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The synchrosqueezing transform (SST) and its variants have been developed recently as

an alternative to the empirical mode decomposition scheme to model a non-stationary

signal as a superposition of amplitude- and frequency-modulated Fourier-like oscillatory

modes. In particular, SST performs very well in estimating instantaneous frequencies

(IFs) and separating the components of non-stationary multicomponent signals with

slowly changing frequencies. However its performance is not desirable for signals having

fast-changing frequencies. Two approaches have been proposed for this issue. One is

to use the 2nd-order or high-order SST, and the other is to apply the instantaneous

frequency-embedded SST (IFE-SST). For the SST or high order SST approach, one

single phase transformation is applied to estimate the IFs of all components of a signal,

which may yield not very accurate results in IF estimation and component recovery.

IFE-SST uses an estimation of the IF of a targeted component to produce accurate

IF estimation. The phase transformation of IFE-SST is associated with the targeted

component. Hence the IFE-SST has certain advantages over SST in IF estimation and

signal separation. In this article, we provide theoretical study on the instantaneous

frequency-embedded short-time Fourier transform (IFE-STFT) and the associated SST,

called IFE-FSST. We establish reconstructing properties of IFE-STFT with integrals

involving the frequency variable only and provide reconstruction formula for individual

components. We also consider the 2nd-order IFE-FSST.

Keywords: short-time Fourier transform, synchrosqueezing transform, instantaneous frequency-embedded

STFT, instantaneous frequency-embedded SST, instantaneous frequency estimation

AMSMathematics Subject Classification: 42C15, 42A38

1. INTRODUCTION

Recently the continuous wavelet transform-based synchrosqueezed transform (WSST) was
developed in [1] as an empirical mode decomposition (EMD)-like tool to model a non-stationary
signal x(t) as

x(t) = A0(t)+
K∑

k=1

xk(t), xk(t) = Ak(t)e
i2πφk(t), (1)

with Ak(t),φ
′
k
(t) > 0, where Ak(t) is called the instantaneous amplitudes and φ′

k
(t) the

instantaneous frequencies (IFs). The representation (1) of non-stationary signals is important to
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extract information hidden in x(t). WSST not only sharpens the
time-frequency representation of a signal, but also recovers the
components of a multicomponent signal. The synchrosqueezing
transform (SST) provides an alternative to the EMD method
introduced in [2] and its variants considered in many articles
such as [3–12], and it overcomes some limitations of the EMD
and ensemble EMD schemes such as mode-mixing. Many works
on SST have been carried out since the publication of the seminal
article [1]. For example, the short-time Fourier transform
(STFT)-based SST (FSST) [13–15], the 2nd-order SST [16–18],
the higher-order FSST [19, 20], a hybrid EMD-WSST [21], the
WSST with vanishing moment wavelets [22], the multitapered
SST [23], the synchrosqueezed wave packet transform [24] and
the synchrosqueezed curvelet transform [25] were proposed.
Furthermore, the adaptive SST with a window function having
a changing parameter was proposed in [26–31]. SST has been
successfully used in machine fault diagnosis [32, 33], and medical
data analysis applications [see [34] and references therein]. [35]
proposed a direct time-frequency method (called SSO) based on
the ridges of spectrogram for signal separation. This method has
been extended recently to the linear chirp-based models [36, 37]
and the models based on the CWT scaleogram [38, 39]. A hybrid
EMD-SSO computational scheme was developed in [40].

If the IFs φ′
k
(t) of the components xk(t) of a non-

stationary multicomponent signal change slowly or change
slowly compared with φk(t), then SST performs very well in
estimating φ′

k
(t) and separating the components xk(t) from x(t).

However its performance is not desirable for signals having fast-
changing frequencies. The 2nd-order and high-order SSTs were
proposed for this issue and they do improve the accuracy of IF
estimation and component recovery. The problem with the 2nd-
order and high-order SSTs is that, like the convectional SST, one
single phase transformation is applied to estimate the IFs of all
components of a signal, which may not yield desirable results in
IF estimation or component recovery.

Another approach is to demodulate the original signal to
change a wide-band component into a narrow-band component.
Li and Liang [41] and Meignen et al. [42] demodulate the
original signal into a pure carrier signal and apply WSST and
the 2nd-order FSST to the demodulated signal, respectively.
FSST based on another demodulation was proposed in [43]. The
demodulation introduced in [43] transforms a one-dimensional
signal, as a function of time only, into a two-dimensional
bivariate function of time and time-shift. The STFT of the
demodulated signal has more concentrated time-frequency
representation than the conventional STFT, and in the meantime
it well characterizes time-frequency properties of the signal
[43]. The demodulation approach of [43] is considered in
[44] in the setting of CWT. The associated CWT and SST
are called in [44] the instantaneous frequency-embedded CWT
(IFE-CWT) and IFE-SST, respectively. For consistency, we call
the STFT of the demodulated signal and the associated FSST
in [43]: the IFE-STFT and IFE-FSST respectively. [43] shows
that IFE-FSST results in sharp time-frequency representations
of signals. However component recovery of a multicomponent
signal was not discussed in [43]. In this article, we consider
theoretical analysis of IFE-STFT for establishing the component

recovery with IFE-FSST. Compared with the study of IFE-SST
in [44], we derive in this article mathematically rigorous phase
transformation for IFE-FSST. In addition, in this article we
also consider the 2nd-order IFE-FSST and derive the associate
phase transformation.

The rest of this article is organized as follows. In Section 2,
we briefly review FSST and the 2nd-order FSST. After that, we
consider in Section 3 the IFE-STFT and establish reconstructing
properties of IFE-STFT with integrals involving the frequency
variable only. In Section 4, we derive mathematically rigorous
phase transformations for IFE-FSST and the 2nd-order IFE-
FSST. In addition, we provide reconstruction formula for
individual components. Implementations and IFE-FSST-based
component recovery algorithms are discussed in Section 5. Some
experimental results are also provided in Section 5.

2. SHORT-TIME FOURIER
TRANSFORM-BASED SST

The (modified) short-time Fourier transform (STFT) of x(t) is
defined by

Vx(t, η) :=
∫ ∞

−∞
x(τ )g(τ − t)e−i2πη(τ−t)dτ , (2)

where g(t) is a window function with g(0) 6= 0. x(t) can be
reconstructed from its STFT:

x(t) =
1

‖g‖22

∫ ∞

−∞

∫ ∞

−∞
Vx(t, ξ )g(t − τ )e−i2πξ (τ−t)dτdξ . (3)

x(t) can also be recovered back from its STFT with an integral
involving only the frequency variable η:

x(t) =
1

g(0)

∫ ∞

−∞
Vx(t, η)dη. (4)

In addition, one can show that if g(t) and x(t) are real-
valued, then

x(t) =
2

g(0)
Re

( ∫ ∞

0
Vx(t, η)dη

)
. (5)

Furthermore, one can verify that STFT can be written as

Vx(t, η) =
∫ ∞

−∞
x̂(ξ )̂g(η − ξ )ei2π tξdξ . (6)

The STFTVx(t, η) of a slowly growing x(t) is well-defined and the
above formulas still hold if the window function g(t) has certain
smoothness and certain decaying order as t → ∞, for example
g(t) is in the Schwarz class S . In this article, unless otherwise
stated, we always assume that a window function g(t) has certain
smoothness and decaying properties and g(0) 6= 0, and assume
that a signal x(t) is a slowly growing function.
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2.1. FSST
The idea of FSST is to re-assign the frequency variable η of
Vx(t, η). First we look at the STFT of x(t) = Aei2πξ0t , where ξ0
is a positive constant. With

Vx(t, η) =
∫ ∞

−∞
Aei2πξ0τ g(τ − t)e−i2πη(τ−t)dτ

= Âg(η − ξ0)e
i2π tξ0 ,

we can obtain the IF ξ0 of x(t) by

∂tVx(t, η)

2π iVx(t, η)
= ξ0,

where throughout this article, ∂t denotes the partial derivative
with respect to variable t. For a general x(t), at (t, η) for which
Vx(t, η) 6= 0, a good candidate for the IF of x(t) is

∂tVx(t, η)

2π iVx(t, η)
.

In the following, denote

ωx(t, η) := Re
{ ∂tVx(t, η)

2π iVx(t, η)

}
, for (t, η) with Vx(t, η) 6= 0,

which is called the “phase transformation” [1], “instantaneous
frequency information” [13], or the “reference IF function”
in [21]. FSST is to re-assign the frequency variable η by
transforming the STFT Vx(t, η) of x(t) to a quantity, denoted by

R
λ,γ
x (t, ξ ), on the time-frequency plane defined by

R
λ,γ
x (t, ξ) :=

∫

{η :|Vx(t,η)|>γ }
Vx(t, η)

1

λ
h

(
ξ − ωx(t, η)

λ

)
dη,

where ξ is the frequency variable, h(t) a compactly supported
function with certain smoothness and

∫ ∞
−∞ h(t)dt = 1, γ > 0

is the threshold for zero and λ > 0 is a dilation. As λ, γ → 0,
FSST is rewritten as

Rx(t, ξ ) :=
∫

{η :Vx(t,η) 6=0}
Vx(t, η)δ

(
ωx(t, η)− ξ

)
dη. (7)

For simplicity of presentation, throughout this article SSTs will be
expressed as (7).

Due to (4), we have that the input signal x(t) can be recovered
from its FSST by

x(t) =
1

g(0)

∫ ∞

−∞
Rx(t, ξ )dξ . (8)

If in addition, g(t) and x(t) are real-valued, then by (5),

x(t) =
2

g(0)
Re

( ∫ ∞

0
Rx(t, ξ )dξ

)
. (9)

For a multicomponent signal x(t) given by (1), when Ak(t),φk(t)
satisfy certain conditions, each component xk(t) can be recovered
from its FSST:

xk(t) ≈
1

g(0)

∫

|ξ−IFk(t)|<Ŵ

Rx(t, ξ )dξ , (10)

for certainŴ > 0, where IFk(t) is an estimate to φ′
k
(t). See [13–15]

for the details.
In practice, t, η, ξ are discretized. Suppose tn, ηj, ξm are the

sampling points of t, η, ξ respectively. Then the FSST of x(t) is
given by

Rx(tn, ξm) =
∑

j : |ωx(tn ,ηj)−ξm|≤1ξ/2,|Vx(tn ,ηj)|≥γ

Vx(tn, ηj)△ηj,

where△ηj = ηj−ηj−1, and γ > 0 is a threshold for the condition
|Vx(t, η)| > 0. The recovering formulas (8) and (9) result in

x(tn) =
1

g(0)

∑

m

Rx(tn, ξm)△ξm,

and for real-valued g(t) and x(t),

x(tn) =
2

g(0)
Re

( ∑

m

Rx(tn, ξm)△ξm

)
,

where△ξm = ξm − ξm−1.

2.2. Second-Order FSST
The 2nd-order FSST was introduced in [16]. The main idea is to
define a new phase transformation ω2nd

x such that when x(t) is
a linear frequency modulation (LFM) signal (also called a linear
chirp), then ω2nd

x is exactly the IF of x(t). We say x(t) is a LFM
signal or a linear chirp if

x(t) = Aei2πφ(t) = Aei2π(ct+
1
2 rt

2) (11)

with phase function φ(t) = ct + 1
2 rt

2, IF φ′(t) = c + rt and
chirp rate φ′′(t) = r. In [16], the reassignment operators are
used to derive ω2nd

x . Different phase transformation ω2nd
x for the

2nd-order SST can be derived without using the reassignment
operators see [28, 29].

Let g be a given window function. Denote

g1(t) = tg(t). (12)

Recall that Vx(t, η) denotes the STFT of x(t) with g defined by
(2). In this article, we let V

g1
x (t, η) denote the STFT of x(t) with

g1(t), namely, the integral on the right-hand side of (2) with g(t)
replaced by g1(t). Define

ω2nd
x (t, η) :=





Re
{

∂tVx(t,η)
i2πVx(t,η)

}
− Re

{
q0(t, η)

V
g1
x (t,η)

i2πVx(t,η)

}
,

if ∂η

(Vg1
x (t,η)
Vx(t,η)

)
6= 0,Vx(t, η) 6= 0,

Re
{

∂tVx(t,η)
i2πVx(t,η)

}
,

if ∂η

(Vg1
x (t,η)
Vx(t,η)

)
= 0,Vx(t, η) 6= 0,

(13)

where

q0(t, η) :=
1

∂η

(Vg1
x (t,η)
Vx(t,η)

)∂η

(∂tVx(t, η)

Vx(t, η)

)
.

Then one can show that ω2nd
x (t, η) is exactly the IF φ′(t) of x(t)

if x(t) is an LFM signal given by (11), see [19, 28]. Thus, we may
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define ω2nd
x (t, η) in (13) as the phase transformation for the 2nd-

order FSST. Very recently a simple phase transformation for the
2nd-order FSST was proposed in [18].

3. INSTANTANEOUS
FREQUENCY-EMBEDDED STFT

IFE-FSST is based on the IFE-STFT, which is defined below.

Definition 1. Suppose ϕ(t) is a differentiable function with
ϕ′(t) > 0. Let η0 > 0. The IFE-STFT of x(t) ∈ L2(R) with ϕ(t), η0
and a window function g(t) is defined by

VI
x(t, η) :=

∫ ∞

−∞
x(τ )e−i2π

(
ϕ(τ )−ϕ(t)−ϕ′(t)(τ−t)−η0τ

)

g(τ − t)e−i2πη(τ−t)dτ . (14)

In the above definition, we assume x(t) ∈ L2(R). The definition of
IFE-STFT can be extended to slowly growing functions x(t) if g(t)
has certain smoothness and certain decaying order as t → ∞.

Li and Liang [41] proposed the modulation x(τ ) →
x̃(τ ) = x(τ )e−i2π(ϕ(τ )−η0τ ) and applied WSST to the modulated
signal x̃(τ ), while [42] applied the 2nd-order FSST to x̃(t).
The modulation:

x(τ ) → x(τ )e−i2π
(
ϕ(τ )−ϕ(t)−ϕ′(t)(τ−t)−η0τ

)

introduced in [43] for IFE-FSST and also used in [44] for IFE-
WSST is different from that used in [41, 42]. IFE-STFT and IFE-
CWT with such a modulation not only have more concentrated
time-frequency representation than the conventional STFT and
CWT respectively, but also well keep the IF of the signal. The
reader is referred to [43] and [44] for detailed discussions.

[43] provides a reconstruction formula with IFE-STFT for
the whole signal x(t), which is similar to (3) and involves an
integral with both the time and frequency variables. [43] does not
consider individual component recovery formula with IFE-FSST.
In this article, we provide such a component recovery formula.
To this regard, in this section we establish a reconstruction
formula with IFE-STFT like (4), which involves an integral with
the frequency variable only. First we have the following property
about the IFE-STFT.

Proposition 1. Let VI
x(t, η) be the IFE-STFT of x(t) defined by

(14). Then

VI
x(t, η) = ei2πϕ(t)

∫ ∞

−∞
̂̃x(ξ )̂g(η − ϕ′(t)− ξ )ei2π tξdξ , (15)

where

x̃(t) = x(t)e−i2π(ϕ(t)−η0t). (16)

Proof: We have

VI
x(t, η) = ei2πϕ(t)

∫ ∞

−∞
x̃(τ )ei2πϕ′(t)(τ−t)g(τ − t)e−i2πη(τ−t)dτ

= ei2πϕ(t)

∫ ∞

−∞
x̃(τ )g(τ − t)e−i2π

(
η−ϕ′(t)

)
(τ−t)dτ

= ei2πϕ(t)

∫ ∞

−∞
̂̃x(ξ )̂g

(
η − ϕ′(t)− ξ

)
ei2π tξdξ ,

where the last equality follows from (6).

The next theorem shows that x(t) can be recovered from its
IFE-STFT with an integral involving η only.

Theorem 1. Let x(t) be a function in L2(R). Then

x(t) =
e−i2πη0t

g(0)

∫ ∞

−∞
VI
x(t, η)dη. (17)

Proof: Let x̃(t) be the function defined by (16). From (15),
we have

∫ ∞

−∞
VI
x(t, η)dη = ei2πϕ(t)

∫ ∞

−∞

∫ ∞

−∞
̂̃x(ξ )̂g(η − ϕ′(t)− ξ )ei2π tξdξdη

= ei2πϕ(t)

∫ ∞

−∞
̂̃x(ξ )

∫ ∞

−∞
ĝ(η − ϕ′(t)− ξ )dη ei2π tξdξ

= ei2πϕ(t)g(0)

∫ ∞

−∞
̂̃x(ξ )ei2π tξdξ

= ei2πϕ(t)g(0)̃x(t)

= ei2πϕ(t)g(0)x(t)e−i2π
(
ϕ(t)−η0t

)

= g(0)x(t)ei2πη0t .

Thus, Equation (17) holds.

If one is interested in VI
x(t, η) with the positive frequency

η > 0 only, then we have the following result on how to recover
x(t) from VI

x(t, η).

Theorem 2. Suppose supp(̂g) ⊆ [−1,1] for some1, and ϕ′(t) ≥
1. Let y(t) = x(t)e−i2πϕ(t). If ŷ(η) = 0, η ≤ B for some constant
B, then for any η0 ≥ −B,

x(t) =
e−i2πη0t

g(0)

∫ ∞

0
VI
x(t, η)dη. (18)

Proof: Let x̃(t) be the function defined by (16). Then x̃(t) =
y(t)ei2πη0t . Thus,̂̃x(ξ ) = ŷ(ξ −η0). Therefore, from (15), we have

∫ ∞

0
VI
x(t, η)dη = ei2πϕ(t)

∫ ∞

0

∫ ∞

−∞
̂̃x(ξ )̂g(η − ϕ′(t)− ξ )ei2π tξdξdη

= ei2πϕ(t)

∫ ∞

0

∫ ∞

−∞
ŷ(ξ − η0 )̂g(η − ϕ′(t)− ξ )ei2π tξdξdη

= ei2πϕ(t)

∫ ∞

0

∫ ∞

−∞
ŷ(ξ )̂g(η − ϕ′(t)− ξ − η0)e

i2π t(ξ+η0)dξdη

= ei2π
(
ϕ(t)+tη0

) ∫ ∞

−∞
ŷ(ξ )

∫ ∞

0
ĝ(η − ϕ′(t)− ξ − η0)e

i2π tξdηdξ

= ei2π
(
ϕ(t)+tη0

) ∫ ∞

B
ŷ(ξ )ei2π tξ

∫ ∞

0
ĝ(η − ϕ′(t)− ξ − η0)dηdξ .
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When ξ ≥ B and η0 ≥ −B, we have −ϕ′(t) − ξ − η0 ≤
−1−B+B = −1. This and the assumption supp(̂g) ⊆ [−1,1]
lead to

∫ ∞

0
ĝ(η − ϕ′(t)− ξ − η0)dη =

∫ ∞

−ϕ′(t)−ξ−η0

ĝ(η)dη

=
∫ ∞

−∞
ĝ(η)dη = g(0).

Hence,

∫ ∞

0
VI
x(t, η)dη = ei2π

(
ϕ(t)+tη0

) ∫ ∞

B
ŷ(ξ )ei2π tξ g(0)dξ

= ei2π
(
ϕ(t)+tη0

)
g(0)

∫ ∞

−∞
ŷ(ξ )ei2π tξdξ

= ei2π
(
ϕ(t)+tη0

)
g(0)y(t)

= ei2π
(
ϕ(t)+tη0

)
g(0)x(t)e−i2πϕ(t)

= g(0)x(t)ei2πη0t .

Thus, Equation (18) holds.

Next theorem shows that when the condition ŷ(η) = 0, η ≤ B
in Theorem 2 does not hold, the integral in the right-hand side of
(18) can still approximate x(t) well if η0 is large.

Theorem 3. Let y(t) = x(t)e−i2πϕ(t). Then

x(t) =
e−i2πη0t

g(0)

∫ ∞

0
VI
x(t, η)dη + Err, (19)

with

|Err| ≤
∫ ∞
−∞ |̂g(ξ )|dξ

g(0)

∫ −η0

−∞
|̂y(ξ )|dξ .

Proof: By Theorem 1,

∫ ∞

0
VI
x(t, η)dη =

∫ ∞

−∞
VI
x(t, η)dη −

∫ 0

−∞
VI
x(t, η)dη

= ei2πη0tg(0)x(t)−
∫ 0

−∞
VI
x(t, η)dη.

Thus,

Err =
e−i2πη0t

g(0)

∫ 0

−∞
VI
x(t, η)dη.

With

∣∣
∫ 0

−∞
VI
x(t, η)dη

∣∣ =
∣∣ei2πϕ(t)

∫ 0

−∞

∫ ∞

−∞
ŷ(ξ − η0 )̂g(η − ϕ′(t)− ξ )ei2π tξdξdη

∣∣

≤
∫ 0

−∞

∫ ∞

−∞
|̂y(ξ − η0)| |̂g(η − ϕ′(t)− ξ )ei2π tξ |dηdξ

≤
∫ 0

−∞
|̂y(ξ − η0)|

∫ ∞

−∞
|̂g(η − ϕ′(t)− ξ )|dηdξ

=
∫ ∞

−∞
|̂g(η)|dη

∫ 0

−∞
|̂y(ξ − η0)|dξ

=
∫ ∞

−∞
|̂g(η)|dη

∫ −η0

−∞
|̂y(ξ )|dξ ,

we conclude that (19) holds.

4. IFE-STFT BASED SYNCHROSQUEEZING
TRANSFORM

In this section, we consider IFE-FSST, the synchrosqueezing
transform based on IFE-STFT. First we show how to derive the
phase transformation associated with (the 1st-order) IFE-FSST.
After that we introduce the 2nd-order IFE-FSST.

4.1. IFE-FSST
To define IFE-FSST, first we need to define the corresponding
phase transformation ωI

x(a, b). Let us consider the case x(t) =
Aei2πξ0t for some ξ0 > 0. With x′(t) = i2πξ0 x(t), we have

VI
x′ (t, η) = i2πξ0V

I
x(t, η).

On the other hand,

VI
x′ (t, η) =

∫ ∞

−∞
∂τ

(
x(t + τ )

)
e−i2π

(
ϕ(t+τ )−ϕ(t)−ϕ′(t)τ−η0(t+τ )

)
g(τ )e−i2πητ dτ

= −
∫ ∞

−∞
x(t + τ )∂τ

(
e−i2π

(
ϕ(t+τ )−ϕ(t)−ϕ′(t)τ−η0(t+τ )

)
g(τ )e−i2πητ

)
dτ

= −
∫ ∞

−∞
x(t + τ )(−i2π)

(
ϕ′(t + τ )− ϕ′(t)− η0 + η

)

e−i2π
(
ϕ(t+τ )−ϕ(t)−ϕ′(t)τ−η0(t+τ )+η)

)
g(τ )dτ

−
∫ ∞

−∞
x(t + τ )e−i2π

(
ϕ(t+τ )−ϕ(t)−ϕ′(t)τ−η0(t+τ )+η)

)
g′(τ )dτ

= i2πVI
xϕ′ (t, η)+ i2π(η − ϕ′(t)− η0)V

I
x(t, η)− V

I,g′
x (t, η), (20)

where V
I,g′
x (t, η) denotes the IFE-STFT of x(t) defined by (14)

with ϕ(t) and the window function g′ given by (12). Thus, if
VI
x(t, η) 6= 0, then

ξ0 =
VI
x′ (t, η)

i2πVI
x(t, η)

=
i2πVI

xϕ′ (t, η)− V
I,g′
x (t, η)

i2πVI
x(t, η)

+ η − ϕ′(t)− η0.

Based on the above discussion, for a general signal x(t), we define
the phase transformation ωI

x(a, b) of the IFE-FSST of x(t) to be

ωI
x(t, η) := Re

( i2πVI
xϕ′ (t, η)− V

I,g′
x (t, η)

i2πVI
x(t, η)

)
+η−ϕ′(t)−η0. (21)

Definition 2. Suppose ϕ(t) is a differentiable function with
ϕ′(t) > 0. The IFE-FSST of a signal x(t)with ϕ and ξ0 is defined by

RIx(t, ξ ) :=
∫

{η :VI
x(t,η)6=0}

VI
x(t, η)δ

(
ωI
x(t, η)− ξ

)
dη

where ωI
x(t, η) is the phase transformation defined by (21).
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The IFE-FSST is called the demodulation transform-based
SST in [43]. The corresponding phase transformation in [43] is
different from our ωI

x(t, η) defined in (21).
By (18) in Theorem 1, we know the input signal x(t) can be

recovered from its IFE-FSST as shown in the following:
For x(t) ∈ L2(R),

x(t) =
e−i2πη0t

g(0)

∫ ∞

−∞
RIx(t, ξ )dξ ; (22)

and if, in addition, the conditions in Theorem 2 hold, then

x(t) =
e−i2πη0t

g(0)

∫ ∞

0
RIx(t, ξ )dξ . (23)

For a multicomponent signal x(t) in the form (1), if RIxk (t, ξ ), 1 ≤
k ≤ K lie in different time-frequency zones, then following (18),
we know xk(t) can be recovered from its IFE-FSST:

xk(t) ≈
e−i2πη0t

g(0)

∫

|ξ−IFk(t)|<Ŵ1

RIx(t, ξ )dξ , (24)

for certain Ŵ1 > 0, where IFk(t) is an estimate of φ′
k
(t). If xk(t)

and g(t) are real-valued, then

xk(t) ≈
2

g(0)
Re

(
e−i2πη0t

∫

|ξ−IFk(t)|<Ŵ1

RIx(t, ξ )dξ
)
. (25)

4.2. 2nd-Order IFE-FSST
In this subsection, we propose the 2nd-order IFE-FSST. The key
point is, based on IFE-STFT, to define a phase transformation
ωI,2nd
x (t, η) which is the IF φ′(t) of x(t) when x(t) is a linear chirp

given by (11). As above, for g1(t) = tg(t), we use V
I,g1
x (t, η) to

denote the IFE-STFT of x(t) with the window function g1(t),
namely, the integral on the right-hand side of (14) with g(t)
replaced by g1(t). Next we define the phase transformation
ωI,2nd
x (t, η) for the 2nd-order IFE-FSST to be:

ωI,2nd
x (t, η) :=





ωI
x(t, η)− Re

{
Q0(t, η)

V
I,g1
x (t,η)

i2πVI
x(t,η)

}
,

if ∂η

(VI,g1
x (t,η)
VI
x(t,η)

)
6= 0,VI

x(t, η) 6= 0;

ωI
x(t, η),

if ∂η

(VI,g1
x (t,η)
VI
x(t,η)

)
= 0,VI

x(t, η) 6= 0,

(26)

where ωI
x(t, η) is defined by (21), and

Q0(t, η) :=
1

∂η

(
V
I,g1
x (t,η)
VI
x(t,η)

)
{
1+ ∂η

( i2πVI
xϕ′ (t, η)− V

I,g′
x (t, η)

i2πVI
x(t, η)

)}
.

(27)

Theorem 4. If x(t) is a linear chirp signal given by (11), then at

(t, η) where VI
x(t, η) 6= 0, ∂η

(
V
I,g1
x (t, η)/VI

x(t, η)
)
6= 0, ωI,2nd

x (t, η)

defined by (26) is the IF of x(t), namely ωI,2nd
x (t, η) = c+ rt.

Proof: Here, we provide the proof ofωI,2nd
x (t, η) = c+rt for more

general linear chirp signals given by

x(t) = A(t)ei2πφ(t) = Aept+
q
2 t

2
ei2π(ct+

1
2 rt

2) (28)

where p, q are real numbers.
For the simplicity of presentation, we denote

Mϕ,g(τ , t, η) := e−i2π
(
ϕ(t+τ )−ϕ(t)−ϕ′(t)τ−η0(t+τ )

)
g(τ )e−i2πητ ,

and thus, VI
x(t, η) can simply be written as

VI
x(t, η) =

∫ ∞

−∞
x(t + τ )Mϕ,g(τ , t, η)dτ .

Observe that for x(t) given by (28), we have

x′(t) =
(
p+ qt + i2π(c+ rt)

)
x(t).

Thus,

VI
x′ (t, η) =

∫ ∞

−∞
x′(t + τ ) Mϕ,g(τ , t, η)dτ

=
∫ ∞

−∞

(
p+ q(t + τ )+ i2π(c+ rt + rτ )

)

x(t + τ ) Mϕ,g(τ , t, η)dτ

=
(
p+ qt + i2π(c+ rt)

)
VI
x(t, η)

+(q+ i2πr)

∫ ∞

−∞
x(t + τ ) τMϕ,g(τ , t, η)τdτ

=
(
p+ qt + i2π(c+ rt)

)
VI
x(t, η)

+(q+ i2πr)V
I,g1
x (t, η).

On the other hand, as shown above, VI
x′ (t, η) is equal to the

quantity in (20). Therefore,

(
p+ qt + i2π(c+ rt)

)
VI
x(t, η)+ (q+ i2πr)V

I,g1
x (t, η)

= i2πVI
xϕ′ (t, η)+ i2π(η − ϕ′(t)− η0)V

I
x(t, η)

−V
I,g′
x (t, η).

Hence, at (t, η) on which VI
x(t, η) 6= 0, we have

p+ qt

i2π
+ c+ rt + (

q

i2π
+ r)

V
I,g1
x (t, η)

VI
x(t, η)

=
i2πVI

xϕ′ (t, η)− V
I,g′
x (t, η)

i2πVI
x(t, η)

+ η − ϕ′(t)− η0. (29)

Taking partial derivative ∂η to the both sides of (29), we have

(
q

i2π
+ r)∂η

(VI,g1
x (t, η)

VI
x(t, η)

)
= 1+ ∂η

( i2πVI
xϕ′ (t, η)− V

I,g′
x (t, η)

i2πVI
x(t, η)

)
,

which leads to

q

i2π
+ r = Q0(t, η),
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for (t, η) with ∂η

(
V
I,g1
x (t, η)/VI

x(t, η)
)

6= 0, where Q0(t, η) is
defined by (27).

Returning back to (29) with
q
i2π + r replaced by Q0(t, η),

we have

c+ rt =
i2πVI

xϕ′ (t, η)− V
I,g′
x (t, η)

i2πVI
x(t, η)

+η − ϕ′(t)− η0 −
p+ qt

i2π
− Q0(t, η)

V
I,g1
x (t, η)

VI
x(t, η)

.

Since c + rt is real, taking the real parts of the quantities in the
above equation, we have

c+ rt = Re
{ i2πVI

xϕ′ (t, η)− V
I,g′
x (t, η)

i2πVI
x(t, η)

}

+η − ϕ′(t)− η0 − Re
{
Q0(t, η)

V
I,g1
x (t, η)

VI
x(t, η)

}

= ωI
x(t, η)− Re

{
Q0(t, η)

V
I,g1
x (t, η)

VI
x(t, η)

}
,

which is ωI,2nd
x (t, η). This completes the proof of Theorem 4.

With the phase transformation ωI,2nd
x (t, η) in (26), we have the

corresponding 2nd-order IFE-FSST of a signal x(t) with ϕ, ξ0 and
window function g defined by

RI,2x (t, ξ ) :=
∫

{η :VI
x(t,η) 6=0}

VI
x(t, η)δ

(
ωI,2nd
x (t, η)− ξ

)
dη.

(30)

One has reconstruction formulas with RI,2x (t, ξ ) similar
to (22)–(25).

5. IMPLEMENTATION AND
EXPERIMENTAL RESULTS

5.1. Calculating ω
I
x(t, η) and ω

I,2nd
x (t, η)

First we consider the IFE-FSST.We need to calculateωI
x(t, η).We

will use (15) so that FFT can be applied to (discrete signals) x

and xϕ′ to calculate VI(t, η), VI
xϕ′ (t, η) and V

I,g′
x (t, η). VI

xϕ′ (t, η)

can be obtained by (15) with x replaced by xϕ′. As long as

V
I,g′
x (t, η) is concerned, observe that the Fourier transform of g′

is i2πξ ĝ(ξ ). Hence

V
I,g′
x (t, η) = ei2πϕ(t)

∫

R

̂̃x(ξ )i2π(η − ϕ′(t)− ξ )

ĝ(η − ϕ′(t)− ξ )ei2π tξdξ .

After obtaining VI(t, η), VI
xϕ′ (t, η) and V

I,g′
x (t, η), we get ωI

x(t, η)

and then the IFE-FSST.
For the 2nd-order IFE-FSST, we need to calculate

V
I,g1
x (t, η), ∂η

(
VI
x(t, η)

)
, ∂η

(
V
I,g1
x (t, η)

)
, ∂η

(
VI
xϕ′ (t, η)

)
,

∂η

(
V
I,g′
x (t, η)

)
.

Note that the Fourier transform of τg(τ ) is

∫

R

τg(τ )e−i2πξτdτ =
1

−i2π

d

dξ

( ∫

R

g(τ )e−i2πξτdτ
)

=
1

−i2π

(
ĝ
)′
(ξ ).

Thus, we conclude

V
I,g1
x (t, η) = −ei2πϕ(t) 1

i2π

∫

R

̂̃x(ξ )
(
ĝ
)′
(η − ϕ′(t)− ξ )ei2π tξdξ .

(31)

By the fact ∂η

(
VI
x(t, η)

)
= −i2πV

I,g1
x (t, η), we can obtain

∂η

(
VI
x(t, η)

)
and ∂η

(
VI
xϕ′ (t, η)

)
as well via (31).

To calculate ∂η

(
V
I,g1
x (t, η)

)
, with ∂η

(
V
I,g1
x (t, η)

)
=

−i2πV
I,g2
x (t, η), where g2(τ ) = τ 2g(τ ), we need to calculate the

Fourier transform of g2(τ ), which is

ĝ2(ξ ) =
1

(−i2π)2
d2

dξ 2

( ∫

R

g(τ )e−i2πξτdτ
)
= −

1

4π2

(
ĝ
)′′
(ξ ).

Therefore,

∂η

(
V
I,g1
x (t, η)

)
= −ei2πϕ(t) 1

i2π

∫

R

̂̃x(ξ )
(
ĝ
)′′
(η−ϕ′(t)−ξ )ei2π tξdξ .

(32)

For ∂η

(
V
I,g′
x (t, η)

)
, we need to calculate the Fourier transform of

τg′(τ ), denoted by
(
τg′(τ )

)∧
(ξ ). Indeed,

(
τg′(τ )

)∧
(ξ ) =

∫

R

τg′(τ )e−i2πξτdτ =
1

−i2π

d

dξ

( ∫

R

g′(τ )e−i2πξτdτ
)

= −
1

−i2π

d

dξ

( ∫

R

g(τ )∂τ

(
e−i2πξτ

)
dτ

)

= −
d

dξ

(
ξ

∫

R

g(τ )e−i2πξτdτ
)

= −
d

dξ

(
ξ ĝ(ξ )

)
= −̂g(ξ )− ξ

(
ĝ
)′
(ξ ).

Thus,

∂η

(
V
I,g′
x (t, η)

)
= −i2πV

I,τg′(τ )
x (t, η)

= −i2πei2πϕ(t)

∫

R

̂̃x(ξ )
(
τg′(τ )

)∧
(η − ϕ′(t)− ξ )ei2π tξdξ

= i2πVI(t, η)+ i2πei2πϕ(t)

∫

R

̂̃x(ξ ) (η − ϕ′(t)− ξ )
(
ĝ
)′
(η − ϕ′(t)− ξ )ei2π tξdξ . (33)

With the formulas (31), (32), and (33), we can obtainQ0(t, η) and
then, ωI,2nd

x (t, η).
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5.2. IFE-FSST Algorithms for IF Estimation
and Component Recovery and
Experiments
To apply IFE-STFT or IFE-FSST, first of all we need to
choose ϕ(t) and ϕ′(t). For the purpose of estimating the IF
φ′
k
(t) of the kth component xk(t) and/or recover xk(t) of a

multicomponent signal x(t), we should choose ϕ(t) and ϕ′(t)
close to φk(t) (up to a constant) and φ′

k
(t) respectively. One

way is to use the ridges of the STFT. More precisely, suppose
{tn}0≤n<N , {ηj}0≤j<J , {ξm}0≤m<M are the sampling points of t, η, ξ
respectively for STFT Vx(t, η), FSST Rx(t, ξ ), and IFE-FSST
RIx(t, ξ ). Let η̂jn ,k, 0 ≤ n < N be the STFT ridge corresponding to

xk(t) given by

η̂jn,k := argmaxηj∈Gtn ,k
{|Vx(tn, ηj)|}, (34)

for each n, 0 ≤ n < N, where for each n, Gtn ,k is an interval
containing φ′

k
(tn) (with convention: φ0(t) ≡ 0) at the time

instant tn, and Gtn ,k, 0 ≤ k ≤ K form a disjoint union of{
η : |Vx(tn, η)| > γ

}
, namely for each tn,

{
η : |Vx(tn, η)| > γ

}
= ∪K

k=0Gtn ,k.

See more details on Gt,k in [37].

FIGURE 1 | Experiment with x(t) in (43). 1st row: IF φ′(t); 2nd row: FSST |Rx (t, η)| (left) and IFE-FSST |RI
x (t, η)| (right); 3rd row: 2nd-order FSST (left) and 2nd-order

IFE-FSST |RI,2
x (t, η)| (right).
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{̂ηjn ,k}
N−1
n=0 is called a ridge of the STFT plane or a ridge

of the spectrogram |Vx(t, η)|. It provides an approximation to
φ′
k
(tn), 0 ≤ n < N [see [36, 37, 45]]. Thus, we can use

ϕ′(tn) = η̂jn ,k, ϕ(tn) =
n−1∑

ℓ=0

η̂jℓ ,k△tℓ, 0 ≤ n < N (35)

as discrete ϕ′(t) and ϕ(t) to define IFE-STFT and IFE-FSST,
where△tℓ = tℓ − tℓ−1.

To recover a component by either FSST or IFE-FSST, we
need an estimate IFk(t) for φ′

k
(t) so that (10) or (24)/(25) can be

applied. One way is to use the ridges of FSST and IFE-FSST to
approximate φ′

k
(tn). More precisely, let ξ̂mn ,k, 0 ≤ n < N be the

FSST ridge defined similarly to the STFT ridge in (34):

ξ̂mn ,k := argmaxξm∈Gtn ,k
{|Rx(tn, ξm)|}, 0 ≤ n < N. (36)

Then Equation (10) becomes

xk(tn) ≈ xreck (tn) :=
1

g(0)

∑

{m : |m−mn|<M0}
Rx(tn, ξm)△ξm,

0 ≤ n < N, (37)

for someM0 ∈ N, where△ξm = ξm − ξm−1.
Similarly, Equation (24) implies that xk(t) can be recovery

from (discrete) IFE-FSST:

xk(tn) ≈ xI,rec
k

(tn) :=
e−i2πη0tn

g(0)

∑

{m : |m−mI
n|<M0}

RIx(tn, ξm)△ξm,

0 ≤ n < N, (38)

where mI
n, 0 ≤ n < N are the indices for IFE-FSST ridge defined

as (36) with Rx(tn, ξm) replaced by RIx(tn, ξm):

ξ̂mI
n ,k

:= argmaxξm∈Gtn ,k
{|RIx(tn, ξm)|}, 0 ≤ n < N. (39)

For real-valued xk(t) and g(t), the recovery formulas (37) and
(38) are respectively

xk(tn) ≈ xreck (tn)

:=
2

g(0)
Re

( ∑

{m : |m−mn|<M0}
Rx(tn, ξm)△ξm

)
,

0 ≤ n < N, (40)

and

xk(tn) ≈ xI,rec
k

(tn) (41)

:=
2

g(0)
Re

(
e−i2πη0tn

∑

{m : |m−mI
n|<M0}

RIx(tn, ξm)△ξm

)
,

0 ≤ n < N. (42)

To summarize, we have the following algorithm to estimate IF
φ′
k
(t) and recover xk(t) by IFE-FSST.

Algorithm 1. (IFE-FSST algorithm for IF estimation and
component recovery) Let x(t) be a signal of the form (1). To
estimate φ′

k
(t) and recover xk(t) by IFE-FSST, do the following.

Step 1. Obtain the STFT ridge η̂jn ,k, 0 ≤ n < N by (34) and
ϕ′(tn),ϕ(tn), 0 ≤ n < N by (35).
Step 2. Calculate IFE-FSST with ϕ′,ϕ obtained in Step 1. The
ridge ξ̂mI

n ,k
, 0 ≤ n < N defined by (39) is an estimate of φ′

k
(t)

and xI,rec
k

(t) in (38) is an approximation to xk(t).

We can use Algorithm 1 to recover each component xk(t) one
by one. We can also apply Algorithm 1 to the remainder x(t) −
xI,rec
k

(t) to recover another component after xk(t) is recovered;
and we can repeat this procedure. The procedure of this iterative
method is described as follows.

Algorithm 2. (Iterative IFE-FSST algorithm for IF estimation
and component recovery) Let x(t) be a signal of the form (1).

Step 1. Apply Algorithm 1 to obtain xI,rec1 (t).

Step 2. Let y1 = x − xI,rec1 . Apply Algorithm 1 to y1 to

obtain xI,rec2 (t).

Step 3. Let y2 = x − xI,rec1 − xI,rec2 . Apply Algorithm 1 to

y2 to obtain xI,rec3 (t). Repeat this process to obtain xI,rec4 (t), · · · ,
and finally xI,recK (t).

FIGURE 2 | Recovery errors for x(t) given in (43) on [0.125, 0.875) by FSST (left) and IFE-FSST (right).
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FIGURE 3 | Experiment with x(t) in (44). 1st row: IFs φ′
1(t),φ

′
2(t) (left) and FSST |Rx (t, η)| (right); 2nd row: FSST for x1(t) (left) and FSST for x2(t) (right); 3rd row:

IFE-FSST for x1(t) (left) and IFE-FSST for x2(t) (right). 4th row: recovery errors on [0.125, 1.875) by FSST and IFE-FSST for x1(t) (left) and x2(t) (right).
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Step 4. Apply Algorithm 1 to x −
∑K

k=2 x
I,rec
k

to recover x1(t).

Let x̃I,rec1 (t) be the recovered x1(t). Then Apply Algorithm 1

to x − x̃I,rec1 (t) −
∑K

k=3 x
I,rec
k

to recover x2(t). Let x̃
I,rec
2 (t) be

the recovered x2(t). Obtain x̃I,rec3 (t) by applying Algorithm 1 to

x−x̃I,rec1 (t)−x̃I,rec2 (t)−
∑K

k=4 x
I,rec
k

. Repeat this process to obtain

x̃I,rec4 (t), · · · , and finally x̃I,recK (t).

We can repeat the procedure in Step 4 of Algorithm 2. That is
why we call Algorithm 2 an iterative algorithm.

Next we consider two examples. We let

g(t) =
1

σ
√
2π

e
− t2

2σ2 ,

be the window function, where σ > 0. First we consider a
mono-component signal

x(t) = cos
(
2π(φ(t)

)
= cos

(
2π(16t + 16t2)

)
, t ∈ [0, 1), (43)

where x(t) is uniformly sampled with sample points tn =
n△t, 0 ≤ n < N = 128,△t = 1

128 . The IF of x(t) is φ′(t) =
16+ 32t and it is shown in the 1st row of Figure 1. The FSST and
IFE-FSST of x(t) are provided in the 2nd row; and the 2nd-order
FSST and IFE-FSST are shown in the 3rd row. In this example we
let σ = 1

16 . As mentioned above, discrete ϕ′(t) and ϕ(t) defined
by (35) are used to define IFE-STFT and the 2nd-order IFE-STFT.
Obviously IFE-FSST provides a much sharper time-frequency
representation of x(t) than FSST. Both the 2nd-order FSST
and the 2nd-order IFE-FSST as well give sharp time-frequency
representations of x(t).

For a mono-component signal x(t) as given by (43), since
x(t) can be recovered from FSST or IFE-FSST as shown
in (8) and (22) respectively, theoretically, either (40) or
(41) gives high accurate approximation to x(t) as long as
M0 is large enough. We choose a small M0 so that the
recovery errors with it show how sharp the time-frequency
representations with FSST and IFE-FSST are. Here and below
we setM0 = 8.

In Figure 2, we provide the recovery errors xrec(tn) −
x(tn), xI,rec(tn) − x(tn) for x(t) by FSST and IFE-FSST,
where xrec(tn) and xI,rec(tn) are given by (40) and (41)
respectively with M0 = 8. Here, we show the error on
[0.125, 0.875) only to ignore the boundary effect. Obviously, IFE-
FSST provides a much sharper time-frequency representation
than FSST.

Next we consider a two-component signal given by

x(t) = x1(t)+ x2(t), x1(t) = cos
(
2π

(
32t +

10

π
cos(2π t)

))
,

x2(t) = cos
(
2π

(
64t +

10

π
cos(2π t)

))
, (44)

where t ∈ [0, 2), and x(t) is uniformly sampled with sample
points tn = n△t, 0 ≤ n < N = 512, △t = 1

256 . Thus, IFs of

x1(t), x2(t) are φ′
1(t) = 32−20 sin(2π t), φ′

2(t) = 64−20 sin(2π t),
which are shown on the top-left panel of Figure 3. In this example
we let σ = 1

32 for the window function.
To this two-component signal, we apply Algorithm 2

to obtain x̃I,rec1 (t) and x̃I,rec2 (t). In the 3rd row of Figure 3

we show the IFE-FSSTs of x̃I,rec1 (t) and x̃I,rec2 (t). The FSST
of x(t) is provided in the top-right panel of Figure 3. Of
course, we can also apply iterative method to FSST to recover
components one by one. Namely, we apply FSST to obtain
xrec1 (t), then apply FSST to x(t) − xrec1 (t) to obtain xrec2 (t).
After that we apply FSST to x(t) − xrec2 (t) to obtain x̃rec1 (t),
and finally to obtain x̃rec2 (t) by applying FSST to x(t) − x̃rec1 (t).
The 2nd row of Figure 3 shows the FSSTs of x̃rec1 (t) and

x̃rec2 (t). Comparing the FSST of x in the top-right panel with
the individual FSSTs in the 2nd row, we see there is not
much improvement of the time-frequency representation
of FSST of x after we apply the iterative component
recovery procedure.

In the 4th row of Figure 3, we provide the recovery errors
for x1(t), x2(t) by FSST and IFE-FSST. Here, we show the error
on [0.125, 1.875). From Figure 3, we see IFE-FSST provides a
much sharper time-frequency representation for x(t). We also
consider FSST and IFE-FSST of two-component x(t) in the noisy
environment and our experiments show that IFE-FSST provides
a sharp time-frequency representation in the noisy environment.
In addition, we consider the 2nd-order IFE-FSST for component
recovery. It does not provide much improvement than IFE-
FSST. This may be due to that the results from IFE-FSST are
hard to improve. Due to that only 15 pictures are allowed to
be included in a article in this journal, we do not present these
results here.
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