
ORIGINAL RESEARCH
published: 19 April 2022

doi: 10.3389/fams.2022.826988

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 April 2022 | Volume 8 | Article 826988

Edited by:

Edoardo Angelo Di Napoli,

Helmholtz Association of German

Research Centres (HZ), Germany

Reviewed by:

Maxim Rakhuba,

National Research University Higher

School of Economics, Russia

Katharina Kormann,

Uppsala University, Sweden

Akwum Onwunta,

Lehigh University, United States

*Correspondence:

Venera Khoromskaia

vekh@mis.mpg.de

Specialty section:

This article was submitted to

Mathematics of Computation and

Data Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 01 December 2021

Accepted: 03 March 2022

Published: 19 April 2022

Citation:

Khoromskaia V and Khoromskij BN

(2022) Ubiquitous Nature of the

Reduced Higher Order SVD in

Tensor-Based Scientific Computing.

Front. Appl. Math. Stat. 8:826988.

doi: 10.3389/fams.2022.826988

Ubiquitous Nature of the Reduced
Higher Order SVD in Tensor-Based
Scientific Computing
Venera Khoromskaia* and Boris N. Khoromskij

Max-Planck-Institute for Mathematics in the Sciences, Leipzig, Germany

Tensor numerical methods, based on the rank-structured tensor representation of

d-variate functions and operators discretized on large n⊗d grids, are designed to provide

O(dn) complexity of numerical calculations contrary to O(nd) scaling by conventional

grid-based methods. However, multiple tensor operations may lead to enormous

increase in the tensor ranks (curse of ranks) of the target data, making calculation

intractable. Therefore, one of the most important steps in tensor calculations is the

robust and efficient rank reduction procedure which should be performed many times

in the course of various tensor transforms in multi-dimensional operator and function

calculus. The rank reduction scheme based on the Reduced Higher Order SVD

(RHOSVD) introduced by the authors, played a significant role in the development of

tensor numerical methods. Here, we briefly survey the essentials of RHOSVD method

and then focus on some new theoretical and computational aspects of the RHOSVD

and demonstrate that this rank reduction technique constitutes the basic ingredient

in tensor computations for real-life problems. In particular, the stability analysis of

RHOSVD is presented. We introduce the multi-linear algebra of tensors represented in

the range-separated (RS) tensor format. This allows to apply the RHOSVD rank-reduction

techniques to non-regular functional data with many singularities, for example, to the

rank-structured computation of the collective multi-particle interaction potentials in bio-

molecular modeling, as well as to complicated composite radial functions. The new

theoretical and numerical results on application of the RHOSVD in scattered data

modeling are presented. We underline that RHOSVD proved to be the efficient rank

reduction technique in numerous applications ranging from numerical treatment of

multi-particle systems in material sciences up to a numerical solution of PDE constrained

control problems in R
d.

Keywords: low-rank tensor product approximation, multi-variate functions, tensor calculus, rank reduction, tucker

format, canonical tensors, interaction potentials, scattered data modeling

1. INTRODUCTION

The mathematical models in large-scale scientific computing are often described by steady state
or dynamical PDEs. The underlying physical, chemical or biological systems usually live in 3D
physical space R3 and may depend on many structural parameters. The solution of arising discrete
systems of equations and optimization of the model parameters lead to the challenging numerical
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problems. Indeed, the accurate grid-based approximation of
operators and functions involved requires large spatial grids in
R
d, resulting in considerable storage space and implementation

of various algebraic operations on huge vectors and matrices. For
further discussion we shall assume that all functional entities are
discretized on n⊗d spatial grids where the univariate grid size n
may vary in the range of several thousands. The linear algebra on
N-vectors and N × N matrices with N = nd quickly becomes
non-tractable as n and d increase.

Tensor numerical methods [1, 2] provide means to overcome
the problem of the exponential increase of numerical complexity
in the dimension of the problem d, due to their intrinsic feature
of reducing the computational costs of multi-linear algebra on
rank-structured data to merely linear scaling in both the grid-
size n and dimension d. They appeared as bridging of the
algebraic tensor decompositions initiated in chemometrics [3–
10] and of the nonlinear approximation theory on separable
low-rank representation of multi-variate functions and operators
[11–13]. The canonical [14, 15], Tucker [16], tensor train
(TT) [17, 18], and hierarchical Tucker (HT) [19] formats are
the most commonly used rank-structured parametrizations in
applications of modern tensor numerical methods. Further data-
compression to the logarithmic scale can be achieved by using
the quantized-TT (QTT) [20, 21] tensor approximation. At
present there is an active research toward further progress
of tensor numerical methods in scientific computing [1, 2,
22–26]. In particular, there are considerable achievements of
tensor-based approaches in computational chemistry [27–31], in
bio-molecular modeling [32–35], in optimal control problems
(including the case of fractional control) [36–39], and in many
other fields [6, 40–44].

Here, we notice that tensor numerical methods proved
to be efficient when all input data and all intermediate
quantities within the chosen computational scheme are
presented in a certain low-rank tensor format with controllable
rank parameters, i.e., on low-rank tensor manifolds. In
turn, tensor decomposition of the full format data arrays
is considered as an N-P hard problem. For example, the
truncated HOSVD [7] of an n⊗d-tensor in the Tucker
format amounts to O(nd+1) arithmetic operations while
the respective cost of the TT and HT higher-order SVD

[18, 45] is estimated by O(n
3
2 d), indicating that rank

decomposition of full format tensors still suffers from the
“curse of dimensionality” and practically could not be applied in
large scale computations.

On the other hand, often, the initial data for complicated
numerical algorithms may be chosen in the canonical/Tucker
tensor formats, say as a result of discretization of a short
sum of Gaussians or multi-variate polynomials, or as a result
of the analytical approximation by using Laplace transform
representation and sinc-quadratures [1]. However, the ranks of
tensors are multiplied in the course of various tensor operations,
leading to dramatic increase in the rank parameter (“curse of
ranks”) of a resulting tensor, thus making tensor-structured
calculation intractable. Therefore, fast and stable rank reduction
schemes are the main prerequisite for the success of rank-
structured tensor techniques.

Invention of the Reduced Higher Order SVD (RHOSVD)
in [46] and the corresponding rank reduction procedure based
on the canonical-to-Tucker transform and subsequent canonical
approximation of the small Tucker core (Tucker-to-canonical
transform) was a decisive step in development of the tensor
numerical methods in scientific computing. In contrast to
the conventional HOSVD, the RHOSVD does not need a
construction of the full size tensor for finding the orthogonal
subspaces of the Tucker tensor representation. Instead, RHOSVD
applies to numerical data in the canonical tensor format (with
possibly large initial rank R) and exhibits the O(dnRmin{n,R})
complexity, uniformly in the dimensionality of the problem, d,
and it was an essential step ahead in evolution of the tensor-
structured numerical techniques.

In particular, this rank reduction scheme was applied to
calculation of 3D and 6D convolution integrals in tensor-based
solution of the Hartree-Fock equation [27, 46]. Combined with
the Tucker-to-canonical transform, this algorithm provides a
stable procedure for the rank reduction of possibly huge ranks
in tensor-structured calculations of the Hartree potential. The
RHOSVD based rank reduction scheme for the canonical tensors
is specifically useful for 3D problems, which are most often
in real-life applications. However, the RHOSVD-type procedure
can be also efficiently applied in the construction of the TT tensor
format from the canonical tensor input, which often appears in
tensor calculations1.

The RHOSVD is the basic tool for the construction of the
range-separated (RS) tensor format introduced in [32] for the
low-rank tensor representation of the bio-molecular long-range
electrostatic potentials. Recent example on the RS representation
of the multi-centered Dirac delta function [34] paves the way
for efficient solution decomposition scheme introduced for the
Poisson-Boltzmann equation [33, 35].

In some applications the data could be presented as a sum of
highly localized and rank-structured components so that their
further numerical treatment again requires the rank reduction
procedure (see Section 4.5 concerning the long-range potential
calculation for many-particle system). Here, we present the
constructive description of multi-linear operations on tensors in
RS format which allow to compute the short- and long-range
parts of resulting combined tensors. In particular, this applies to
commonly used addition of tensors, Hadamard and contracted
products as well as to composite functions of RS tensors. We
then introduce tensor-based modeling of the scattered data by
a sum of Slater kernels and show the existence of the low-
rank representation for such data in the RS tensor format. The
numerical examples demonstrate the practical efficiency of such
kind of tensor interpolation. This approach may be efficiently
used in many applications in data science and in stochastic
data modeling.

Rank reduction procedure by using the RHOSVD is a
mandatory part in solving the three-dimensional elliptic and
pseudo-differential equations in the rank-structured tensor
format. In the course of preconditioned iterations, the tensor

1Otherwise one can not avoid the “curse of dimensionality”, see the cost of the

HT/TT SVD above.
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ranks of the governing operator, the precoditioner and of
the current iterand are multiplied at each iterative step, and,
therefore, a fast and robust rank reduction techniques is the
prerequisite for such methodology applied in the framework
of iterative elliptic problem solvers. In particular, this approach
was applied to the PDE constrained (including the case of
fractional operators) optimal control problems [36, 39]. As result,
the computational complexity can be reduced to almost linear
scale, O(nR), contrary to conventional O(n3) complexity, as
demonstrated by numerics in [36, 39].

Tensor-based algorithms and methods are now being widely
used and developed further in the communities of scientific
computing and data science. Tensor techniques evolve in
traditional tensor decompositions in data processing [5, 42, 47],
and they are actively promoted for tensor-based solution of the
multi-dimensional problems in numerical analysis and quantum
chemistry [1, 24, 29, 38, 39, 48, 49]. Notice that in the case of
higher dimensions the rank reduction in the canonical format
can be performed directly (i.e., without intermediate use of the
Tucker approximation) by using the cascading ALS iteration
in the CP format (see [50] concerning the tensor-structured
solution of the stochastic/parametric PDEs).

The rest of this article is organized as follows. In Section 2,
we sketch some results on the construction of the RHOSVD
and present some old and new results on the stability of error
bounds. In Section 2.2, we recollect the mixed canonical-Tucker
tensor format and the Tucker-to-canonical transform. Section 3
recalls the results from Khoromskaia [27] on calculation of the
multi-dimensional convolution integrals with the Newton kernel
arising in computational quantum chemistry. Section 4 addresses
the application of RHOSVD to RS parametrized tensors. In
Section 4.2, we discuss the application of RHOSVD in multi-
linear operations of data in the RS tensor format. The scattered
data modeling is considered in section 4.5 from both theoretical
and computational aspects. Application of RHOSVD for tensor-
based representation of Greens kernels is discussed in Section
5. Section 6 gives a short sketch of RHOSVD in application to
tensor-structured elliptic problem solvers.

2. REDUCED HOSVD AND CP-TO-TUCKER
TRANSFORM

2.1. Reduced HOSVD: Error Bounds
In computational schemes including bilinear tensor-tensor or
matrix-tensor operations the increase of tensor ranks leads to
the critical loss of efficiency. Moreover, in many applications,
for example in electronic structure calculations, the canonical
tensors with large rank parameters arise as the result of
polynomial type or convolution transforms of some function
related tensors (say, electron density, the Hartree potential, etc.)
In what follows, we present the new look on the direct method of
rank reduction for the canonical tensors with large initial rank,
the reduced HOSVD, first introduced and analyzed in [46].

In what follows, we consider the vector space of d-fold real-
valued data arrays Rn1×···×nd endorsed by the Euclidean scalar
product 〈·, ·〉 with the related norm ‖u‖ = 〈u, u〉1/2. We denote

by T r,n the class of tensorsA ∈ R
n⊗d parametrized in the rank-r,

r = (r1, . . . , rd) orthogonal Tucker format,

A = β ×1 V
(1) ×2 · · · ×d V

(d) ∈ T r,n,

with the orthogonal side-matrices V(ℓ) = [v
(ℓ)
1 . . . v

(ℓ)
rℓ ] ∈ R

n×rℓ

and with the core coefficient tensor β ∈ R
r1×...×rd . Here and

thereafter ×ℓ denotes the contracted tensor-matrix product in
the dimension ℓ, andRn⊗d denotes the Euclidean vector space of
n1 × · · · × nd-tensors with equal mode size nℓ = n, ℓ = 1, . . . , d.

Likewise, CR,n denotes the class of rank-R canonical tensors.
For given A ∈ CR,n in the rank-R canonical format,

A =
∑R

ν=1
ξνu

(1)
ν ⊗ . . .⊗ u(d)ν , ξν ∈ R, (1)

with normalized canonical vectors, i.e., ‖u(ℓ)ν ‖ = 1 for ℓ =
1, . . . , d, ν = 1, . . . ,R.

The standard algorithm for the Tucker tensor decomposition
[7] is based on HOSVD applied to full tensors of size nd which
exhibitsO(nd+1) computational complexity. The question is how
to simplify the HOSVD Tucker approximation in the case of
canonical input tensor in the form Equation (1) without use of
the full format representation of A, and in the situation when the
CP rank parameter R and the mode sizes n of the input can be
sufficiently large.

First, let us use the equivalent (nonorthogonal) rank-r =
(R, . . . ,R) Tucker representation of the tensor Equation (1),

A = ξ ×1 U
(1) ×2 U

(2) · · · ×d U
(d), ξ = diag{ξ1, . . . , ξR}, (2)

via contraction of the diagonal tensor ξ = diag{ξ1, . . . , ξR} ∈
R
R⊗d with ℓ-mode side matrices U(ℓ) = [u

(ℓ)
1 , . . . , u

(ℓ)
R ] ∈ R

n×R

(see Figure 1). By definition the tensor diag{ξ1, . . . , ξR} ∈ R
R⊗d

is called diagonal if it has all zero entries except the diagonal
elements given by ξ (iℓ, . . . , iℓ) = ξiℓ , ℓ = 1, . . . ,R. Then the
problem of canonical to Tucker approximation can be solved by
the method of reduced HOSVD (RHOSVD) introduced in [46].
The basic idea of the reduced HOSVD is that for large (function
related) tensors given in the canonical format their HOSVD does
not require the construction of a tensor in the full format and
SVD based computation of its matrix unfolding. Instead, it is
sufficient to compute the SVD of the directional matrices U(ℓ)

in Equation (2) composed by only the vectors of the canonical
tensor in every dimension separately, as shown in Figure 1. This
will provide the initial guess for the Tucker orthogonal basis in
the given dimension. For the practical applicability, the results of
the approximation theory on the low-rank approximation to the
multi-variate functions, exhibiting exponential error decay in the
Tucker rank, are of the principal significance [51].

In the following, we suppose that n ≤ R and denote the SVD
of the side-matrix U(ℓ) by

U(ℓ) = Z(ℓ)DℓV
(ℓ)T =

n∑

k=1

σℓ,kz
(ℓ)
k

v
(ℓ)
k

T
, z

(ℓ)
k

∈ R
n, v

(ℓ)
k

∈ R
R,

(3)
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FIGURE 1 | Illustration to the contracted product representation Equation (2) of the rank-R canonical tensor. The first factor corresponds to the diagonal coefficient

tensor ξ .

with the orthogonal matrices Z(ℓ) = [z
(ℓ)
1 , . . . , z

(ℓ)
n ] ∈ R

n×n,

and V(ℓ) = [v
(ℓ)
1 , . . . , v

(ℓ)
n ] ∈ R

R×n, ℓ = 1, . . . , d. We use

the following notations for the vector entries, v
(ℓ)
k
(ν) = v

(ℓ)
k,ν

(ν = 1, . . . ,R).
To fix the idea, we introduce the vector of rank parameters,

r = (r1, . . . , rd), and let

U(ℓ) ≈ W(ℓ)
: = Z

(ℓ)
0 Dℓ,0V

(ℓ)
0

T
, (4)

be the rank-rℓ truncated SVD of the side-matrix U(ℓ) (ℓ =
1, . . . , d). Here, the matrix Dℓ,0 = diag{σℓ,1, σℓ,2, . . . , σℓ,rℓ} is the
submatrix of Dℓ in Equation (3) and

Z
(ℓ)
0 = [z

(ℓ)
1 , . . . , z(ℓ)rℓ

] ∈ R
n×rℓ , V0

(ℓ) ∈ R
R×rℓ ,

represent the respective dominating (n × rℓ)-submatrices of the
left and right factors in the complete SVD decomposition in
Equation (3).

Definition 2.1. (Reduced HOSVD, [46]). Given the canonical
tensor A ∈ CR,n, the truncation rank parameter r, (rℓ ≤ R),
and rank-rℓ truncated SVD of U(ℓ), see Equation (4), then the
RHOSVD approximation of A is defined by the rank-r orthogonal
Tucker tensor

A0
(r)

: = ξ ×1 W
(1) ×2 · · · ×d W

(d) = ξ ×1

[
Z
(1)
0 D1,0V

(1)
0

T
]

×2 · · · ×d

[
Z
(d)
0 Dd,0V

(d)
0

T
]

=
(

ξ ×1 [D1,0V
(1)
0

T
]×2 · · · ×d [Dd,0V

(d)
0

T
]

)
×1 Z

(1)
0

×2 · · · ×d Z
(d)
0 ∈ T r, (5)

obtained by the projection of canonical side matrices U(ℓ) onto the

left orthogonal singular matrices Z
(ℓ)
0 , defined in Equation (4).

Notice that the general error bound for the RHOSVD
approximation will be presented by Theorem 2.3, see also the
discussion afterwards. Corollary 2.4 provides the conditions
which guarantee the stability of RHOSVD.

The sub-optimal Tucker approximand Equation (5) is simple
to compute and it provides accurate approximation to the initial
canonical tensor even with rather small Tucker rank. Moreover,

FIGURE 2 | A first step in canonical-to-Tucker decomposition.

this provides the good initial guess to calculate the best rank-
r Tucker approximation by using the ALS iteration. In our
numerical practice, usually, only one or two ALS iterations
are required for convergence. For example, in case d = 3,
algorithmically, the one step of the canonical-to-Tucker ALS
algorithm reduces to the following operations. Substituting

the orthogonal matrices Z
(1)
0 and Z

(3)
0 from Equation (5) into

Equation (2), we perform the initial step of the first ALS iteration

A 7→ A(1) = Z
(1)
0 ×1 A2 ×3 Z

(3)
0 , (6)

where A2 is given by the contraction

A2 = ξ ×1 D1,0V
(1)
0

T
×2 U

(2) ×3 D3,0V
(3)
0

T
∈ R

r1×n2×r3 ,

as illustrated in Figure 2. Then we optimize the orthogonal
subspace in the second variable by calculating the best rank-r2
approximation to the r1r3×n2 matrix unfolding of the tensorA2.
The similar contracted product representation can be used when
d > 3, as well as for the construction of the TT representation for
the canonical input.

Here, we notice that the core tensor in the RHOSVD
decomposition can be represented in the CP data-sparse format.

Proposition 2.2. The core tensor

β0 = ξ ×1 [D1,0V
(1)
0

T
]×2 · · · ×d [Dd,0V

(d)
0

T
] ∈ R

r1×···×rd ,

in the orthogonal Tucker representation Equation (5), A0
(r)

=
β0 ×1 Z

(1)
0 ×2 · · · ×d Z

(d)
0 ∈ T r,n, can be recognized as
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the rank-R canonical tensor of size r1 × · · · × rd with the

storage request R(
d∑
ℓ=1

rℓ), which can be calculated entry-wise in

O(Rr1 · · · rd) operations.

Indeed, introducing the matrices U
(ℓ)
0

T
= Dℓ,0V

(ℓ)
0

T
∈ R

rℓ×R,
for ℓ = 1, . . . d, we conclude that the canonical core tensor

β0 is determined by the ℓ-mode side matrices U
(ℓ)
0

T
. In the

other words, the tensor A0
(r)

is represented in the mixed Tucker-

canonical format getting rid of the “curse of dimensionality” (see
also Section 2.2 below).

The accuracy of the RHOSVD approximation can be
controlled by the given ε-threshold in truncated SVD of side
matrices U(ℓ). The following theorem proves the absolute error
bound for the RHOSVD approximation.

Theorem 2.3. (RHOSVD error bound, [46]). For given A ∈ CR,n

in Equation (1), let σℓ,1 ≥ σℓ,2 . . . ≥ σℓ,min(n,R) be the singular

values of ℓ-mode side matrices U(ℓ) ∈ R
n×R (ℓ = 1, . . . , d)

with normalized skeleton vectors. Then the error of RHOSVD
approximation, A0

(r)
, is bounded by

‖A− A0
(r)‖ ≤ ‖ξ‖

d∑

ℓ=1

(

min(n,R)∑

k=rℓ+1

σ 2
ℓ,k)

1/2, ‖ξ‖ =

√√√√
R∑

ν=1

ξ 2ν . (7)

The complete proof can be found in Section 8 (see Appendix).
The accuracy of the RHOSVD can be controlled in terms of

the ε-criteria. To that end, given ε > 0, chose the Tucker ranks

such that
d∑
ℓ=1

(
min(n,R)∑
k=rℓ+1

σ 2
ℓ,k
)1/2 ≤ ε is satisfied, then Theorem 2.3

provided the error bound adapted to the ε-threshold.
The error estimate in Theorem 2.3 differs from the case of

complete HOSVD by the extra factor ‖ξ‖, which is the payoff for
the lack of orthogonality in the canonical input tensor. Hence,
Theorem 2.3 does not provide, in general, the stable control of
relative error since for the general canonical tensors there is no
uniform upper bound on the constant C in the estimate

‖ξ‖ ≤ C‖A‖. (8)

The problem is that Equation (8) applies to the general non-
orthogonal canonical decomposition.

The stable RHOSVD approximation can be proven in
the case of the so-called partially orthogonal or monotone
decompositions. With partially orthogonal decomposition we
mean that for each pair of indexes ν,µ in Equation (1) there

holds proddℓ=1〈u
(ℓ)
ν , u

(ℓ)
µ 〉 = 0. For monotone decompositions we

assume that all coefficients and skeleton vectors in Equation (1)
have non-negative values.

Corollary 2.4. (Stability of RHOSVD) Assume the conditions of
Theorem 2.3 are satisfied. (A) Suppose that at least one of the side
matrices U(ℓ), ℓ = 1, · · · , d, in Equation (2), is orthogonal or

the decomposition Equation (1) is partially orthogonal. Then the
RHOSVD error can be bounded by

‖A− A0
(r)‖ ≤ C‖A‖

d∑

ℓ=1

(

min(n,R)∑

k=rℓ+1

σ 2
ℓ,k)

1/2. (9)

(B) Let decomposition Equation (1) be monotone. Then (9) holds.

Proof: (A) The partial orthogonality assumption combined
with normalization constraints for the canonical skeleton
vectors imply

‖A‖2 = 〈
∑R

ν=1
ξνu

(1)
ν ⊗ . . .⊗ u(d)ν ,

∑R

ν=1
ξνu

(1)
ν ⊗ . . .⊗ u(d)ν 〉

=
∑R

ν=1
ξ 2ν

d∏

ℓ=1

〈u(ℓ)ν , u(ℓ)ν 〉

+
∑R

ν,µ=1,ν 6=µ
ξνξµ

d∏

ℓ=1

〈u(ℓ)ν , u(ℓ)µ 〉

=
R∑

ν=1

ξ 2ν = ‖ξ‖2.

The above relation also holds in the case of orthogonality of the
side matrix U(ℓ) for some fixed ℓ. Then the result follows by (7).

(B) In case of monotone decomposition we conclude that the
pairwise scalar product of all summands in Equation (1) is non-
negative, while the norm of each ν-term is equal to ξν . Then the
upper bound

〈u1, u1〉 + · · · + 〈uR, uR〉 ≤ 〈
R∑

ν=1

uν ,

R∑

ν=1

uν〉,

holds for vectors uν = ξνu
(1)
ν ⊗. . .⊗u

(d)
ν , ν = 1, · · · ,R, with non-

negative entries applied to the case ofR summands, thus implying
‖ξ‖2 ≤ ‖A‖2. Now, the result follows.

Clearly, the orthogonality assumption may lead to slightly higher
separation rank, however, this constructive decomposition
stabilizes the RHOSVD approximation method applied to the
canonical format tensor (i.e., it allows the stable control of relative
error). The case of monotone canonical sums typically arises in
the sinc-based canonical approximation to radially symmetric
Green’s kernels by a sum of Gaussians. On the other hand, in
long term computational practice the numerical instability of
RHOSVD approximation was not observed in case of physically
relevant data.

2.2. Mixed Tucker Tensor Format and
Tucker-to-CP Transform
In the procedure for the canonical tensor rank reduction the goal
is to have a result in a canonical tensor format with a smaller
rank. By converting the core tensor to CP format, one can use
the mixed two-level Tucker data format [12, 27], or canonical
CP format. Figure 3 illustrates the computational scheme of the
two-level Tucker approximation.
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FIGURE 3 | Mixed Tucker-to-canonical decomposition.

We define by nℓ the single-hole product of dimension-modes,

nℓ = n1 · · · nℓ−1nℓ+1 · · · nd. (10)

The same definition applies to the quantity rℓ.
Next lemma describes the approximation of the Tucker tensor

by using canonical representation [12, 27].

Lemma 2.5. (Mixed Tucker-to-canonical approximation, [27]).
(A) Let the target tensor A have the form A = β ×1 V

(1) ×2

. . . ×d V(d) ∈ T r,n, with the orthogonal side-matrices V(ℓ) =
[v

(ℓ)
1 . . . v

(ℓ)
rℓ ] ∈ R

n×rℓ and β ∈ R
r1×...×rd . Then, for a given

R ≤ min
1≤ℓ≤d

rℓ,

min
Z∈CR,n

‖A− Z‖ = min
µ∈CR,r

‖β − µ‖. (11)

(B) Assume that there exists the best rank-R approximation A(R) ∈
CR,n of A, then there is the best rank-R approximation β(R) ∈ CR,r

of β, such that

A(R) = β(R) ×1 V
(1) ×2 . . . ×d V

(d). (12)

The complete proof can be found in Section 8 (see Appendix).
Notice that condition R ≤ min

1≤ℓ≤d
rℓ simply means that the

canonical rank does not exceed the maximal CP rank of the
Tucker core tensor.

Combination of Theorem 2.3 and Lemma 2.5 paves the way to
the rank optimization of canonical tensors with the large mode-
size arising, for example, in the grid-based numerical methods for
multi-dimensional PDEs with non-regular (singular) solutions.
In such applications the univariate grid-size (i.e., the mode-size)
may be about n = 104 and even larger.

Notice that the Tucker (for moderate d) and canonical
formats allow to perform basic multi-linear algebra using one-
dimensional operations, thus reducing the exponential scaling in
d. Rank-truncated transforms between different formats can be
applied in multi-linear algebra on mixed tensor representations
as well, see Lemma 2.5. The particular application to tensor

convolution in many dimensions was discussed, for example, in
[1, 2].

We summarize that the direct methods of tensor
approximation can be classified by:

(1) Analytic Tucker approximation to some classes of function-
related dth order tensors (d ≥ 2), say, by multi-variate
polynomial interpolation [1].

(2) Sinc quadrature based approximation methods in the
canonical format applied to a class of analytic function
related tensors [11].

(3) Truncated HOSVD and RHOSVD, for quasi-optimal Tucker
approximation of the full-format, respectively, canonical
tensors [46].

Direct analytic approximation methods by sinc
quadrature/interpolation are of principal importance. Basic
examples are given by the tensor representation of Green’s
kernels, the elliptic operator inverse and analytic matrix-valued
functions. In all cases, the algebraic methods for rank reduction
by the ALS-type iterative Tucker/canonical approximation can
be applied.

Further improvement and enhancement of algebraic tensor
approximation methods can be based on the combination of
advanced nonlinear iteration, multigrid tensor methods, greedy
algorithms, hybrid tensor representations, and the use of new
problem adapted tensor formats.

2.3. Tucker-to-Canonical Transform
In the rank reduction scheme for the canonical rank-R tensors,
we use successively the canonical-to-Tucker (C2T) transform and
then the Tucker-to-canonical (T2C) tensor approximation.

First, we notice that the canonical rank of a tensorA ∈ Vn has
the upper bound (see [27, 46]),

R ≤ min
1≤ℓ≤d

nℓ, (13)

where nℓ is given by Equation (10). Rank bound (13) applied to
the Tucker core tensor of the size r × r × r, indicates that the
ultimate canonical rank of a large-size tensor inVn has the upper
bound r2. Notice that for function related tensors the Tucker rank
scales logarithmically in both approximation accuracy and the
discretization grid size (see the proof for some classes of function
in [51]).

The following remark shows that the maximal canonical rank
of the Tucker core of 3rd order tensor can be easily reduced to
the value less than r2 by the SVD-based procedure applied to
the matrix slices of the Tucker core tensor β . Though, being
not practically attractive for arbitrary high order tensors, the
simple algorithm described in Remark 2.6 below is proved to
be useful for the treatment of small size 3rd order Tucker core
tensors within the rank reduction algorithms described in the
previous sections.

Remark 2.6. Let d = 3 for the sake of clarity [27, 46]. There is a
simple procedure based on SVD to reduce the canonical rank of the
core tensor β, within the accuracy ε > 0. Denote by Bm ∈ R

r×r ,
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FIGURE 4 | Tucker-to-canonical decomposition for a small core tensor, see Remark 2.6.

m = 1, . . . , r the two-dimensional slices of β in each fixed mode
and represent

β =
r∑

m=1

Bm ⊗ zm, zm ∈ R
r , (14)

where zm(m) = 1, zm(j) = 0 for j = 1, . . . , r, j 6= m (there
are exactly d possible decompositions). Let pm be the minimal

integer, such that the singular values of Bm satisfy σ
(m)
k

≤ ε
r3/2

for

k = pm+1, . . . , r (if σ
(m)
r > ε

r3/2
, then set pm = r). Then, denoting

by

Bpm =
pm∑

km=1

σ
(m)
km

ukm ⊗ vkm ,

the corresponding rank-pm approximation to Bm (by truncation

of σ
(m)
pm+1, . . . , σ

(m)
r ), we arrive at the rank-R canonical

approximation to β,

β(R) : =
r∑

m=1

Bpm ⊗ zm, zm ∈ R
r , (15)

providing the error estimate

‖β − β(R)‖ ≤
r∑

m=1

‖Bm − Bpm‖ =
r∑

m=1

√√√√
r∑

km=pm+1

(σ
(m)
km

)2

≤
r∑

m=1

√

r
ε2

r3
= ε

Representation (15) is a sum of rank-pm terms so that the total rank
is bounded by R ≤ p1+...+pr ≤ r2. The approach can be extended
to arbitrary d ≥ 3 with the bound R ≤ rd−1.

Figure 4 illustrates the canonical decomposition of the core
tensor by using the SVD of slices Bm of the core tensor β , yielding
matrices Um = {ukm}

pm
k=1

, Vm = {vkm}
pm
k=1

and a diagonal matrix
of small size pm × pm containing the truncated singular values. It
also shows the vector zm = [0, . . . , 0, 1, 0, . . . , 0], containing all
entries equal to 0 except 1 at themth position.

It is worse to note that the rank reduction for the rank-R
core tensor of small size r1 × · · · × rd, can be also performed

by using the cascading ALS algorithms in CP format applied to
the canonical input tensor, as it was applied in [50]. Moreover, a
number of numerical examples presented in the present paper
and in the included literature (applied to function generated
tensors) demonstrate the substantial reduction of the initial
canonical rank R.

3. CALCULATION OF 3D INTEGRALS WITH
THE NEWTON KERNEL

The first application of the RHOSVD was calculation of
the 3D grid-based Hartree potential operator in the Hartree-
Fock equation,

VH(x) : =
∫

R3

ρ(y)

‖x− y‖
dy, (16)

where the electron density,

ρ(x) = 2

Norb∑

a=1

(ϕa)
2, (17)

is represented in terms of molecular orbitals, presented in the

Gaussian-type basis (GTO), ϕa(x) =
Nb∑
k=1

ca,kgk(x). The Hartree

potential describes the repulsion energy of the electrons in a
molecule. The intermediate goal here is the calculation of the
so-called Coulomb matrix,

Jkm : =
∫

R3
gk(x)gm(x)VH(x)dx, k,m = 1, . . .Nb x ∈ R

3,

which represents the Hartree potential in the given GTO basis.
In fact, calculation of this 3D convolution operator with

the Newton kernel, requires high accuracy and it should be
repeated multiply in the course of the iterative solution of the
Hartree-Fock nonlinear eigenvalue problem. The presence of
nuclear cusps in the electron density makes additional challenge
to computation of the Hartree potential operator. Traditionally,
these calculations are based on involved analytical evaluation of
the corresponding integral in a separable Gaussian basis set by
using erf function. Tensor-structured calculation of the multi-
dimensional convolution integral operators with the Newton
kernel have been introduced in [27, 29, 46].
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The molecule is embedded in a computational box � =
[−b, b]3 ∈ R

3. The equidistant n× n× n tensor grid ω3,n = {xi},
i ∈ I : = {1, . . . , n}3, with the mesh-size h = 2b/(n + 1)
is used. In calculations of integral terms, the Gaussian basis
functions gk(x), x ∈ R

3, are approximated by sampling
their values at the centers of discretization intervals using
one-dimensional piecewise constant basis functions gk(x) ≈
gk(x) =

∏3
ℓ=1 g

(ℓ)
k
(xℓ), ℓ = 1, 2, 3, yielding their rank-1

tensor representation,

Gk = g
(1)
k

⊗ g
(2)
k

⊗ g
(3)
k

∈ R
n×n×n, k = 1, . . . ,Nb. (18)

Given the discrete tensor representation of basis functions
(18), the electron density is approximated using 1D Hadamard
products of rank-1 tensors as

ρ ≈ 2 = 2

Norb∑

a=1

Nb∑

k=1

Nb∑

m=1

ca,mca,k(g
(1)
k

⊙ g(1)m )⊗ · · · ⊗ (g
(3)
k

⊙ g(3)m )

∈ R
n×n×n. (19)

For convolution operator, the representation of the Newton
kernel 1

‖x−y‖ by a canonical rank-RN tensor [1] is used (see

Section 4.1 for details),

PR =
RN∑

q=1

p(1)q ⊗ p(2)q ⊗ p(3)q ∈ R
n×n×n. (20)

The initial rank of the electron density in the canonical tensor
format 2 in Equation (17) is large even for small molecules.
Rank reduction by using RHOSVD C2T plus T2C reduces the
rank 2 7→ 2′ by several orders of magnitude, from N2

b
/2

to Rρ ≪ N2
b
/2, from ∼ 104 to ∼ 102. Then the 3D tensor

representation of the Hartree potential is calculated by using the
3D tensor product convolution, which is a sum of tensor products
of 1D convolutions,

VH ≈ VH = 2′ ∗ PR =
Rρ∑

m=1

RN∑

q=1

cm

(
u(1)m ∗ p(1)q

)
⊗
(
u(2)m ∗ p(2)q

)

⊗
(
u(3)m ∗ p(3)q

)
.

The Coulomb matrix entries Jkm are obtained by 1D scalar
products of VH with the Galerkin basis consisting of rank-
1 tensors,

Jkms ≈ 〈Gk ⊙ Gm,VH〉, k,m = 1, . . .Nb.

The cost of 3D tensor product convolution is O(n log n) instead
of O(n3 log n) for the standard benchmark 3D convolution using
the 3D FFT. Table 1 shows CPU times (sec) for the Matlab
computation of VH for H2O molecule [46] on a SUN station
using 8 Opteron Dual-Core/2600 processors (times for 3D FFT
for n ≥ 1024 are obtained by extrapolation). C2T shows the time
for the canonical-to-Tucker rank reduction.

TABLE 1 | Times (sec) for the C2T transform and the 3D tensor product

convolution vs. 3D FFT convolution.

n3 10243 20483 40963 81923 163843

FFT3 ∼ 6000 – – – ∼ 2 years

C*C 8.8 20.0 61.0 157.5 299.2

C2T 6.9 10.9 20.0 37.9 86.0

The grid-based tensor calculation of the multi-dimensional
integrals in quantum chemistry provides the required high
accuracy by using large grids and the ranks are controlled by the
required ε in the rank truncation algorithms. The results of the
tensor-based calculations have been compared with the results of
the benchmark standard computations by theMOLPROpackage.
It was shown that the accuracy is of the order of 10−7 hartree in
the resulting ground state energy (see [2, 27]).

4. RHOSVD IN THE RANGE-SEPARATED
TENSOR FORMATS

The range-separated (RS) tensor formats have been introduced
in [32] as the constructive tool for low-rank tensor representation
(approximation) of function related data discretized on Cartesian
grids in R

d, which may have multiple singularities or cusps. Such
highly non-regular data typically arise in computational quantum
chemistry, in many-particle dynamics simulations and many-
particle electrostatics calculations, in protein modeling and in
data science. The key idea of the RS representation is the splitting
of the short- and long-range parts in the functional data and
further low-rank approximation of the rather regular long-range
part in the classical tensor formats.

In this concern RHOSVD method becomes an essential
ingredient of the rank reduction algorithms for the “long-range”
input tensor, which usually inherits the large initial rank.

4.1. Low-Rank Approximation of Radial
Functions
First, we recall the grid-based method for the low-rank canonical
representation of a spherically symmetric kernel functions
p(‖x‖), x ∈ R

d for d = 2, 3, . . ., by its projection onto the finite
set of basis functions defined on tensor grid. The approximation
theory by a sum of Gaussians for the class of analytic potentials
p(‖x‖) was presented in [1, 11, 51, 52]. The particular numerical
schemes for rank-structured representation of the Newton and
Slater kernels

p(‖x‖) =
1

4π‖x‖
, and p(‖x‖) = e−λ‖x‖, x ∈ R

3, (21)

discretized on a fine 3D Cartesian grid in the form of low-rank
canonical tensor was described in [11, 51].

In what follows, for the ease of exposition, we confine
ourselves to the case d = 3. In the computational domain � =
[−b, b]3, let us introduce the uniform n × n × n rectangular
Cartesian grid �n with mesh size h = 2b/n (n even). Let {ψi =
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∏3
ℓ=1 ψ

(ℓ)
iℓ

(xℓ)} be a set of tensor-product piecewise constant
basis functions, labeled by the 3-tuple index i = (i1, i2, i3), iℓ ∈
Iℓ = {1, . . . , n}, ℓ = 1, 2, 3. The generating kernel p(‖x‖) is
discretized by its projection onto the basis set {ψi} in the form
of a third order tensor of size n× n× n, defined entry-wise as

P : = [pi] ∈ R
n×n×n, pi =

∫

R3
ψi(x)p(‖x‖) dx. (22)

The low-rank canonical decomposition of the 3rd order tensor P
is based on using exponentially fast convergent sinc-quadratures
for approximating the Laplace-Gauss transform to the analytic
function p(z), z ∈ C, specified by a certain weight p̂(t) > 0,

p(z) =
∫

R+
p̂(t)e−t2z2 dt ≈

M∑

k=−M

pke
−t2

k
z2 for |z| > 0, z ∈ R,

(23)

with the proper choice of the quadrature points tk and weights pk.
The sinc-quadrature based approximation to generating function
by using the short-term Gaussian sums in Equation (23) are
applicable to the class of analytic functions in certain strip |z| ≤ D
in the complex plane, such that on the real axis these functions
decay polynomially or exponentially. We refer to basic results
in [11, 52, 53], where the exponential convergence of the sinc-
approximation in the number of terms (i.e., the canonical rank)
was analyzed for certain classes of analytic integrands.

Now, for any fixed x = (x1, x2, x3) ∈ R
3, such that ‖x‖ > a >

0, we apply the sinc-quadrature approximation Equation (23) to
obtain the separable expansion

p(‖x‖) =
∫

R+
p̂(t)e−t2‖x‖2 dt ≈

M∑

k=−M

pke
−t2

k
‖x‖2

=
M∑

k=−M

pk

3∏

ℓ=1

e−t2
k
x2ℓ , (24)

providing an exponential convergence rate inM,

∣∣∣∣∣∣
p(‖x‖)−

M∑

k=−M

pke
−t2

k
‖x‖2

∣∣∣∣∣∣
≤

C

a
e−β

√
M , with some C,β > 0.

(25)
In the case of Newton kernel, we have p(z) = 1/z, p̂(t) = 2√

π
, so

that the Laplace-Gauss transform representation reads

1

z
=

2
√
π

∫

R+
e−z2t2dt, where z = ‖x‖, x ∈ R

3, (26)

which can be approximated by the sinc quadrature Equation (24)
with the particular choice of quadrature points tk, providing the
exponential convergence rate as in Equation (25) [11, 51].

In the case of Yukawa potential the Laplace Gauss
transform reads

e−κz

z
=

2
√
π

∫

R+
e−κ

2/t2e−z2t2dt, where z = ‖x‖, x ∈ R
3.

(27)

The analysis of the sinc quadrature approximation error for this
case can be found, in particular, in [1, 51], section 2.4.7.

Combining (22) and (24), and taking into account the
separability of the Gaussian basis functions, we arrive at the
low-rank approximation to each entry of the tensor P = [pi],

pi ≈
M∑

k=−M

pk

∫

R3
ψi(x)e

−t2
k
‖x‖2dx

=
M∑

k=−M

pk

3∏

ℓ=1

∫

R

ψ
(ℓ)
iℓ

(xℓ)e
−t2

k
x2ℓdxℓ.

Define the vector (recall that pk > 0)

p
(ℓ)
k

= p
1/3
k

[
b
(ℓ)
iℓ
(tk)

]nℓ
iℓ=1

∈ R
nℓ with

b
(ℓ)
iℓ
(tk) =

∫

R

ψ
(ℓ)
iℓ

(xℓ)e
−t2

k
x2ℓdxℓ, (28)

then the 3rd order tensor P can be approximated by the R-term
(R = 2M + 1) canonical representation

P ≈ PR =
M∑

k=−M

pk

3⊗

ℓ=1

b(ℓ)(tk)

=
M∑

k=−M

p
(1)
k

⊗ p
(2)
k

⊗ p
(3)
k

∈ R
n×n×n, p

(ℓ)
k

∈ R
n. (29)

Given a threshold ε > 0, in view of Equation (25), we can choose
M = O(log2 ε) such that in the max-norm

‖P− PR‖ ≤ ε‖P‖.

In the case of continuous radial function p(‖x‖), say the Slater
potential, we use the collocation type discretization at the grid
points including the origin, x = 0, so that the univariate mode
size becomes n → n1 = n + 1. In what follows, we use the same
notation PR in the case of collocation type tensors (for example,
the Slater potential) so that the particular meaning becomes clear
from the context.

4.2. The RS Tensor Format Revisited
The range separated (RS) tensor format was introduced in
[32] for efficient representation of the collective free-space
electrostatic potential of large biomolecules. This rank-structured
tensor representation of the collective electrostatic potential of
many-particle systems of general type allows to reduce essentially
computation of their interaction energy, and it provides
convenient form for performing other algebraic transforms.
The RS format proved to be useful for range-separated tensor
representation of the Dirac delta [34] in R

d and based on that,
for regularization of the Poisson-Boltzmann equation (PBE) by
decomposition of the solution into short- and long-range parts,
where the short-range part of the solution is evaluated by simple
tensor operations without solving the PDE. The smooth long-
range part is calculated by solving the PBE with the modified
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right-hand side by using the RS decomposition of the Dirac delta,
so that now it does not contain singularities. We refer to papers
[33, 35] describing the approach in details.

First, we recall the definition of the range separated (RS)
tensor format, see [32], for representation of d-tensors A ∈
R
n1×···×nd . The RS format is served for the hybrid tensor

approximation of discretized functions with multiple cusps or
singularities. This allows the splitting of the target tensor onto
the highly localized components approximating the singularity
and the component with global support that allows the low-
rank tensor approximation. Such functions typically arise in
computational quantum chemistry, in many-particle modeling
and in the interpolation of multi-dimensional data measured at
certain set of spatial points in R

n×n×n.
In the following definition of RS-canonical tensor format,

we use the notion of localized canonical tensor U0, which is
characterized by the small support whose diameter has a size of
a few grid points. This tensor will be used as the reference one
for presentation of the short-range part in the RS tensor. To that
end we use the operation Replicaxν (U0) which replicates U0 into
some given grid point xν . In this construction, we assume that the
chosen grid points xν are well separated, i.e., the distance between
each pair of points is not less then some given threshold nδ > 0.

Definition 4.1. (RS-canonical tensors, [32]). Given the rank-Rs
reference localized CP tensor U0. The RS-canonical tensor format
defines the class of d-tensors A ∈ R

n1×···×nd , represented as a sum

of a rank-Rl CP tensor Ulong =
∑Rl

k=1
ξku

(1)
k

⊗ · · · ⊗ u
(d)
k
, and a

cumulated CP tensor Ushort =
∑N0
ν=1cνUν , such that

A = Ulong + Ushort =
∑Rl

k=1
ξku

(1)
k

⊗ · · · ⊗ u
(d)
k

+
∑N0

ν=1
cνUν ,

(30)
where Ushort is generated by the localized reference CP tensor U0,
i.e.,Uν = Replicaxν (U0), with rank(Uν) = rank(U0) ≤ Rs, where,
given the threshold nδ > 0, the effective support of Uν is bounded
by diam(suppUν) ≤ 2nδ in the index size.

Each RS-canonical tensor is, therefore, uniquely defined by the
following parametrization: rank-Rl canonical tensor Ulong , the
rank-Rs reference canonical tensor U0 with the small mode size
bounded by 2nδ , list J of the coordinates and weights of N0

particles in R
d. The storage size is linear in both the dimension

and the univariate grid size,

stor(A) ≤ dRln+ (d + 1)N0 + dRsnδ .

The main benefit of the RS-canonical tensor decomposition is
the almost uniform bound on the CP/Tucker rank of the long-

range partUlong =
∑Rl

k=1
ξku

(1)
k

⊗· · ·⊗u
(d)
k
, in the multi-particle

potential discretized on fine n× n× n spatial grid. It was proven
in [32] that the canonical rank R scales logarithmically in both
the number of particles N0 and the approximation precision, see
also Lemma 4.5.

Given the rank-R CP decomposition Equation (29) based
on the sinc-quadrature approximation Equation (24) of the
discretized radial function p(‖x‖), we define the two subsets of

indices, Kl : = {k : tk ≤ 1} and Ks : = {k : tk > 1}, and then
introduce the RS-representation of this tensor as follows,

PR = PRl + PRs , R = Rl + Rs, Rl = #Kl, Rs = #Ks, (31)

where

PRl : =
∑

k∈Kl

p
(1)
k

⊗ p
(2)
k

⊗ p
(3)
k
, PRs : =

∑

k∈Ks

p
(1)
k

⊗ p
(2)
k

⊗ p
(3)
k
.

This representation allows to reduce the calculation of the multi-
particle interaction energy of the many-particle system. Recall
that the electrostatic interaction energy of N charged particles is
represented in the form

EN = EN(x1, . . . , xN) =
N∑

i=1

N∑

j<i

zizj

‖xi − xj‖
, (32)

and it can be computed by direct summation in O(N2)
operations. The following statement is the modification of
Lemma 4.2 in [32] (see [54] for more details).

Lemma 4.2. [54] Let the effective support of the short-range
components in the reference potential PR for the Newton kernel
does not exceed the minimal distance between particles, σ >

0. Then the interaction energy EN of the N-particle system can
be calculated by using only the long range part in the tensor P

representing on the grid the total potential sum,

EN =
1

2

N∑

j=1

zj(Pl(xj)− zjPRl (0)) =
1

2
〈z, pl〉 −

PRl (0)

2

N∑

j=1

z2j ,

(33)
in O(RlN) operations, where Rl is the canonical rank of the
long-range component in P, Pl.

Here, z ∈ R
N is a vector composed of all charges of the

multi-particle systems, and pl ∈ R
N is the vector of samples

of the collective electrostatic long-range potential Pl in the
nodes corresponding to particle locations. Thus, the term 1

2 〈z, pl〉
denotes the “non–calibrated” interaction energy associated with
the long-range tensor component Pl, while PRl denotes the long-
range part in the tensor representing the single reference Newton
kernel, and PRl (0) is its value at the origin.

Lemma 4.2 indicates that the interaction energy does not
depend on the short-range part in the collective potential,
and this is the key point for the construction of energy
preserving regularized numerical schemes for solving the
basic equations in bio-molecular modeling by using low-rank
tensor decompositions.

4.3. Multi-Linear Operations in RS Tensor
Formats
In what follows, we address the important question on how
the basic multi-linear operations can be implemented in the
RS tensor format by using the RHOSVD rank compression.
The point is that various tensor operations arise in the
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course of commonly used numerical schemes and iterative
algorithms which usually include many sums and products of
functions as well as the actions of differential/integral operators,
always making the tensor structure of input data much more
complicated requiring the robust rank reduction schemes.

The other important aspect is related to the use of large
(fine resolution) discretization grids which is limited by the
restriction on the size of the full input tensors, O(nd) (curse
of dimensionality), representing the discrete functions and
operators to be approximated in low rank tensor format.
Remarkably, that tensor decomposition for special class of
functions, which allow the sinc-quadrature approximation, can
be performed on practically indefinitely large grids because
the storage and numerical costs of such numerical schemes
scale linearly in the univariate grid size, O(dn). Hence, having
constructed such low rank approximations for certain set of
“reproducing” radial functions, makes it possible to construct
the low rank RS representation at linear complexity, O(dn),
for the wide class of functions and operators by using the
rank truncated multi-linear operations. The examples of such
“reproducing” radial functions are commonly used in our
computational practice.

First, consider the Hadamard product of two tensors PR and
QR1 corresponding to the pointwise product of two generating
multi-variate functions centered at the same point. The RS
representation of the product tensor is based on the observation
that the long-range part of the Hadamard product of two tensors
in RS-format is basically determined by the product of their
long-range parts.

Lemma 4.3. Suppose that the RS representation Equation (31) of
tensors PR and QR1 is constructed based on the sinc-quadrature
CP approximation Equation (29). Then the long-range part of the
Hadamard product of these RS-tensors,

Z = (Ps + Pl)⊙ (Qs +Ql),

can be represented by the product of their long-range parts, Zl =
Pl ⊙ Ql, with the subsequent rank reduction. Moreover, we have
rank(Zl) ≤ RlQl.

Proof: We consider the case of collocation tensors and suppose
that each skeleton vector in CP tensors PR andQR1 is given by the
restriction of certain Gaussians to the set of grid points. Chose the
arbitrary short-range components in PR and some component in

QR1 , generated by Gaussians e
−tkx

2
ℓ and e−tmx

2
ℓ , respectively. Then

the effective support of the product of these two terms becomes
smaller than that for each of the factors in view of the identity

e−tkx
2
ℓe−tmx

2
ℓ = e−(tk+tm)x

2
ℓ considered for arbitrary tk, tm > 0.

This means that each term that includes the short-range multiple
remains to be in the short range. Then the long range part in Z

takes a form Zl = Pl ⊙Ql with the subsequent rank reduction.

The sums of several tensors in RS format can be easily split
into short- and long-range parts by grouping the respective
components in the summands. The other important operation
is the operator-function product in RS tensor format (see the

example in [34] related to the action of Laplacian with the
singular Newton kernel resulting in the RS decomposition of the
Dirac delta). This topic will be considered in detail elsewhere.

4.4. Representing the Slater Potential in RS
Tensor Format
In what follows, we consider the RS-canonical tensor format for
the rank-structured representation of the Slater function

G(x) = e−λ‖x‖, λ ∈ R+,

which has the principal significance in electronic structure
calculations (say, based on the Hartree-Fock equation) since
it represents the cusp behavior of electron density in the
local vicinity of nuclei. This function (or its approximation) is
considered as the best candidate to be used as the localized
basis function for atomic orbitals basis sets. Another direction
is related to the construction of the accurate low-rank global
interpolant for big scattered data to be considered in the next
section. In this way, we calculate the data adaptive basis set living
on the fine Cartesian grid in the region of target data. The main
challenge, however, is due to the presence of point singularities
which are hard to approximate in the problem independent
polynomial or trigonometric basis sets.

The construction of low-rank RS approximation to the
Slater function is based on the generalized Laplace transform
representation for the Slater function written in the form G(ρ) =
e−2

√
αρ , ρ(x) = x21 + ...+ x2

d
, reads

G(ρ) = e−2
√
αρ =

√
α

√
π

∫

R+
τ−3/2 exp(−α/τ − ρτ )dτ ,

which corresponds to the choice Ĝ(τ ) =
√
α√
π
τ−3/2e−α/τ in the

canonical form of the Laplace transform representation for G(ρ),

G(ρ) =
∫

R+
Ĝ(τ )e−ρτdτ . (34)

Denote by GR the rank-R canonical approximation to the
function G(ρ) discretized on the n× n× n Cartesian grid.

Lemma 4.4. ([51]) For given threshold ε > 0 let ρ ∈ [1,A]. Then
the (2M + 1)-term sinc-quadrature approximation of the integral
in (34) with

M = O(| log ε|(| log ε| + logA)),

ensures the max-error of the order of O(ε) for the corresponding
rank-(2M + 1) CP approximation GR to the tensor G.

Figure 5 illustrates the RS splitting for the tensor GR = GRl +
GRs representing the Slater potential G(x) = e−λ‖x‖, λ = 1,
discretized on the n × n × n grid with n = 1024. The rank
parameters are chosen by R = 24,Rl = 6 and Rs = 18. Notice
that for this radial function the long-range part (Figure 5, left)
includes much less canonical vectors comparing with the case of
Newton kernel. This anticipates the smaller total canonical rank
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FIGURE 5 | Long-range (left) and short-range (right, a base 10 logarithmic scale) canonical vectors for the Slater function with the grid size n = 1024,

R = 24,Rl = 6, λ = 1.

for the long-range part in the large sum of Slater-like potentials
arising, for example, in the representation of molecular orbitals
and the electron density in electronic structure calculations. For
instance, the wave function for the Hydrogen atom is given by the
Slater function e−µ‖x‖. In the following section, we consider the
application of RS tensor format to interpolation of scattered data
in R

d.

4.5. Application of RHOSVD to Scattered
Data Modeling
In scattered data modeling the problem is in a low parametric
approximation of multi-variate functions f :Rd → R by
sampling at a finite set X = {x1, . . . , xN} ⊂ R

d of piecewise
distinct points. Here, the function f might be the surface of a solid
body, the solution of a PDE, many-body potential field, multi-
parametric characteristics of physical systems, or some other
multi-dimensional data, etc.

Traditional ways of recovering f from a sampling vector f|X =
(f (x1), . . . , f (xN)) is the constructing a functional interpolant
PN :R

d → R such that PN|X = f|X = : f ∈ R
N , i.e.,

PN(xj) = f (xj), ∀ 1 ≤ j ≤ N. (35)

Using radial basis (RB) functions one can find interpolants PN in
the form

PN(x) =
N∑

j=1

cjp(‖x− xj‖)+ Q(x),

Q is some smooth function, say, polynomial, (36)

where p = p(r) :[0,∞) → R is a fixed RB function, and r = ‖ · ‖
is the Euclidean norm onRd. In further discussion, we setQ(x) =
0. For example, the following RB functions are commonly used

p = rν , (1+r2)ν , (ν ∈ R), exp(−r2), exp(−λr), r2 log(r).

The other examples of RB functions are defined by Green’s
kernels or by the class of Matérn functions [23].

We discuss the following computational tasks (A) and (B).

(A) For a fixed coefficient vector c = (c1, . . . , cN)
T ∈ R

N ,
efficiently representing the interpolant PN(x) on the fine
tensor grid in R

d providing
(a) O(1)-fast point evaluation of PN in the computational
volume�,
(b) computation of various integral-differential operations
on that interpolant (say, gradients, scalar products,
convolution integrals, etc.)

(B) Finding the coefficient vector c that solves the interpolation
problem Equation (35) in the case of large number N.

Problem (A) exactly fits the RS tensor framework so that
the RS tensor approximation solves the problem with low
computational costs provided that the sum of long-range parts
of the interpolating functions can be easily approximated in the
low rank CP tensor format. We consider the case of interpolation
by Slater functions exp(−λr) in the more detail.

Problem (B): Suppose that we use some favorable
preconditioned iteration for solving coefficient vector
c = (c1, . . . , cN)

T ,

Ap,X c = f, with Ap,X = AT
p,X = [p(‖xi − xj‖)]1≤i,j≤N

∈ R
N×N , (37)

with the distance dependent symmetric system matrix Ap,X .

We assume X = �h be the n⊗d-set of grid-points located on
tensor grid, i.e., N = nd. Introduce the d-tuple multi-index
i 7→ i = (i1, . . . , id), and j 7→ j = (j1, . . . , jd) and reshape Ap,X

into the tensor form

Ap,X 7→ A = [a(i1, j1, . . . , id, jd)] ∈
⊗d

ℓ=1
R
n×n,

which can be decomposed by using the RS based splitting

A = ARs + ARl ,

generated by the RS representation of the weighted potential
sum in Equation (36). Here, ARs is a banded diagonal matrix

with dominating diagonal part, while ARl =
∑Rl

k=1
A
(1)
k

⊗
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· · · ⊗ A
(d)
k

is the low Kronecker rank matrix. This implies
a bound on the storage, O(N + dRln), and ensures a fast
matrix-vector multiplication. Introducing the additional rank-
structured representation in c, the solution of Equation (37) can
be further simplified.

The above approach can be applied to the data sparse
representation for the class of large covariance matrices in the
spatial statistics, see for example [23, 55].

In application of tensormethods to datamodeling (see Section
4.5) we consider the interpolation of 3D scattered data by a large
sum of Slater functions

GN(x) =
N∑

j=1

cje
−λ‖x−xj‖, λ > 0. (38)

Given the coefficients cj, we address the question how to
efficiently represent the interpolant GN(x) on fine Cartesian grid
in R

3 by using the low-rank (i.e., low-parametric) CP tensor
format, such that each value on the grid can be calculated in
O(1) operations. The main problem is that the generating Slater
function e−λ‖x‖ has the cusp at the origin so that the considered
interpolant has very low regularity. As result, the tensor rank
of the function GN(x) in Equation (38) discretized on a large
n × n × n grid increases almost proportionally to the number
N of sampling points xj, which in general may be very large.
This increase in the canonical rank has been observed in a
number of numerical tests. Hence, the straightforward tensor
approximation of GN(x) does not work in this case.

Tables 2, 3 illustrate the stability of the canonical rank in the
numberN of sampling points in the case of random and function
related distribution of the waiting coefficients cj in the long-range
part of the Slater interpolant Equation (38).

The generating Slater radial function can be proven to have
the low-rank RS canonical tensor decomposition by using the
sinc-approximation method (see section 4.1).

To complete this section, we present the numerical example
demonstrating the application of RS tensor representation to
scattered data modeling in R

3. We denote by GR ∈ R
n⊗3 the

rank-R CP tensor approximation of the reference Slater potential
e−λ‖x‖ discretized on n × n × n grid �n, and introduce its RS
splitting GR = GRl + GRs , with Rl + Rs = R. Here, Rl ≈ R/2 is
the rank parameter of the long-range part in GR. Assume that
all measurement points xj in Equation (38) are located on the
discretization grid�n, then the tensor representation of the long-
range part of the total interpolant PN can be obtained as the
sum of the properly replicated reference potential Gl, via the
shift-and-windowing transformWj, j = 1, . . . ,N,

GN,l =
N∑

j=1

cjGl,j, Gl,j = WjGl, (39)

that includes aboutN Rl terms. For large number ofmeasurement
points, N, the rank reduction is ubiquitous.

It can be proven (by slight modification of arguments in
[32]) that both the CP and Tucker ranks of the N-term sum
in Equation (39) depend only logarithmically (but not linearly)
on N.

TABLE 2 | Reduced ranks for the case of random amplitudes.

L1 × L2 × L3 N Tucker ranks Rini Rcomp

4× 4× 4 64 13× 13× 13 192 56

6× 6× 6 216 15× 15× 15 649 95

8× 8× 8 512 19× 19× 19 1536 131

16× 16× 8 2048 32× 32× 19 6141 253

16× 16× 16 4096 32× 32× 32 12288 380

εTuck = 10-3, εT2C = 10-5, RL = 3, R = 5.

TABLE 3 | Reduced scanonical ranks for the case of functional amplitudes.

L1 × L2 × L3 N Tucker ranks Rini Rcomp

4× 4× 4 64 7× 7× 7 256 25

6× 6× 6 216 7× 7× 7 648 23

8× 8× 8 512 7× 7× 7 1536 30

16× 16× 8 2048 10× 9× 6 6144 47

16× 16× 16 4096 10× 9× 8 12288 55

RL = 3, RL = 5, εN = 10-5, εTuck = 10-3, εT2C = 10-5.

Proposition 4.5. (Uniform rank bounds for the long-range part
in the Slater interpolant). Let the long-range part GN,l in the total
Slater interpolant in Equation (39) be composed of those terms
in Equation (24) which satisfy the relation tk ≤ 1, where M =
O(log2 ε). Then the total ε-rank r0 of the Tucker approximation to
the canonical tensor sum GN,l is bounded by

|r0| : = rankTuck(GN,l) = C b log3/2(log(N/ε)), (40)

where the constant C does not depend on the number of particles
N, as well as on the size of the computational box, [−b, b]3.

Proof: (Sketch) The main argument of the proof is based
on the fact that the grid function GN,l has the band-limited
Fourier image, such that the frequency interval depends weakly
(logarithmically) on N. Then we represent all Gaussians in
the truncated Fourier basis and make the summation in the
fixed set of orthogonal trigonometric basis functions, which
defines the orthogonal Tucker representation with controllable
rank parameter.

The numerical illustrations below demonstrate the CP rank by
RHOSVD decomposition of the long-range part GN,l in the
multi-point tensor interpolant via Slater functions.

Now, we generate a tensor composed of a sum of Slater
functions, discretized by collocation over n⊗3 representation
grid with n = 384, and placed in the nodes of a sampling
L1 × L2 × L3 lattice with randomly chosen weights cj in the
interval cj ∈ [−5, 5] for every node. Every single Slater function
is generated as a canonical tensor by using sinc-quadratures
for the approximation of the related Laplace transform. Table 2
shows ranks of the long-range part of this tensor composed of
Slater potentials located in the nodes of the lattices of increasing
size. N indicates the number of nodes, while Rini and Rcomp
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FIGURE 6 | Full-, long- and short-range components of the multi-Slater tensor. Slater kernels with λ = 0.5 and with random amplitudes in the range of [−5, 5] are

placed in the nodes of a 12× 12× 4 lattice using 3D grid of size n⊗3 with n = 384, R = 8,Rl = 3 and the number of nodes N = 576.

FIGURE 7 | Full-, long- and short-range components of the multi-Slater tensor. Slater kernels with λ = 0.5 and with amplitudes modulated by the function Equation

(41) using the nodes of a 12× 12× 4 lattice on 3D grid of size n⊗3 with n = 384, R = 8,Rl = 3 and the number of nodes N = 576.

are the initial and compressed canonical ranks of the resulting
long-range part tensor, respectively. Tucker ranks correspond
to the ranks in the canonical-to-Tucker decomposition step.
Threshold values for the Slater potential generator is εN =
10−5, while the tolerance thresholds for the rank reduction
procedure are given by εTuck = 10−3 and εT2C = 10−5.
We observe that the ranks of the long-range part of the
potential increase only slightly in the size of the 3D sampling
lattice, N.

Figure 6 demonstrates the full-, short-, and long-range
components of the multi-Slater tensor constructed by the
weighted sum of Slater functions with randomly chosen weights
cj in the interval cj ∈ [−5, 5]. The positions of the generating
nodes are located on the 12 × 12 × 4 3D lattice. The parameters
of the tensor interpolant are set up as follows: λ = 0.5,
the representation grid is of size n⊗3 with n = 384, R =
8,Rl = 3 and the number of samples N = 576 (Figures
zoom a part of the grid.). The initial CP rank of the sum
of N0 interpolating Slater potentials is about 4, 468. Middle
and right pictures show the long- and short-range parts of
the composite tensor, respectively. The initial rank of the
canonical tensor representing the long-range part is equal
to RL = 2304, which is reduced by the C2C procedure
via RHOSVD to Rcc = 71. The rank truncation threshold
is ε = 10−3.

Figure 7 and Table 3 demonstrate the decomposition of the
multi-Slater tensor with the amplitudes cj in the nodes (xj, yj, zj)

modulated by the function of the (x,y,z)-coordinates

F(x, y, z) = a1 cos(x+2y+4z) exp(−a2

√
x2 + 2y2 + 4z2), (41)

with a1 = 6 and a2 = 0.1, ,, i.e., cj = F(xj, yj, zj).
Next, we generate a tensor composed of a sum of discretized

Slater functions on a sampling lattice L1 × L2 × L3, living
on 3D representation grid of size n⊗3 with n = 232. The
amplitudes of the individual Slater functions are modulated by a
function of x, y, z-coordinates Equation (41) in every node of the
lattice. Table 3 shows rank of the long-range part of this multi-
Slater tensor with respect to the increasing size of the lattice.
N = L1 L2 L3 is the number of nodes, and Rini and Rcomp are
the initial and compressed canonical ranks, respectively. Tucker
ranks are shown at the canonical-to-Tucker decomposition step.
Threshold values for the Slater potential generation is εN = 10−5,
the thresholds for the canonical-to-canonical rank reduction
procedure are given by εTuck = 10−3 and εT2C = 10−5. Table 3
demonstrates the very moderate icrease of the reduced rank in
the long-range part of the Slater potential sum on the size of the
3D sampling lattice.

Figure 7 demonstrates the full-, long-, and short-range
components of the multi-Slater tensor. Slater kernels with λ =
0.5 and with the amplitudes modulated by the function Equation
(41) of the (x, y, z)-coordinates are places on the nodes of a
12 × 12 × 4 sampling lattice, living on 3D grid of size n⊗3 with
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n = 384, R = 8,Rl = 3, and with the number of sampling
nodes N = 576.

5. REPRESENTING GREEN’S KERNELS IN
TENSOR FORMAT

In this section, we demonstrate how the RHOSVD can be
applied for the efficient tensor decomposition of various singular
radial functions composed by polynomial expansions of a few
reference potentials already precomputed in the low-rank tensor
format. Given the low-rank CP tensor A further considered as a
reference tensor, the low rank representation of the tensor-valued
polynomial function

P(A) = a0I+ a1A+ a2A
2 + · · · + anA

n,

where the multiplication of tensors is understood in the sense
of pointwise Hadamard product, can be calculated via n-times
application of the RHOSVD by using the Horner scheme in
the form

P(x) = a0 + x(a1 + x(a2 + x(a3 + . . . x(an−1 + anx) . . .))).

Similar scheme can be also applied in the case of
multivariate polynomials.

For examples considered, in this section, we make use of the
discretized Slater e−‖x‖ and Newton 1

‖x‖ , x ∈ R
d, kernels as the

reference tensors. The following statement was proven in [11, 51]
(see also Lemma 4.4).

Proposition 5.1. The discretized over n⊗d-grid radial functions
e−‖x‖ and 1

‖x‖ , x ∈ R
d, included in representation of various

Green kernels and fundamental solutions for elliptic operators
with constant coefficients, both allow the low-rank CP tensor
approximation. The corresponding rank-R representations can be
calculated in O(dRn) operations without precomputing and storage
of the target tensor in the full (entry-wise) format.

Tensor decomposition for discretized singular kernels such as
‖x‖, 1

‖x‖m , m ≥ 2, and e−κ‖x‖/‖x‖, can be now calculated

by applying the RHOSVD to polynomial combinations of the
reference potentials as in Proposition 5.1. The most important
benefit of the presented techniques is the opportunity to compute
the rank-R tensor approximations without pre-computing and
storage of the target tensor in the full format tensor.

In what follows, we present the particular examples of singular
kernels in R

d which can be treated by the above presented
techniques. Consider the fundamental solution of the advection-
diffusion operator Ld with constant coefficients in R

d

Ld = −1+ 2b̄ · ∇ + κ2, b̄ ∈ C
d, κ ∈ C.

If κ2 + |b̄|2 = 0, then for d ≥ 3 it holds

η0(x) =
1

(d − 2)ωd

e〈b̄,x〉

‖x‖d−2
,

where ωd is the surface area of the unit sphere in R
d, [56–

58]. Notice that the radial function 1
‖x‖d−2 for d ≥ 3 allows

the RS decomposition of the corresponding discrete tensor
representation based on the sinc quadrature approximation,
which implies the RS representation of the kernel function η0(x),

since the function e〈b̄,x〉 is already separable. From computational
point of view, both the CP and RS canonical decompositions
of discretized kernels 1

‖x‖d−2 can be computed by successive

application of RHOSVD approximation to the products of
canonical tensors for the discretized Newton potential 1

‖x‖ .

In the particular case b̄ = 0, we obtain the fundamental
solution of the operator L3 = −1 + κ2 for d = 3, also
known as the Yukawa (for κ ∈ R+) or Helmholtz (for κ ∈ C)
Green kernels

ηλ(x) =
1

4π
e−κ‖x‖/‖x‖, x ∈ R

3.

In the case of Yukawa kernel the tensor representations by
using Gaussian sums are considered in [1, 2], see also references
therein.

The Helmholtz equation with Im κ > 0 (corresponds
to the diffraction potentials) arises in problems of acoustics,
electro-magnetics and optics. We refer to [59] for the detailed
discussion of this class of fundamental solutions. Fast algorithms
for the oscillating Helmholtz kernel have been considered in
[1]. However, in this case the construction of the RS tensor
decomposition remains an open question.

In the case of 3D biharmonic operator L = 12 the
fundamental solution reads as

p(‖x‖) = −
1

8π
‖x‖, x ∈ R

3.

The hydrodynamic potentials correspond to the classical
Stokes operator

ν1u− grad p = f , div u = 0,

where u is the velocity field, p denotes the pressure, and ν is the
constant viscosity coefficient. The solution of the Stokes problem
in R

3 can be expressed by the hydrodynamic potentials

uk(x) =
∫

R3

3∑

ℓ=1

9kℓ(x−y)fℓ(y)dy, p(x) =
∫

R3

〈2(x−y), f )(y)〉dy

(42)
with the fundamental solution

9kℓ(x) =
1

8πν

(
δkℓ

‖x‖
+

xkxℓ

‖x‖3

)
, 2(x) =

x

4π‖x‖3
, x ∈ R

3.

(43)
The existence of the low-rank RS tensor representation for the
hydrodynamic potential is based on the same argument as in
Remark 5.1. In turn, in the case of biharmonic fundamental
solution we use the identity

‖x‖ =
‖x‖2

‖x‖
,
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FIGURE 8 | RHOSVD approximation of the discretized cubic potential 1
‖x‖3 and its long-range part.

where the nominator has the separation rank equals to d. The
latter representation can be also applied for calculation of the
respective tensor approximations.

Here, we demonstrate how the application of RHOSVD
allows to easily compute the low rank Tucker/CP approximation
of the discretized singular potential 1

‖x‖3 , x ∈ R
3, as well

as the respective RS-representation, having at hand the RS
representation of the tensor P ∈ R

n⊗3 discretizing the Newton
kernel. In this example, we use the discretization of 1

‖x‖3 in

the form

P(3) = P⊙ P⊙ P,

where by P(3) we denotes the collocation projection discretization
of 1

‖x‖3 . The low rank Tucker/CP tensor approximation to P(3)

can be computed by the direct application of the RHOSVD to the
above product type representation. The RS representation of P(3)

is calculated based on Lemma 4.3. Given the RS-representation
Equation (31) of the discretized Newton kernel, PR, we define the
low rank CP approximation to the discretized singular part in the
hydrodynamic potential P(3) by

P
(3)
R′ = PR ⊙ PR ⊙ PR.

In view of Lemma 4.3, the long range part of RS decomposition

of P
(3)
R′ , can be computed by RHOSVD approximation to the

following Hadamard product of tensors,

P
(3)
R′
l
= PRl ⊙ PRl ⊙ PRl .

Figure 8 visualizes the tensor P
(3)
R′ as well as its long range

part P
(3)
R′
l
.

The potentials are discretized on n×n×n Cartesian grid with
n = 257, the rank truncation threshold is chosen for ε = 10−5.
The CP rank of the Newton kernel is equal to R = 19, while
we set Rl = 10, thus resulting in the initial ranks 6859 and 103

for RHOSVD decomposition of P
(3)
R′ and P

(3)
R′
l
, respectively. The

RHOSVD decomposition reduces the large rank parameters to
R′ = 122 (the Tucker rank is r = 13) and R′

l
= 58 (the Tucker

rank is r = 8), correspondingly.

6. RHOSVD FOR RANK REDUCTION IN 3D
ELLIPTIC PROBLEM SOLVERS

Efficient rank reduction procedure based on the RHOSVD is a
prerequisite for the development of the tensor-structured solvers
for the three-dimensional elliptic problem, which reduce the
computational complexity to almost linear scale,O(nR), contrary
to usual O(n3) complexity.

Assume that all input data in the governing PDE are given
in the low-rank tensor form. The convenient tensor format for
these problems is a canonical tensor representation of both the
governing operator, and of the initial guess as well as of the right
hand side. The commonly used numerical techniques are based
on certain iterative schemes that include at each iterative step
multiple matrix-vector and vector-vector algebraic operations
each of them enlarges the tensor rank of the output in the additive
or multiplicative way. It turns out that in common practice
the most computationally intensive step in the rank-structured
algorithms is the adaptive rank truncation, which makes the rank
truncation procedure ubiquitous.

We notice that in PDE based mathematical models the
total numerical complexity of the particular computational
scheme, i.e., the overall cost of the rank truncation procedure is
determined by the multiple of the number of calls to the rank
truncation algorithm (merely the number of iterations) and the
cost of a single RHOSVD transform (mainly determined by the
rank parameter of the input tensor). In turn, both complexity
characteristics depend on the quality of the rank-structured
preconditioner so that optimization of the whole solution process
is can be achieved by the trade-off between Kronecker rank of the
preconditioner and the complexity of its implementation.

In the course of preconditioned iterations, the tensor ranks of
the governing operator, the preconditioner and the iterand are
multiplied, and, therefore, a robust rank reduction is mandatory
procedure for such techniques applied to iterative solution of
elliptic and pseudo-differential equations in the rank-structured
tensor format.

In particular, the RHOSVD was applied to the numerical
solution of PDE constrained (including the case of fractional
operators) optimal control problems [36, 39], where the
complexity of the order O(nR log n) was demonstrated.
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In the case of higher dimensions the rank reduction
in the canonical format can be performed directly (i.e.,
without intermediate use of the Tucker approximation)
by using the cascading ALS iteration in the CP format,
see [50] concerning the tensor-structured solution of the
stochastic/parametric PDEs.

7. CONCLUSIONS

We discuss theoretical and computational aspects of the
RHOSVD served for approximation of tensors in low-
rank Tucker/canonical formats, and show that this rank
reduction technique is the principal ingredient in tensor-based
computations for real-life problems in scientific computing
and data modeling. We recall rank reduction scheme for the
canonical input tensors based on RHOSVD and subsequent
Tucker-to-canonical transform. We present the detailed
error analysis of low rank RHOSVD approximation to the
canonical tensors (possibly with large input rank), and
provide the proof on the uniform bound for the relative
approximation error.

We recall that the first example on application of the
RHOSVD was the rank-structured computation of the 3D
convolution transform with the nonlocal Newton kernel in R

3,
which is the basic operation in the Hartree-Fock calculations.

The RHOSVD is the basic tools for utilizing the multilinear
algebra in RS tensor format, which employs the sinc-analytic
tensor approximation methods applied to the important class of
radial functions inRd. This enables efficient rank decompositions
of tensors generated by functions with multiple local cusps or
singularities by separating their short- and long-range parts. As
an example, we construct the RS tensor representation of the
discretized Slater function e−λ‖x‖, x ∈ R

d. We then describe the
RS tensor approximation to various Green’s kernels obtained by
combination of this function with other potentials, in particular,

with the Newton kernel providing the Yukawa potential. In this
way, we introduce the concept of reproducing radial functions
which pave the way for efficient RS tensor decomposition applied
to a wide range of function-related multidimensional data by
combining the multilinear algebra in RS tensor format with the
RHOSDV rank reduction techniques.

Our next example is related to application of RHOSVD to
low-rank tensor interpolation of scattered data. Our numerical
tests demonstrate the efficiency of this approach on the example
of multi-Slater interpolant in the case of many measurement
points. We apply the RHOSVD to the data generated via random
or function modulated amplitudes of samples and demonstrate
numerically that for both cases the rank of the long-range part
remains small and depends weakly on the number of samples.

Finally, we notice that the described RHOSVD algorithms
have proven their efficiency in a number of recent applications,
in particular, in rank reduction for the tensor-structured iterative
solvers for PDE constraint optimal control problems (including
fractional control), in construction of the range-separated tensor
representations for calculation of the electrostatic potentials of
many-particle systems (arising in protein modeling), and for
numerical analysis of large scattered data in R

d.
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8. APPENDIX: PROOFS OF THEOREM 2.3
AND LEMMA 2.5

Proof of Theorem 2.3.

Proof: Using the contracted product representations of A ∈ CR,n

and A0
(r)

∈ Tr, and introducing the ℓ-mode residual

1(ℓ) = U(ℓ) − Z
(ℓ)
0 Dℓ,0V

(ℓ)
0

T
,

{1(ℓ)}ν =
n∑

k=rℓ+1

σℓ,kz
(ℓ)
k
vℓk,ν , ν = 1, . . . ,R,

with notations V
(ℓ)
0 = [v

(ℓ)
1 , ..., v

(ℓ)
rℓ ]

T , v
(ℓ)
k

= {vℓ
k,ν
}Rν=1 ∈ R

R,
we arrive at the following expansion for the approximation error
in the form

A− A0
(r) = ξ ×1 U

(1) ×2 · · · ×d U
(d)

−ξ ×1 W
(1) ×2 · · · ×d W

(d)
: =

d∑

ℓ=1

Bℓ,

where

Bℓ = ξ ×1 U
(1) · · · ×ℓ−1 U

(ℓ−1) ×ℓ 1(ℓ)

×ℓ+1W
(ℓ+1) · · · ×d W

(d)

=
R∑

ν=1

ξν

[
u(ℓ)ν · · · ×ℓ−1 u

(ℓ−1)
ν ×ℓ {1(ℓ)}ν

×ℓ+1

rℓ+1∑

k=1

σℓ+1,kz
(ℓ+1)
k

vℓ+1
k,ν

· · · ×d

rd∑

k=1

σd,kz
(d)
k
vdk,ν

]
.

This leads to the error bound (by the triangle inequality)

‖A− A0
(r)‖ ≤

d∑

ℓ=1

‖Bℓ‖,

providing the estimate (in view of ‖u(ℓ)ν ‖ = 1, ℓ = 1, . . . , d,
ν = 1, . . . ,R)

‖Bℓ‖ ≤
R∑

ν=1

|ξν |




n∑

k=rℓ+1

σ 2
ℓ,k(v

ℓ
k,ν)

2




1/2

×

(rℓ+1∑

k=1

σ 2
ℓ+1,k(v

ℓ+1
k,ν

)2

)1/2

· · ·

(
rd∑

k=1

σ 2
d,k(v

d
k,ν)

2

)1/2

.

Furthermore, since U(ℓ) has normalized columns, i.e.,

‖u(ℓ)ν ‖ = ‖
n∑

k=1

σℓ,kz
(ℓ)
k
vℓ
k,ν
‖ = 1, ℓ = 1, . . . , d, we obtain

n∑
k=1

σ 2
ℓ,k
(vℓ

k,ν
)2 = 1 for ℓ = 1, . . . , d ν = 1, . . . ,R. Now the error

estimate follows

‖A− A0
(r)‖ ≤

d∑

ℓ=1

R∑

ν=1

|ξν |




n∑

k=rℓ+1

σ 2
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ℓ
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2


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1/2

≤
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(
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2
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

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σ 2
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2


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1/2
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σ 2
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

1/2

.

The case R < n can be analyzed along the same line.

Proof of Lemma 2.5.

Proof: (A) The canonical vectors y
(ℓ)
k

of any test element on the
left-hand side of (11),

Z =
R∑

k=1

λk y
(1)
k

⊗ . . .⊗ y
(d)
k

∈ CR,n, (A1)

can be chosen in span{v(ℓ)1 , . . . , v
(ℓ)
rℓ }, that means

y
(ℓ)
k

=
rℓ∑

m=1

µ
(ℓ)
k,m

v(ℓ)m , k = 1, . . . ,R, ℓ = 1, . . . , d. (A2)

Indeed, assuming

y
(ℓ)
k

=
rℓ∑

m=1

µ
(ℓ)
k,m

v(ℓ)m + e
(ℓ)
k

with e
(ℓ)
k
⊥span{v(ℓ)1 , . . . , v(ℓ)rℓ

},

we conclude that e
(ℓ)
k

does not effect the cost function in (11)

because of the orthogonality of V(ℓ). Hence, setting e
(ℓ)
k

= 0,
and plugging (A2) in (A1), we arrive at the desired Tucker
decomposition of Z, Z = βz ×1 V

(1) ×2 . . .×d V
(d), βz ∈ CR,r.

This implies

‖A− Z‖2 = ‖(βz − β)×1 V
(1) ×2 . . .×d V

(d)‖2

= ‖β − βz‖2 ≥ min
µ∈CR,r

‖β − µ‖2.
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On the other hand, we have

min
Z∈CR,n

‖A− Z‖2 ≤ min
βz∈CR,r

‖(β − βz)×1 V
(1) ×2 . . .×d V

(d)‖2

= min
µ∈CR,r

‖β − µ‖2.

This proves (11).
(B) Likewise, for any minimizer A(R) ∈ CR,n in the right-hand

side in (11), one obtains

A(R) = β(R) ×1 V
(1) ×2 V

(2) . . .×d V
(d)

with the respective rank-R core tensor β(R) =
R∑

k=1

λku
(1)
k

⊗ . . .⊗

u
(d)
k

∈ CR,r. Here u
(ℓ)
k

= {µ(ℓ)
k,mℓ

}rℓmℓ=1 ∈ R
rℓ , are calculated by

plugging representation (A2) in (A1), and then by changing the
order of summation,

A(R) =
R∑

k=1

λky
(1)
k

⊗ . . .⊗ y
(d)
k

=
R∑

k=1

λk




r1∑

m1=1

µ
(1)
k,m1

v(1)m1


⊗ . . .⊗




rd∑

md=1

µ
(d)
k,md

v(d)md




=
r1∑

m1=1

. . .

rd∑

md=1





R∑

k=1

λk

d∏

ℓ=1

µ
(ℓ)
k,mℓ



 v(1)m1

⊗ . . .⊗ v(d)md
.

Now (12) implies that

‖A− AR‖ = ‖β − β(R)‖,

since the ℓ-mode multiplication with the orthogonal side
matrices V(ℓ) does not change the cost functional. Inspection
of the left-hand side in (11) indicates that the latter equation
ensures that β(R) is, in fact, the minimizer of the right-hand side
in (11).
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