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Recurrent neural networks (RNNs) have been successfully applied to a variety of

problems involving sequential data, but their optimization is sensitive to parameter

initialization, architecture, and optimizer hyperparameters. Considering RNNs as

dynamical systems, a natural way to capture stability, i.e., the growth and decay

over long iterates, are the Lyapunov Exponents (LEs), which form the Lyapunov

spectrum. The LEs have a bearing on stability of RNN training dynamics since forward

propagation of information is related to the backward propagation of error gradients.

LEs measure the asymptotic rates of expansion and contraction of non-linear system

trajectories, and generalize stability analysis to the time-varying attractors structuring the

non-autonomous dynamics of data-driven RNNs. As a tool to understand and exploit

stability of training dynamics, the Lyapunov spectrum fills an existing gap between

prescriptive mathematical approaches of limited scope and computationally-expensive

empirical approaches. To leverage this tool, we implement an efficient way to compute

LEs for RNNs during training, discuss the aspects specific to standard RNN architectures

driven by typical sequential datasets, and show that the Lyapunov spectrum can serve

as a robust readout of training stability across hyperparameters. With this exposition-

oriented contribution, we hope to draw attention to this under-studied, but theoretically

grounded tool for understanding training stability in RNNs.

Keywords: hyperparameters and chaos, LSTM (long short term memory networks), Lyapunov Exponents (LEs),

dynamical systems (DS), recurrent neural networks (RNN)

1. INTRODUCTION

The propagation of error gradients in deep learning leads to the study of recursive
compositions and their stability [1]. Vanishing and exploding gradients arise from long
products of Jacobians of the hidden state dynamics whose norm exponentially grows or
decays, which potential hinders training [2]. To mitigate this sensitivity, much effort has
been made to mathematically understand the link between model parameters and the
eigen- and singular-value spectra of these long products [3–5]. For architectures used in
practice, this approach appears to have limited a scope [6, 7] likely due to spectra having
non-trivial properties reflecting complicated long-time dependencies within the trajectory.
Fortunately, the theory of dynamical systems has formulated this problem for general
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dynamical systems, i.e., for arbitrary architectures. The Lyapunov
spectrum (LS) formed by the Lyapunov exponents (LEs) is
precisely the measurement that characterizes rates of expansion
and contraction of non-linear system dynamics.

While there are results using LEs in machine learning [8–
10], most only look at the largest exponent, the sign of which
indicates the presence or absence of chaos. Additionally, to our
knowledge, current machine learning uses of LEs are for the
autonomous case, i.e., analyzing RNN dynamics in the absence
of inputs, a regime at odds with the most common use of RNNs
as input-processing systems. Thus, there is likely much to be
gained from both the study of other features of the LS and
from including input-driven regimes into LEs analysis. Indeed,
a concurrent work coming from theoretical neuroscience takes
up this approach and outlines the ongoing work using LEs to
study models of neural networks in the brain [11]. However,
the machinery to compute the LS and the theory surrounding
its interpretation is still relatively unknown in the machine
learning community.

In this exposition-style paper, we aim to fill this gap
by presenting an overview of LEs in the context of RNNs,
and discuss their usefulness for studying training dynamics.
To compute LEs, we present a novel algorithm for various
RNN architectures, taking advantage of modern deep learning
environments. In addition, we present encouraging results which
show a correlation between LEs and performance. Finally, we
highlight key directions of research that have the potential
to leverage LEs for improvement of RNNs robustness and
performance, such as efficient hyperparameter tuning by allowing
early detection of performance.

2. MOTIVATION AND DEFINITIONS

Here, we develop the problem of spectral constraints for robust
gradient propagation. For transparent exposition, in this section
we will consider the “vanilla” RNN defined as

ot =Wht , ht = φ(at), at = Vht−1 + Uxt + b , (1)

where V is the recurrent weight matrix that couples elements of
the hidden state vector ht ∈ R

N , U projects the input, xt , into
the network, b is a constant bias vector, and φ applies a non-
linear scalar transformation element-wise. The readout weights,
W, output the activity into the output variable, ot . The loss over

T iterates is L =
∑T

t=1 Lt , with Lt = f (yt , ŷt), with f some scalar
loss function (e.g., cross-entropy loss, f (y, ŷ) = y · log ŷ), ŷt the
prediction [e.g., ŷt = softmax(ot)], and yt is a one-hot binary
target vector. The parameters, 2 = (V,U, b,W), are learned by
following the gradient of the loss, e.g., in the space of recurrent
weights V,

∇VL =

T
∑

t=1

N
∑

i=1

∂L

∂ht,i
∇Vht,i =

T
∑

t=1

diag(φ′(at))∇htL h⊤t−1 , (2)

where diag(x) is the diagonal matrix formed by the vector x and
φ′ is the derivative of φ and ⊤ denotes transpose. Here,

∇htL =

T
∑

s=t

(

s
∏

r=t+1

J⊤r

)

W⊤∇osL , (3)

where ∇osL is some simple expression (e.g., ŷ − yt for cross-

entropy loss) and Jt =
∂ht

∂ht−1
is the Jacobian of the hidden

state dynamics,

Jt = diag
(

φ′(at)
)

V . (4)

Jt varies in time with xt and ht−1 via at and so is treated as
a random matrix with ensemble properties arising from the
specified input statistics and the emergent hidden state statistics.

Gradients can vanish or explode with T according to the
singular value spectra of the products of Jacobians appearing in
Equation (3) [1]. This fact motivated the study of hyperparameter
constraints that control the average of the latter over the input
distribution. Specifically, the scale parameter of Gaussian or
orthogonal initializations of V is chosen such that the condition
number (ratio of largest to smallest singular value) of Jt is of value
around 1 for all t [2], or such that the first and secondmoments of
the distribution of squared singular values (averaged over inputs)
of the Jacobian products are chosen near 1 and 0, respectively
according to dynamical isometry [4]. Parameter conditions for
the latter have been derived for i.d.d. Gaussian input. These
approach has been extended to RNNs under the assumption of
untied weights with good empirical correspondence in vanilla
and minimalRNN [3], but larger discrepancy in LSTMs [12],
suggesting there are other contributions to stability in more
complex, state-of-the-art architectures [6, 7].

Better understanding how robust gradient propagation
emerges in these less idealized settings that include high-
dimensional and temporally correlated input sequences demands
a more general theory. These Jacobian products appearing in
Equation (3) can each be expressed as the transpose of a forward
sequence,

∏s
r=t+1 J

⊤
r = (Js · · · Jt+1)

⊤. Note that the backward
time gradient dynamics shares properties with the forward time
hidden state dynamics. This is an important insight that suggests
that use of advanced tools from dynamical systems theory may
help better understand gradient propagation.

3. BACKGROUND

Here, we describe the stochastic Lyapunov exponents from
the ergodic theory of non-autonomous dynamical systems and
outline their connection to the conditions that support gradient-
based learning in RNNs. Jacobians are linear maps that evolve
state perturbations forward along a trajectory, ut = Jtut−1, e.g.,
for some initial perturbation h0(ǫ) = h0 + ǫu0 with ǫ ≪ 1
and a given vector u0. Thus, perturbations can vanish or explode
under the hidden state dynamics according to the singular value
spectrum of Tt = Jt · · · J1. The linear stability of the dynamics
is obtained taking ǫ → 0 and then t → ∞. In particular,
the Lyapunov exponents, {λi}

N
i=1, are the exponential growth
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FIGURE 1 | Stability regimes of forward dynamics using Lyapunov spectra. (A–C) Example unit hidden states from simulations computed from 10 initial conditions and 2

input sequences [xt (light) and x′t (dark)] for weight matrix V with Gaussian distributed entries with mean 0 and variance σ 2
V = g/N, with g set to 3 examples spanning

the 3 qualitatively distinct stability regimes based on the sign of λmax : stability, λmax < 0 (a; blue, g = 1/2); marginal stability, λmax ≈ 0 (b; gray, g = 2); and chaos

λmax > 0 (c; green, g = 10). (D) Lyapunov spectra computed from (A–C) (same colors). (E) First 20 exponents from (D). (vanilla RNN with φ = tanh; V orthogonal;

U = I; 2 realizations (light/dark) of x Gaussian, 3x = σ 2
x I with σ 2

x = 0.6; 10 Gaussian initial conditions, 3h0 = σ 2
h0
I with σ 2

h0
= 1).

rates associated with the singular values of T
1/t
t for t → ∞,

i.e., the logarithms of the eigenvalues of limt→∞

(

T⊤t Tt

)
1
2t . As a

property of the stationary dynamics, the Lyapunov exponents are
independent of initial condition for ergodic systems, i.e., those
with only one or the same type of attractor. If the maximum
Lyapunov exponent λmax is positive, the stationary dynamics is
chaotic and small perturbations explode, otherwise it is stable and
small perturbations vanish. The theory was initially developed for
autonomous dynamical systems, where stable dynamics implies
limit-cycle or fixed-point attractors. How the shape of the
Lyapunov spectrum varies with network model parameters has
provided unprecedented insight into autonomous (evolving in
the absence of inputs) neural network models in theoretical
neuroscience [11, 13, 14].

RNN dynamics are non-autonomous because the hidden

state dynamics ht are driven by inputs xt . The theory of

random dynamical systems generalizes stability analyses to non-
autonomous dynamics driven by an input sequence sampled

from a stationary distribution [15]. Analytical results typically

employ uncorrelated Gaussian inputs, but the framework is
expected to apply to a wider range of well-behaved input
statistics. This includes those with finite, low-order moments
and finite correlation times like character streams from written
language and sensor data from motion capture systems. The
time course of the driven dynamics depends on the specific
input realization, but critically, the theory guarantees that
the stationary dynamics for all input realizations share the
same stability properties which will, in general, depend on
the input distribution (e.g., its variance). Stability here is
quantified using the same definition of Lyapunov exponents
in the autonomous case (now called stochastic Lyapunov
exponents; we hereon will omit stochastic for brevity). In
Figure 1, we show vanilla RNN dynamics in stable, marginally
stable, and chaotic regimes, as measured by the sign of
the largest LE. For stable driven dynamics, the stationary
activity on the time-dependent attractor (called a random
sink) is independent of initial condition. This holds true

also in the marginally stable case, λmax ≈ 0, where
in addition there are directions along which the sizes of
perturbations (error gradients) are maintained over many
iterates. For chaotic driven dynamics, the activity variance
over initial conditions fluctuates in time in a complex way.
Understanding stability properties in this non-autonomous
setting is at the frontier of analysis of neural network dynamics
in both theoretical neuroscience [11, 16, 17] and machine
learning [18, 19].

The practical calculation of the Lyapunov spectra (see
Section 4) is fast and offers more robust numerical behavior
and generality over singular value decomposition. Together, this
suggests the Lyapunov spectra as a useful diagnostic for RNN
sequence learning.

There are a handful of features of the Lyapunov spectrum that

dictate gradient propagation and thus influence training speed

and performance. The maximum Lyapunov exponent for non-

chaotic systems measures the restoration timescale after a small

perturbation. The closer to zero this exponent is, the longer
this time is and so it set an upper bound on the duration that
information about a given input can reside in the system. The
mean exponent determines the rate of contraction of full volume
elements. The LE variance measures heterogeneity in stability
across different directions and can reflect the conditioning of the
product of many Jacobians. We use the first two in the analysis of
our experiments later in this article.

We remind readers that much of the theory regarding high-

dimensional dynamics is derived in the so-called thermodynamic

limit N → ∞. Here, the number of exponents diverges and

the spectrum over i/N becomes stationary (so-called extensive

dynamics), i.e., it is insensitive to N so long as N is large enough

(e.g., [11, 13]). Here, self-averaging effects can take hold and

enable accurate analytical results based on Gaussian assumptions

justified by central limit theorem arguments. “Large enough” N

is typically in the hundreds (though this should be checked for
any given application) and so these results can be useful for
studying RNNs.
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FIGURE 2 | Convergence of Lyapunov spectrum estimator. (A) Lyapunov exponent estimation as a function of time, as shown in Equation (5), where T is the number of

iterations. Each line represents a different exponent in the spectrum. By 100 iterations, it is clear that each exponent is changing very little as a function of iteration

number. (B) The mean Lyapunov spectrum over the set of input sequences. Standard deviation is by red bars.

Finally, we note that obtaining the Lyapunov exponents from

their definition relates to the singular values of T
1/t
t for large t,

and thus is numerically impractical. The standard approach [20]
is to exploit the fact that m-dimensional volume elements grow
at a rate λ(m) =

∑m
i=1 λi and so the desired rates, λ1 = λ(1),

λ2 = λ(2) − λ1, . . . arise from volumes obtained by projecting
orthogonal to subspaces of increasing dimension. These rates are
a direct output of computationally efficient orthonormalization
procedures such as QR-decomposition. Next, we discuss the
practical aspects of computing the Lyapunov exponents in input-
driven RNNs.

4. LYAPUNOV SPECTRUM ESTIMATION
FOR NON-AUTONOMOUS RNNS

We extend the framework of Lyapunov exponents to recurrent
neural networks by calculating the asymptotic trajectories of the
hidden states of the networks when driven by the same signal.

4.1. Algorithm Description
We adopt the well-established standard algorithm for computing
the Lyapunov spectrum [20, 21]. We choose the driving signal
to be sampled from fixed-length sequences of the test set. For
each input sequence in a batch, a matrix Q is initialized as the
identity, and the hidden states, h, are initialized as zero. To track
the expansion and contraction of Q at each step, the Jacobian J

of the hidden state dynamics is calculated and then applied to a
set of vectors ofQ. The exact form of the Jacobian will depend on
the architecture of the RNN, since additional mechanisms such
as gates would effect how the hidden states evolve in a single
iteration. For instance, the equations for the Jacobian of Long
Short Term Memory (LSTM) RNN are given in Section B.1. The
expansion of each vector is calculated and thematrixQ is updated
using the QR decomposition at each step. If rti is the expansion of
the ith vector at time step t—corresponding to the ith diagonal
element of R in the QR decomposition—then the ith Lyapunov
exponent λi resulting from an input signal of length T is given by:

λi =
1

T

T
∑

t=1

log(rti ) (5)

The Lyapunov exponents resulting from each input xj in the
batch of input sequences are calculated in parallel and then
averaged. For our experiments, the Lyapunov exponents were
calculated over 100 time steps with 10 different input sequences.
The mean of the 10 resulting Lyapunov spectra is reported as the
spectrum. An example calculation of the Lyapunov spectrum is
shown in Figure 2.

The algorithm for computing the Lyapunov exponents is
described in Algorithm 1.

Algorithm 1: Lyapunov Exponents Calculation.

for xj in Batch do
initialize h, Q
for t = 1→ T do

h← f(h, x
j
t)

J← df
dh

Q← J·Q
Q, R← qr(Q)
γi += log(Rii)

end

λ
j
i = γ

j
i /T

end

λi = meanj(λ
j
i)

5. EXPERIMENTS

To illustrate the computation and application of Lyapunov
exponents, we applied the approach to two tasks with distinct
task constraints: character prediction from sentences, where
performance depends on capturing low-dimensional and long
temporal correlations, and signal prediction frommotion capture
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FIGURE 3 | Evolution of Lyapunov Spectra over training. For values of initialization parameter given in legend in (A) [p = 0.04 (Blue), p = 0.08 (Orange), p = 0.12

(Green), p = 0.16 (Red), p = 0.2 (Purple), p = 0.5 (Brown)]. The spectra before training (A) and after four (B), and fifteen (C) epochs. The reduced mean-squared error

between successive epochs (D) shows that the each spectrum converges quickly during training, with t−1 plotted as a dashed black line for reference. Similarly, the

difference between the mean of the Lyapunov exponents at the fifteenth epoch and the mean at previous epochs (E) rapidly approaches zero throughout training.

data, where performance relies also on signal correlations across
the many dimensions of the input.

5.1. Task Details
For character prediction, we use Leo Tolstoy’s War and Peace
as the data and follow the character-level language modeling
task outlined by Karpathy et al. [22]. For signal prediction,
we use the CMU motion-capture dataset and pre-process it
using the procedure outlined in Li et al. [23]. Both tasks
require predicting the next step in a sequence given the
preceding input sequence. For the character prediction task
(CharRNN), we use input sequences of 100 characters. For the
motion capture task (CMU Mocap), we use input sequences of
25 time steps.

For each task, we use a single-layer LSTM architecture
with weight parameters initialized uniformly on [−p, p],
where p is referred to as the initialization parameter. For
further details of the implementation of both tasks, (see
Appendix) and the Github repository1 for available code and
ongoing work.

5.2. Algorithm Convergence Properties
We find that the general shape of the spectrum is reached
early in training. In Figure 3, we use the CharRNN task
as an example to show that the spectrum rapidly changes
in the first few epochs of training, quickly converging after
a small number of training epochs to a spectrum near
that of the trained network. The reduced mean-squared
difference shows a O(t−1) convergence with learning epoch
t, while the mean difference shows this convergence is
from below. This was true across the range of initialization
parameters tested.

5.3. Performance Efficiency Relative to
Training
The calculation of the Lyapunov spectrum is very efficient relative
to the computation required for training, as long as the user has

1https://github.com/shlizee/lyapunov-hyperopt

TABLE 1 | LE calculation rate relative to training.

Training units LE calculation Fraction of total

Example needed time (training units) training time

CharRNN 26± 10 epochs 1.04± 0.04 epochs 0.04± 0.02

CMU Mocap 2.4± 0.5× 103 iters 104± 3 iters 0.04± 0.01

an analytical expression for the Jacobian of the recurrent layer
(as we describe the expressions for GRU and LSTM in B). The
average time required for calculating the spectrum for a network
by evolving 10 input sequences for 100 time steps relative to the
average time required to train those networks on the same device
is shown inTable 1 for the two tasks we consider (c.f. Section 5.1).
The mean number of training units (epochs or iterations) needed
to reach the minimum validation loss is calculated for each
task, and the total training time is compared to the Lyapunov
spectra calculation time. For both tasks, the time required to
calculate the spectrum was equivalent to about 4% of the total
training time.

Further improvements to the computation time of the
exponents can be made by making slight modifications to
Algorithm 1. First, it is possible to “warm-up” the hidden states
h and Q onto the attractor of the dynamical system without
the computational cost of the QR decomposition, allowing a
faster convergence of the spectrum. A further improvement can
be made by not taking the QR decomposition every time step
during the calculation of the exponents, but instead every TON

steps. Since the QR step is the most expensive computation
in the algorithm, the increase in speed over orthonormalizing
every step is approximately TON . However, since increasing
this interval leads to greater expansion and contraction of the
vectors of Q before orthonormalization steps, this can lead to
a spurious plateau at higher indices due to the accumulation
of rounding errors. However, if one cares only about the
first few exponents, this effect is negligible for reasonable
selections of TON (see C for details about warmup and effect of
increasing TON).
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FIGURE 4 | Correlation between Lyapunov spectra and performance. Shown are spectra (A,C) and loss dependence on spectra (B,D) for networks trained on CharRNN

(A,B), and CMU MoCap (C,D). Those in (A,B) are for 60 random combinations of learning rate and log-dropout rate, while those in (C,D) are for 30 values of the

initialization parameter, p. The colors in (A,B) and (C,D) are 6 samples selected by eye to roughly span the range of gross spectra shapes seen in (A) and (C),

respectively. All other spectra are shown in gray.

5.4. Lyapunov Spectrum as a Robust
Readout of Training Stability
In general, the dependence of the Lyapunov spectrum on
hyperparameters is tangled. To direct our exploration of this
dependence and how it relates to performance, we used the task
constraints to guide our interpretation of spectra behavior of
trained networks from randomly sampled hyperparameters.

For CharRNN, we hypothesized from existing work that
to satisfy the constraint of propagating a scalar signal over
many iterates, it would be sufficient to have a single exponent
approaching 0 with the other exponents more negative [24].
Focusing here on hyperparameters, we uniformly sampled a
fixed range of log-dropout and learning rate while keeping
the initialization parameter fixed. In Figures 4A,B, we observe
the spectra and indeed find a correlation between maximum
Lyapunov exponent and validation loss. Here, we opt to report
performance with loss value, as opposed to task accuracy. This
is because loss is the exact quantity underlying gradients, and
as such highlights the direct link between RNN dynamics and
learning. Nevertheless, we verify that the phenomena reported
here persist when measuring task accuracy instead, and refer the
reader to Supplementary Figure 4 in the Appendix for further
details. Networks with a maximum LE closer to zero indeed
performed better. Of these 60 spectra, we selected a smaller subset
of 6 that spanned the range of the gross shapes. Interestingly,
they also spanned the range of losses, suggesting there is a
consistent signal about the loss encoded in the complex, yet
systematic variation of the maximum Lyapunov exponent with
hyperparameters. The gross shape of these spectra correlated
less with the loss, supporting our hypothesis. A straightforward
interpretation of the signal we have observed is that the slower the
contraction of the effect of an input on the activity in the activity
mode associated with this maximum LE, the longer gradient
information can propagate backward in time. This would give the
dynamics more predictive power and thus better performance,
but it remains to be verified.

Next, we focused on the motion capture prediction task.
Here, the higher dimensional data means that the changes that

training induces in the shape of the Lyapunov spectra will likely
be more complicated. We hypothesized that nevertheless there
would be more information in the gross shape of the spectra
of the dynamics of trained networks and less in the maximum
LE. Here, we vary the initialization parameter from 0.05 to 0.5
while keeping the dropout and learning rates fixed. Indeed, we
find (Figures 4C,D) consistent variation of the gross shape with
loss. We have quantified the variation of loss with gross shape
using themean Lyapunov exponent, though the spectra vary with
higher order features as well.

The plots of Figure 4 illustrate that distinct properties of the
LE spectrum correlate with validation performance, depending
upon task structure. For the CharRNN task, the maximum
exponent being larger (closer to 0), corresponds to better
performance. For the Mocap learning task, the larger mean
Lyapunov exponent correspond to better performance. Please see
D for other spectrum statistics of all networks tested.

The evolution of these statistics over the course of training of
the CharRNN task is demonstrated in Figure 5. In particular, we
observe that both the maximum and mean Lyapunov exponents
change systematically with respect to validation loss early in
training. While further training leads to further changes in these
spectrum statistics, increasing the maximum LE beyond the
threshold of -0.5 or decreasing the mean LE beyond the threshold
of -4 has little impact on performance as these changes occur later
in training, after the loss has converged.

Given our observation that the spectrum changesmost rapidly
early in training, we believe the most strongly-correlated metrics
for a task could allow an alternative way to assess performance of
a network early in training.

6. CONCLUSION AND DISCUSSION

In this article, we presented an exposition and example
application of Lyapunov exponents for understanding training
stability in RNNs. We motivated them as a natural quantity
related to stability of dynamics and useful as a complementary
approach to existing mathematical approaches for understanding
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FIGURE 5 | Evolution of relation between performance and (A) Max LE and (B)Mean LE for CharRNN task over the course of training. The evolution of the spectra highlighted

in Figures 4A,B are shown in the corresponding color. For each color, the opacity of the points increases with epoch, so the most transparent points are from early in

training. For this example, we see that, in general, (A) the maximum Lyapunov exponent increases over the course of training, corresponding to a decrease in the

validation loss, but the decrease in loss is limited once the maximum increases beyond about -0.5, whereas (B) the mean LE tends to decrease over training, but has

limited impact when decreasing beyond -4.

training stability focused on the singular value spectrum. We
adapted the standard algorithm for LE spectrum computation
to RNNs, and showed how it could be made more efficient
in standard machine learning development environments. We
demonstrated that even the basic implementation runs almost 2
orders of magnitude faster than typical training time [see [11]
for further precision and efficiency considerations] and that
it converges relatively quickly with learning time. The latter
implies it could be useful as a readout of performance
early in training. To test this application, we studied it
in two tasks with distinct constraints. In both tasks, we
find interpretable variation with performance reflecting these
distinct constraints.

There are a few points to be made about LEs on RNNs. First,
one should consider carefully the degrees of freedom in the
architecture under consideration.We have considered the hidden
state dynamics of an LSTM such that there are as many Lyapunov
exponents as there are units. LSTMs have gating variables that can
also carry their own dynamics and could be considered as degrees
of freedom, adding another N exponents to the spectrum. While
we were able to obtain evidence from the spectra of hidden states
alone, recent work [11, 25] suggests that studying the stability
in the subspace of gating variables can also be informative. A
second point is that one should also consider the role of the input
weights U [c.f. Equation (1)]. The strength of inputs (e.g., input
signal variance) that drive high-dimensional dynamics has long
been known to have a stabilizing effect [16, 26, 27]. Thus, the
input statistics of the task’s data can play a role that is modulated
by U, making the latter a target for gradient-based algorithms
aiming to decrease loss. Finally, we raise perhaps the most glaring
adaptation: that of approximating this asymptotic quantity to
settings of finite-length sequences. We proposed to use averaging
over inputs, in addition to averaging over initial conditions, as
a way to take advantage of batch tensor mechanics to achieve
faster LE estimates. This is in contrast to long-time averages
used in the LE definition, although our method is justified
under assumptions of ergodicity and short transient dynamics.

Analyzing the influence of input batch size on this precision is a
topic of future research.

The task analysis we have performed suggests a use case
for the Lyapunov spectrum as having features that serve as an
early readout of performance useful to speed up hyperparameter
search. We examined the maximum and mean Lyapunov
exponents as two features highlighted by hypotheses we made
based on our knowledge of the task constraints. Presumably,
there are others relevant here and in other tasks. The search
for generic features that do not require knowledge of task
constraints (e.g., dynamical isometry) is important, as is
demonstrating how useful these features are in practice with
complex sequence data. One limitation is how quickly they
converge with learning. For example, as a composite quantity,
the mean LE converges rather quickly, while the maximum
LE is significantly slower to converge. In [11], it is shown
that loss function/learning rule combinations can also sculpt
the spectra and alter its statistics, demonstrating that these
are more sources of variation to understand. Interestingly, Full
Force [28], an alternative to Back-propagation-through-time,
has a qualitatively similar spectra (same max, min, and mean
LE) but with much lower variance, presumably a desirable
feature for generalization. This method also demands more
information about performance than just a gradient, suggesting
the interesting hypothesis that the precision with which the
features of the Lyapunov spectra can be sculpted can scale
with the amount of information provided in training. Finally,
recent work has given theoretical grounding to why LSTMs
avoid vanishing gradients [25]. Of course this was the reason
for the design of LSTM so it only recapitulates the original
design intuition. Looking forward, however, as more complex
architectures are developed with less interpretable design, this
approach based on LEs can still provide novel insight into their
inner workings.

We close with a short discussion of open problems as
this is a prominent area in understanding network dynamics
at the intersection of machine learning and computational

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 March 2022 | Volume 8 | Article 818799

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Vogt et al. On Lyapunov Exponents for RNNs

neuroscience. Having supporting analytical results is essential for
robust control of complex problems. To this end, understanding
how and where the assumption of untied weights breaks
down and how forward propagation differs from backward
propagation will be important in extending analytical results
on spectral constraints. The Lyapunov spectrum can guide this
work. Last, insightful parallels into theoretical neuroscience
work could be made. For example, Lyapunov spectrum
have been derived for additional degrees of freedom in the
unit dynamics, different connectivity ensembles, and more.
Also, a discrepancy between the loss of linear stability and
the onset of chaotic dynamics in driven systems must be
understood [27]. Making these connections explicit will serve
both fields.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
and code for computing the LE spectrum for RNN can be found
at: https://github.com/lyapunov-hyperopt/lyapunov_hyperopt.

AUTHOR CONTRIBUTIONS

ES and GL conceptualized the study and obtained funding.
RV developed the computational tools in the Github repository
and generated the reported experiments. MP developed the
theoretical background and motivation. ES conceptualized the

experimental design and supervised RV. GL conceptualized

the theoretical motivation, experimental design, and supervised
MP. All authors contributed to the article, its revision, and
approved the final version.

ACKNOWLEDGMENTS

ES and RV acknowledge the support of the National Science
Foundation under (Grant No. DMS-1361145) and partial
support by the Departments of Applied Mathematics, Electrical,
and Computer Engineering, the Center of Computational
Neuroscience (CNC), and the eScience Center at the University
of Washington. ES acknowledges the support of National
Science Foundation HDR Institute Accelerated AI Algorithms
for Data-Driven Discovery (Grant No. OAC-2117997) and
Washington Research Foundation Fund. MP acknowledges
support from IVADO. GL acknowledges support from a Canada
CIFAR AI Chair, NSERC Discovery grant (RGPIN-2018-04821),
and FRQNT Young Investigator Startup Program (2019-NC-
253251). This manuscript has been released as a pre-print:
https://arxiv.org/abs/2006.14123.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fams.
2022.818799/full#supplementary-material

REFERENCES

1. Bengio Y, Simard P, Frasconi P. Learning long-term dependencies

with gradient descent is difficult. IEEE Trans Neural Netw. (1994)

5:157–66.

2. Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural

networks. In: International Conference on Machine Learning. Atlanta, GA

(2013). p. 1310–8.

3. ChenM, Pennington J, Samuel. Gating enables signal propagation in recurrent

neural networks. In: ICML. Stockholm (2018).

4. Pennington J, Schoenholz S, Ganguli S. Resurrecting the sigmoid in deep

learning through dynamical isometry: theory and practice. In: Advances in

Neural Information Processing Systems. Long Beach, CA: Advances in Neural

Information Processing Systems (2017). p. 4785–95.

5. Poole B, Lahiri S, Raghu M, Sohl-Dickstein J, Ganguli S. Exponential

expressivity in deep neural networks through transient chaos. In:

Advances in Neural Information Processing Systems. Barcelona (2016).

p. 3360–8.

6. Yang G. Scaling limits of wide neural networks with weight sharing:

Gaussian process behavior, gradient independence, and neural tangent kernel

derivation. arXiv preprint arXiv:190204760. (2019).

7. Zheng Y, Shlizerman E. R-FORCE: robust learning for random recurrent

neural networks. arXiv preprint arXiv:200311660. (2020).

8. Legenstein R, Maass W. Edge of chaos and prediction of computational

performance for neural circuit models. Neural Netw. (2007) 20:323–34.

doi: 10.1016/j.neunet.2007.04.017

9. Pennington J, Schoenholz SS, Ganguli S. The emergence of spectral

universality in deep networks. arXiv preprint arXiv:180209979. (2018).

10. Laurent T, von Brecht J. A recurrent neural network without chaos. arXiv

preprint arXiv:161206212. (2016).

11. Engelken R, Wolf F, Abbott L. Lyapunov spectra of chaotic recurrent neural

networks. arXiv preprint arXiv:200602427. (2020).

12. Gilboa D, Chang B, ChenM, Yang G, Schoenholz SS, Chi EH, et al. Dynamical

isometry and a mean field theory of LSTMs and GRUs. arXiv preprint

arXiv:190108987. (2019).

13. Monteforte M, Wolf F. Dynamical entropy production in spiking

neuron networks in the balanced state. Phys Rev Lett. (2010) 105:1–4.

doi: 10.1103/PhysRevLett.105.268104

14. Puelma Touzel M. Cellular Dynamics and Stable Chaos in Balanced Networks.

Gottingen: Georg-August University (2015).

15. Arnold L. Random Dynamical Systems. Berlin: Springer (1991). Available

online at: http://arxiv.org/abs/math/0608162

16. Lajoie G, Lin KK, Shea-Brown E. Chaos and reliability in balanced

spiking networks with temporal drive. Phys Rev E. (2013) 87:1–5.

doi: 10.1103/PhysRevE.87.052901

17. Hennequin G, Vogels T, Gerstner W. Non-normal amplification in

random balanced neuronal networks. Phys Rev E. (2012) 86:1–12.

doi: 10.1103/PhysRevE.86.011909

18. Kerg G, Goyette K, Puelma Touzel M, Gidel G, Vorontsov E, Bengio Y,

et al. Non-normal Recurrent Neural Network (nnRNN): learning long time

dependencies while improving expressivity with transient dynamics. In:

Wallach H, Larochelle H, Beygelzimer A, d’ Alché-Buc F, Fox E, Garnett R,

editors.Advances in Neural Information Processing Systems 32.Vancouver, BC:

Curran Associates, Inc. (2019). p. 13613–23.

19. Liu GH, Theodorou EA. Deep learning theory review: an optimal control and

dynamical systems perspective. arXiv preprint arXiv:190810920. (2019).

20. Benettin G, Galgani L, Giorgilli A, Strelcyn JM. Lyapunov characteristic

exponents for smooth dynamical systems and for Hamiltonian systems; a

method for computing all of them. Part 1: Theory.Meccanica. (1980) 15:9–20.

21. Dieci L, Van Vleck ES. Computation of a few Lyapunov exponents for

continuous and discrete dynamical systems. Appl Numer Math. (1995)

17:275–91.

22. Karpathy A, Johnson J, Fei-Fei L. Visualizing and understanding recurrent

networks. arXiv preprint arXiv:150602078. (2015).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 March 2022 | Volume 8 | Article 818799

https://github.com/lyapunov-hyperopt/lyapunov_hyperopt
https://arxiv.org/abs/2006.14123
https://www.frontiersin.org/articles/10.3389/fams.2022.818799/full#supplementary-material
https://doi.org/10.1016/j.neunet.2007.04.017
https://doi.org/10.1103/PhysRevLett.105.268104
http://arxiv.org/abs/math/0608162
https://doi.org/10.1103/PhysRevE.87.052901
https://doi.org/10.1103/PhysRevE.86.011909
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Vogt et al. On Lyapunov Exponents for RNNs

23. Li C, Zhang Z, Sun Lee W, Hee Lee G. Convolutional sequence to sequence

model for human dynamics. In: The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). Salt Lake City, UT (2018).

24. Henaff M, Szlam A, LeCun Y. Recurrent orthogonal networks and long-

memory tasks. arXiv preprint arXiv:160206662. (2016).

25. Can T, Krishnamurthy K, Schwab DJ. Gating creates slow modes and controls

phase-space complexity in GRUs and LSTMs. arXiv preprint arXiv:200200025.

(2020).

26. Molgedey L, Schuchhardt J, Schuster HG. Suppressing chaos

in neural networks by noise. Phys Rev Lett. (1992) 69:3717–9.

doi: 10.1103/PhysRevLett.69.3717

27. Schuecker J, Goedeke S, Helias M. Optimal sequence memory

in driven random networks. Phys Rev X. (2018) 8:41029.

doi: 10.1103/PhysRevX.8.041029

28. DePasquale B, Cueva CJ, Rajan K, Escola GS, Abbott L. full-FORCE: a

target-based method for training recurrent networks. PLoS ONE. (2018)

13:e0191527. doi: 10.1371/journal.pone.0191527

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Vogt, Puelma Touzel, Shlizerman and Lajoie. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 March 2022 | Volume 8 | Article 818799

https://doi.org/10.1103/PhysRevLett.69.3717
https://doi.org/10.1103/PhysRevX.8.041029
https://doi.org/10.1371/journal.pone.0191527
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	On Lyapunov Exponents for RNNs: Understanding Information Propagation Using Dynamical Systems Tools
	1. Introduction
	2. Motivation and Definitions
	3. Background
	4. Lyapunov Spectrum Estimation for Non-autonomous RNNs
	4.1. Algorithm Description

	5. Experiments
	5.1. Task Details
	5.2. Algorithm Convergence Properties
	5.3. Performance Efficiency Relative to Training
	5.4. Lyapunov Spectrum as a Robust Readout of Training Stability

	6. Conclusion and Discussion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


