR has the exactly same PL/PLEC models as SAR/DAR
described previously, but the data used to fit the models are
different and so do the model parameters [27]. As further
explained in the next sub-section, the fitting of PLEC can
be performed with non-linear optimization, although log-
transformed linear fitting, similar to fitting of TPL, can be used.

Ma [28] adapted the STR/DTR model to predict the inflection
(turning) points of COVID-19, in which maximal accrual or
potential diversity is equivalent to maximal infection numbers. In
STR/DTR modeling, a convention is to use parameter w in place
of the z of SAR/DAR as a diversity-time scaling parameter.

In the present study, we used the PLEC-DAR model to
demonstrate the prediction of gut microbiome diversity and the
PLEC-DTR model to demonstrate the prediction of COVID-19
fatalities, both augmented by the TPL model to get their CIs, as
outlined below:

Coupling TPL and PLEC Models for
Predicting the Interval of COVID-19
Fatalities
Here, we outline the integration of TPL with PLEC for predicting
the interval of COVID-19 fatalities as following steps (also see
Figure 1).

Step (i) Use the PLEC model (Eq. 5), adapted for fitting the
fatality-time relationship (FTR) datasets as follows, i.e.,

F = cTw exp(dT), (8)

where T is the time in days, and F is the fatality, c, w, and d are
PLEC-FTR parameters. When the taper-off effects of parameter
d is usually rather weak before the fatality numbers reach the
peak, it is reasonable to treat w as an approximation to the
fatality growth rate and c as an approximation to the initial fatality
number. To fit PLEC-FTRmodel (Eq. 8), we adopted a non-linear
optimization algorithm implemented as an R function “nlsLM”
in R package “minpack.lm” (https://www.rdocumentation.org/
packages/minpack.lm/versions/1.2-1/topics/nlsLM) [36]. Since
Tmax > 0 is a necessary condition for the PLEC model to be
biomedically sound, a constraint d < 0 was imposed for the
non-linear fitting of the PLEC-FTR model.

Step (ii) Compute maximal accrual fatality (MAF) number
using eqns. [6] and [7], adapted as:

Fmax = c(−
w

d
)
w
exp(−w) = cTw

max exp(−w) (9)

Tmax = −w/d (w > 0, d < 0) (10)

Step (iii) Use TPL model (Eq. 1) for fitting the spatiotemporal
aggregation (heterogeneity) of fatality numbers, i.e., adapting the
original TPL (Eq. 1) as the following TPL for fatality aggregation:

V = aF̄b (11)

where F̄ is the mean fatality number of COVID-19 and V is the
corresponding variance; a and b are the parameters. Parameters
a and b are estimated by fitting Eq. [11] to spatiotemporal data
of COVID-19 fatality, using the same scheme/procedures as used
for fitting TPL to COVID-19 infection numbers [28].

Step (iv) Compute the variance (V) and SD (
√
V) based on

Eq. [11] for fatality (F) (Eq. 8) or MAF (Fmax) (eqn. 9).
Step (v) Compute the lower and upper limits of 95% CI of

COVID-19 fatality with the following pair of equations:

lower = F − 1.96×
√

V/n (12a)

lower = Fmax − 1.96×
√

Vmax/n (12b)

upper = F + 1.96×
√

V/n (13a)

upper = Fmax + 1.96×
√

Vmax/n (13b)

where n is the number of time points that correspond to F or Fmax

in (eqns. 8 and 9).
With eqns. (12a) and (13a), one can obtain the CI of COVID-

19 fatalities at any time (day) points; alternatively, with eqns.
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(12b) and (13b), one can obtain the CI of maximal accrual of
COVID-19 fatality.

When Fmax cannot be predicted (too early to predict), the PL
model for FTR can be used to complete the above procedures for
estimating the intervals of F, i.e., by setting d = 0, there is a PL
model for F = cTw exp(dT) = cTw.

Coupling TPL and PLEC Models for
Predicting the Gut Microbiome Diversity
Similar to the previous integration of TPL and PLEC for
estimating the CIs of COVID-19 fatalities, here we specify the
procedures for predicting the Cis of AGM diversity (also see
Figure 1).

Step (i) Use PLEC model (Eq. 5) for fitting the DAR
datasets, i.e.,

qD = cAz exp(dA), (14)

where A is the number of individuals, and qD is the AGM
diversity in Hill numbers, c, z, and d are PLEC-DAR parameters.
To fit the PLEC-DAR model, we use the same non-linear
optimization procedures as described previously for COVID-19
fatality prediction.

Step (ii) Compute MAD number using eqns. [6] and [7].
Step (iii) Adapt the TPL model (Eq. 1) for fitting the mean

diversity and variance relationship:

V = aD̄b (15)

where D̄ is the mean diversity (Hill numbers) of AGM and
V is the corresponding variance; a and b are the parameters.
Parameters a and b are estimated by fitting Eq. [15] to AGM
diversity data, using the same scheme/procedures as described
above for COVID-19 fatality prediction.

Step (iv) Compute the variance (V) and SD (
√
V) based on

Eq. [15] for diversity (D) (Eq. 5) or MAD (Dmax) (eqn. 7).
Step (v) Compute the lower and upper limits of 95% CI of

diversity with the following pair of equations:

lower = D− 1.96×
√

V/n (16a)

lower = Dmax − 1.96×
√

Vmax/n (16b)

upper = D+ 1.96×
√

V/n (17a)

upper = Dmax + 1.96×
√

Vmax/n (17b)

where n is the number of samples corresponding to D (Eq. 5)
or Dmax (Eq. 7). With eqns. (16a) and (17a), one can obtain the
CI of diversity at any diversity accrual points; alternatively, with
eqns. (16b) and (17b), one can obtain the CI of maximal accrual
of diversity in Hill numbers.

When Dmax cannot be predicted (too early to predict), the PL
model for DAR can be used to complete the above procedures for
estimating the intervals of D, i.e., by setting d = 0, there is a PL
model for D = cAz exp(dA) = cAz .

RESULTS

Coupling TPL and PLEC-FTR for Predicting
the Intervals of COVID-19 Fatalities
The worldwide COVID-19 fatality numbers are available from
the following website (https://github.com/CSSEGISandData/
COVID-19) managed by Johns Hopkins University. Since the
objective of this study was to demonstrate the feasibility of the
coupling PL approach, we only extracted continent-level data
for demonstrative purposes. For the country-level predictions,
which are too extensive to cover in this article, we have another
separate report.

Figure 1A illustrates the procedures to predict COVID-19
fatality, andTable 1 lists the predictions for six continents and the
whole world. The PLECmodeling succeeded in all continents and
the world, except for Asia. The failure in Asia should be that the
new wave of the outbreak in India was still too early to foresee the
turning point of fatality, as discussed in Ma [28] for the similar
prediction of COVID-19 infections.

InTable 1, the first five columns are self-evident given they are
simply the PLEC-FTR parameters. The next three columns are
the predictions by the PLEC model, the MAF (number) (Fmax),
and the days (Tmax) (Julian days or Calendar date) at which
Fmax occurs. The next column is the actual fatality numbers at
May 21, 2021, which happened to be the date we had completed
the modeling work of this study, and which was listed to allow
for a quick and rough reality check. The next column is the
“completion level”—the percentage of past fatality over MAF
(Fmax). The last two columns are the novel contribution of
this study, i.e., the lower and upper limits of predicted fatality
numbers, which are not possible without the coupling of both the
PLs (TPL and PLEC-FTR models).

Table 2 lists the fatality prediction for Asia based on the
PL-FTR model, for which the PLEC model was failed. The
predictions of the PL model should be treated with caution and
are only of a rough reference value. As explained previously,
when the PLEC-FTR modeling efforts fail, it is usually that the
outbreak is still in early stage and there are not yet sufficiently
long time-series datasets to allow for the fitting of the PLEC
model. Although the PL-FTR model can be fitted in these cases,
the predictions from the PL model are not sufficiently reliable.

Similar to the predictions of COVID-19 infections [28], there
are some standard pre-processing procedures to take before
fitting the PLEC-FTR to the fatality-time (day) datasets. For
example, proper selection of starting point by truncating early
data points (possibly including whole previous pandemic waves)
could be necessary for successful model fitting. In fact, the
fitting results presented in Table 1 are obtained by setting the
starting date for modeling on March 21, 2021 (until May 21,
2021). As discussed in detail by Ma [28], the selection of starting
points does not influence the correctness of prediction since
the infection (or death) numbers before truncation points are
accumulated and treated as new starting infection (fatality)
numbers for model-building.

Figure 2 displays the fitting of the TPL model to the COVID-
19 fatality datasets, and the TPL parameters are used to compute
the CIs for the fatality number prediction from the PLEC-FTR
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TABLE 1 | The power law with exponential cutoff for fatality-time relationship (PLEC-FTR) model fitted with nonlinear optimization for daily cumulative counts of COVID-19

fatality, augmented with Taylor’s power law (TPL) to obtain the 95% CIs*.

Continent z d C R2 Tmax Tmax (Date) Fmax Observed (May 21,

2021)

Completion

level (%)

Lower limit

(95%)

Upper limit

(95%)

Africa 1.150 −0.002 180.452 1.000 501 3-Aug-2022 182,643 127,983 70.1 169,865 195,420

Asia** 1.876 0.000 97.019 0.999 NA NA NA 636,068 NA NA NA

Europe 1.301 −0.012 1,734.846 1.000 113 11-Jul-2021 1,100,080 1,060,982 96.5 929,517 1,270,643

North America 1.185 −0.009 983.515 0.999 129 28-Jul-2021 875,359 854,545 97.6 749,159 1,001,560

South America 1.323 −0.007 1,504.372 1.000 193 29-Sep-2021 952,175 762,185 80.0 839,676 1,064,675

Oceania 1.413 −0.007 0.514 0.989 197 1-Oct-2021 1,191 1,095 92.0 1,075 1,306

World# 1.248 −0.003 4,957.140 1.000 485 19-Jul-2022 5,917,523 3,442,873 58.2 5,452,899 6,382,148

* Using fatality-time (date) relationship data from March 21 to May 21, 2021.

** PLEC failed for the dataset of Asia and PL model was fitted to Asia dataset successfully (see Table 2).

TABLE 2 | The power law for fatality-time relationship (PL-FTR) model fitted for the daily cumulative counts of COVID-19 fatality, augmented with Taylor’s power law (TPL)

to obtain the 95% CIs.

Continent z ln(c) R P-value Observed (May 21,

2021)

Predicted (May 21,

2021)

Predicted (June

21, 2021)

Predicted (July 21,

2021)

Predicted

(Aug 21,

2021)

Start date

Asia 2.072 0.498 0.994 0.000 636,068 606,878

[562,269;651,487]

687,070 [637,883;

736,257]

772,420 [718,484;

826,356]

862,949

[804,096;

921,802]

10-Feb-2020

model. Figure 3 displays the predicted COVID-19 fatalities based
on the results, which are listed in Table 1.

Coupling TPL and PLEC-DAR for
Predicting the Intervals of Gut Microbiome
Diversity
Figure 1B shows the procedures for integrating the TPL
and PLEC-DAR PL models for estimating the CIs of AGM
diversity. The AGM datasets used to perform this demonstration
are available for downloading in the public domain (http://
americangut.org).

Table 3 exhibits the results from implementing the coupled
TPL and PLEC-DAR modeling analysis. The first five columns
in Table 3 are simply the parameters of the fitted PLEC-DAR
model for the AGM datasets, and the last four columns are
simply the predicted MAD (species richness) of the AGM, i.e.,
the maximal accrual species richness (Dmax) and the lower and
upper limits of Dmax. Amax is the number of individuals (sample
sizes) at which the Dmax is reached. Given that the samples of
1,473 individuals are used to build the PLEC-DAR model, and
the Amax implies that 533 (=Amax−1,473, where Amax = 2,006,
see Table 3) additional individuals are required to accumulate
the maximal accrual species richness in the AGM cohort or
population. Figure 4 illustrates the fitting of the TPL model,
which helps the estimation of the 95%-level CIs ofDmax. Figure 5
illustrates the predicted species richness (Dmax) (the solid curve
in red color) and its CI (dashed lines) and the observed species
richness (the solid dots in blue color).

Numerous mathematical models have been produced to
forecast the future of COVID-19 epidemics, but models are

not crystal balls for predictions [37]. In particular, estimates
from models about COVID-19 can contribute to uncertainty
and anxiety to the public, lowering uncertainty can be helpful
for alleviating possible anxiety accordingly. Jewell et al. [37]
argued that short-term prediction can be critical for assisting the
planning, but it is usually less productive to focus on long-term
“guesses” for such purposes. The demonstrated application of
the coupling PLs can lower the uncertainty of fatality prediction,
besides being particularly simple and effective for short term (e.g.,
one epidemic wave of a pandemic) forecasting.

There are many alternative models to our proposed approach.

For example, Li et al’s [38] editorial introduces a series of
34 articles, published in the journal “Frontiers in Physics”, on

COVID-19 predictive modeling covering models/methods from

classic Susceptible, Infectious, and/or Recovered (SIR) model
and the associated reproductive number of the SIR to Gaussian
model for the time evolution of the first corona pandemic
wave. The Gaussian model is arguably the simplest analytically
tractable model that allows for quantitative prediction of the time

evolution of infections and fatalities during a pandemic wave.
It can be rather challenging to compare and evaluate specific
models, although rigorously evaluations and validations of model
predictions are critical for their applications. For this, we feel it is
beyond the scope of this article to compare our method with the
existing models, especially those for COVID-19 predictions. On
the other hand, we would like to present a brief discussion on the
general strategy for building mathematical models in the section
“Conclusions and Discussion.”

Before concluding this subsection, an interesting
phenomenon regarding the applications of artificial intelligence
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FIGURE 2 | Taylor’s power law (TPL) model for the cumulative counts of COVID-19 fatalities: the variance corresponding to the mean fatality (F) is used to compute

the SE and width of CI.

(AI) and machine learning (ML) to COVID-19 predictions
seems to be worthy of particular notice. Vytla et al. [39] reviewed
a slightly surprising phenomenon: the prediction of the COVID-
19 pandemic is described as “the kryptonite of modern AI”
and many predictions “by AI and ML are neither accurate nor
reliable.” The failure of AI can be due to an array of factors, and
most prominent includes the lack of sufficient historic data to
train AI models and the low quality of big data, often collected
from social media. Even though the “garbage-in-garbage-out”
is a well-known trap to modelers, the failure of AI models for
COVID-19 predictions just reminds us that AI or ML is not an
exception. In fact, the failure of big data in predicting epidemics
occurred prior to the COVID-19 pandemic, for example, the
failure of legendary Google Flu Trends (GFT) (https://www.
wired.com/2015/10/can-learn-epic-failure-google-flu-trends/).
According to Vytla et al. [39], the failure of AI and big data
modeling has led to the enthusiasm to simple and traditional
mathematical models for COVID-19 predictions. From this
perspective, the simple PL approach we demonstrated in this
study can be counted as another successful example. However,
it should be emphasized that Vytla et al. [39] review and the
previously discussed opinions on AI/ML may be limited to the
predictions of epidemics/pandemics, and they can still be very
useful for other problems of epidemics/pandemics.

CONCLUSIONS AND DISCUSSION

The following findings can be summarized from
previous sections:

(i) Coupling of TPL and PLEC models, the two PLs from
classic ecological theories with applications beyond their

original domain of ecology and biology, offers a feasible
solution for some important prediction problems of power-
law phenomena. We demonstrate the approach with
two examples.

(ii) For the COVID-19 prediction problem, the PLEC-FTR model
is able to predict the turning (inflection) points of fatality
in the form of (Fmax, Tmax), i.e., the MAF number and
corresponding date at which Fmax is reached. In a previous
study, we have demonstrated that the PLECmodel successfully
predicted the turning points of COVID-19 infections [28].
Both fatality and infection prediction problems are essentially
the same, and therefore, prediction of fatality is undoubtedly
feasible. An issue with our previous infection prediction is
the lack of CI [28]. Thanks to the coupling with the TPL
model, the PLEC-FTR is able to deliver the CI for Fmax by
leveraging the capability of TPL in predicting variance (SD)
at different fatality levels. This is because the TPL in the case
of fatality prediction can be harnessed to establish the power-
function relationship between mean fatality number and
corresponding variance. With the variance (SD), estimation of
CIs is then a trivial statistical exercise. Obviously, the coupling
approach is equally applicable to the prediction of COVID-19
infections, although it was not recognized [28]. This example
also suggests that the TPL-PLEC coupling approach may be
applied to other similar predictive problems in epidemiology
and public health.

(iii) For the biodiversity prediction of AGM diversity, the coupling
of TPL and PLEC-DAR models is able to predict the
maximal accrual species richness (Dmax) of AGM, which
can be considered as potential or “dark” species richness of
gut microbiomes in the American cohort (population). The
potential or dark biodiversity refers to the total diversity that
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FIGURE 3 | Continued
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FIGURE 3 | Continued
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FIGURE 3 | Predicted fatality number (solid curve in red), lower and upper bounds (dashed lines), and observed fatality number (solid cycles in black) for five

continents and the world: Africa, Europe, North America, South America, Oceania, and the World.
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TABLE 3 | The power law with exponential cutoff for diversity-area relationship (PLEC-DAR) model fitted with 1,000 times of re-sampling of the American gut microbiome

(AGM) datasets consisting of 1,473 AGM samples, augmented with Taylor’s power law (TPL) to obtain the 95% CIs.

Dataset z d ln (c) R Amax Dmax Lower limit

(95%)

Upper limit

(95%)

AGM Species

Richness

0.386 −0.0002 6.598 0.995 2,006 9,414 9,310 9,518

FIGURE 4 | Taylor’s power law (TPL) model for the cumulative species richness of American gut microbiome (AGM) data set (the 100 times of re-sampling were used

to fit 100 PL models, and here is one example): for each time of re-sampling, there are 1,473 pairs of variance/mean of species richness, computed for each step of

diversity-area relationship (DAR) accumulation.

includes the portion thatmay be absent locally but is present in
the regional species pool (and therefore is able to colonize local
communities through dispersal/migration) [26]. In the case
of the human gut microbiome, the potential diversity can be
considered as a cohort or population level characteristic of the
gut microbiome. In the case of this study, it can represent the
potential species richness of the American population, given
the datasets were obtained from sampling 1,473 Americans, a
sufficiently large sample size.

In perspective, we expect that the power-law coupling approach
possesses great promises for a wide range of important problems
whenever both TPL and PLEC models can be successfully
applied. The precondition that both PL models must be reliably
built also reminds us that the approach cannot be a silver-bullet
solution. For example, in the case of PLEC-DAR modeling for
the gut microbiome diversity, we only presented the results for
species richness (i.e., the Hill numbers when diversity order
q= 0). The reason was that TPL was failed to fit the mean
and variance of the Hill numbers at other diversity orders. This
made it infeasible to estimate the CIs for other diversity orders.
TPL has been found applicable in many natural and man-made
systems; however, there are situations where it may fail. Taylor

[5] conjectured that TPL might work poorly for ratios and very

poorly for bounded ratios. The Hill number at diversity q = 0

(i.e., species richness) is an integer, but at other diversity orders,

such as q= 1, 2, or 3, the Hill numbers are indeed bounded ratios.

Taylor’s [5] conjecturemay explain the limitation of TPL in fitting

the mean-variance relationship in measuring biodiversity.

Furthermore, the universality property of PLs hints great

promises for our coupling approach, although there have been

occasional debates on proving universally in practical data fitted

to PLs {e.g., [4]}. The universality refers to the equivalence of

PLs with a particular scaling parameter (exponent), such as b in

TPL, z in SAR (DAR), or w in STR (DTR), which are termed

critical exponents. Critical exponents are termed so because the
PL distributions of certain quantities are associated with phase
transitions in dynamic systems as they approach criticality. The
hallmark of universality is therefore the sharing of dynamics,
and the systems with precisely the same critical exponents are
said to belong to the same universality class. In the field of TPL,
the transitions between aggregated (heterogeneous), random
(Poisson), and uniform distribution of biological population
or species abundance distribution can be characterized by
the population aggregation critical density (PACD) [13] or

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 March 2022 | Volume 8 | Article 801830

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Ma Coupling Power Laws

FIGURE 5 | Predicted species richness (solid curve in red color) of American gut microbiome (AGM) that includes lower and upper bounds (dashed lines) and

observed species richness (solid tiny circles in blue color).

community heterogeneity critical diversity (CHCD) [23], which
could be generated by self-organizations in the ecosystems (e.g.,
population or community). Different from physics, the processes,
such as self-organization in biology and ecology, are difficult to
prove rigorously. Nevertheless, there are indeed observations of
the equivalence of TPL scaling exponents, such as the apparent
invariance (constancy) of TPL scaling parameter (b) of global
hot spring microbiomes across wide ranges of pH values and
temperatures [40]. If these observations are found general in
ecosystems, then the predictions based on our coupling approach
of PLs can be not only feasible but also be reliable. Unlike the
events that are governed by the normal (Gaussian) distribution,
the events governed by the highly skewed PL distribution
are particularly challenging to predict. In particular, some PL-
governed events often lack of well-defined average values, but
with potentially unbounded variance, tend to be black-swan
and/or catastrophic. This also makes our proposed coupling
method particularly valuable potentially.

Finally, we would like to present a very brief discussion
on the general modeling strategy that is related to the two
demonstrative case studies for illustrating the applications of
the proposed coupling PLs. Since modeling strategy may be
influenced by domain-specific knowledge, the discussion below
is conducted in the context of ecological modeling {e.g., [41]}
and COVID-19 prediction {e.g., [28, 37]}, to keep relevant to the
two demonstrative examples of this article. According to Levins
[42], it is ideal to operate with manageable models that maximize
generality, realism, and precision toward the overlapping, but
not identical goals of understanding, predicting, and modifying
nature. Levins [42] distinguished three alternative strategies,
namely, [1] sacrifice generality to realism and precision (which is

the approach of most simulation models); [2] sacrifice realism to
generality and precision (most physicists who work in population
ecology follow this tradition; the Lotka-Volterra model is an
example); and [3] sacrifice precision to realism and generality,
an example of this strategy is the theory of island biogeography
by MacArthur and Wilson [43], which we have briefly discussed
in the final paragraphs of this article. It is noted that the
term “precision” here, more precisely, refers to more specific or
detailed factors (information) used in modeling works.

AlthoughDarwin’s evolutionary theory answered the question
of where and how biological species are originated and evolved
on the earth’s planet, the evolutionary theory did not explain
how and why species co-exist and form diverse communities
of species. Indeed, the competition or struggle for living, one
essential aspect of evolutionary theory, would predict that the
earth could be dominated by a handful of ultimate winners
from competitions, which is obviously not consistent with
the reality that the earth is cohabited by diverse species that
usually coexist. In fact, biodiversity has been studied and paid
attention by both scientists and the general public extensively
in modern societies [44]. The study of biodiversity distribution,
known as biogeography, was stuck in a “natural history phase”
until the 1960s, due to the dominance by the collection of
data and description of species, which were necessary but
not sufficient. MacArthur and Wilson [43] demonstrated in
their landmark monograph “The Theory of Island Biogeography”
that the first principles of population ecology and genetics
can be applied to explain how distance and area combine to
regulate the balance between immigration and extinction in
island populations. They were motivated to stimulate new forms
of theoretical and empirical studies, rather than synthesizing
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and unifying existing theories or establishing a general new
theory. Somewhat contrary to their unassuming start, their work
does lead to a stronger theory of biodiversity. Today, even a
half of a century has passed, the monograph continues to be
inspiring and remains at the center of discussions about the
geographic distributions of species in biodiversity research. Here
are mentioned the above historical episodes for two reasons.
First, MacArthur and Wilson’s [43] island biogeography theory
is well recognized as a landmark breakthrough in biogeography
and community ecology. It can be considered as an extremely
successful example of the modeling strategy of sacrificing
precision (details) to realism and generality. Second, one of the
key elements of their theory is the SAR PL, which is one of
the PLs coupled in this study, i.e., the DAR extended by Ma
[25–27]. Both factors should have contributed to the success
of the biodiversity and COVID-19 predictions demonstrated in
this study.

Besides the frequent infeasibility in simultaneously
maximizing generality, realism, and precision of mathematical
models, another commonly encountered dilemma for modelers
is the complex vs. simple models. According to Jewell et al. [37],
intuitively, simpler models may offer less valid predictions due
to their limited capacity in capturing complex and unobserved
human mixing patterns and other time-varying properties of
infectious disease spread. However, complex models can be no
more reliable than simple ones if they fail to capture key aspects
of the problem. In addition, complex models may produce the
illusion of realism and make it prone to omit crucial points.
Furthermore, outputs of complex models are usually more
sensitive to changes in parametric assumptions and/or the
estimations of external disease or environmental factors, such
as the lengths of latent/infectious periods due to mutation of a
pathogen [37]. Of course, the disadvantages of complex models
are not necessarily the advantages of simpler models. On the
other hand, simpler models are usually inexpensive to construct
and manage, and they may provide adequate solutions under
certain circumstances. We hope that this work proposes and
demonstrates a simple modeling approach for certain problems
where PLs are applicable.

Finally, one may wonder how accurate the prediction of our
coupling power laws is in forecasting the worldwide COVID-
19 fatality. Compared with the worldwide COVID-19 fatality
number on January 24th, 2022 (when this paper is formally
accepted and online), the error rate of the prediction with our
coupled power laws, made in the May 2021 (based on the fatality
data then alone) is approximately 7% only (i.e., the precision level
is 93%).

Specifically, we computed the worldwide fatality on Jan 24,
2022 with the following parameters and formula: F = CTw

exp(dT) + F0, where C = 4957.140, w = 1.248, T = 308, d
= −0.003, F0 = 2716229 (the fatality number at the starting
date of the model-building, i.e., March 21st, 2021 in the case of
the world model). We obtain F = 5226117, i.e., the predicted
fatality number on January 24, 2022, and the prediction is based
on the power law model established with the worldwide fatality
numbers before May 21st, 2021 (Table 1, Figure 3). According
to the publicly released COVID-19 fatality (https://github.com/
CSSEGISandData/COVID-19), the actual worldwide fatality
number is 5610729 on Janurary 24th, 2022. The precision of point
estimation is then 92.6 or 93% approximately. Furthermore,
the 95% confidence interval of the estimation can be computed
with Eqns. (12, 13) and is [4713112, 5739122].Therefore, the
point estimation of the worldwide COVID-19 fatality number on
January 24th 2022 does fall within the confidence interval with a
precision level of 92.6%. In fact, these results (including Table 1
and Figure 3) had already been released on May 23rd 2021 in the
preprint of this article Ma [45].

Our model (Table 1, Figure 3) also predicted that the turning
point (inflection point) of worldwide COVID-19 fatality would
not occur until the July of 2022, which contrasts with the recent
prediction made by Murray [46] who suggested that the “end of
the pandemic is near” by March 2022.
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