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During the past decade, novel Deep Learning (DL) algorithms, workloads and hardware

have been developed to tackle a wide range of problems. Despite the advances in

workload and hardware ecosystems, the programming methodology of DL systems

is stagnant. DL workloads leverage either highly-optimized, yet platform-specific and

inflexible kernels from DL libraries, or in the case of novel operators, reference

implementations are built via DL framework primitives with underwhelming performance.

This work introduces the Tensor Processing Primitives (TPP), a programming abstraction

striving for efficient, portable implementation of DL workloads with high-productivity.

TPPs define a compact, yet versatile set of 2D-tensor operators [or a virtual Tensor

Instruction Set Architecture (ISA)], which subsequently can be utilized as building-blocks

to construct complex operators on high-dimensional tensors. The TPP specification

is platform-agnostic, thus, code expressed via TPPs is portable, whereas the TPP

implementation is highly-optimized and platform-specific. We demonstrate the efficacy

and viability of our approach using standalone kernels and end-to-end DL & High

Performance Computing (HPC) workloads expressed entirely via TPPs that outperform

state-of-the-art implementations on multiple platforms.

Keywords: deep learning, performance portability, programming abstraction, tensor processing, high productivity,

high performance computing

1. INTRODUCTION

Since the advent of Deep Learning (DL) as one of the most promising machine learning paradigms
almost 10 years ago, deep neural networks have advanced the fields of computer vision, natural
language processing, recommender systems, and gradually pervade an increasing number of
scientific domains [1–10]. Due to the diverse nature of the problems under consideration, these
DL workloads exhibit a wide range of computational characteristics and demands. Furthermore,
due to the immense computational cost of such workloads, industry and academia have developed
specialized hardware features on commodity processors, and even specialized accelerators in order
to harness these computational needs [11].
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In contrary to the fast-evolving ecosystems of DL workloads
and DL-oriented hardware/accelerators, the programming
paradigm of DL systems has reached a plateau [12]. More
specifically, the development of novel DL workloads involves
two types of components: (i) Well-established operators
within DL libraries (e.g., 2D convolutions, inner-product,
batch-norm layers in oneDNN [13] and cuDNN [14]), and (ii)
Unprecedented, custom primitives which typically instantiate
new algorithmic concepts/computational motifs. Unfortunately
both of these components come with their shortcomings.

On one hand, the operators within DL libraries are heavily
optimized and tuned (usually by vendors) in a platform-specific
fashion, leading to monolithic, non-portable, and inflexible
kernels. Additionally, such opaque and high-level operators
prohibit modular design choices since the user/frameworks have
to adhere to particular interfaces that may not be adapted
to fit the operation under consideration. On the other hand,
the custom/unprecedented primitives are typically implemented
by the user via the available generic/reference primitives of a
Machine Learning (ML) framework which are not optimized
and as such yield underwhelming performance. It is up to
the user to create optimized implementations for the custom
primitives, leading again to code which is non-portable and
potentially requires hardware expertise in order to achieve peak
performance. Unfortunately, most of the times such expertise
is not available to the data/ML scientist who is developing the
custom DL primitive. Therefore, the deployment (or even the
evaluation) of a new operator typically requires yet another
stage in the development cycle where low-level optimization
experts are working on the re-write/fine-tuning of the operator.
Later on, in case an operator proves to be important for the
community, systems researchers and vendors standardize it, and
potentially create yet another monolithic kernel within a DL
library for further re-use within DL frameworks. This entire
development cycle potentially takes a considerable amount of
time (up to years in some cases) and inadvertently impedes the
efficient exploration of innovative machine learning ideas [12].
An alternative approach to optimize both types of operators
is to leverage contemporary Tensor Compilers (TC) (e.g., [15–
18]), however, the state-of-the-art tools are only suitable
for compiling small code-blocks whereas large-scale operators
require prohibitive compilation times, and often the resulting
code performs far from the achievable peak [12].

We identify that the common source of the problems
mentioned in the previous paragraph is the extreme levels of
abstraction offered by the DL libraries and the Tensor Compilers.
The DL libraries offer coarse-grain, monolithic and inflexible
operators whereas the Tensor Compilers usually go to the
other extreme, allowing the user to express arbitrary low-level
operators without any minimal restrictions that would readily
enable efficient lifting and code-generation in their back-ends
(e.g., they offer no minimal/compact set of allowed operations on
tensors). To exacerbate the challenge of optimal code generation,
Tensor Compilers usually undertake the cumbersome tasks
of efficient parallelization, loop re-ordering, automatic tiling
and layout transformations, which, to date, remain unsolved
in the general setup. Also, there is not a well-established

way to share state-of-the-art optimizations among the plethora
of Tensor Compilers and as a result each one has its own
advantages and disadvantages, which translates eventually to sub-
optimal performance on real-world scenarios [19]. We note,
here, the recent, promising effort of Multi-Level Intermediate
Representation (MLIR) [20] toward unifying the optimization
efforts in the Tensor Compiler Intermediate Representation
(IR) infrastructure.

In this work, we introduce the Tensor Processing Primitives
(TPP), a programming abstraction striving for efficient and
portable implementation of Tensor operations, with a special
focus on DL workloads. TPPs define a set of relatively low-level
primitive operators on 2D Tensors, which, in turn, can be used
as basic building blocks to construct more complex operators
on high-dimensional tensors. TPPs comprise a minimal and
compact, yet expressive set of precision-aware, 2D tensor
level operators to which high-level DL operators can be
reduced. TPPs’s specification is agnostic to targeted platform,
DL framework, and compiler back-end. As such the code which
is expressed in terms of TPPs is portable. Since the level of
abstraction that TPPs adopt is at the sub-tensor granularity, TPPs
can be directly employed by DL workload developers within the
frameworks, or could be alternatively used to back up an IR
within a Tensor Compiler stack, i.e., TPPs could form the basis
of an MLIR dialect.

While the TPP specification is agnostic of the targeted
framework/platform/compiler stack, its implementation is
platform specific, and is optimized for the target architectures.
This subtle detail offers a clear separation of concerns: the
user-entity of TPPs, either a developer or a compiler framework,
can focus on expressing the desired algorithm and its execution
schedule (e.g., parallelization, loop orders) using the TPP
tensor abstraction, whereas the efficient, platform-specific code
generation pertaining to the TPP operations belongs to the TPP
back-end. To this extent, TPPs could be also viewed as a “virtual
Tensor ISA” that abstracts the actual physical ISA of the target
(e.g., SSE, AVX2, AVX512, AMX for x86, AArch64 and ARMv8
SVE, xPU).

Figure 1 shows various use-cases of TPPs within multiple
software stacks. TPPs can be viewed as a layer abstraction of
the actual physical target ISA, and the user-entities can rely
on the TPP layer for the code generation pertaining to the
tensor operations. Also, Figure 1 illustrates the various user-
entities that might leverage TPPs. First, the vendor-optimized
DL libraries (e.g., oneDNN or oneDNN Graph) can use TPPs
for optimized code generation in their back-end. Second, the
user/developer of the DL operators can directly leverage TPPs
within a DL framework extension to express the underlying
tensor computations (e.g., the user may develop a framework
extension for a novel DL operator by employing the TPPs as
building blocks). Third, Tensor Compilers can leverage TPPs
(e.g., as part of an MLIR dialect) to generate high-quality code
for the corresponding tensor operators. As such, the TPP layer
abstraction offers a clear separation of concerns where the
Tensor Compiler may focus on higher-level optimizations (loop
tiling and re-ordering, parallelization, etc.) whereas the platform-
specific code generation of the tensor operations is undertaken
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FIGURE 1 | Use-cases of TPPs in various software stacks.

by the TPP layer. Such a synergistic Tensor Compiler - TPP
paradigm is illustrated in section 7. Last but not least, TPPs could
be leveraged by more general Tensor Libraries (e.g., ATen, Eigen)
where tensor computations constitute the primary focus and they
can be naturally mapped to TPPs.

In our Proof-Of-Concept (POC) implementation of TPPs
we leverage Just-In-Time (JIT) technology to emit performant
and platform-specific code during runtime. Furthermore, in our
POC we define a mini embedded Domain Specific Language
(mini-eDSL) where the TPPs can be combined via matrix
equations in order to build high-level operators without
sacrificing performance.

We demonstrate the efficacy of our approach on multiple
platforms using standalone kernels written entirely with
TPPs and compare the performance to vectorized-by-expert
code and compiler generated code. Finally, we showcase
the expressiveness and viability of our methodology by
implementing contemporary end-to-end DL workloads using
solely the TPP abstractions and show how we can outperform
the state-of-the-art implementations on multiple platforms. The
main contributions of this work are:

• A TPP specification/foundation for primitive tensor
operations.
• A Proof-Of-Concept implementation of the TPP specification

along with a mini-eDSL (called TPP Matrix Equations),
enabling efficient fusion of TPPs that lead to portable,
high-level tensor operations. We describe in detail various
standalone TPP implementations, and also we provide a
detailed analysis of our TPP Matrix Equation mini-eDSL
framework.
• A demonstration of how contemporary and novel DL

algorithmic motifs/workloads can be expressed in their
entirety via TPPs.
• An experimental evaluation of the TPP-based DL workloads

from all relevant fields (image processing, recommendation
systems, natural language processing, graph processing, and
applications in science) on multiple platforms (different

instruction set architectures (ISAs) x86_64 and aarch64, and
micro-architectures for each ISA), including distributed-
memory scaling. We show performance that matches/exceeds
the state-of-the-art implementations, while maintaining
flexibility, portability, and obviating the need for low-level
platform-specific optimizations.
• We show how TPPs can be leveraged as a virtual Tensor

ISA within a Tensor compiler software stack, yielding high-
performance DL primitives.
• We illustrate examples of how TPPs are used outside of

Deep Learning, in High Performance Computing (HPC)
applications in order to accelerate tensor computations.

Section 2 details the specification of the TPPs. Then, section 3
illustrates a POC implementation of the TPP specification.
Section 4 presents an infrastructure that enables efficient
TPP fusion. In section 5, we exhibit how contemporary
DL motifs/algorithmic paradigms can be expressed via TPPs.
Section 6 presents an experimental evaluation of TPP-based DL
kernels and workloads on multiple platforms. Section 7 outlines
our POC implementation of a TPP backend within a tensor
compiler (PlaidML), and also presents some results highlighting
the viability of the TPP abstraction as a virtual Tensor ISA within
tensor compiler stacks. Section 8 presents exemplary usage of
TPPs within HPC applications in order to efficiently implement
tensor computations. Sections 9 and 10 summarize the related
work and conclude this article.

2. THE TPP SPECIFICATION

2.1. TPP Design Principles
The TPP specification is driven by a few design principles:

1) Each TPP corresponds to a mathematical operator that
takes a number of input(s) and produces an output. We opt to
specify TPPs that correspond to basic, well-defined mathematical
tensor operations. In this way, we keep the set of TPPs minimal
albeit expressive; basic TPPs can be combined to formulate more
complex operators.
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2) The inputs/outputs of the TPPs are abstract 2D tensors
that can be fully specified by their shape/size, leading dimensions,
and precision. Additionally, the 2D tensors hold the following
complementary runtime information: (i) a primary field which
corresponds to the memory address where the 2D (sub)tensor
data resides, (ii) a secondary field holding optional data for the
tensor (e.g., amask for the tensor), and (iii) a tertiary field holding
optional, auxiliary information of the tensor (e.g., scaling factors
for a quantized tensor).

3) TPPs are specified as “memory-to-memory” operations, or
equivalently the input/output tensors are residing in memory
locations specified by the user. This design decision is critical in
order to abstract the TPPs from all physical ISAs, and enables true
platform-agnostic specification. For example, if the TPPs were
accepting vector registers as inputs/outputs, then the number of
physical registers, the vector length and dimensionality would
be exposed in the Application Programming Interface (API) of
TPPs, making the specification platform-specific.

4) TPPs have declarative semantics. As such, the TPP
specification does not preclude potential parallelism [e.g.,
Single Instruction Multiple Data (SIMD), Single Instruction
Multiple Threads (SIMT)] in the back-end implementation
which is target-specific.

5) TPPs are composable in a producer-consumer fashion. Since
the output of a TPP is a well-defined tensor O, it can be fed as
input to a subsequent TPP. In such a scenario, this “intermediate”
tensor O is not necessarily exposed to the user, unless the user
explicitly requires it (e.g., by combining the TPPs in a manual
fashion via an explicit temporary O buffer/tensor which lives
in the user space/application). This flexibility allows the TPP
implementation (which is platform-specific) to combine TPPs
in the most efficient way for the target architecture (e.g., the O
tensor can live at the physical register file in the composite TPP
in order to avoid redundant memory movement).

6) The TPP input/output tensors as well as the computation
itself are precision aware. This feature makes mixed precision
computations (that are prominent in DL workloads) easy to
express from the user point of view, and provides information
to the TPP back-end that may enable efficient implementation.

2.2. TPP Arguments
As mentioned in the previous subsection, the input to TPPs
are 2D tensors. Each 2D tensor can be specified by the number
of rows M, columns N, its leading dimension ld and its
datatype dtype. Additionally, during runtime each tensor gets
fully characterized by specifying its location/address as primary
info, optional companion tensor info as secondary (e.g., sparsity
bitmask), and optionally tertiary info (e.g., in case the tensor
shape is dynamically determined at runtime, this info may
contain variables specifying M/N). Each TPP also specifies the
shape/precision of the produced/output 2D tensor.

Each TPP also supports input tensors with broadcast
semantics. More specifically, TPPs accept optional flags dictating
that the input 2D tensor should be formed by broadcasting
a column/row/scalar N/M/M × N times, respectively. Finally,
the TPPs accept optional flags which further specify the
TPP operation. For example, in case a TPP is computing a

transcendental function, the flags may be specifying various
approximation algorithms used for the computation. In the next
subsection, we present the TPPs in three groups: unary, binary,
and ternary TPPs given the number of input tensors they accept.

2.3. The TPP Collection
First, we highlight the ternary Batch-Reduce GEneral Matrix
to Matrix Multiplication (BRGEMM) TPP which is the main
building block for general tensor contractions in DL kernels [21].
BRGEMMmaterializes the operation C = β ·C+

∑n−1
i=0 Ai× Bi.

In essence, this kernel multiplies the specified blocks AM×K
i and

BK×Ni and reduces the partial results to a block CM×N . It is
noteworthy that tensors A and B can alias and also the blocks Ai

and Bi can reside in any position in the input (potentially high-
dimensional) tensors A and B. Previous work [21] has shown
that this single building block is sufficient to express efficiently
tensor contractions in the most prevalent DL computational
motifs, namely: Convolution Neural Networks (CNN), Fully-
Connected networks (FC), Multi-Layer Perceptrons (MLP),
Recurrent Neural Networks (RNN)/Long Short-Term Memory
(LSTM) Networks. In Section 5 we exhibit how BRGEMM can
be further used to build efficient Attention Cells that comprise
the cornerstone of modern Natural Language Processing (NLP)
workloads. BRGEMM can be specialized to one of the following
three variants that may enable more efficient implementations
on various platforms: (i) address-based BRGEMM, where the
addresses of the blocks Ai and Bi are explicitly provided by
the user, (ii) offset-based BRGEMM, where the addresses of Ai

and Bi can be computed as address_Ai = address_A + offsetAi

and address_Bi = address_B + offsetBi , and (iii) stride-based
BRGEMM, where the addresses of Ai and Bi are: address_Ai =

address_Ai−1 + stride_A and address_Bi = address_Bi−1 +
stride_B. In section 3.2, we present the implementation of the
BRGEMM TPP in more depth for various ISAs and platforms.

Table 1 presents the unary TPPs that accept one 2D tensor as
input. Since most of these TPPs map directly to the equivalent
math function, we further elaborate only on the ones which are
more complex. The Identity TPP essentially copies the input to
the output. Since the input and output are fully specified in terms
of their precision, this TPP can be also used to perform datatype
conversions between tensors.

The Quantize & Dequantize TPPs are used to
quantize/dequantize the input tensor whereas the exact
algorithm employed is specified by a TPP flag.

The Transform TPP uses a flag to determine the exact
transformation applied on the input 2D tensor. The Transpose
transformation is the usual mathematical matrix transpose.
The rest two types of transformation, namely Vector Neural
Network Instructions (VNNI) formatting, and VNNI to VNNI-
transpose are DL specific. More specifically, modern hardware
(e.g., Intel’s Cooper Lake) requires tensors to be in specific
format called VNNI in order to employ hardware acceleration
for specific operations, e.g., dot-products (see section 3.2.2
for more details). This format represents a logical 2D tensor
[D1][D0] as a 3D tensor [D1/α][D0][α] where essentially the
dimension D1 is blocked in chunks of size α, which in
turn are set as the inner-most tensor dimension. The VNNI
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TABLE 1 | Unary TPPs.

Unary TPP Description/Comments

Identity Copies input to output. Given input/output datatype, it

performs datatype conversions

Zero Fills output with zeros

Square Squares input and stores to output

Increment /

decrement

Increments / Decrements input by 1 and stores to output

Square root Computes the square root of input and stores to output

Reciprocal Computes the reciprocal of input and stores to output

Rcp. Sqrt. Computes the rcp. sqrt. of input and stores to output

Exp Computes the exponential value of the input tensor entries

and stores them to output

PRNG Generates an output tensor with pseudo-random entries

(De)Quantize Quantizes / Dequantizes the input

Reduce Reduces the rows/columns of the input and stores to output.

The reduction function can be SUM/MUL/MIN/MAX;

(optionally) reduces the squared input

Transform Transforms input and stores to output. Transformations are:

Transpose, VNNI formatting, and VNNI to VNNI-transpose

Unpack Takes each entry xi,j of the input tensor, splits it in two parts

xloi,j and xhii,j with same bit-width, and stores them in two

tensors X lo, Xhi

Replicate

columns

Takes an input column/vector, replicates it a variable number

of times and forms the output

Gather / Scatter Gathers/Scatters rows/columns from input and forms the

tensor

2D Gather / 2D

Scatter

Gathers/scatters elements from input using 2D offsets

2D-strided

loads/stores

Loads/stores elements from/to a tensor using primary and

secondary strides

Tanh &Tanh_inv Computes the hyperbolic tangent function (or its inv used for

back-propagation) on input

RELU &

RELU_inv

Apply a Rectified Linear Unit function (or its inv used for

back-propagation) on input

Sigmoid &

Sigmoid_inv

Computes the logistic sigmoid (or its inv used for

back-propagation) on input

GELU &

GELU_inv

Apply a Gaussian Error Linear Unit function (or its inv used for

back-propagation) on input

Dropout &

Dropout_inv

Drops out values from the input tensor with probability p. For

the inv/back-propagation pass, the same dropped units are

zeroed out

formatting TPP performs this exact transformation: [D1][D0]→
[D1/α][D0][α] and the VNNI to VNNI-transpose transposes
a tensor which is already laid out in VNNI format, i.e.,
performs [D1/α1][D0][α1]→ [D0/α0][D1][α0]. In section 3.3.1,
we outline how the Transform TPPs are implemented via
Shuffle Networks.

The last four entries of Table 1 correspond to DL-specific
operations. They correspond to activation functions typically
encountered in DL workloads. All these activation functions have
a counterpart which is required during the back-propagation pass
of training DL networks. These DL specific TPPs could be built
on top of other TPPs, however, since they are prevalent in DL
workloads we opt to define them as self-contained TPPs for ease
of usage. In section 3.3.2, we describe the TPP implementation

TABLE 2 | Binary TPPs.

Binary TPP Description/Comments

Add Add two inputs

Sub Subtracts two inputs

Mul Multiples (elementwise) two inputs

Div Divides two inputs

Max/Min Finds element-wise max/min of two inputs

MatMul Performs matrix multiplication of two input

Pack Concatenates pairs of entries xloi,j and xhii,j from the inputs X lo,

Xhi into xi,j and stores it to the output X

Compare Compares element-wise two inputs and stores a bitmask of

the comparison

TABLE 3 | Ternary TPPs.

Ternary TPP Description/Comments

GEMM Performs on 2D inputs A, B, C, scalar β: C = βC+ A× B

Batch-Reduce

GEMM

Performs on 2D inputs Ai , Bi (with i = 0, 1,…, n− 1), C, scalar

β: C = βC+
∑i=n−1

i=0 Ai × Bi

(N)MulAdd Performs on 2D inputs A, B, C: C = C+ A⊙ B (or

C = C− A⊙ B); ⊙ denotes element-wise multiplication

Blend Blends 2D input tensors A, B according to bitmask C

of non-linear approximations for several activation functions on
various ISAs.

Tables 2, 3 present the binary/ternary TPPs that accept
two/three 2D tensor as inputs, respectively.

3. TPP IMPLEMENTATION

In this section, we briefly describe our Proof-Of-Concept (POC)
implementation of the TPP specification. Our implementation
targets multiple CPU architectures from various vendors that
support different ISAs, but could be readily extended to
support even GPU ISAs. We build upon and extend the
open source LIBXSMM [22] library which leverages JIT
techniques. Such JIT techniques have been successfully used
for optimal code generation on CPUs by taking advantage of
the known (at runtime) tensor shapes/dimensions in HPC and
DL applications [21–23]. Nevertheless, the TPP specification
is platform-agnostic and does not preclude any TPP back-
end implementation. In our POC implementation, the usage
of TPPs is governed by two APIs: (i) A dispatch API with
which the user can request the code generation of a specific
TPP, and such a dispatch call JITs a function implementing
the requested operation, (ii) an API to call the JITed TPP
kernel. First, in section 3.1, we provide a generic blueprint of
our TPP implementation. Then, in section 3.2, we describe in
more detail the BRGEMMTPP implementation which comprises
the main tensor contraction tool in the TPP abstractions.
Section 3.3.1 details the implementation of the unary transform
TPPs via shuffle networks since their efficient implementation
diverts from the generic TPP blueprint. Finally, section 3.3.2
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Algorithm 1 | The generic unary/binary/ternary TPP algorithm.

Inputs: XM×N , (YM×N , ZM×N if binary/ternary)
Output:OM×N

1: for in = 0 . . .N − 1 with step nb do

2: for im = 0 . . .M − 1 with step mb do

3: ⊲ Generic loads, may have broadcast/gather semantics,
4: ⊲ and may perform datatype conversions
5: Xb← load_genericmb × nb X-subblockim ,in
6: if (unary TPP) then
7: Xb← Unary_op(Xb)

8: if (binary TPP) then
9: Yb← load_genericmb × nb Y-subblockim ,in
10: Xb← Binary_op(Xb,Yb)

11: if (ternary TPP) then
12: Yb← load_genericmb × nb Y-subblockim ,in
13: Zb← load_genericmb × nb Z-subblockim ,in
14: Xb← Ternary_op(Xb,Yb,Zb)

15: ⊲ Generic store, may have scatter semantics, and may
16: ⊲ perform datatype conversion

17: O-subblockim ,in
←−−−−−−−−
store_generic Xb

outlines the approximation techniques we leverage in our
TPP implementation of non-linear activation functions; such
approximations are essential in achieving high-performance,
while at the same time their accuracy is sufficient for the purposes
of training DL workloads.

3.1. Generic TPP Implementation Blueprint
Algorithm 1 exhibits at a high-level the pseudocode that is
used to implement the Unary/Binary/Ternary TPPs in a unified
fashion. The inputs of the TPPs are tensors X, Y (in case of
binary/ternary TPPs) and Z (in case of ternary TPP), and an
output tensor O. For the purposes of this simplified presentation
we assume all tensors are of size M × N, however, depending
on the operation these might have different sizes. For example,
if the unary OP is a reduction-by-columns and the input
is M × N, then the output is an M × 1 vector. First, we
show that the M/N loops are blocked with factors mb/nb
such that the working sets of each microkernels fits on the
available register file. The latter is architecture specific, e.g.,
AVX2-enabled ISAs expose 16 256-bit vector registers, AVX512-
enabled ISAs expose 32 512-bit vector registers, and Aarch64
features 32 128-bit (NEON)/512-bit (SVE) vector registers.
The “load_generic” function used in Algorithm 1 denotes the
loading of a sub-tensor to a register block; this load may imply
row/column/scalar broadcast semantics if the user specified the
TPP in that way, or even may have strided-load/gather semantics
if the TPP involves a strided-load/gather operation. Also, for
simplicity we do not show here the handling of “secondary”
fields of the tensors that may be required (e.g., indices array
for the gather operation, bitmasks arrays). Additionally, the
generic load also handles datatype conversion, for instance
provided the input is in bfloat16 (BF16) [24] whereas the
compute is going to happen in FP32 precision. Once all

Algorithm 2 | The batch-reduce GEMM TPP.

Inputs: AM×K
i ,BK×Ni for i = 0, . . . , n-1, CM×N , β ∈ IR

Output: C = β · C +
∑n−1

i=0 Ai × Bi
1: for in = 0 . . .N − 1 with step nb do

2: for im = 0 . . .M − 1 with step mb do

3: acc_regs← load_genericmb × nb C-subblockim ,in
4: for i = 0 . . . n− 1 with step 1 do

5: for ik = 0 . . .K − 1 with step kb do

6: ⊲ Outer product GEMMmicrokernel
7: acc_regs+= Ai sub-panelim ,ik × Bi sub-panelik ,in

8: C-subblockim ,in
←−−−−−−−−
store_generic acc_regs

the required sub-tensors are loaded, then the corresponding
Unary/Binary/Ternary operator is applied. This operator may be
directly mapped to an available instruction (e.g., a vector add
in case of binary addition), or to a sequence of instructions for
more complicated operators (e.g., reductions, random number
generation via xorshift algorithm [25], approximation algorithms
for transcendental functions [26]). Last but not least, the optimal
sequence generation depends on the available instructions and
this is handled by the TPP back-end/JITer. For example, some
ISAs may have masking/predicate support (e.g., AVX512 & SVE)
that enable efficient handling of loop remainders, the selected
unrolling degree heavily depends on the instructions in use, their
latency and the number of available architectural registers. Once
the result is computed, the resulting register block is stored back
to the corresponding output sub-tensor position. Similarly to the
generic load, the “generic” store may induce strided accesses or
may be even a scatter operation. Additionally, the generic store
also handles potential datatype conversions.

3.2. The BRGEMM TPP Implementation
3.2.1. The BRGEMM Kernel Structure
We present in more detail the BRGEMM TPP because it
comprises the tensor contraction tool in the TPP abstraction,
and is ubiquitous in the DL kernels and workloads described
in section 5. Algorithm 2 exhibits the high-level algorithm
implementing: C = β · C +

∑n−1
i=0 Ai × Bi. Lines 1-2 block the

computation of the result C in mb × nb tensor sub-blocks. Once
such a subblock is loaded into the accumulation registers (line
3), we loop over all pairs Ai, Bi (line 4) and we accumulate into
the loaded registers the products of the corresponding mb × K
subblocks of Ai with the relevant K × nb subblocks of Bi (lines
5–7). In order to calculate a partial product of an mb × kb
sub-panel of Ai with a kb × nb sub-panel of Bi, we follow
an outer product formulation. The loading of Ai and Bi sub-
panels, and the outer-product formulation is heavily dependent
on the target platform. We provide BRGEMM implementations
for multiple x86 ISAs: SSE, AVX, AVX2, AVX512, including the
recently introduced Intel AMX (Advanced Matrix Extensions)
ISA [27]. Additionally, we have implemented the BRGEMM
TPP for AArch64 and ARMv8 SVE ISAs. Depending on the
targeted platform, the “register” can be either a typical vector
register with varying width (e.g., 128–512 bit vector length), or
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FIGURE 2 | Outer product GEMM microkernels, Left: On a platform with 32 vector registers, Middle: On a platform with 16 vector registers, Right: On a platform

with 8 2D registers (tiles).

in the case of AMX-enabled target the “register” is a 2D tile-
register. Similarly, the outer-product formulation may employ
the available Fused-Multiply-Add (FMA) instructions, or even
2D tile-multiplication instructions. In all these cases, the TPP
implementation emits the appropriate load/store/prefetch/FMA
instructions, and takes into account the available architectural
registers/unrolling factors/instruction mix in order to achieve
close to peak performance. Last but not least, the BRGEMM
supports multiple datatypes (FP64, FP32, BF16, INT8), and
whenever possible employs hardware acceleration, e.g., via
specialized FMA instructions for INT8/BF16 datatypes. In
order to highlight the differences of the outer product GEMM
microkernels that are heavily dependent on the target platform,
we show in Figure 2 three different implementations.

Figure 2-Left shows an exemplary outer product microkernel
on a platform with 32 available vector registers, for example an
x86 with AVX512 or on ARM AArch64/SVE. In this case vector
register v7-v30 constitute the accumulators, vector registers v1-
v6 hold a broadcasted subrow of B, and vector register v0 is
used to load a partial subcolumn of A. First, we load on v1-
v6 a subrow of B via broadcasts, then we load on v0 the first
chunk of the A subcolumn and with six fused multiply-add
(FMA) instructions (v0 with v1-v6) we multiply-and-add the
corresponding partial results on the accumulators v7-v12 (first
logical row of accumulators). Then, we load on v0 the second
chunk of the A subcolumn, and subsequently with yet another
six FMA instructions (v0 with v1-v6) we multiply-and-add the
computed partial results on the accumulators v13-v18 (second
logical row of accumulators), etc. The registers v1-v6 are reused
four times throughout the outer product computation, and v0
is reused six times for each loaded A chunk. In other words,
the corresponding A subcolumn and B subrow are loaded from
memory/cache into the vector registers exactly once and we get
to reuse them from the register file. Also, in such a formulation,
we expose 24 independent accumulation chains which is critical
in order to hide the latency of the FMA instruction. Last but not
least, the platform (i.e., vector register width) and the datatype
of the microkernel determine the exact values of the blocking
parameters mb, nb, and kb. For example for single precision
datatype FP32 and an x86 AVX512 platform, each vector register
can hold 16 FP32 values (the vector registers are 512-bit wide).

Therefore, this microkernel operates with blocking values mb =

64, nb = 6, and kb = 1 and it calculates a small matrix
multiplication C64×6 += A64×1 × B1×6.

Figure 2-Middle shows an exemplary outer product
microkernel on a platform with 16 vector registers, for example
an x86 with up to AVX2 ISA. The microkernel is similar with the
previous case; since we have only 16 vector registers available,
we dedicate 12 of those as C accumulators, 3 vector register are
utilized for holding a partial B subrow, and 1 vector register
is used to load a chunk of an A subcolumn. In this case 12
independent accumulation chains are also sufficient to hide
the FMA latency. Analogously to the previous case, for single
precision datatype FP32 and an x86 AVX2 platform, each vector
register can hold now 8 FP32 values (the vector registers are now
256-bit wide). Thus, this microkernel operates with blocking
values mb = 32, nb = 3, and kb = 1 and it calculates a small
matrix multiplication C32×3 += A32×1 × B1×3.

Figure 2-Right shows a small GEMM microkernel on a
platform with 8 2D registers (tiles), for example what is
available in the recently introduced Intel AMX (AdvancedMatrix
Extensions) ISA. In this case each 2D tile register has size (up
to) 1KB, logically holds (up to) 16 rows of a submatrix, and can
be loaded with a proper tile-load instruction. In this particular
example, tiles 0-3 comprise the C accumulators, tiles 4-5 are
used to hold a subpanel of A and tiles 6-7 are used to hold a
subpanel of B. Once we load the subpanels of A and B onto
the respective tiles, we can perform 4 tile multiply-and-add
instructions: tile0 += tile4 × tile6, tile1 += tile4 × tile7,
tile2 += tile5 × tile6 and tile3 += tile5 × tile7, and we
update the C accumulators. In such a microkernel, each A/B
tile is reused 2 times. Given each tile may have size up to 1KB
and may hold up to 16 rows of a submatrix, by considering
BF16 datatype for A/B matrices and FP32 accumulator tiles,
such a microkernel operates with blocking values mb = 32,
nb = 32, kb = 32, and can compute (up to) a small matrix
multiplication C32×32 += A32×32 × B32×32. Each A/B tile
represents a logical 16× 32 BF16 A/B submatrix, and each C tile
represents a 16 × 16 FP32 accumulator. The AMX instructions
will be available within the upcoming Intel Xeon processors
code-named Sapphire Rapids, and the corresponding BF16-
input/FP32-output tile multiplication instructions can deliver
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FIGURE 3 | Mixed-precision dot-product instructions, Left: 16 bit integer and bfloat16 on Intel AVX512, Middle: 8bit integer using Intel AVX512, Right: 8 bit integer

using ARM ASIMD.

up to 16× more FLOPs/cycle compared to FP32 AVX512 FMA
instructions on current Xeon platforms.

These considerably different GEMM microkernel variants
highlight yet another aspect of the TPPs: The TPPs specify
what needs to be done rather than how it is done/implemented.
In this case, the user may just specify/employ a BRGEMM
TPP in order to perform a tensor contraction, whereas the
TPP backend/implementation is responsible for generating
the optimal code for each platform at hand. In this
methodology, all the architectural nuances are hidden
completely by the user, and the same exact user code
written in terms of TPPs may be reused across platforms with
different characteristic/ISAs without sacrificing performance
or portability.

3.2.2. Mixed Precision BRGEMM and Its Emulation
While the previous section presents the general structure of
mapping matrix multiplication to various physical ISAs, this
paragraph is used to demonstrate how the idea of a virtual
ISA allows to implement operations efficiently which are not
natively supported by a specific physical ISA. The example we are
choosing here is our GEMM kernel and its support for bfloat16
and int8 on architectures which do not support these novel
ISA SIMD-extension.

Before going into the details of the emulation, we first need
to introduce special memory layouts which are used by x86 and
aarch64 mixed-precision dot-product instructions as shown in
Figure 3. As we can see in all cases (x86/aarch64 and bf16/int8),
the overall concept is identical: Although doing mixed-precision
and mixed-datatype-length computations, these instructions are
functioning from a matrix multiplication point-of-view similar
to 32 bit instructions. This is achieved by having an implicit 2-
wide (BF16/int16) and 4-wide (int8) dot-product of Ai and Bi
values leading to a horizontal summation per single 32 bit Ci, e.g.,
C0 = A0 · B0 + A1 · B1 + A2 · B2 + A3 · B3 + C0 as shown for
the int8 variant. If we apply blockings with these instructions as
discussed in Figure 2-Left, Middle, then we realize that matrix
B is still read via 32-bit broadcast (containing 2 16-bit or 4
8-bit values along the inner-product or common dimension).
However, matrix A is in need of reformatting. This is due to the

fact that the GEMM kernel in Figure 2-Left, Middle requires full
SIMD-width contiguous loads for optimal performance (which
is along M and not K). Therefore, we need to reformat A into
[Ko][M][Ki] with Ko · Ki = K and Ki = 2 for 16-bit and
Ko = 4 for 8-bit inputs. We refer to such a format as VNNI-
format throughout this article. After such reformatting of A, we
can perform full SIMD loads on A; combined with the 32-bit
broadcast loads on B we have a 32-bit GEMM kernel which
has a shorter K dimension, 2× for 16-bit datatypes and 4× for
8-bit datatypes.

In case these novel instructions are not available, especially for
bfloat16 as this is a relatively new format, one might think, that
an efficient mapping to a classic FP32 SIMD ISA is not possible.
This is correct as long as the machine does not offer int16
support. However, with int16 support and SIMDmasking we can
implement the aforementioned non-trivial mixed-precision dot-
product efficiently and even bit-accurately as shown in Figure 4.
This is done by processing Ki in two rounds in the case of
bfloat16 datatype. As shown in Figure 4, we first process the odd
(or upper) bfloat16 number. This is done by exploiting the fact
that a bfoat16 number perfectly aliases with an FP32 number
in its 16 MSBs. Therefore, on AVX512 we can just execute a
full SIMD load as a 16-bit-typed load with masking. As a mask
we chose 0xaaaaaaaa and as masking-mode we use zero
masking. With this trick we automatically turn on-load the upper
bfloat16 numbers in A into 16 valid FP32 numbers, and for B we
broadcast and then perform an overriding register move. A little
bit more work is needed for the lower/even bfloat16 number: In
this case, we perform an unmasked load and then we use a 32-
bit integer shift by 16 to create valid FP32 numbers. A simple
inspection of the instruction sequence in Figure 4 shows that
we are mainly executing fused-multiply-add instructions with
little overhead compared to a classic FP32 GEMM as illustrated
in Figure 2-Left, Middle. Therefore, we can execute a bfloat16
GEMMwith a reformatted matrix A with close to FP32-peak and
still benefit from the smaller memory footprint (and, therefore,
a small performance gain, as we will show later in section 6).
Replacement sequences for int16 and int8 matrix inputs can
be carried out in a similar way and their detailed discussion is
skipped here.
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FIGURE 4 | Emulation of a bit accurate GEMM kernel using AVX512F instructions matching a GEMM kernel as depicted in Figure 2 using vdpbf16ps AVX512

instructions. The glossary contains detailed descriptions of the used intrinsic functions.

In addition to the presented emulation of mixed-precision
GEMM kernels using SIMD instructions, we have also added
support for emulation of Intel AMX instructions bit-accurately
on AVX512. This addition enables running numerical accuracy
experiments, such as convergence studies, before the release of
a chip that supports Intel AMX instructions. A similar path is
possible for ARM’s SME instruction set and subject to future
work. These emulation capabilities further highlight the aspect
of TPP as a virtual tensor ISA.

3.3. Examples of Non-trivial Non-GEMM
TPPs
The previous sections covered most of the TPP implementations:
straightforward element-wise unary/binary/ternary operations
and various forms of mixed precision GEMMs including their
emulation on older hardware. However, there are cases in which
we are not operating on the data in an element-wise fashion,
e.g., transpose, or the Unary_op, Binary_op, or Ternary_op is
not an elementary operation. The goal of this section is to
shed some light on these cases by presenting the transpose
TPP in detail, and sketching fast non-linear approximations on
SIMD machines that match the accuracy requirements of deep
learning applications.

3.3.1. Transform-Transpose TPP via Shuffle Networks
When working with matrices, the transpose kernel is ubiquitous.
It is needed to access thematrix’s elements in various contractions

along the mathematically correct dimension. However, a
transpose operation is scalar at first sight. In this subsection
we exhibit how transpose can be implemented using shuffle
networks in a fully vectorized fashion, e.g., Figure 5 demonstrates
how a 16×16 matrix with 256 32-bit elements can be transposed
in 64 cycles using AVX512 instructions.

The shuffle-network presented in Figure 5 is a blueprint for
all datatype-lengths and ISAs: in log2 SIMD-Length stages we
can transpose a matrix held in a set of SIMD registers. In this
particular example, we need log2 16 = 4 stages and in each stage
we increase the shuffling/interleaving width of logical elements,
and also increase the distance at which we access the 32 registers
grouped into two sets of 16 registers each. More specifically,
we start with registers i0 to i15 and interleave elements at the
same position in a pair of registers close to each other. This
constructs now pairs of 32 bit values in o0 and o1 which are
already containing the transpose’s result for 2 out of 16 elements
and we repeat this for all other 7 input register pairs. The
analogous transformation is now repeated in the second stage
with 64-bit values and accessing o0 and o2 as input pair pattern.
This constructs a new set output registers i0 and i1 which are
holding the transpose’s result at 128-bit granularity. After that,
stage 3 is shuffling at 128-bit granularity on register pairs which
have a distance of “4" and creates output registers that hold 256-
bit of transposed data. Finally, in stage 4, these 256-bit transposed
input registers are shuffled once again creating the final set of 16
register holding the transposed 16 × 16 matrix. For non-square
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FIGURE 5 | Sketch of a shuffle network for a 32-bit transpose of a 16×16 matrix using Intel AVX512 instructions. Via four stages (each one having 16 independent

shuffles that double in width per stage), the 16×16 matrix (256 elements) can be transposed with only 64 instructions and fully leverages the 32 architectural registers.

FIGURE 6 | Comparison of X86 and ARM code for a simple 4×4 single precision transpose using unpack instructions. The glossary contains detailed descriptions of

the used intrinsic functions.

matrices we (a) just use masked loads or set registers to zero,
(b) transpose the zeros as well, and then (c) do not store all
registers or employ masked stores. This basic kernel is used as a
basic building block to create large transpose operators by simply
adding outer loops.

This algorithm can be implemented by any SIMD ISA which
offers support for picking arbitrary values from a pair of SIMD
registers to construct a result register containing values from the
two sources, i.e., a general shuffler. However, “structured” shuffle
instructions are adequate as shown in Figure 6. Both x86 and
aarch64 offer instructions exactly implementing the needs for 32-
bit and 64-bit interleaves as needed in the first two stages covered
in the previous description. In the case of 128-bit-wide SIMD

registers this is enough to carry out the entire transpose of 4 ×
4 matrices as shown in Figure 6.

Finally, we want to note that broadcast loads, as supported
by various ISAs, can be used to implement the first stage of
the shuffle network. This has the advantage that one stage of
the shuffle network can be executed faster and in parallel to the
shuffler. The shuffle operations needed in all of these networks
are relatively expensive in hardware, therefore modern CPUs
often only provide one execution unit for such operations (such
“shuffle-viruses” like transposes are pretty rare in general code).
However, broadcasts on the load path are cheap and can run in
parallel to the shuffle unit, hence the overall performance of the
transpose operation improves. This microkernel variation leads
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FIGURE 7 | Rational Padé 7/8 tanh approximation pseudocode with equivalent intrinsics on x86 and Arm/AArch64. We highlight here how the FMADD instruction on

x86 ISAs has an equivalent instruction sequence on AArch64.

to relatively complex code, and as such we skip its presentation.
However our TPP implementation back-end employs all these
microkernel variations.

3.3.2. Approximations for Non-linear TPP Activation

Functions
Activation functions are used to represent non-linear behavior
of neural networks. Popular known activation functions are
sigmoid, tanh and Gaussian Error Linear Unit (GELU). These
activation functions can be approximated to increase the
efficiency of deep learning networks without effecting its non-
linear characteristics. In this section, we will discuss different
approximation techniques based on Padé rational polynomials,
piecewise minimax polynomials and Taylor expansions, along
with their TPP implementation on different ISAs. For simplicity
we present the relevant algorithms in terms of x86 and
arm intrinsics (see glossary for the semantics of these
intrinsics), however the actual TPP implementation relies on JIT
code generation.

3.3.2.1. Rational Padé Polynomials
The Padé approximation of a function f is the ratio of two
polynomials with degrees p and q:

Padé[p/q]f (x) =

∑p
i=0 aix

i

∑q
i=0 bix

i

The coefficients ai and bi can be calculated by considering the
first p + q derivatives of f at zero and solving the corresponding
system of equations:

f (0) = Padé[p/q]f (0)

f ′(0) = Padé′[p/q]f (0)

...

f (p+q)(0) = Padé
(p+q)
[p/q]f (0)

As an example we consider the approximation of the tanh
function which has two asymptotes, hence approximating it
with a Taylor expansion of lower degree polynomials may not
yield good results. The implementation of the Padé[7/8](x) tanh
approximation is shown in Figure 7. FMA operations are used
to compute the numerators and denominators via Horner’s rule.
The reciprocal of the denominator is multiplied by the numerator
to get the final result. The accuracy of reciprocal instruction is
different among different CPU’s. This difference in accuracy does
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FIGURE 8 | Tanh minimax approximation pseudocode with equivalent intrinsics on x86 and Arm/AArch64. We highlight here how the _mm512_range_ps instruction

on x86 ISAs has an equivalent instruction sequence on AArch64. Also the permutes on x86 have equivalent Table lookup instructions on AArch64.

not affect the non-linear region of the tanh function, keeping
the TPP behavior same across different CPU’s. The sigmoid
activation function can be approximated via tanh by leveraging
the following identity:

sigmoid(x) = (tanh(x/2)+ 1)/2

3.3.2.2. Piecewise Minimax Polynomial Approximations
In this section, we discuss the minimax polynomials
approach [28] with the truncated Chebyshev series [29] for
approximations of activation functions. In this approach, the
input range of a function f (x) is divided into intervals and for
each interval [a, b] we find a polynomial p of degree max n
to minimize:

max
a≤x≤b

|f (x)− p(x)|

We approximate tanh and GELU activation functions using this
approach in our TPP implementation. The input range is divided
into 16 intervals and for each interval we investigate a polynomial
p of 3rd degree (i.e., we find appropriate p’s coefficients c0,
c1, c2 based on the minimized absolute maximum difference
of f and p). Figure 8 shows the x86 and arm implementation
of evaluating such minimax polynomials. The register index
(idx) is calculated using the exponent and Most Significant Bit
(MSB) of the respective input values, and represents the 16
intervals where the input values are located. The range intrinsic
_mm512_range_ps(A,B) is used to generate the register index
(idx) on AVX512 platforms (Figure 8-Left, line 2). In ARM,

the range functionality is emulated with equivalent and, shlq,
min and max instructions as shown in Figure 8-Right, lines 2–
4. To evaluate the 3rd degree polynomial we need to locate 3
coefficients (c0,c1,c2) based on the values at the register index
(idx), which holds 16 entries. We use 3 look up operations to find
the three coefficients, each involving 16 FP32 entries. The 512-
bit register length in AVX512 is sufficient to hold 16 coefficients
required for each look up, resulting in using 3 registers for 3 look
up operations (see Figure 8-Left, lines 4–6). Each ARM 128-bit
wide vector register can only hold 4 FP32 entries, subsequently
we are using 12 vector registers to hold the 16 entries for all
3 coefficients of the polynomial. The in-register look-up table
is performed using _mm512_permutexvar_ps(A,B) instructions
in x86 AVX512 as shown in Figure 9. In ARM we have byte
addressable table look up instructions which are analogous to
32-bit addressable permutes instructions in x86. Hence, we need
to convert the 32-bit addressable (0–16) register indexes to byte
addressable (0-64 bytes) indexes. In order to do that, we use a
constant register A with a table look up instruction to duplicate
the register index (idx) to each byte in the 32-bit entry. A constant
offset (0,1,2,3) is added to the duplicated byte index to get the
byte addressable index for each FP32 entry in 16 FP32 entries
(Figure 8-Right, lines 7–9). The table look up instruction in
ARM provides the 64 byte look up capability, which is sufficient
enough to search into 4 registers holding the 16 entries of each
coefficient; we are using the generated byte indexes as shown in
Figure 10. Finally, 4 FMA operations are used to evaluate the
polynomial using Horner’s rule. The FMA instruction in x86
provides the user the flexibility to decide among the sources to
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FIGURE 9 | 32Bit addressable Table look up setup on x86 AVX512 platforms.

FIGURE 10 | Byte addressable table look up setup in ARM/AArch64. We highlight the conversion of 32bit indexes to byte indexes and the use of byte indexes to get

the coefficients in 16 FP32 intervals.

destroy and the ones to preserve. ARM requires mov instructions
to save intermediate results in order to avoid the data overwriting
during FMA operations.

3.3.2.3. Approximation With Taylor Series
As an example of approximation with Taylor series we illustrate
here the exp() activation function. The ex is approximated
using the identity ex = 2x log2 e = 2n+y = 2n · 2y with
n = round(x log2 e) and y = x log2 e − n. We need to
calculate 2n with n being an integer and the term 2y with |y| ∈
[0, 1). A Taylor polynomial of third degree is used to calculate
the term 2y with 3 FMA instructions (see Figure 11-Left,
lines 4–6). Once 2y is calculated, we leverage the instruction
_mm512_scalef_ps(A,B) which returns a vector register
holding ai · 2

floor(bi) for each ai ∈ A and bi ∈ B. This
scale instruction concludes the exp() approximation on x86
with AVX512. On ARM we calculate 2n and 2y with equivalent
replacement instructions as shown in Figure 11.

4. TPP MATRIX EQUATIONS

One of the main design principles of TPPs (as described in
section 2.1) is that they can be composed in a producer-consumer
fashion to form complex operations. For example consider
the scenario where a user wants to implement the composite

operation C = Tanh(A + B). One way to express this via TPPs
would be to allocate an intermediate tensor tmp with same shape
asA and B, and perform first tmp = Add(A,B) via the binary Add
TPP. Then the user can compute the final result by leveraging the
Tanh Unary TPP: C = Tanh(tmp). Even though this approach
is functionally correct, it requires the explicit management of
intermediate tensors/buffers by the user and also may result in
low performance since there are redundant loads/stores to the
tmp tensor.

In order to increase the productivity, efficiency and
expressiveness pertaining to composite operators, we
implemented an embedded Domain Specific Language (eDSL) in
LIBXSMM [22]. Our Proof-Of-Concept implementations allows
the user to express the desired composite operator as a Matrix
Equation. More specifically, the user can express the composite
operator as an equation tree, where the head and internal nodes
are the available TPPs, whereas the leaves of the tree are the input
2D tensors of the composite operation. In the next subsections,
we describe in detail the methodology we employ for JITing
matrix equations of TPPs.

4.1. Definitions and Notations for TPP
Matrix Equations
A TPP matrix equation is represented as a tree with
unary/binary/ternary TPP operations as internal nodes and
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FIGURE 11 | Pseudocode for ex approximation with Taylor series on AVX512 x86 and ARM.

FIGURE 12 | Left: TPP Equation tree for Out = Tanh(T0)+ (T1 × T2)/(T3 − T4). Right: Assigned register scores v on the equation TPP nodes after running

Algorithm 3.

the equation’s input tensors are the leaves of the tree. The inputs
of a TPP tree node are essentially its children in the equation
tree. The output of an internal TPP node can be represented
as a temporary intermediate tensor which in turn can be fed as
input to the parent TPP node in the tree. Depending on the TPP
node type (unary/binary/ternary), each internal node requires a
number of inputs (one/two/three) to be computed/ready before
performing the corresponding TPP operation. Let’s consider for
example the TPP equation tree in Figure 12-Left that is used to
express the following operator:

Out = Tanh(T0)+ (T1 × T2)/(T3 − T4) (1)

Wewill illustrate with this example how our eDSL for TPPMatrix
Equations works.

4.2. Optimized Execution Plan for TPP
Matrix Equations
The equation tree in Figure 12-Left can be naively evaluated
by assigning to each intermediate node a temporary tensor to
hold the corresponding TPP output, and performing, e.g., (1) the
Tanh operation, (2) the Matrix Multiplication, (3) the Subtract
operation, (4) the Div operation, and finally (5) the Add TPP.
In such an evaluation schedule, we would need 4 intermediate
tensors to hold the corresponding intermediate results. In
this subsection, we illustrate how we can construct optimized
execution plans for TPP Matrix Equations that minimize the
number of intermediate tensors.

For each TPP node r we can assign a register score value
vr that essentially dictates how many temporary/intermediate
tensors are required to calculate the subtree in the equation where
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Algorithm 3 | Assign_Register_Score(r).

Input: TPP equation tree with root node r
Output: TPP equation tree with assigned register score values on

its nodes
1: if is_Leaf(r) then
2: vr← 0

3: if r is unary TPP then

4: Assign_Register_Score(Left_Child(r))
5: ⊲ If child is leaf, then we assign current register score of 1,

else we assign the child’s register score
6: if is_Leaf(Left_Child(r)) then
7: vr← 1
8: else

9: vr← Register_Score(Left_Child(r))

10: if r is binary TPP then

11: Assign_Register_Score(Left_Child(r))
12: Assign_Register_Score(Right_Child(r))
13: ⊲ If the register scores of children are equal, then we get the

children’s register score increased by one, otherwise we get the
max value of the children’s register score

14: if Register_Score(Left_Child(r)) equals

Register_Score(Right_Child(r)) then
15: vr← Register_Score(Left_Child(r)) + 1
16: else

17: vL← Register_Score(Left_Child(r))
18: vR← Register_Score(Right_Child(r))
19: vr←MAX(vL, vR)

20: if r is ternary TPP then

21: Assign_Register_Score(Left_Child(r))
22: Assign_Register_Score(Middle_Child(r))
23: Assign_Register_Score(Right_Child(r))
24: ⊲ If all children are leaves, then we assign current register

score of 1. Otherwise, in a pairwise fashion we consider the
register scores of the children in order of increasing value.

25: if is_Leaf(Left_Child(r)) AND is_Leaf(Middle_Child(r))
AND is_Leaf(Right_Child(r)) then

26: vr← 1
27: else

28: vL← Register_Score(Left_Child(r))
29: vM← Register_Score(Middle_Child(r))
30: vR← Register_Score(Right_Child(r))
31: v0, v1, v2← Sort_Increasing_Order(vL, vM , vR)
32: if v2 equals v1 then
33: vtmp← v2 + 1
34: else

35: vtmp← v2

36: if vtmp greater than v0 + 1 then
37: vr← vtmp

38: else

39: vr← vtmp + 1

node r is root. We extend the methodology of Flajolet et al. [30]
and we generate the register score values using the recursive
Algorithm 3. This algorithm calculates recursively the register

Algorithm 4 | Create_Execution_Plan(r).

Input: TPP equation tree with root node r and assigned register
score values on its nodes

Output: TPP equation tree with assigned traversal timestamps t
and temporary tensor ids tmp

1: if is_Leaf(r) then
2: return
3: if r is unary TPP then

4: Create_Execution_Plan(Left_Child(r))
5: tr← global_timesteamp++
6: ⊲ If child is leaf, reserve a new tmp, else re-use tmp from

child
7: if is_Leaf(Left_Child(r)) then
8: tmpr← Reserve_Tmp()
9: else

10: tmpr← tmp_Left_Child(r)

11: if r is binary TPP then

12: ⊲ Recursively visit children in order of decreasing register
score

13: Create_Execution_Plan(Child_Max_Register_Score(r))
14: Create_Execution_Plan(Child_Min_Register_Score(r))
15: tr← global_timesteamp++
16: ⊲ If all children are leaves, reserve a new tmp, else re-use

the tmp from a non-leaf child and recycle the tmp of the other
non-leaf child

17: if is_Leaf(Left_Child(r) AND is_Leaf(Right_Child(r)))
then

18: tmpr← Reserve_Tmp()
19: else

20: if not_Leaf(Left_Child(r) then

21: tmpr← tmp_Left_Child(r)
22: Recycle_Tmp(tmp_Right_Child(r))
23: else

24: tmpr← tmp_Right_Child(r)
25: Recycle_Tmp(tmp_Left_Child(r))

26: if r is ternary TPP then

27: ⊲ Recursively visit children in order of decreasing register
score

28: Create_Execution_Plan(Child_Max_Register_Score(r))
29: Create_Execution_Plan(Child_Mid_Register_Score(r))
30: Create_Execution_Plan(Child_Min_Register_Score(r))
31: tr← global_timesteamp++
32: ⊲ If all children are leaves, reserve a new tmp, else re-use

the tmp from a non-leaf child and recycle the tmps of the other
non-leaf children

33: if is_Leaf(Left_Child(r)) AND is_Leaf(Middle_Child(r))
AND is_Leaf(Right_Child(r)) then

34: tmpr← Reserve_Tmp()
35: else

36: if not_Leaf(Left_Child(r) then

37: tmpr← tmp_Left_Child(r)
38: Recycle_Tmp(tmp_Middle_Child(r)),

Recycle_Tmp(tmp_Right_Child(r))
39: else

40: if not_Leaf(Right_Child(r) then

41: tmpr← tmp_Right_Child(r)
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42: Recycle_Tmp(tmp_Middle_Child(r)),
Recycle_Tmp(tmp_Left_Child(r))

43: else

44: tmpr← tmp_Middle_Child(r)
45: Recycle_Tmp(tmp_Left_Child(r)),

Recycle_Tmp(tmp_Right_Child(r))

scores of the children for a given node r, and in this way we know
how many temporary tensors are required for the evaluation for
each child. Now, if all of its children have the same register score,
the node r get an increased register score value, otherwise the
node gets as register score the maximum of its children’s register
score values. Intuitively this means that we can first evaluate
a child c and its subtree with whatever intermediate tensor
requirements it has, e.g., vc temporary tensors, and eventually we
need only one temporary tensor to hold c’s output. We can do
the same afterwards for all other siblings of c, however, we can
reuse/recycle the rest vc−1 temporary tensors that were required
by c since c and its subtree have been already computed.

This algorithm optimizes the number of temporary
tensors/storage that are required for the equation evaluation,
and it reuses the temporary storage as much as possible. For
instance, for the equation in Figure 12-Left, after executing
Algorithm 3 on the TPP equation tree, we see that the root’s
register score value is 2 (see Figure 12-Right), meaning that
only 2 intermediate tensors are required to evaluate the
entire TPP tree rather than naively assigning one temporary
tensor to each internal TPP node which would result in 4
intermediate tensors.

Now that we have assigned the register scores for each node
we can devise an execution plan for the TPP equation tree
that minimizes the number of required intermediate tensors.
Algorithm 4 recursively creates such an optimal execution plan
and essentially it calculates: (1) the order/traversal timestamps
t with which the TPP equation nodes have to be evaluated,
and also (2) assigns to each intermediate node r a temporary
tensor id tmpr that holds the intermediate resulting tensor of
that TPP node. Figure 13-Right shows the optimized execution
plan by applying Algorithm 4 on our example equation. This
algorithm recursively visits/evaluates the children of a node r
in order of decreasing register score value. This means that the
child/subtree with the maximum register score value is evaluated
first, one of the temporary tensors is dedicated to hold that
child’s intermediate output, whereas the remaining temporary
tensors can be reused for the evaluation of the siblings/subtrees,
which per definition/order of traversal, require less or equal
number of intermediate tensors. Such a strategy guarantees that
the temporary tensors are optimally reused/recycled, and as a
result we can leverage the minimum required temporary tensors
for the evaluation of the entire equation TPP tree. For simplicity
in our description, we assumed that all intermediate temporary
tensors have the same size, however, our implementation
considers the actual sizes of the intermediate output tensors
and takes the maximum one as representative size for all
temporary tensors.

4.3. Implementation of Optimized
Execution Plan for TPP Matrix Equations
By employing Algorithm 4, we can devise an optimal execution
plan for the TPP Matrix equation, and, here, we describe
the implementation of such a plan. We consider three
implementation strategies:

• Strategy 1: Using stack-allocated buffers as intermediate
temporary tensors.
• Strategy 2: Using vector-register blocks as intermediate

temporary tensors.
• Strategy 3: Hybrid implementation where some intermediate

temporary tensors are stack-allocated buffers and some are
vector-register blocks.

So far in our description, we have used the abstract notation
“temporary tensor” without specifying how such a temporary
tensor is instantiated in the implementation. The exact
instantiation of a temporary/intermediate tensor is the
differentiation factor among the 3 implementation strategies for
the TPP matrix equations.

Strategy 1 considers each intermediate tensor as a physical
buffer, and our TPP equation implementation allocates on the
stack some space/buffer for each temporary tensor. Then, by
following the timestamp order of the optimal execution plan (e.g.,
see Figure 13-Right), we emit/JIT the corresponding TPP code
(e.g., see Algorithms 1 and 2) where the input tensors might be
either the equation’s input buffers provided by the user, or one
of the stack allocated buffers representing an intermediate result.
The fact that we have minimized the number of intermediate
temporary buffers/tensors is critical for performance since these
stack-allocated buffers may remain in some level of cache. Such a
strategy is generic and can be leveraged to implement arbitrary
equations. However, Strategy 1 may suffer from store-to-load
forwarding inefficiencies on modern processors. Additionally,
some of the intermediate tensors may spill from cache (e.g.,
when the intermediate outputs exceed the corresponding cache
capacity) which would make the communication of temporary
tensors among TPP nodes via loads/stores from/to stack allocated
buffers quite expensive.

Strategy 2 considers each intermediate tensor as an rm ×
rn vector-register block. For example, on an AVX512 platform
with 32 512-bit wide registers we have available 2 KBytes of
register file that may be used for intermediate tensors. Each
one of such 512-bit wide vector registers can hold 16 single-
precision values and by stacking, e.g., 4 of these we can form a
logical 16×4 intermediate tensor and in total we have available
32/4 = 8 of such intermediate tensors that could be used
by the equation. In Strategy 2, we block the computation of
the equation’s output in blocks with size rm × rn, and we can
calculate the corresponding rm × rn output by following the
timestamp order of the optimal execution plan. We emit/JIT
the corresponding TPP code for sub-tensors with size rm × rn
where each intermediate output tensor is the assigned temporary
vector-register block. Essentially this strategy performs vertical
register fusion within the equation TPP nodes and incurs no
communication via loads/stores from/to stack allocated buffers.
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FIGURE 13 | Left: TPP equation tree with assigned register scores v on the nodes. Right: TPP equation tree with assigned traversal timestamps t and temporary

tensor ids tmp after executing Algorithm 4.

However, such a methodology is limited by the number of
available vector registers on each platform.

Strategy 3 combines the strengths of Strategies 1 and 2
by considering some intermediate tensors as stack-allocated
buffers and some intermediate tensors as vector-register blocks.
As such, in Strategy 3 the TPP operations/subtrees which
exhibit both high register pressure and reuse (e.g., transposes,
GEMM/BRGEMM, transcendental approximations), propagate
the intermediate results toward the rest of the TPPs in the
tree via stack-allocated temporal tensors. On the other hand,
TPP subtrees without large register pressure are implemented
using Strategy 2 that employs vertical register fusion and avoids
loads/stores from/to stack-allocated buffers.

In addition to the aforementioned 3 strategies, in the TPP
equation back-end we identify idioms/motifs of combined TPPs
(e.g., a gather TPP followed by a reduce TPP) and we JIT an
instruction sequence which is optimal for the composite access
pattern. In section 5.1.5, we show an example of such a combined
TPP motif that is optimized by the TPP backend.

Even though we developed a rudimentary method/POC of
combining the TPPs via Matrix Equation Trees, we have found
that it is sufficient to express all the complex operators we
encountered in a wide-range of workloads discussed further
in section 5. Nevertheless, we envision that when/if TPPs are
widely adopted within Tensor Compiler frameworks (e.g., as an
MLIR dialect) then more complicated Graphs (instead of simple
trees) and more sophisticated analyses/optimization passes can
be leveraged during the composition of TPPs. The key-ingredient
that makes the composition of TPPs amenable to optimization
opportunities is the TPP specification itself: TPPs comprise
a small, well-defined compact set of tensor operators with
declarative semantics as shown in section 2.

We would like also to highlight one use-case of Matrix
Equations that can be beneficial for specialized DL accelerators.
The BRGEMM TPP described in section 3.2 corresponds to
an output-stationary flow that is suitable for CPUs and GPUs.

Given an accelerator that favors, e.g., A-stationary GEMM
formulations, one could express the following Matrix Equation:
internal nodes Gi would be GEMM ternary TPPs, for each
GEMM node Gi we would have the same input leaf A and a
varying input Bi, and the output of each node would be a resultCi.
Essentially this formulation dictates anA-stationary flow, and the
back-end could optimize accordingly for the specific accelerator.

5. TPP-BASED KERNELS AND
WORKLOADS

This section covers how DL kernels and workloads (image
processing, recommendation systems, natural language
processing, graph processing, and applications in science)
can leverage TPPs to achieve high performance. Although this
article’s work is targeting CPUs, we cover the entire training
pipeline and not only inference. The main purpose of this is to
demonstrate the versatility of TPPs which is valuable in the more
complicated backward pass kernels, and to handle training’s
implications to the forward pass.

5.1. TPP-Based Kernels
5.1.1. Softmax Kernel
Figure 14 illustrates two Matrix Equation trees that are used to
express the softmax operator [31]:

Y = softmax(X) with yij =
e

(

xij−maxxij∈X xij

)

∑

xij∈X
e

(

xij−maxxij∈X xij

) (2)

Equation 2 shows the formula for the softmax operator [31],
which is often used as the last activation function of a neural
network, aiming to normalize its output to a probability
distribution. We can represent this operator via two TPP
equation trees illustrated in Figure 14. The left tree computes the
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FIGURE 14 | Softmax operator by combining TPPs.

nominator of Equation 2: first the maximum value of the input
tensorX is found (via the max-reduce TPP), then we subtract this
max value from each entry of X (note the broadcast semantics in
the second argument of the subtraction TPP), and a new tensor
X′ is computed by calculating the element-wise exponent on the
earlier subtraction’s outcome. Finally, in the right TPP tree each
entry of the tensor X′ is normalized by the sum of all values in X′

to obtain the softmax output, a tensor Y . This example illustrates
the expressiveness of the TPP abstractions, since the components
of the mathematical formula map to TPPs in a straightforward
way. At the same time, this example highlights the separation
of concerns: the user does not need to worry about the efficient
implementation of this equation on each different platform, since
the TPP back-end is responsible for optimized code generation
which is target-specific (contrary to the TPP expression itself
which is platform-agnostic).

5.1.2. Normalization Kernels
Batch normalization (batchnorm) is a technique [32] that
normalizes neuron layer input tensors to improve the overall
training process. Batchnorm removes the need for careful
parameter initialization and reduces the required training
steps [32] in the neural networks. The batchnorm computations
can be divided in two stages: (i) First the mean and variance
of the input tensor are computed across the “batch” dimension:
µj =

∑n−1
i=0 xij, σ

2
j =

1
n

∑n−1
i=0 (xij − µi)

2 where i is the “batch”

dimension and j is the “feature” dimension, (ii) then the tensor
entries xij are normalized based on µ and σ : x′ij = (xij −

µj)/(
√

σ 2
j + ǫ).

Depending upon the workload, different TPPs and TPP
equations can be employed to implement the batchnorm.
Here, we take an example of batchnorm on a ResNet50 [33]
convolution layer tensor X. The input tensor X has a four-
dimensional shape of {N, C, H,W} with dimensions of batch (N),
feature (C), height (H), and width (W). We first use sum-reduce
TPPs onH andW dimensions to compute the sum (m[N,C]) and
the sum of squared elements (v[N,C]) matrices. Subsequently,
we use binary add TPPs across the batch dimension of m[N,C]
and v[N,C] matrices for eventual computation of mean (µ[C])
and variance (σ 2[C]) vectors. In the next step, we use a scaling
equation to normalize each element of the input tensor. The
scaling equation Y = (m′ ∗ X + v′) ∗ G + B converts the
input tensor X into a normalized tensor Y . Here, G[C] and
B[C] are scaling vector inputs to batchnorm, and m′[C] and

FIGURE 15 | Layernorm via TPPs.

v′[C] are intermediate vectors that are computed from mean and
variance vectors. We implement the scaling equation by a single
TPP equation containing two FMADD ternary TPPs. The second
equation tree of Figure 15 shows an analogous scaling equation
implementation. However, for this particular implementation, we
broadcastm′, v′,G,B vectors intoH,W, andN dimensions inside
the TPP equation tree. An efficient implementation of batchnorm
uses blocking on the C, H, and W dimensions along with multi-
threading on theN and feature block dimension.We do not show
the details of this implementation for sake of simplicity.

Layer normalization (layernorm) [34] is a technique that
normalizes the neurons within a layer, and was motivated by
the limitations of Batch Normalization [32] in Recurrent Neural
Networks. The layernorm computations can be divided in two
stages: (i) First the mean and variance of the input tensor are
computed across the “feature” dimension: µi =

∑m−1
j=0 xij, σ

2
i =

1
m

∑m−1
j=0 (xij − µi)

2 where i is the batch dimension and j is the

“feature” dimension, (ii) then the tensor entries xij are normalized

based on µ and σ : x′ij = (xij − µi)/(
√

σ 2
i + ǫ). Depending on

the workload (e.g., attention cell in BERT), the scaled tensor
may be further scaled with two other tensors γ and β . Figure 15
illustrates two TPP equation trees that implement this composite
layernorm operator. The left equation is using the sum-reduce
TPP to compute the sum and sum of squared elements of the
input tensor, namely m and v. These two scalars are combined
(not shown in the equation for simplicity), and are fed as inputs
to the right TPP tree, where the FMADD ternary TPP is used
to scale the input tensor X. Finally, a cascading FMADD ternary
TPP computes the final result via the scaling tensors G and B.
We illustrate this layernorm via means of TPPs since all DL
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norming layers essentially exhibit similar computational motif,
and this specific norm is used in the BERT workload described in
section 5.2.3.

Group normalization (groupnorm) [35] is a technique that
normalizes the neurons within a group of features. Groupnorm
was proposed as an alternative to batchnorm [32] to reduce
normalization error for smaller batch sizes. In groupnorm,
features are divided into groups, and mean and variance are
computed within each group for normalization. Groupnorm is
also a generalization of the layer normalization [34] and instance
normalization [36] approach. Layernorm is groupnorm with
a single group, and instance norm is groupnorm with group
size equal to one. Groupnorm can be implemented with the
same set of TPPs and TPP equations that were used in the
batchnorm kernel. We again take the example of ResNet50 [33]
convolution layer tensor X and apply groupnorm on it with g
number of groups. We can ignore the batch dimension (N) for
this discussion as groupnorm works independently upon each
batch. Therefore, the input tensor X now has a three-dimensional
shape of {C, H, W} with dimensions of feature (C), height (H),
and width (W). We first use sum-reduce TPPs on H and W
dimensions to compute the sum (m[C]) and the sum of squared
elements (v[C]) vectors. Subsequently, we add m[C] and v[C]
values within a feature group for eventual computation of group
mean (µ[g]) and group variance (σ 2[g]) vectors. Similar to
batchnorm, we use a scaling equation to normalize each element
of the input tensor. The scaling equation Y = (m′ ∗ X + v′) ∗
G + B converts input tensor X into a normalized tensor Y .
Here, G[C] and B[C] are scaling vector inputs to groupnorm,
and m′[C] and v′[C] are intermediate vectors that are computed
from group mean and group variance vectors. The second
equation tree of Figure 15 shows an analogous scaling equation
implementation. However, for this particular implementation, we
broadcastm′, v′,G,B vectors intoH andW dimensions inside the
TPP equation tree. We can also apply the same scaling equation
to a single group or set of groups with few parameter changes.
An efficient implementation of groupnorm uses blocking on the
C, H, and W dimensions. We do not show the details of this
implementation for sake of simplicity.

5.1.3. BF16 Split-Stochastic Gradient Descent Kernel
Unlike the previous kernels which are well-established in DL
workloads, and as such potentially optimized in DL libraries,
we present here an example of a novel operator, which per
definition is not existent in DL libraries. BF16 split-SGD was
recently introduced in the context of DLRM training with BF16
datatype [37]. The Split-SGD-BF16 solver aims at efficiently
exploiting the aliasing of BF16 and FP32 (i.e., the 16 Most
Significant Bits (MSB) on both are identical) in order to save
bandwidth during the SGD-solver in training. The employed
trick is that the weights are not stored as FP32 values in a single
tensor. Instead, the FP32 tensors are split into their high and low
16 bit-wide parts: the 16 MSBs of the FP32 values, and the 16
LSBs of the same values are stored as two separate tensorsXhi and
Xlo, respectively. The 16 MSBs represent a valid BF16 number
and constitute the model/weight tensors during training. These
BF16 weights are used exclusively in the forward and backward

FIGURE 16 | BF16 Split-SGD operator by combining TPPs.

passes, whereas the lower 16 bits are only required in optimizer.
More specifically, the Xhi and Xlo tensors are packed together to
form an FP32 tensor, resulting in a fully FP32-accurate optimizer.
Figure 16 illustrates the BF16 Split-SGD operator written entirely
via TPPs. First the Xhi and Xlo are packed, and the formed FP32
tensor is used in a cascading FMADD TPP that performs the
SGD scaling with the corresponding Gradient Weight tensor and
learning rate. Finally, the resulting FP32 tensor is unpacked to the
Xhi and Xlo tensors for further use in the training process.

5.1.4. Convolutional Neural Network Kernel
Convolutional Neural Networks (CNN) consist of layers
with multiple neurons connected by weights, and they have
been applied with success in image recognition, semantic
segmentation, autonomous driving, medical imaging and in an
increasing number of scientific applications. Previous work [21,
23] has shown that CNNs, despite their seemingly complicated
loop structure due to the involved high-dimensional tensors, can
be mapped efficiently onto small 2D GEMMs and BRGEMMs. In
this work, we adopt the same strategy to implement CNNs via the
BRGEMM TPP. Unlike the previous work which presents only
the address-based BRGEMM formulation, here, we leverage the
CNN kernels with stride-based BRGEMM for 1×1 convolutions
and offset-based BRGEMM for 3×3 convolutions to get even
more performant implementations (see section 2.3 for a brief
description of the BRGEMM variants).

5.1.5. Sparse Embedding Kernel
The sparse embedding kernel is comprised of multi-hot encoded
lookups into an embedding table WM×E with M being the
number of rows and E the length of each row, whereas the multi-
hot weight-vector is denoted as αT = [0, . . . , ap1 , . . . , apk , . . . , 0]
with entries ap = 1 for p ∈ {p1, . . . , pk} and 0 elsewhere (p being
the index for the corresponding lookup items). Mathematically,
the embedding lookup output vector oT can be obtained via
oT = aT ×W. This operation (assuming row-major storage for
W) is equivalent to gathering the rows of W based on the non-
zero indices ap, and then adding them up to get the output vector

oT . Figure 17 illustrates the TPP tree that is used to express the
Sparse Embedding lookup kernel.
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FIGURE 17 | Sparse Embedding Lookups via TPPs.

Algorithm 5 | Sparse Gather-Reduce operation.

Inputs: αT = [0, . . . , ap1 , . . . , apk , . . . , 0] with entries ap = 1 for
p ∈ {p1, . . . , pk} and 0 elsewhere,WM×E

Output: oT = aT ×W
1: for j = 0 . . .E with step vlen · U do

2: ⊲ Initializing accumulator registers to 0
3: for u = 0 . . .U − 1 do
4: vec_outu ← 0

5: ⊲ Iterating over non-zero entries/indices in αT

6: for i in 1, 2, . . . , k do
7: idx = pi
8: next_idx = pi+1
9: ⊲ Unroll innermost kernel U times: load indexed vector,

prefetch next indexed vector, accumulate loaded vector to
accumulator register

10: for u = 0 . . .U − 1 do
11: vec_W ← load_vector(W[idx][j + u · vlen : j + (u +

1) · vlen])
12: prefetch(W[next_idx][j+ u · vlen : j+ (u+ 1) · vlen])
13: vec_outu += vec_W

14: ⊲ Store accumulator registers to oT

15: for u = 0 . . .U − 1 do
16: oT[j+ u · vlen : j+ (u+ 1) · vlen]← vec_outu

We note that the TPP backend optimizes this sequence of
TPPs, and performs register fusion across the gather and the
reduce TPP components. More specifically, given a non-zero
index ap, the corresponding row of W is loaded in vector
registers, and is added to a set of running accumulators/vector
registers that hold the output oT . Algorithm 5 illustrates the
optimized JITed implementation in our TPP backend. The E
dimension is vectorized in an SIMD-fashion with vector length
vlen. Note that in line 13 we expose multiple independent
accumulation chains in order to hide the latency of the vector-
add SIMD instructions. Since we JIT this sub-procedure, we
know the exact value of E at runtime. As such, we can pick
appropriate unrolling factor U as well as the remainder handling
can be performed optimally viamasking in case E is not perfectly
divisible by the vector length vlen. Last but not least, the JITed
aggregation procedure employs prefetching of the subsequent
indexed vectors inW (line 12) in order to hide the latency of these
irregular accesses.

5.1.6. Multi-Layer Perceptron Kernel
Multilayer perceptrons (MLP) form a class of feed-forward
artificial neural networks. An MLP consists of (at least three)
fully connected layers of neurons. Each neuron in the topology

Algorithm 6 | Fully-Connected Layer with Unary Activation
Function.

Inputs: AMb×Kb×bk×bm , BNb×Kb×bn×bk

Output: CNb×Mb×bn×bm

1: Based on thread_id calculate Mb_start, Mb_end, Nb_start
and Nb_end to assign output work items

2: for ibn = Nb_start . . .Nb_end do
3: for ibm = Mb_start . . .Mb_end do
4: Out = &C[ibn][ibm][0][0]
5: ⊲ Stride-based BRGEMM, stride_A=bk ·bm, stride_B=bn ·

bk
6: BRGEMM(&A[ibm][0][0][0], &B[ibn][0][0][0],Out,Kb)
7: C[ibn][ibm][0][0]← UNARY(C[ibn][ibm][0][0])

may be using a non-linear activation function. In this section,
we present the implementation of the Fully Connected layers
since they constitute the cornerstone of MLP. Even though, we
illustrate the forward pass of Fully Connected layers, we also
implement via TPPs the kernels of the back-propagation training
in an analogous fashion. Algorithm 6 shows the fully connected
layer implementationwhich ismapped to TPPs. First we note that
the input tensors are conceptually 2D matrices AM×K and BK×N

that need to be multiplied. We follow the approach of previous
work [21] and we block the dimensions M, K, and N by factors
bm, bk, and bn, respectively. Such a blocked layout is exposing
better locality and avoids large, strided sub-tensor accesses which
are known to cause Translation Lookaside Buffer (TLB) misses
and cache conflict misses in case the leading dimensions are
large powers of 2 [21]. We leverage the BRGEMM TPP in order
to perform the tensor contraction with A and B across their
dimensions Kb and bk (which constitute the K/inner-product
dimension of the original 2D matrices). We employ the stride-
based BRGEMM because the sub-blocks “Ai” and “Bi” that
have to be multiplied and reduced are apart by constant strides
stride_A = bk · bm and stride_B = bn · bk respectively. Finally, we
apply (optionally) a unary TPP corresponding to the requested
activation function (e.g., RELU) onto the just-computed output
block of C.

5.2. TPP-Based Workloads
5.2.1. 1D Dilated Convolutions and Computational

Biology
In this subsection, we show the implementation of a special
type of convolution via TPPs in their entirety, namely one-
dimensional (1D) dilated convolution layer of a 1D CNN named
ATACworks [38]. ATACworks is used for de-noising and peak
calling from ATAC-Seq genomic sequencing data [38]. The 1D
dilated convolution layer in ATACworks takes more than 90% of
the training time, and it has input tensor widthW, output tensor
width Q, C input channels, K output channels, filter size of S,
and dilation d. We employ the transpose TPPs, copy TPPs, and
BRGEMM TPPs to optimize the forward pass and the backward
pass of the PyTorch-based 1D convolution layer. Algorithm 7

shows an example of the forward pass procedure with an input
tensor I, a weight tensorW, and an output tensor O.
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Algorithm 7 | 1D Dilated convolution forward pass using TPPs.

Inputs: IC×W ,WK×C×S, d ∈ R

Output: OK×Q

1: WT ← TRANSPOSE(W)
2: for pos = 0 . . .Q− 1 with step bq do

3: ⊲ Address-based BRGEMM, prepare arguments Aptrs, Bptrs
4: for s = 0 . . . S− 1 with step 1 do

5: Aptrs[s] = &WT[s, 0, 0]
6: Bptrs[s] = &I[0, (pos+ s · d)]

7: BRGEMM(Aptrs,Bptrs, &O[0, pos], S)

5.2.2. Deep Learning Recommendation Model
Facebook recently proposed a deep learning recommendation
model (DLRM) [39]. Its purpose is to assist the systematic
hardware–software co-design for deep learning systems. DLRM
is comprised of the following major components: (a) a sparse
embedding (see section 5.1.5) involving tables (databases) of
varying sizes, (b) a small dense Multi-Layer Perceptron (see
section 5.1.6), and (c) a larger and deeperMLPwhich is fed by the
interaction among (a) and (b). All three parts can be configured
(number of features, mini-batch sizes, and table sizes) to stress
different aspects of the system. We also note that in the case
of training with BF16 datatype, we leverage the BF16 split-SGD
optimizer (see section 5.1.3). For more details on the workload
and CPU-oriented optimizations we refer to prior work [37].

5.2.3. Natural Language Processing - Bidirectional

Encoder Representations From Transformers
The BERT model is a bidirectional transformer pre-trained
via a combination of masked language modeling objective,
and next-sentence prediction [40]. The heart of the BERT
model is comprised by sequence of BERT layers which are
built using smaller building blocks. For ease of use and
implementation, we followed modular building blocks from
Hugging Face transformers library [41] and implemented
four fused layers using TPP building blocks, namely Bert-
Embeddings, Bert-SelfAttention, Bert-Output/Bert-SelfOutput,
and Bert-Intermediate layers.

The SelfAttention layer, in turn, can be formulated as a
bunch of Matrix / batch Matrix-Multiplications mixed with
element-wise scale, add, dropout and softmax operators. We
formulate these Matrix-Multiplications as tensor contractions on
blocked-tensors via the stride-based BRGEMM TPP (similarly
to Algorithm 6). We opt to use blocked tensor layouts for the
same reasons briefly described in section 5.1.6. Furthermore,
by working on one small sub-tensor at a time we naturally
follow a “dataflow” computation, which has been shown to
maximize the out-of-cache-reuse of tensors among cascading
operators [26, 42]. The softmax operator is also formulated
entirely by TPPs as described in section 5.1.1. We note that
the sequence of Matrix-Multiplications in the attention layer
requires sub-tensors to be transposed (and VNNI transformed
in case of BF16 implementation), and for this task we leverage
the transpose/transform TPPs. Bert-Output and Bert-SelfOutput

FIGURE 18 | Binary-Reduce aggregation kernel via TPPs.

layers perform GEMM over blocked layout, and fuse bias
addition, dropout, residual addition, and layernorm using TPPs.
The Bert-Embeddings layer also performs layernorm and dropout
after embedding lookups that are also implemented using
TPPs. Finally, Bert-Intermediate layer performs blocked GEMM
followed by bias addition and GELU activation function which
we implement using the GELU TPP.

5.2.4. Emerging AI—Graph Neural Networks
Graph Neural Networks (GNN) [43] form an emerging class of
Neural Networks for learning the structure of large, population-
scale graphs. Depending on the specific algorithm and task that
a GNN is designed for (e.g., node classification, link prediction),
feature-vector aggregation precedes or succeeds a shallow neural
network. Such a shallow neural network typically materializes
one or more linear transformations, followed by a classification
or regression mechanism [44], and the relevant TPP-based
implementation is essentially the one we present in Algorithm 6.

We focus here on the TPP-based implementation of the
feature-vector aggregation. This aggregation motif can be seen
as a sequence of linear algebraic expressions involving node/edge
features, along with the relevant operators. Prior work [44] has
focused on the following two algebraic sequences: Copy-Reduce
and Binary-Reduce. We elaborate here on the latter sequence
Binary-Reduce (as the first is even simpler). The feature-vectors
(either pertaining to vertices or edges) are represented via dense
2D matrices/tables. At the same time, the adjacency information
in the graphs can be eventually found via arrays of indices.
Therefore, by providing a set of indices and the appropriate
Tables of feature-vectors (assuming column-major storage), one
can extract selectively the desired feature-vectors via Gather-
columns operations. Then, the extracted feature-vectors are
fed into a binary operator, and the outcome of the binary
operations are finally reduced (the reduce operation could be
sum/max/min etc).

Figure 18 illustrates a TPP tree that is used to express the
Binary-Reduce aggregation kernel. The TPP back-end optimizes
this sequence of TPPs and performs horizontal register fusion
across them. More precisely, two feature-vectors namely v0 and
v1 are extracted at a time from Table 0 and Table 1 respectively
by using the relevant indices arrays, and they are combined
via the proper binary op to get an intermediate vector vi.
Subsequently, vi is reduced with a running reduce-vector vo
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FIGURE 19 | TPP kernels on CLX.

that holds the output of this composite operator. Once the
running reduction has been completed (i.e., all indexed columns
from Table 0 and Table 1 have been accessed, processed and
reduced), the output vector vo is stored in the corresponding
output subtensor.

6. EXPERIMENTAL RESULTS OF DL
KERNELS AND WORKLOADS

We use a variety of platforms that span different ISAs, different
vendors and micro-architectures. More specifically, our tested
platforms include: (i) a 22-core Intel Xeon E5-2699 v4 (BDX)
supporting up to AVX2 ISA, (ii) a 28-core Intel Xeon 8280 (CLX)
supporting up to AVX512 ISA, (iii) a recently announced 40-core
Intel Xeon 8380 (ICX) supporting also up to AVX512 ISA, (iv) a
28-core Intel Xeon 8380H (CPX) supporting up to AVX512 ISA,
which also offers BF16 FMA acceleration, (v) a 64-core AMD
EPYC 7742 (ROME) with AVX2 ISA, (vi) an AWS Graviton2
instance with 64 cores at fixed 2.5 GHz and AArch64 ISA, (vii)

a 48-core Fujitsu A64FX at fixed 1.8 GHz with ARMv8 SVE
ISA, and (viii) a 4-core client Intel i7-6700 CPU (i7) supporting
up to AVX2 ISA. All Intel and AMD chips are operating in
Turbo mode. For the cluster experiments, we used a 32 node
CLX installation with a dual-rail Intel Omnipath 100 pruned 2:1
fat-tree topology.

6.1. Performance of Standalone DL Kernels
We start the performance evaluation with standalone TPP
kernels presented in section 5.1. First, we want to highlight the
productivity/efficiency provided by TPPs: the high-level code
expressed via TPPs/trees of TPPs can match or outperform
code by compilers, and hand-vectorized (thus non-portable
code) written by performance experts. Second, we want to
show the portability aspect of TPPs, since exactly the same
high-level code yields high-performance across different ISAs
and micro-architectures.

Figure 19-Top shows the performance of the Softmax
operator of blocked 3D tensors with size S1 × S2 × S3, on the
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FIGURE 20 | TPP kernels on ROME.

CLX platform (i.e., targeting AVX512 ISA). Here, we perform
S2 softmax operations over blocked S1 × S3 dimensions. The
sizes are chosen such that some of the dimensions do not
match perfectly with the vector length. The baseline is the icc
generated code with -O3 optimization level and high-zmm
usage flags. The second variant is also icc-generated code,
but we propagate the tensor sizes/loop bounds via compile-
time constants in order to assist the auto-vectorization/optimize
remainder handling via masking. The third code variant is the
AVX512 hand-vectorized by an expert, where the exp function
uses fast Taylor approximation. Last, we evaluated the TPP-
based softmax implementation. As we can see, by propagating
the tensor sizes we achieve (geo-mean) speedup of 1.3× over the
baseline. The hand-vectorized code is faster by 2.6× whereas the
TPP-based variant shows similar speedups by being 2.2× faster.
The main shortcoming of the hand-vectorized code is that it is
platform-dependent and as such non-portable. More specifically,
we didn’t have to our avail AVX2 hand-optimized code in order
to experiment with it on ROME. On the contrary, Figure 20-Top
shows the softmax performance on AVX2 enabled platform for
the compiler-generated code and the TPP based code. The TPP-
based softmax exhibits geo-mean speedup of 2.45× over the
baseline on ROME.

Figure 19-Middle shows the performance of the layernorm
operator on the CLX platform. Since the layernorm code
is more straightforward (i.e., no expensive exp function is
involved), we see that icc with compile-constant bounds
outperforms by 1.9× the baseline. We inspected the compiler-
generated code and identified that the reduction-loops
were recognized and were heavily optimized with multiple
accumulation chains etc. Similarly, the hand-vectorized

code and the TPP based code outperform the baseline by
1.3× and 1.5×. We also experimented with gcc and the
fast-math flag, and it just matched baseline performance.
We want to emphasize that propagating the tensor sizes
as compile-time constants throughout the operators is
not practical for real use-cases within DL frameworks.
Figure 20-Bottom shows similar performance speedups on
ROME, where the TPP-based code is 1.6× faster than the
auto-vectorized baseline.

Figure 19-Bottom shows the performance of the BF16 split-
SGD operator on CLX. This use-case represents a novel, mixed-
precision operator where the compiler (icc with compile-time
constant tensor sizes) struggles to yield good performance; the
TPP-based code has geometric mean (geomean) speedup of 38×
over the compiler generated code.

Figure 21 illustrates the TPP-based implementation of various
ResNet50 [33] Convolution layers across all available platforms.
The minibatch size used on each platform equals to the number
of the corresponding cores. It is noteworthy that the TPP-user
code is identical for all targets, hence, truly portable; it is merely
that the TPP backend optimizes the code generation (BRGEMM
in this case) in a platform/ISA-aware fashion. The geomean
efficiencies of these convolutions are: 69% for BDX, 72% for
CLX, 72% for CPX, 77% for CPX with BF16 datatype, 70% for
ICX, 78% for ROME, 81% for Graviton2 and 52% for A64FX.
Previous work [21] also showed on an x86 TPP-predecessor
that BRGEMM-based convolutions matched or outperformed
Intel’s oneDNN library [13]. Fujitsu recently contributed an
A64FX back-end to oneDNN [45] and our TPP implementation
outperforms this by 22% on the geomean. We observe that our
TPP convolutions not only run on all of these different platforms
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FIGURE 21 | Convolutions via BRGEMM TPP.

FIGURE 22 | 1D dilated convolutions.

without a single line of code change, but they run at very similar
hardware utilization.

6.2. Performance of End-To-End DL
Workloads
6.2.1. 1D Dilated Convolutions and Their Application

to Computational Biology
Here, we evaluate the oneDNN [13] and TPP-based 1D dilated
convolution layer of ATACworks [38] which takes more than
90% of the training time, and it has input tensor width (W) of
60,400, output tensor width (Q) of 60,000, 15 input channels
(C), 15 filters (K), filter size (S) of 51, and dilation (d) of 8.
Figure 22-Top shows the computational efficiency results of the
1D convolution layer. oneDNN is not reaching peak performance
for these specialized convolutions, exhibiting 19.9% efficiency for
the forward pass and only 4.1% for the backward pass on CLX.
Our TPP-based implementation shows 74.3 and 55.7% efficiency
for the corresponding training passes. We also highlight the

performance portability of our TPP-based approach across all
tested platforms. Finally, we show training time per epoch results
for ATACworks in Figure 22-Bottom. The TPP-based kernels
provide training time speedup of 6.91× on CLXwhen comparing
to the oneDNN based implementation. We also show that by
leveraging the BF16 FMA acceleration of the CPX platform
we can further obtain 1.62× speedup compared to the FP32
implementation on the same platform. In total BF16 yields 12.6×
speedup over the oneDNN baseline.

6.2.2. Deep Learning Recommendation—DLRM
Figure 23-Top shows the FP32 DLRM performance on CLX
using two different configurations, namely small DLRM (blue
bars) and MLPerf DLRM (orange basrs). We refer to previous
work for the detailed specification of these configurations [37].
We evaluated 4 different implementations of DLRM: (i) the
PyTorch reference implementation, (ii) PyTorch reference +
custom Embedding extension auto-vectorized by the compiler,
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FIGURE 23 | DLRM performance on a small config (blue bars) and on the MLPerf config (orange bars).

(iii) DLRM expressed entirely via TPPs, and (iv) hand-vectorized
Embedding extension + BRGEMM-TPP based MLPs [37].
We conclude that the TPP-based implementation matches the
performance of the State-Of-The-Art implementation which is
hand-vectorized specifically for AVX512 targets; both of these
optimized versions substantially outperform the PyTorch CPU
reference implementation by up to 48×. Compared to the version
with the custom, auto-vectorized variant the TPP-version is up to
4.4% faster.

Figure 23-Bottom shows the DLRMperformance of our TPP-
based implementation across multiple platforms and compute
precisions. We want to highlight two aspects: First, we are able to
run the same TPP-code without any change across all platforms,
something that is not doable with the hand-vectorized SOTA
variant (iv) (since it is not able to run on the AVX2-only BDX and
ROME platforms, or on the Graviton2 platform with AArch64
ISA). Second, the TPP-based BF16 shows speedup up to 28%
over the variant with auto-vectorized Embedding extension. The
culprit here is the mixed precision operations like split-SGD
where the compiler struggles to yield efficient code as shown in
section 6.1.

Figure 24 illustrates the performance breakdown of the small
config on multiple platforms. The blue portions of the bars
correspond to the time spent on the Embedding component,
the orange parts reflect the MLP portion, and finally the yellow
portions correspond to the remaining components of the DLRM
workload. We observe that depending on the platform, the time

spent on Embedding varies from 29 to 37% of the total execution
time, the time spent onMLP is in the range of 33–56% of the total
time, and the rest components account for 15–23% of the time.
We can also observe the correlation of the MLP performance
with the compute capabilities of each platform. For example,
on CPX which has native BF16 FMA support, the BF16 MLPs
are sped up by ∼2× compared to the FP32 MLPs on the same
platform. In regard to the time spent on the Embedding kernel
which tends to be bandwidth bound, we observe correlation with
the corresponding bandwidth capabilities of the machines.

6.2.3. Natural Language Processing—BERT Large
Figure 25-Top shows end-to-end performance (in
examples/second) on CLX for the BERT large SQuAD
fine-tuning task in FP32, using a max sequence length of
384 and minibatch of 24. We observe that the TPP-based
implementation (blue bar) matches the performance of the
AVX512-hand-vectorized code/orange bar. At the same time,
our implementation is 1.69× faster than the Reference Hugging
Faces CPU reference code [46] (green bar).

Figure 25-Bottom shows the performance of the reference
Hugging Faces code (green bars) versus the TPP-based code (blue
bars) across multiple platforms (x86 and AArch64/Graviton2)
and compute precisions (FP32 for all platforms, and BF16
for the CPX platform). The TPP-based BERT shows speedups
ranging from 1.5× to 8.5× over the Hugging Faces code. This
result highlights the performance portability through the TPP
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FIGURE 24 | DLRM performance breakdown of small config on multiple platforms.

FIGURE 25 | BERT large performance.
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FIGURE 26 | BERT large performance breakdown on multiple platforms.

abstractions. In regard to various compute precisions, we note
that with minimal changes inside the fused operators to handle
the VNNI tensor layout (required for BF16 GEMM/BRGEMM),
and a couple of lines changes in the application code to enable
BF16 training, we were able to realize 2× speed up using BF16
training on CPX (compared to FP32 training on CPX) with 28
cores, surpassing 40-core FP32-ICX performance by 37%.

In order shed light on where the benefits are coming from, we
present in Figure 26 the performance breakdown of the Hugging
Faces reference code and the TPP-based implementation. In
particular we focus on four components:

1. GEMM which corresponds to the tensor contractions
implemented via either the BRGEMM-TPP in the
TPP implementation, or it leverages optimized GEMM
routines within BLAS libraries in the Hugging Faces
implementation (MKL for x86 platforms and OpenBLAS for
AArch64/Graviton2).

2. Dropout corresponding to the dropout layer in BERT, where
the TPP-based implementation employs fast random number
generation via xorshift algorithm.

3. GeLU corresponding to the Gaussian Error Linear
Unit activation function in BERT, where the TPP-based
implementation leverages fast approximations as discussed in
section 3.3.2.

4. Others capturing the remaining operators: Transpose, Layer-
norm, softmax, bias addition, vnni-reformatting (in case
of BF16 training), copy, add, scale, zero-kernel, reduce,
optimizer. Note that all these operators map to either
unary/binary/ternary TPPs (see section 2) or the can be
expressed viaMatrix Equation TPPs (see section 5).

First, we note that for the Intel x86 platforms (left part of the
breakdown plot) the tensor contractions show speedups over
the highly-optimized MKL GEMM implementation in Hugging
Faces in the range of 2–6%. On the right side of the breakdown
plot we observe that the BRGEMM-TPP benefits are even
larger on the non-Intel platforms. More specifically, on AMD
Rome (AVX2 x86 platform) the tensor contractions are sped

up by 1.9× via the BRGEMM-TPP, and on Graviton2 (Arm
AArch64 platform) the tensors contractions are 5.7× faster via
the BRGEMM-TPP compared to the implementation relying on
OpenBLAS GEMM calls. To further highlight the performance
portability of the tensor contractions via the BRGEMM-TPP
across multiple platforms and precisions, Figure 27 shows the
achieved GEMM performance (Left axis) on each platform for
the entire training process (blue bars), whereas the orange line
(Right axis) dictates the % of machine peak. The conclusion
here is that the BRGEMM-TPP delivers high-efficiency for the
corresponding tensor contractions in the range of 66–84% for all
tested ISAs and micro-architectures.

The second conclusion we can draw from the performance
breakdown in Figure 26 is that our fused/dataflow TPP
implementation outlined in section 5.2.3 makes the dropout and
GeLU times shrink substantially, offering speedups in the range
of 10–360×. The BERT implementation via the dropout/GeLU
TPPs in tandem to the BRGEMM TPPs take advantage of
temporal locality, and virtually make the corresponding times
disappear from the overall execution time. Last but not
least, the remaining components are sped-up in the TPP-
based implementation by 2.5-14× depending on the platform.
As a result of these optimizations, the TPP-based BERT
implementation spends the majority of the time (75.5–88.8%)
in tensor contractions which are executed at high-efficiency as
Figure 27 shows.

6.2.4. Emerging AI—Graph Neural Networks
Figure 28-Top shows end-to-end performance (in
seconds/epoch, so lower is better) on CLX for the full-batch
training of the GraphSAGE workload on OGB-Products with
FP32 and BF16 precision. For the CLX BF16 experiments, since
CLX doesn’t have native support for BF16 FMAs, we use bit-wise
accurate emulated-BF16 BRGEMM TPPs (see section 3.2.2),
and we still expect savings due to the bandwidth reduction
in the non-GEMM parts, e.g., graph traversal and edge/node
aggregation. We observe that the TPP-based implementation
outperforms the DGL with Xbyak JIT backend baseline
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FIGURE 27 | BERT GEMM/tensor contraction efficiencies via the BRGEMM-TPP on multiple platforms.

FIGURE 28 | GNN performance of GaphSAGE Full-batch training for OGB-Products.

version by 2.65×. The TPP-BF16 version yields another 1.66×
speedup over the TPP-FP32 variant mainly due to reduced
bandwidth requirements.

Figure 28-Bottom shows the performance of the TPP-
based code across multiple platforms (x86 and Arm AArch64)
and compute precisions (FP32 and BF16). The relative
differences in the performance can be justified by the different
compute/bandwidth specs of the benchmarked platforms. We

highlight that with minimal changes in the MLP portion to
handle VNNI layout required for BF16 BRGEMM, and a couple
of lines changes in the application code to enable BF16 training,
we were able to realize 1.94× speed up using BF16 training
on CPX with 28 cores compared to the FP32 training on the
same platform.

In order to further analyze the behavior of the various
implementations on multiple platforms, we present on Figure 29
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FIGURE 29 | GNN performance breakdown of GaphSAGE Full-batch training for OGB-Products.

the relevant performance breakdown. The very left bar shows
the performance breakdown of the FP32 optimized DGL
implementation that leverages JITed kernels through Xbyak on
the CLX platform. The blue part corresponds to the Aggregation
kernel described in section 5.2.4 whereas the orange portion
represents the time required by the remaining kernels, namely
Multilayer-Peceptrons with Activation functions. In the DGL
implementation the activation functions are not fused within the
MLP’s tensor contractions. We observe that in this optimized
DGL implementation, 82.3% is spent on the Aggregation kernel
and only 17.7% is spent on the MLPs. On the second from
the left bar (annotated as CLX-FP32) we show the performance
of the FP32 TPP-based implementation on the same CLX
platform. We conclude that the TPP-based Aggregation kernel
exhibits a speedup of 3.29× compared to the DGL-Xbyak
implementation, and the TPP-based MLP kernels (BRGEMM-
TPP tensor contractions with fused TPP activation functions)
exhibit a speedup of 1.4× compared to the respective DGL-
Xbyak implementation. The FP32 TPP-based implementation
spends 66.4% on the aggregation kernel and 33.6% on the fused
MLP kernels.

The last 8 bars on Figure 29 illustrate the performance
breakdown of the TPP-based implementation on various
platforms (CLX/BDX/ROME/ICX/GRAVITON2/CPX) and
various precisions (FP32 and CPX-BF16). We want to emphasize
that all these performance numbers are obtained by employing a
the same exact TPP-based code (which is platform-agnostic); the
only modification is pertaining to the BF16 TPP code where we
changed the tensor layouts in the MLP portion in order to deal
with the required VNNI format. When comparing the CPX-F32
and the CPX-BF16 performance breakdowns we observe a 2×
speedup on the Aggregation kernel. This kernel is typically
bandwidth bound due to its irregular/indexed accesses, and the
BF16 TPP code moves half of the data compared to the FP32

TPP code since all the tensors are halved in size (BF16 vs FP32
datatype). The MLP portion of the TPP-based implementation
is sped up by 1.73× by using the BF16 BRGEMM-TPP. The
CPX platform supports the BF16 FMA instruction which
has effectively 2× the compute throughput compared to the
FP32 FMA on the same platform. The BF16 BRGEMM-TPP
internally leverages this BF16 FMA instruction within the
GEMM microkernel on CPX (see section 3.2) to speed up the
tensor contraction. Finally, we highlight here the speedup of
the Aggregation kernel when, e.g., comparing the CPX and the
ICX FP32 TPP-based performance numbers. The ICX platform
has STREAM bandwidth of 175 GB/s whereas CPX has 97.7
GB/s, and this trend is reflected also in the performance of the
Aggregation kernel (1.54× faster on ICX than CPX).

6.3. Distributed-Memory Scaling of DL
Workloads
Even though we focused on the evaluation of the TPP-
based workloads on a single node, our approach is seamlessly
incorporated into the DL frameworks, hence we can scale to
multiple nodes in a cluster to accelerate the training process
employing the oneCCL library [47]. Figure 30 shows the
distributed-memory scaling of the TPP-based workloads. DLRM
and BERT show almost perfect weak-scaling from 1 to 64 sockets
of CLX (32 nodes) with speedups 51.7 and 57.9×, Respectively.
Regarding the scaling of the GNN workload, the efficiency
is directly affected by the quality of the partitions produced
by the graph partitioning tools. Using 64 sockets we achieve
10× speedup compared to single socket, and further scaling
improvements constitute future work. We can conclude that
TPPs for single node optimizations combined with small-size
cluster level execution can accelerate deep learning training on
CPUs by up to two orders of magnitude.
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FIGURE 30 | Distributed-memory scaling of workloads.

FIGURE 31 | Example lowering paths within the PlaidML Tensor compiler in order to achieve full network optimization from popular frameworks. The green boxes

represent the DL frameworks, the blue boxes correspond to MLIR dialects, the brown box shows the TPP-MLIR dialect within the stack, and the purple box

represents the targeted platforms.

7. TPP WITHIN MLIR AND A TENSOR
COMPILER

In order to illustrate the viability of TPPs as a virtual Tensor
ISA within MLIR and Tensor Compilers, we implemented a
rudimentary MLIR dialect corresponding to the TPPs. We also
implemented lowering passes within the PlaidML [15] Tensor
Compiler that transform intermediate MLIR representations to
the TPP-MLIR dialect. The TPP-MLIR dialect is subsequently
lowered to the corresponding LIBXSMM TPP calls, therefore
such a flow is not relying on LLVM for the code generation of
the corresponding tensor operations.

The current lowering path through MLIR supports a variety
of front-end interfaces with LinAlg or Tile as the lowest level
common entry points, i.e., the lowest level of abstraction that
inbound programs can be specified in such that they will be
subject to the full range of optimizations necessary to achieve
full performance. Figure 31 details the lowering paths currently
implemented in PlaidML and where key transforms map tensor
operations into the TPP dialect. The key transformation is located

in the stencil pass of the PXA dialect (Parallel eXtensions for
Affine—a staging ground for PlaidML/TPP work that will be
proposed upstream to the affine dialect). Operations that cannot
be matched to TPP primitives are lowered through standard
affine optimization pipelines.

We experimented with the use-case of FP32 inference on a
client CPU (Intel i7-6700) on three different workloads: ResNet-
152 [33], ResNext-50 [48], and I3D-Kinetics-400 [49]. Figure 32
shows the results of three implementations: (i) The green bars
show the performance of the code generated by PlaidML with
MLIR for intermediate representations, and LLVM for the code
generation, (ii) The orange bars show the performance of
the code generated by PlaidML with MLIR for intermediate
representations, and the TPP-MLIR dialect as virtual Tensor
ISA for the code generation of the corresponding tensor
contractions, and (iii) TensorFlow FP32 inference backed-up
by the vendor-optimized oneDNN library. We observe that the
Tensor Compiler variant which relies on the TPP-MLIR dialect
for the tensor contractions outperforms the variant which relies
exclusively on LLVM (for loop-tiling and vectorization) up to
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FIGURE 32 | FP32 inference with PlaidML on various workloads: ResNet-152, ResNext-50, and I3D-Kinetics-400.

35.6×. At the same time, PlaidML assisted by the TPP-MLIR
dialect matches/outperforms the performance of TensorFlow
which uses internally oneDNN, a highly-tuned vendor library for
this CPU target. These preliminary results highlight the viability
of the synergistic Tensor Compiler—TPP paradigm as discussed
in section 1.

8. TPP AND HPC APPLICATIONS

So far, in this article, the focus was on how the TPP abstraction
can be leveraged within the Deep Learning Domain. Tensor
computations are ubiquitous, and in particular they constitute
the cornerstone of many HPC applications. As such, the TPP
abstraction can be readily employed by HPC applications to
accelerate tensor computations without sacrificing portability. In
the rest of this section, we examine how TPPs are used within two
HPC applications, namely CP2K and EDGE.

8.1. CP2K
The tensor based formulation originated and became common
in physics, and it is well adopted in the field of engineering
or applied sciences, and in electronic structure (ES) theory
in particular. CP2K is an open source ES- and MD-package
(molecular dynamics) for atomistic simulations of solid-state,
liquid, molecular, and biological systems [50]. CP2K is striving
for good performance on HPC and massively parallel systems.
Even though the use of novel algorithms in CP2K is the norm
for scientific reasons, implementations have not widely tapped
tensors in an explicit fashion. In contrast, Machine Learning
emerged with similar, yet not coherent APIs and frameworks
around the notions of tensors, layers, and image processing.

While ES calculations can be formulated with tensors of
ranks two to four, CP2K (and similar packages) largely remain
with matrix based formulation. Various libraries for tensor
contractions gained some attraction for scientific applications but
the level of generality is key, e.g., as sparse representations are
desired. CP2K explored an API for sparse tensor contractions

and published a proof of concept implementation built into
the DBCSR library [51]. Efforts targeting accelerators in
CP2K, namely GPUs, are not fully booked hence hardware
specifically for Deep Learning (with focus on low and mixed
precision arithmetic) is not yet a motivation of tensors as an
implementation vehicle (and source of acceleration). Therefore,
a collection of primitives, such as TPP is well-suited for an
emerging discussion of a more general API.

CP2K 3.0 introduced LIBXSMM for Small Matrix
Multiplications (SMMs). CP2K and DBCSR (previously part of
CP2K’s code base) since then additionally introduced element-
wise operations (copy and transpose) with “elements” being
small matrices based on LIBXSMM. Reformulating existing
code to build on (batched) GEMM TPP and element-wise TPP
operations is an established pattern for increased performance
in CP2K.

To practically improve performance in CP2K one has
to consider:

• Fusing kernels and increasing arithmetic intensity
independent of the target being a CPU or an accelerator
(performance bound by memory bandwidth).
• Specializing code at runtime based on workload/input of the

application, e.g., generating code Just-In-Time (JIT) a.k.a.
meta-programming.

These objectives can be delivered by TPPs as a domain-specific
language (DSL), enabling the scientist to write more abstract
code, e.g., by the means of meta-programming, and by relying
on a specification which delivers versatile primitives deferring
low-level optimizations to the TPP backend.

For CP2K’s performance evaluation, we refer to BDX, CLX,
ICX, and ROME as introduced earlier (section 6). To show the
portability of our approach, we augmented our results by using
the Oracle Cloud Infrastructure, namely the result for Altra
processor (BM.Standard.A1.160 OCI shape). Table 4 shows the
performance benefit of LIBXSMM’s GEMM-TPP in CP2K when
compared to Intel’s MKL GEMM routines.
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TABLE 4 | CP2K performance (Cases/Day) of three workloads fitting into single

systems with two processors.

System Workloada BLAS-GEMMb TPP-GEMMc TPP-Speedup

BDX H2O-256 91 101 11%

H2O-512 23 27 17%

CLX H2O-256 154 162 5%

H2O-512 39 41 5%

H2O-DFT-LS4 45 47 4%

ICX H2O-256 235 249 6%

H2O-512 60 65 8%

H2O-DFT-LS4 67 70 4%

ROME H2O-256 225 244 8%

H2O-512 55 57 4%

H2O-DFT-LS4 65 65 0%

Altra H2O-256 228 236 4%

H2O-512 60 62 3%

H2O-DFT-LS4 60 66 10%

Single-socket performance is reported here for consistency within this article. Intel MKL

or OpenBLAS are always used for general BLAS operations including large GEMMs.

Either (BLAS-)GEMMor TPP-GEMMwas used for batchedmultiplication of small matrices

(SMMs). Workloads utilizing CP2K’s DBCSR library for distributed block-sparse matrix

multiply benefit from (runtime-)specialized GEMM-TPP kernels where the set of matrix

shapes is not known at compile-time of the application or depends on the workload

in general.
aH2O-256 (CP2K bench.), H2O-512 (UEABS CaseA) and H2O-DFT-LSNREP=4 (UEABS

CaseC) from PRACE UEABS 2.1.
b Intel MKL (x86-64) or OpenBLAS (otherwise).
cLIBXSMM.

The bold values indicate the best-performing implementation for each system and

workload.

8.2. EDGE
The Extreme-Scale Discontinuous Galerkin Environment
(EDGE) uses the Arbitrary high-order DERivatives (ADER)
Discontinuous Galerkin (DG) finite element method to simulate
seismic wave propagation [52]. The software uses unstructured
tetrahedral meshes which are typically adapted to the used
seismic velocity models. Additionally, modelers may introduce
mountain topography. A sophisticated local time stepping
scheme allows the solver to operate efficiently in very large and
complex settings. The software is able to fuse multiple ensemble
simulations into one execution of the software. EDGE uses an
orthogonal polynomial expansion basis to discretize each of the
considered variables in a tetrahedron of the mesh. In a typical
setting, we use three relaxation mechanisms for the viscoelastic
part, resulting in a total of 27 seismic variables. Additionally using
a fifth order method gives us 35 basis functions, resulting in a
total of 27 · 35 = 945 degrees of freedom per tetrahedral element.
The solver advances the degrees of freedom in time by repeatedly
computing a triplet of quadrature-free integrators. While the
actual integrators are part of EDGE, their implementation relies
heavily on TPPs. The GEMM-TPP with small and uncommon
matrix sizes is the most crucial operation required by EDGE.
For example, the surface integrator requires the multiplication
of a 9 × 35 matrix with a 35 × 15 matrix. The solver’s extension

TABLE 5 | Sustained 32-bit floating point performance on the studied systems.

System GTS LTS

Single Fuseda Single Fuseda

Cascade lake 1.08 0.78 1.02 0.74

Ice lake 1.29 1.01 1.23 0.96

Rome 1.20 1.08 1.12 1.01

Milan 1.39 1.16 1.29 1.07

Altra 1.27 0.73 1.51 0.76

The performance is given in TFLOPS. Results are presented for Global Time Stepping

(GTS) and Local Time Stepping (LTS) when using single and fused forward simulations.
aEDGE’s fused simulations use sparse matrix kernels.

The bold values indicate the best performing system for each experimental setup.

with additional, performance-portable TPPs in all parts of the
integrators is work-in-progress. Especially, EDGE’s support for
viscoelastic attenuation or local time stepping requires “simpler”
kernels, e.g., the unary TPPs Identity and Zero, or the binary
TPPs Mul, Sub and Add.

We evaluate EDGE’s performance-portability through the
use of TPPs by studying the performance of a full setup of
the Layer Over Halfspace 3 (LOH3) benchmark with 743,066
tetrahedral elements. The same setting was also used in Breuer
and Heinecke [53] to study the performance of the solver on a
single processor of the Frontera supercomputer located at the
Texas Advanced Computing Center (position ten in the 06/21
TOP500-list). Following this study, a sophisticated simulation
of the 2014 Mw 5.1 La Habra earthquake using a mesh with
237,861,634 tetrahedral elements and EDGE’s advanced features
yielded a performance of 2.20 FP32-PFLOPS on 1,536 nodes.

For the EDGE application, we study the software’s raw floating
point performance and time-to-solution by extending our LOH3-
Frontera-only study [53] with diverse processors:

• Cascade Lake (similar to CLX as introduced in section 6):
2.7 GHz 28-core Intel Xeon Platinum 8,280 processor of the
Frontera system at the Texas Advanced Computing Center.
We only used a single 28-core processor of Frontera’s dual-
socketed compute nodes in our tests.
• Ice Lake: 2.3 GHz 40-core Intel Xeon Platinum 8,380 processor

on Intel’s on-premises cluster. We only used a single 40-core
processor of the dual-socket compute nodes in our tests.
• Rome (similar to ROME as introduced in section 6): 2.25 GHz

AMD EPYC 7,742 (BM.Standard.E3.128 OCI shape). We only
used a single 64-core processor of the bare metal instance in
our tests.
• Milan: 2.55 GHz AMD EPYC 7J13 (BM.Standard.E4.128 OCI

shape). We only used single 64-core processor of the bare
metal instance in our tests.
• Altra: 3.0 GHz Ampere Altra Q80-30 processor

(BM.Standard.A1.160 OCI shape). We only used a single
80-Armv8.2-core processor of the bare metal instance in
our tests.

Table 5 shows the sustained floating point performance of
the conducted runs. All numbers are given in FP32-TFLOPS.
Columns two and three present the performance of Global Time
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TABLE 6 | Time-to-solution speedups of the studied systems when using different

configurations of the solver EDGE.

System GTS LTS

Single Fused Single Fused

Cascade lake 1.00 1.80 2.50 4.52

Ice lake 1.19 2.33 3.02 5.87

Rome 1.11 2.48 2.76 6.17

Milan 1.28 2.67 3.18 6.55

Altra 1.18 1.69 3.71 4.64

The performance of the Cascade Lake system, running EDGE with Global Time Stepping

(GTS) and a single forward simulation, is used as baseline. In contrast to Table 5, the

speedups include the higher algorithmic efficiencies of EDGE’s support for Local Time

Stepping (LTS) and fused forward simulations.

The bold values indicate the best performing system for each experimental setup.

Stepping (GTS), whereas columns four and five show that of
Local Time Stepping (LTS). In general, the LTS configurations
have a slightly lower peak utilization when compared to their
GTS counterparts. Note, however, that Table 5 only shows raw
floating point performance and does not account for time-to-
solution speedups through LTS (theoretically up to 2.67× in
this case). The performance of GTS and LTS is further split
into running a single forward simulation and fusing multiple
simulations. In fused mode, the solver parallelizes over the right-
hand-side by concurrently simulating seismic wave propagation
for a collection of seismic sources. One of the fused mode’s
unique advantages is the opportunity for perfect vectorization of
all small matrix multiplications, even when considering sparsity
[52]. In this work, we matched the microarchitectures’ SIMD-
length by fusing 16 simulations on Cascade Lake and Ice Lake,
eight simulations on Rome and Milan, and four simulations
on Altra. Once again, note that Table 5 does not include the
respective sparsity-driven 2.49× increase of the floating point
operations’ value when running fused simulations. Comparing
the performance of the different systems, we observe very
high overall performance with architectural efficiency gains
originating from decreasing SIMD-lengths. This is especially
noticeable when running single forward simulations. In this
case, the vectorized dimension of the small dense matrix kernels
coincides with the number of basis functions, i.e., M = 35,
which is challenging when optimizing for AVX512 (Cascade
Lake and Ice Lake) and AVX2 (Rome and Milan). The short
128-bit ASIMD vector instruction (Altra) reach a very high
peak utilization of 33.2% for GTS and 39.2% in LTS. For the
fused simulations, the differences in relative peak utilization
narrow further.

Table 6 describes the obtained performance numbers in terms
of time-to-solution. Here, we use the runtime of the studied
LOH3 setting on Cascade Lake for GTS and a single forward
simulation as baseline. All other settings are given relative to this.
Further, for the fused settings, we consider the per-simulation
time. We observe that EDGE’s overall performance is driven by
the high floating point performance through the use of TPPs and
the solver’s advanced algorithmic features. Here, Altra performs
best for single forward simulations using LTS, accelerating the

baseline by 3.71×. Milan has the best time-to-solution in all
other settings and is able to outperform the baseline by 6.55×
when using LTS and fusing simulations. This performance lead
originates from Milan’s high theoretical peak combined with a
high peak utilization (see Table 5).

9. RELATED WORK

The related work in terms of the development methodology
of DL workloads has been referenced in the introduction,
so here we mention community efforts that share the same
design philosophy with TPPs. Tensor Operator Set Architecture
(TOSA) is a recent work, concurrently developed with TPPs, that
provides a set of whole-tensor operations commonly employed
in DL [54]. TOSA allows users to express directly operators on
up to 4D/5D tensors which are not naturally mapped even on
contemporary 2D systolic hardware. We believe that staying at
the 2D primitive level is expressive and sufficient, as we can
build higher-order ops with loops around 2D operators, e.g.,
see Algorithm 6. Despite the similarities of TPP and TOSA
specifications, the TOSA back-end is reference C code and
is not showcased in full DL-workloads. CUTLASS [55] and
Triton [56] strive for high-performance on GPUs, while also
offer flexible composition that can be easily applied to solve new
problems related in DL and linear algebra, and sharemany design
principles with TPPs.

XLA [57] is a domain-specific compiler for linear algebra
and DL that targets TensorFlow models with potentially no
source code changes. JAX [58] provides automatic differentiation
of Python and NumPy functions, and the compilation of the
desired operators happens in a user-transparent way with JIT
calls, yielding optimized XLA kernels. XLA and JAX share
the same philosophy with TPPs: the user is focusing on the
DL kernel/workload development using high-level, platform-
agnostic, declarative-style programming, whereas the tensor-
aware back-end infrastructure undertakes the efficient and
portable code generation. Julia [59] is a high-level, dynamic
programming language, designed to give users the speed of
C/C++ while remaining easy to use. Since its incarnation,
Julia has evolved with a strong Deep Learning/Machine
Learning ecosystem, providing optimized libraries for such
workloads. We envision that TPPs and tensor compilation
frameworks (like JAX and Julia) will coexist in a synergistic
fashion. For example, a program written in JAX could be
lowered via an MLIR pass to the Linalg dialect, and from
there the compilation stack could follow the path illustrated
in Figure 31 (JAX→Linalg→Affine/PXA→TPP) in order to
leverage TPPs for efficient code generation. To this extend,
Tensor Processing Primitives serve as a virtual tensor ISA
within tensor compilation frameworks rather than trying to
replace them.

Tensor Compilers (TC) [15–18] attempt to optimize DL
operators in a platform-agnostics way, however their applicability
is restricted to relatively small code-blocks whereas full workload
integration is cumbersome. Also, TC undertake the tasks of
efficient parallelization, loop re-ordering, automatic tiling and
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layout transformations, nevertheless the obtained performance
is typically underwhelming [12]. We envision that TPPs can
be used as a tool by TC in order to attain efficient platform-
specific code generation, therefore, TC could focus on optimizing
the higher level aspects of the tensor programs (e.g., layout
transformations). Along these lines, TPPs fit in the MLIR [20]
ecosystem/stack as a lowering dialect (see section 7), and in
this way the TPP back-end could be leveraged by multiple
TC frameworks.

Tensor computations are also ubiquitous in HPC (e.g.,
physics, quantum chemistry, numerical simulations) and
consequently a plethora of tensor computation frameworks
have emerged to facilitate the development of such applications
[60–64]. Typically these frameworks are comprised of a
front-end that enables the expression of the underlying
tensor computations (and can be domain-specific), and a
back-end that optimizes the expressed computations using
both high-level and low-level techniques. Since TPPs are
agnostic of the user-entity, we envision that such tensor
computation frameworks can leverage TPPs as a virtual tensor
ISA instead of relying on generic compilers or low-level
customized generators for efficient code generation across
multiple platforms.

10. CONCLUSIONS AND FUTURE WORK

In this work, we presented the Tensor Processing Primitives
(TPP), a compact, yet versatile set of 2D-tensor operators,
which subsequently can be utilized as building-blocks
to construct efficient, portable complex DL operators on
high-dimensional tensors. We also show how TPPs can
be used within HPC applications in order to accelerate
tensor computations. We demonstrate the efficacy of our
approach using standalone kernels and end-to-end training
DL-workloads (CNNs, dilated convolutions, DLRM, BERT,
GNNs) expressed entirely via TPPs that outperform state-
of-the-art implementations on multiple platforms. As future
work, we plan to create a full-fledged TPP-based MLIR dialect
such that Tensor Compilers can leverage the strengths of
TPPs. Also, we plan to further enrich the TPP back-end
implementation by supporting more ISAs, including GPUs and
POWER architectures.

11. OPTIMIZATION NOTICE

Software and workloads used in performance tests may have
been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are
measured using specific computer systems, components,
software, operations, and functions. Any change to any of
those factors may cause the results to vary. You should consult
other information and performance tests to assist you in
fully evaluating your contemplated purchases, including the
performance of that product when combined with other
products. For more information go to http://www.intel.com/
performance.

Intel, Xeon, and Intel Xeon Phi are trademarks of Intel
Corporation in the U.S. and/or other.
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GLOSSARY

Intel Pseudo Intrinsics
1. _mm128 Represents a vector of width 128 bits.
2. _mm128_loadu_ps(addr) Loads 16byte of 32 bit elements.
3. _mm128_storeu_ps(addr) Stores 16byte of 32 bit elements.
4. _mm128_unpacklo_ps(A, B) Unpacks and interleaves 32 bit

elements from the low half of A and B.
5. _mm128_unpackhi_ps(A, B) Unpacks and interleaves 32 bit

elements from the high half of A and B.
6. _mm128_unpacklo_pd(A. B) Unpacks and interleaves

64 bit elements from the low half of A and B.
7. _mm128_unpackhi_pd(A, B) Unpacks and interleaves

64 bit elements from the high half of A and B.
8. _mm512 Represents a vector of width 512 bits.
9. _mm512_permutexvar_ps(A,B) Shuffle single precision

floating point elements in 512 wide vector length using
indexes specified in B.

10. _mm512_roundscale_ps(A,B) Round single precision
floating point elements to the rounding mode specified by
argument B.

11. _mm512_sub_ps(A,B) Subtract single precision floating
point elements in A from B.

12. _mm512_scalef_ps(A,B) Scales single precision floating
point elements in A using values specified in B.

13. _mm512_range_ps(A,B, int imm8) Calculates the min,
max or absolute max for each single precision- floating
point elements in A and B. Lower 2 bits of imm8[1:0]
specifies the operation(min/max/absolute max) to
be performed.

14. _mm512_xor_ps(A,B) Performs XOR operation between
each single precision floating point elements in A and B
vector.

15. _mm512_and_ps(A,B) Performs AND operation between
each single precision floating point elements in A and B
vector.

16. _mm512_rcp14_ps(A,B) Calculates approximate reciprocal
of each single precision floating point element in range less
then 2-̂14.

17. _mm512_cmp_ps_mask(A,B,int C) Compare the single
precision elements in A and B specified by the comparison
mode in C.

18. _mm512_mask_blend_ps(mask A,B,C) Copies single
precision floating point element from vector A in vector C if
the corresponding mask bit is set.

19. _mm512_fmadd_ps(mask A,B,C) Fused-Multiply-Add:
Multiplies elements from vector A and B and adds them to
elements of vector C.

20. _mm512_maskz_loadu_epi16(mask, addr) Loads 64byte of
16bit elements under zero masking from address addr.

21. _mm512_set1_epi32(value) sets a 32 bit value into all 16
entries of the vector, e.g. broadcast.

22. _mm512_maskz_mov_epi16(mask, A) Moves 16 bit-type
register A under zero-masking to a different register.

23. _mm512_slli_epi32(A, imm) Shifts all entries in the vector
registers (typed as 32 bit elements) by value imm to the left
by shifting 0 in.

Arm Pseudo Intrinsics
1. vld1q_f32(addr) Loads 16byte of 32 bit elements.
2. vst1q_f32(addr) Loads 16byte of 32 bit elements.
3. vtrn1q_f32(A, B) Unpacks and interleaves 32 bit elements

from the low half of A and B.
4. vtrn2q_f32(A, B) Unpacks and interleaves 32 bit elements

from the high half of A and B.
5. vtrn1q_f64(A. B) Unpacks and interleaves 64 bit elements

from the low half of A and B.
6. vtrn2q_f64(A, B) Unpacks and interleaves 64 bit elements

from the high half of A and B.
7. vmax_q(A,B) Calculates the maximum between each single

precision floating point elements in A and B vector.
8. vmin_q(A,B) Calculates the minimum between each single

precision floating point elements in A and B vector.
9. vmul_q(A,B) Multiply single precision elements in A and B

vector.
10. vsub_q(A,B) Subtract corresponding single precision

elements in B from A.
11. vadd_q(A,B) Add single precision elements in B and A.
12. vshlq_u32(A,B) Shift left each single precision elements in

A by the value specified in B.
13. vrndmq_f32(A) Round single precision floating point

elements in A using minus infinity rounding mode.
14. vcvtmq_s32_f32(A) Converts single precision floating point

elements in A to signed integers using minus infinity
rounding mode.

15. float32x4_t Represents 4 single precision floating point
elements in vector width of 128.

16. vand_q(A,B) Performs bit-wise AND operation between A
and B vector.

17. vfmaq_f32(A,B,C) Multiply single precision elements in A
and B.Add the intermediate result to C.

18. vld1q_f32(A) Load a single precision element from scalar to
all single precision element in a vector.

19. vtbl1_u8(A,B) Performs a byte look up operation in vector
A using byte addressable indexes specified in vector B.

20. vtbl4_u8(A,B) Performs a 64 byte look up operation in
vector A, A+1, A+2, A+3 using byte addressable indexes
specified in vector B.

21. vbcaxq_s32(A,B) Performs XOR operation between each
single precision floating point elements in A and B vector.

22. vcgt_q(A,B) Compare corresponding single precision
elements in A and B. If B is greater then A the corresponding
bits are set in the destination vector.

23. vrecpe_f32(A) Calculates approximate reciprocal of each
single precision floating point element in vector A.

24. vbit_insert(A,B) Copies single precision floating point
element from vector A in destination vector if the
corresponding bits are set in vector B.
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