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Understanding control mechanisms in biological systems plays a crucial role in

important applications, for instance in cell reprogramming. Boolean modeling allows

the identification of possible efficient strategies, helping to reduce the usually high

and time-consuming experimental efforts. Available approaches to control strategy

identification usually focus either on attractor or phenotype control, and are unable to

deal with more complex control problems, for instance phenotype avoidance. They also

fail to capture, in many situations, all possible minimal strategies, finding instead only

sub-optimal solutions. In order to fill these gaps, we present a novel approach to control

strategy identification in Boolean networks based on model checking. The method is

guaranteed to identify all minimal control strategies, and provides maximal flexibility in

the definition of the control target. We investigate the applicability of the approach by

considering a range of control problems for different biological systems, comparing the

results, where possible, to those obtained by alternative control methods.
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1. INTRODUCTION

The study of control of cellular systems has opened multiple possibilities for application in
bioengineering and medicine. It also provides the possibility to make predictions on model
behavior, for instance about the reachability of phenotypes under certain mutations, that
could be verified experimentally and used for model validation. Experimental approaches for
the identification of effective control targets are usually costly and time consuming. To help
reducing these efforts, mathematical modeling can be used to identify, in silico, potentially useful
interventions that could lead to the reduction of experimental trials [1].

Boolean modeling is often used to model biological systems, since it is able to capture qualitative
behaviors by describing the activating or inhibiting interactions between different species using
logical functions. The species are represented by binary-valued nodes, whose two activity levels
might indicate for instance in a gene-regulatory network whether a certain gene is expressed or
not. The simplicity of the Boolean formalism helps coping with the usual problem of lack of
parameter information when modeling biological processes while capturing the relevant dynamics
of biological systems [2–4].

In the context of control for drug target identification or cell reprogramming, the main
goal is the identification of controls that require a minimal number of system interventions.
Providing multiple alternatives for minimal control interventions is also desirable, so that suitable
interventions for experimental implementation can be found. Furthermore, there are many
different scenarios and goals to which control might be applied, for instance, to enforce or avoid a
specific behavior in a biological system. An example of such a scenario could be a cell differentiation
system where a particular cell type is to be avoided since it can be linked to the development of
cancer or another pathology [5].
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Many approaches have been developed for control of
biological systems, covering different contexts and goals. Some
of them focus on leading the system to an attractor of
interest, starting from a specific initial state [6] or from any
possible initial state [7]. This control problem is known as
attractor control. However, in some cases, a small number of
observable and measurable components is sufficient to capture
the relevant features of the system attractors, for example the
set of biomarkers defining a phenotype. In such cases, it might
be useful to aim the control toward the phenotype defined by
these biomarkers rather than a specific attractor, since fewer
interventions might be sufficient. This approach, which targets
a set of relevant variables instead of a specific attractor, is known
as target control. Several methods have been developed for target
control using different computation techniques [8–11].

A basic approach to control is value percolation, which is
also a core step in many more sophisticated methods [10, 11].
Approaches based on value percolation can be implemented
efficiently [12]. However, they are quite restrictive andmightmiss
many possible control strategies. A step toward the identification
of some of these missed control strategies using trap spaces was
presented in [9]. Although this approach is more flexible than
just value percolation, it also does not identify all the possible
control strategies. In the last years, multiple methods have been
developed for control strategy identification, looking for instance
at the stable motifs of the system [7] or exploiting computational
algebra methods [13]. These approaches are usually focused
on targeting an attractor or subspace and they also do not
generally uncover all possible minimal control strategies. In order
to bridge this gap, recent works have tackled the problem of
attractor control by using basins of attraction, sets of states from
which only a specific attractor is reachable [14]. Such approaches
increase in many cases the amount of strategies identified.
However, they are still limited to control for attractors and lack
flexibility to deal with groups of attractors or phenotypes as well
as with attractor avoidance. To the best of our knowledge, there
is no method that can identify all the optimal control strategies
for a general set of states or attractors.

In this work, we introduce a new approach for control
strategy identification that provides a complete solution set of
minimal controls and allows full flexibility in the control target.
Identifying all the minimal control strategies for a general set of
states is a complex problem. It might require the full exploration
of the state space, which grows exponentially with the size of the
network. To deal with this computational explosion, we explore
model checking techniques. Model checking is a verification
method that allows one to determine whether a transition system
satisfies a specific property. Although originating in the field of
computer science, model checking has been successfully applied
to analyse biological networks and a wide variety of tools have
been developed [15]. Model checking presents many advantages,
for instance the use of symbolic representation, which allows
one to deal with systems with a large number of states and
other problems that could not be handled otherwise. Yet, tackling
a wider and more complex control problem naturally entails
higher computational costs, since many shortcuts and reduction
methods do not apply. Therefore, we investigate efficient

preprocessing techniques that can be used to significantly reduce
the computational cost and make it suitable for application.

As mentioned above, this work presents a model checking-
based method to identify optimal control strategies for any target
subset. We start with a general overview about Boolean networks
(Section 2). Then we introduce the formal definition of control
strategy and show some properties of value percolation that are
used in our approach (Section 3). In Section 4, we introduce
the main concepts of model checking needed for this work and
establish the basis for the control strategy computation with
model checking. The implementation of our approach is also
detailed in this section, together with techniques to reduce the
search space size and improve the performance of the method.
Finally, in Section 5 we show the applicability of our method
to different biological networks and compare our results with
existing control approaches.

2. BACKGROUND: BOOLEAN NETWORKS
AND DYNAMICS

We define a Boolean network as a function f : Bn → Bn,
with B = {0, 1}. The set of variables or components of f is
denoted by V = {1, . . . , n}. Given a Boolean function different
dynamics can be defined depending on the way components are
updated. A dynamics is usually represented by the state transition
graph (STG), a graph whose set of vertices is the state space Bn

and whose edges represent the transitions between them. The
synchronous dynamics SD(f ) defines transitions that update at
the same time all the components that can be updated. Thus, the
synchronous state transition graph has an edge from x ∈ Bn to
y ∈ Bn if and only if x 6= y and y = f (x). In order to better
capture the different times scales that might coexist in a biological
system, the asynchronous dynamics AD(f ) is often used. It defines
transitions that update only one component at a time. Therefore,
its state transition graph has an edge from x ∈ Bn to y ∈ Bn

if there exists i ∈ V such that yi = fi(x) 6= xi and yj = xj for
all j 6= i. The generalized asynchronous dynamics GD(f ) includes
transitions that update a non-empty subset of components. Thus,
given x, y ∈ Bn there is a transition from x to y if there exists a
subset ∅ 6= I ⊆ V such that yi = fi(x) 6= xi for all i ∈ I and
yj = xj for all j /∈ I. To simplify the notation, we use D(f ) to refer
to any of these three dynamics.

A path in an STG is defined as a sequence of nodes x0, x1, . . .
such that there exists an edge from xi−1 to xi for all i ≥ 1.
We denote the set of paths starting in a state x as Paths(x).
Given a state x ∈ Bn, we define Reach(x) = {y ∈ Bn |

∃π ∈ Paths(x) s.t. y ∈ π} and given S ⊆ Bn, Reach(S)
is the set {y ∈ Bn | y ∈ Reach(x) for some x ∈ S}. Note
that x ∈ Reach(x), since x is the 1-element path to x. A set
T ⊆ Bn such that T = Reach(T) is called a trap set. Trap
sets are therefore unions of strongly connected components that
do not admit any outgoing edge. An attractor is a minimal
trap set under inclusion. Attractors correspond to the terminal
strongly connected components of the STG and they might vary
in different updates. In biological systems, attractors consisting
of only one state (steady states) might correspond to different
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FIGURE 1 | State transition graphs of the Boolean function f = (x1 x̄2 ∨ x1x3 ∨ x1 x̄4 ∨ x2x3x4, x̄1 x̄2x3 ∨ x̄1x2 x̄3 ∨ x̄1x3x4, x1x2 ∨ x̄1 x̄2 ∨ x̄1x2 x̄3 ∨ x̄1x2x4 ∨ x̄2 x̄3 x̄4,

x̄1x2x4 ∨ x1 x̄2 x̄3 ∨ x1x2 x̄3 ∨ x1 x̄2x4) in (A) synchronous, (B) asynchronous, and (C) general asynchronous dynamics. The trap spaces, denoted by colored boxes,

(0∗∗0, 10∗∗, 10∗1, 1001, ∗∗∗∗) and the steady state (1001) are the same in the three dynamics, while the cyclic attractors (marked in blue) vary. All three dynamics

admit one cyclic attractor, the set {0110, 0010, 0000} in the synchronous case, {0100, 0110, 0010} in the asynchronous and {0100, 0110, 0010, 0000} in the general

asynchronous. (D) Asynchronous dynamics of the restriction of f to � = 1∗∗∗, f↾� = (1, 0, x2 ∨ x̄2 x̄3 x̄4, x̄2 x̄3 ∨ x2 x̄3 ∨ x̄2x4). � percolates to S = 10∗∗ under f↾� . S is

the percolated subspace from � with respect to f↾� since S = F (f↾� )(S) and consequently no further percolation is possible.

FIGURE 2 | (A) Asynchronous dynamics of the Boolean function

f (x) = (x̄2 ∨ x1 x̄3, x1 x̄3 ∨ x2x3, x̄1 x̄2 ∨ x2x3) with two steady states 110 and 011

(marked in gray). The states and paths inside the subspace � = ∗∗0 (dotted)

are marked in red. (B) Asynchronous dynamics of the restriction of f to

� = ∗∗0, f↾� (x) = (x̄2 ∨ x1, x1, 0). � is a control strategy for P = 110 in AD(f ). �

does not percolate to P nor to any non-trivial trap space. T = 110 ⊆ P (in gray)

is the only minimal trap space of f↾� and is complete in D(f↾� ).

cell fates, while attractors consisting of more than one state
(cyclic attractors) might be associated with sustained oscillation.
Figure 1 shows a representation of the three different dynamics
(synchronous, asynchronous, and generalized asynchronous) for
a Boolean network in four variables. States belonging to attractors
are denoted in bold.

Given I ⊆ V and c ∈ Bn we define the subspace induced by
I and c as the set 6(I, c) = {x ∈ Bn | xi = ci ∀i ∈ I}. We

denote a subspace by writing the value 0 or 1 for variables that
are fixed and ∗ for the free variables. Given a subspace S, we use
Si to denote the value of a fixed component i. For example, 0∗∗1
denotes the subspace fixing the first variable to 0 and the fourth
to 1, that is, S = {x ∈ Bn | x1 = 0, x4 = 1} and S1 = 0 and
S4 = 1. A trap space is a subspace that is also a trap set. Since the
minimal subspace containing a state and all of its successors in a
state transition graph is the same in all updates, trap spaces of a
Boolean network, as opposed to attractors or trap sets, are always
the same in any update. The Boolean network shown in Figure 1

has five trap spaces: 0∗∗0, 10∗∗, 10∗1, 1001, ∗∗∗∗.
In this work we consider interventions that fix (or “freeze”)

certain components to specific values. Note that a set of such
interventions can be seen as a subspace and the effect that
these interventions have on the dynamics can be described by
restricting the original Boolean function to the intervention
subspace. Given a Boolean function f and a subspace2 = 6(I, c)
we define the restriction of f to the subspace2 as:

f↾2 : 2→ 2, where for all i ∈ V , (f↾2 )i(x) =

{

fi(x), i /∈ I,
ci, i ∈ I.

Note that all the definitions above can be applied to the restriction
by identifying f↾2 with a Boolean function on Bn−|I|. An example
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of the dynamics of a Boolean function restricted to a subspace is
shown in Figure 2.

3. CONTROL STRATEGIES: VALUE
PERCOLATION AND COMPLETENESS

A control strategy is defined as a set of interventions that lead
the controlled system to a target subset. This target subset usually
represents a specific stable behavior, for instance an attractor or
a subspace representing a phenotype. The formal definition of a
control strategy is given below.

Definition 3.1. Given a Boolean network f and a subset P ⊆ Bn,
a control strategy for the target P in D(f ) is a subspace 2 ⊆ Bn

such that, for any attractorA of D(f↾2 ),A ⊆ P.

In other words, a subspace 2 = 6(I, c) is a control strategy
for a subset P if fixing the variables in I to their corresponding
values in c forces the system to have attractors only in the desired
target P. Note that the asynchronous and generalized dynamics
for a control strategy can contain non-attractive cycles, which
give rise to infinite trajectories that do not reach any attractor.
In application, such trajectories are usually viewed as having
probability zero and are not further considered in the context
of attractor analysis and control. We adopt the same view in
this work.

The size of a control strategy 2 = 6(I, c) is defined as
the size of I, and is therefore the number of interventions.
Optimal control strategies are the ones with the lowest number
of interventions, that is, the maximal subspaces with respect to
inclusion. An example of a control strategy is shown in Figure 2,
where fixing the variable x3 = 0 is enough to guarantee that the
system only has one attractor, the target steady state 110.

Note that Definition 3.1 considers a subset as the control
target, encompassing both attractor control and target control.
Moreover, it provides the flexibility to deal with further control
problems, such as control to union of attractors (P =

⋃

i Ai) or
attractor avoidance (P = Bn\A).

3.1. Percolation
In this subsection we introduce formally the concept of
percolation, used in many approaches to control. We also deduce
properties of percolated subspaces that are useful for control
strategy identification and that are used later in our approach.

The concept of value percolation is based on the idea that
fixing of some components might induce other components to
get fixed downstream. We define the percolation function with
respect to f as the function that associates to every subspace S the
subspace determined by the components fixed by f within S.

Definition 3.2. Given a Boolean function f , the percolation
function with respect to f is the function F(f ) : S → S , S 7→
F(f )(S), where S is the set of all subspaces in Bn and F(f )(S) is the
smallest subspace that contains f (S) (with respect to inclusion).

Explicitly, given a subspace S ∈ S , F(f )(S) = 6(I, c) with
I = {i ∈ V | |fi(S)| = 1} and c any state Bn such that in ci = fi(x)
for all x ∈ S for i ∈ I.

Definition 3.3. Let f be a Boolean function and S, S′ ⊆ Bn two
subspaces. We say that the subspace S percolates to S′ under f if
and only if there exists k ≥ 0 such that F(f )k(S) = S′.

For any trap space T and its image T′ = F(f )(T), we have T′ ⊆ T,
since by definition F preserves the fixed components of T. The
free components in T might get fixed or remain free depending
on the Boolean function f . In fact, T′ is a trap space of f , since
for any fixed variable i ∈ V in T′, fi(x) = T′i by definition of F.

Moreover, F(f )k(T) is a trap space for any k ≥ 0. An example of
a subspace � = 1∗∗∗ percolating to another subspace S = 10∗∗
is shown in Figure 1. Both� and S are trap spaces of f↾� .

Remark 3.4. Let f be a Boolean function and S ⊆ Bn a subspace.
Let k ≥ 0 and Sk = F(f↾S )

k(S). Then Sk is a trap space of f↾S for
every k ≥ 0.

Note that the paths in the dynamics of F(f ) starting at a trap
space T cannot have cycles and, consequently, all the reachable
attractors from T in these dynamics are fixed points. When
considering the synchronous dynamics of F(f ), each initial trap
space T leads to a unique fixed point.

Definition 3.5. Given a Boolean function f and a trap space T,
we call the unique fixed point T′ of the synchronous dynamics of
F(f ) reachable from T the percolated subspace from T with respect
to f , that is, T′ = F(f )k(T) with k such that F(f )k(T) = F(f )r(T)
for all r ≥ k.

In order to relate value percolation to control strategies, we derive
some dynamical properties of percolated subspaces.

LEMMA 3.6. Let f be a Boolean function, T ⊆ Bn a trap space. Let
k ≥ 0 and Tk = F(f )k(T). Then for every x ∈ T there exists a path
in D(f ) from x to some y ∈ Tk.

PROOF. It is enough to show that if T is a trap space, then
for every x ∈ T there exists a path in D(f ) from x to some
y ∈ F(f )(T). Set T′ = F(f )(T), with I′ ⊆ V being the set of
fixed variables in T′. Since T′ ⊆ T, for all i ∈ I′, fi(x) = T′i by
definition of F. Now let us look at every update separately. In the
asynchronous dynamics, for every i ∈ I′, x admits a successor y
in AD(f ) with yi = T′i and yj = xj for j 6= i; therefore there exists
a path from any state in T to T′. In the synchronous dynamics,
fi(x) = T′i for all i ∈ I′ and so x admits a successor y ∈ T′. The
case of the generalized asynchronous dynamics follows from the
other cases, since all the paths in SD(f ) or AD(f ) are also paths in
GD(f ).

COROLLARY 3.6.1. Let f be a Boolean function, S ⊆ Bn a
subspace. Let k ≥ 0 and Sk = F(f↾S )

k(S). Then for every x ∈ S

there exists a path in D(f↾S ) from x to some y ∈ Sk.

LEMMA 3.7. Let f be a Boolean function and S ⊆ Bn a subspace.
Let k ≥ 0 and Sk = F(f↾S )

k(S). Then A is an attractor of f↾S if and

only ifA ⊆ Sk andA is an attractor of f↾
Sk
.
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PROOF. As noted in Remark 3.4, Sk is a trap space of f↾S . Then
f↾S (x) = f↾

Sk
(x) for all x ∈ Sk. Therefore, any attractor of f↾

Sk
is

also an attractor of f↾S and if A is an attractor of f↾S and A ⊆ Sk,
then A is also an attractor of f↾

Sk
. Let A be an attractor of f↾S .

Then A = Reachf↾S (A). By Corollary 3.6.1, for every x ∈ S

there exists a path in f↾S from x to some y ∈ Sk. Therefore,
Reachf↾S (A)∩ Sk 6= ∅ and so, Sk ∩A 6= ∅. Since Sk is a trap space

of f↾S ,A ⊆ Sk. Therefore, all the attractors of f↾S are contained in
Sk and, consequently, are also attractors of f↾

Sk
.

COROLLARY 3.7.1. Let f be a Boolean function and S ⊆ Bn a
subspace and P ⊆ Bn a subset. Let k ≥ 0 and Sk = F(f↾S )

k(S). S is
a control strategy for P if and only if Sk is a control strategy for P.

Corollary 3.7.1 provides a way to identify control strategies
or discard candidate subspaces by using value percolation.
Moreover, checking whether the percolated subspace satisfies
the conditions of Definition 3.1 instead of the original subspace
allows us to reduce the dimension of the restricted network
and, consequently, to simplify the verification problem. In the
example shown in Figure 1, it would be enough to check the
subspace S to know whether the subspace� is a control strategy.

Percolation-only methods select candidate subspaces and
percolate them. If the resulting subspace is contained in the target
subspace, the candidate subspace is identified as a control strategy
[10]. This type of control strategies can be identified efficiently
[12]. However, additional control strategies might exist, that do
not directly percolate to the target subspace, as shown in [9],
or even to non-trivial intermediate trap spaces. An example
of this scenario can be seen in Figure 2, where the control
strategy � does not percolate to the target nor to any non-trivial
trap space. With our approach, value percolation can also be
exploited as a first step toward control strategy identification,
as a means to achieve dimensionality reduction, as described by
Corollary 3.7.1.

3.2. Completeness
To improve control detection, we propose to define sufficient
conditions on the system restricted to a candidate subspace to
identify this candidate as a control strategy. Moreover, conditions
on minimal trap spaces can be defined in order to deduce
properties of the system attractors, in particular, their belonging
to a target subset.

DEFINITION 3.8. A set of trap spaces T is complete in D(f ) if
and only if for every attractor A of D(f ) there exists T ∈ T such
that A ⊆ T. A Boolean function f is complete in the dynamics
D(f ) if its minimal trap spaces are complete in D(f ).

Completeness of the minimal trap spaces has been used for
attractor approximation and it can be detected using model
checking as described in [16]. The following proposition presents
sufficient conditions for a subspace to be a control strategy. Given
a candidate subspace, if the set of minimal trap spaces of the
restricted system is complete and contained in the target subset,
then the candidate subspace is a control strategy for that subset.

PROPOSITION 3.9. Let f be a Boolean function, P,2 ⊆ Bn

subspaces and T the set of minimal trap spaces of f↾2 . If all the
trap spaces of T are contained in P and T is complete in D(f↾2 ),
then2 is a control strategy of P.

PROOF. Let A be an attractor of D(f↾2 ). Since T is complete in
D(f↾2 ), there exists a minimal trap space T ∈ T such thatA ⊆ T.
Therefore,A ⊆ T ⊆ P.

Proposition 3.9 provides sufficient conditions that allow us
to identify new control strategies missed by percolation-based
approaches. An example of such a control strategy is shown in
Figure 2. The subspace � is not a trap space nor percolates to
any smaller subspace. Since f↾� is complete in AD(f↾� ) and its
only attractor is included in the target P, � is identified as a
control strategy. We refer to this approach for control strategy
identification as the completeness approach. However, it still
does not characterize all the possible control strategies satisfying
Definition 3.1. Figure 3 shows a subspace � that is a control
strategy for the target P but, since � is the unique trap space in
f↾� and � * P, Proposition 3.9 cannot be applied. Thus, � is
not detected as a control strategy by the completeness approach.
To obtain the full solution set, we formulate a model checking
approach, as shown in the next section.

4. CONTROL STRATEGIES WITH MODEL
CHECKING

4.1. Model Checking
This section provides a practical introduction to the model
checking concepts required for the description of our approach.
For a more extensive and detailed explanation of model checking
we refer the reader to [17]. Model checking is a formal method
used in computer science to solve verification problems. Its
application to the control strategy problem presents many
advantages, for instance the use of symbolic representation,
which allows one to deal with systems with a large number of
states, like STGs of Boolean networks. Moreover, many efficient
algorithms have been developed and are available for running
model checking queries. An overview of existing model checking
tools in the context of biochemical networks analysis can be
found in [15].

Model checking allows one to verify whether a given transition
system satisfies a specific property. A transition system is defined
as a set of states and a set of transitions, which represent changes
from one state to another. Formally, a labeled transition system
(LTS) is defined by a tuple (S,T,L) where S is a finite set of states,
T ⊆ S × S is a transition relation such that (x1, x2) ∈ T if
there exists a possible transition from state x1 to state x2 and
L : S → 2AP is a labeling function with AP a finite set of atomic
propositions. In the following, a transition (x1, x2) will also be
denoted by x1 → x2. The labeling function L gives a set L(x) ∈
2AP of atomic propositions for each state xwhich includes exactly
the atomic propositions satisfied by x. In the Boolean context,
an STG defines an LTS, where the set of states is Bn and the
transitions are defined by the Boolean function and the type of
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FIGURE 3 | The asynchronous dynamics of a Boolean function f and its restriction f↾� , with � = 0∗∗∗, are represented in (A,B), respectively. Attractors are marked in

gray. � is a control strategy for P = 00∗∗ in AD(f ). � is not a trap space in f and it does not percolate to the target P nor to any other trap space in f↾� . Since � is the

unique trap space in f↾� and � * P, � would not be identified as control strategy by the completeness approach.

update that is chosen. For our purposes, we need a deadlock-
free transition system, so we add extra transitions (x, x) ∈ T

for every steady state x ∈ Bn. We use the atomic propositions
AP = {(v = c) | v ∈ V , c ∈ B} and define the labeling function
by (v = c) ∈ L(x) if and only if xv = c.

There are different ways to express properties of a transition
system. In our case, we use Computational Tree Logic (CTL).
CTL is based on a branching notion of time, where the behavior
of the system is represented by a tree of states. In the case of
Boolean networks, one can imagine that every path starting in
a state x ∈ Bn is represented as a branch in a tree rooted in x. In
the following we introduce the main concepts of CTL.

We distinguish between state properties and path properties.
In this context, a path is an infinite sequence x0, x1, . . . ∈ S such
that (xi−1, xi) ∈ T for all i ≥ 1. A statement about a state or a
path can be made using a CTL formula. A CTL state formula φ
over the set of atomic propositions AP is of the form

φ : = a | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | Eϕ | Aϕ

where a ∈ AP is an atomic proposition, E is the exists operator,A
is the for all operator, φ, φ1, and φ2 are CTL state formulas and ϕ
is a CTL path formula, which in our work will be of the form:

ϕ : = Fψ | Gψ

where F is the future operator,G the global operator, andψ a CTL
state formula. Note that we do not use the full expressiveness of
CTL but only a subset of operators necessary to formulate our
control queries. In accordance to the definition of semantics of
CTL formulas, a state formula is evaluated for a state whereas
a path formula is evaluated for an infinite path. When φ = a,
where a is an atomic proposition, if a ∈ L(x) we say that the CTL
state formula φ is satisfied at the state x and we write x |H φ.
For example, if φ = (i = 1) for some i ∈ V , then x |H φ if
(i = 1) ∈ L(x), that is xi = 1. Analogously, we write π |H ϕ when
the CTL path formula φ is satisfied by a pathπ . SeeTable 1 for the
recursive definition of the satisfaction relation |H for transition
systems and CTL formulas used in this work. Since we only use

TABLE 1 | Satisfaction relation and semantics for the CTL formulas used in this

work, with a ∈ AP an atomic proposition, x ∈ S a state, π a path in the transition

system, ϕ a path formula and φ, φ1, and φ2 state formulas.

x |H true

x |H a iff a ∈ L(x)

x |H φ1 ∨ φ2 iff x |H φ1 or x |H φ2

x |H φ1 ∧ φ2 iff x |H φ1 and x |H φ2

x |H ¬φ iff x 2 φ

x |H Eϕ iff ∃π ∈ Paths(x) s.t. π |H ϕ

x |H Aϕ iff ∀π ∈ Paths(x),π |H ϕ

π |H Fφ iff ∃y ∈ π s.t. y |H φ

π |H Gφ iff ∀y ∈ π , y |H φ

x |H EFφ iff ∃π ∈ Paths(x), ∃y ∈ π s.t. y |H φ

x |H AGφ iff ∀π ∈ Paths(x),∀y ∈ π , y |H φ

FIGURE 4 | (A) Asynchronous state transition graph of a Boolean function

with two attractors, {101} and {010, 110} (marked in gray). (B) TS for the STG

shown in (A). Note that a self-loop has been added in the steady state 101 to

have a deadlock-free TS. The states 001, 011, 101, and 111 satisfy the state

formula AGφ3, where φi = (i = 1), while EFφ3 is satisfied by all the states

except 010 and 110. The path that starts at 000 and then oscillates between

010 and 110 (in red) satisfies for instance Fφ2 and G¬φ3 but not Gφ1.

atomic propositions of the form (v = c) where v ∈ V and c ∈ B
and (v = c) ∈ L(x) if and only if xv = c, atomic propositions
can be interpreted in each state x according to the values of each
variable in x. Thus, to simplify the notation, given an atomic
proposition φ = (v = c), we define φ(x) = (xv = c) so that
φ is satisfied by x if and only if φ(x) = true. Figure 4 shows some
examples of state and path formulas which are satisfied in an STG.
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4.2. Control With Model Checking
In this section, we present the basis of our new approach for
the identification of all the minimal control strategies, based on
model checking. To do so, we express the definition of control
strategy in terms of CTL formulas. We start by rewriting it in
terms of paths.

LEMMA 4.1. Let f be a Boolean function,2 ⊆ Bn a subspace and
P ⊆ Bn a subset. The following are equivalent:

1. 2 is a control strategy for P in D(f ).
2. For every x ∈ 2 there exists y ∈ P such that there exists a

path in D(f↾2 ) from x to y and there does not exist any path in
D(f↾2 ) from y to any state outside P (that is, all paths starting
at y are contained in P).

PROOF. (⇒) Let x ∈ 2 and let A be an attractor of D(f↾2 ) that
can be reached from x. Since2 is a control strategy,A ⊆ P. Take
y ∈ A. Since A is reached from x, there exists a path from x to
y ∈ A ⊆ P and there are no paths from y leaving P.

(⇐) LetA be an attractor of f↾2 . Let x ∈ A. Since x ∈ A ⊆ 2,
there exists y ∈ P such that there exists a path in D(f↾2 ) from x to
y and there does not exist any path in D(f↾2 ) from y to any state
outside P. SinceA is an attractor, y ∈ A and ReachD(f↾2 )(y) = A.
Then, A ∩ Bn\P = ∅, that is, A ⊆ P, and 2 is a control strategy
for P.

Before expressing Lemma 4.1 in terms of CTL formulas, we
introduce a state formula ψS that is satisfied at a state x if and
only if the state x belongs to the subspace S = 6(I, c):

ψS(x) =
∧

i∈I

(xi = ci).

This formulation can be extended to subsets as well. Clearly,
every subset can be written as the union of subspaces, since a
singleton set constitutes a subspace. Let P ⊆ Bn be a subset. We
define φP to be satisfied at a state x if and only if the state x belongs
to x ∈ P:

φP(x) =
∨

S∈S

ψS(x)

where S is a subspace cover of P.
Now we can express Lemma 4.1 in terms of CTL formulas,

using φP(x) as defined above.

LEMMA 4.2. Let f be a Boolean function,2 ⊆ Bn a subspace and
P ⊆ Bn a subset. The following are equivalent:

1. 2 is a control strategy for P in D(f ).
2. 8P(x), defined as 8P(x) = EF(AG(φP))(x), is satisfied in

D(f↾2 ) for every x ∈ 2.

PROOF. 8P is satisfied at a state x if and only if there exists a path
x = x0, x1, ... such that AG(φP) is satisfied at xi for some i ≥ 1.
Let y = xi. AG(φP) is satisfied at y if and only if for all paths
y = y0, y1, ..., for all i ≥ 0, φP is satisfied at yi, that is, yi ∈ P.
Thus, by Lemma 4.1,8P is satisfied for all x ∈ 2 if and only if2
is a control strategy for P in D(f ).

Note that 8P is not affected by the presence of non-attractive
cycles since, by definition, they contain at least one state with an
outgoing trajectory leading to an attractor.

The CTL formula8P defined in Lemma 4.2 provides a way to
determine whether a candidate subspace is a control strategy for
P. The next section presents the implementation of this idea for
control strategy identification.

4.3. Computation of Control Strategies
Building on the model checking formulas derived in the previous
section, we develop a method for control strategy identification.
The formula derived in Lemma 4.2 can be used to define a
CTL query that can determine whether a candidate subspace
is a control strategy for a target subset. In addition, in order
to improve the performance of the method, preliminary checks
on the candidate subspace and the restricted network can be
conducted to possibly discard it without exhaustive exploration.
Moreover, the dimension of the problem, that is, the free variables
of the Boolean function, can be reduced by restricting the
function to the percolated subspace instead of the candidate
subspace, as stated in Section 3.1. The complete implementation
of the control strategy identification is detailed in Algorithm 1

and explained in the following.
The main algorithm takes as inputs a constant-free Boolean

function f (i.e. all coordinate functions of f are non-constant),
a target subset P and the type of update (asynchronous,
synchronous or generalized) and returns the minimal control
strategies for P in the respective dynamics. If the original
Boolean function is not constant-free, a pre-processing step is
applied in which the constant function values are percolated.
Instead of the original function we then consider its restriction
to the corresponding percolated subspace. As discussed in
Section 3.1, this pre-processing does not impact the attractors of
the system.

• For each candidate subspace S, its percolated subspace with
respect to f↾S , S

∗, is computed (line 9), as defined in Definition
3.5. By Corollary 3.7.1, S∗ is a control strategy if and only if S
is a control strategy, so we perform all the checks on S∗.
• If S∗ is contained in the target subset P, then S is a control

strategy (lines 12–13). If not, the algorithm continues to
compute the restriction to S∗, f ∗, and its minimal trap spaces
(lines 16–17).
• If there exists a minimal trap space disjoint from the target, the

candidate subspace is discarded, since eachminimal trap space
contains at least one attractor (line 18).
• Trap spaces that are partially contained in the target subset are

analyzed first (line 19). Since f (x) = f↾T (x) for all x ∈ T, we
can reduce the function toT and run themodel checking query
for the restriction to T, f ∗∗, (lines 22–24). If the formula is not
satisfied in one of these trap spaces, the candidate subspace is
discarded.
• Otherwise, the algorithm concludes by checking the CTL

formula 8P for the restricted function f ∗ and deciding
whether S is a control strategy (lines 29–30).

Since the aim is to identify optimal control strategies, the
candidate subspaces S are taken randomly fixing an increasing
number of variables, so that supersets of sets already defining
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a successful intervention are not considered (lines 5–8).
Furthermore, an upper bound m for the size of the control
strategies can be set. Moreover, the decisions made for each
percolated subspace are stored in two variables ST (for positively
checked subspaces) and SF (for negatively checked subspaces) to
avoid repeating the same verification query.

Algorithm 1| Control strategies for a target subset.

Input: f Boolean function, P target subset, D type of update,
m size limit

Output: control strategies for P

1: function CONTROLSTRATEGIES(f , P, D,m)
2: CS← ∅

3: ST← ∅ ⊲ ST stores positively checked subspaces
4: SF← ∅ ⊲ SF stores negatively checked subspaces
5: for i in {1, . . . , min(m, n)} do: ⊲ n: number of variables
6: S← {S subspace : |fixed(S)| = i}
7: for S in S do:
8: if (S 6⊆ S’ for all S’ in CS) then:
9: S∗← percolate(f, S)
10: if S∗ ∈ ST then: add S to CS
11: if S∗ ∈ ST ∪ SF then: break
12: if S∗ ⊆ P then:
13: add S to CS
14: add S∗ to ST
15: else:
16: f∗← reduce(f, S∗)
17: minTS←minimalTrapSpaces(f∗)
18: if (T ∩ P 6= ∅ for all T inminTS) then:
19: halfTS← {T inminTS if T* P}
20: valid← true

21: for T in halfTS do:
22: f∗∗← reduce(f∗, T)
23: 8P ← CTLFormula(f∗∗, P)
24: if not runMC(f∗∗, D,8P) then:
25: valid← false

26: add S∗ to SF
27: break

28: if valid then:
29: 8P ← CTLFormula(f∗, P)
30: if runMC(f∗, D,8P) then:
31: add S to CS
32: add S∗ to ST
33: else

34: add S∗ to SF
35: else

36: add S∗ to SF
37: return CS

The algorithm presented above is implemented using
PyBoolNet [18], a Python package that allows generation and
analysis of Boolean networks. PyBoolNet uses NuSMV to decide
model checking queries for Boolean networks. It also provides an
efficient computation of trap spaces for relatively large networks.

5. RESULTS

In this section we study the applicability of our method
to different biological networks. We start by applying our
method to a network modeling the epithelial-to-mesenchymal
transition, considering different control targets: attractor,
subspace and subset avoidance. In addition, we compare our
approach to current control methods in different Boolean
networks for attractor and target control. We show that our
method is able to identify all the minimal control strategies
identified by other approaches, uncovering in some cases
minimal control strategies missed by them. All the results
presented here were obtained with a regular desktop 8-
processor computer, Intel R©CoreTM i7-2600 CPU at 3.40
GHz, 16 GB memory. The running times vary significantly
from scenario to scenario, depending on the type of target
considered and the upper bound set on the size of the
control strategies. They can range from seconds or minutes,
for small control strategies or simple networks, to hours
or days of computation for complex target subsets or large
control strategies.

5.1. Case Study: EMT Network
The network considered in this case study was recently
introduced by Selvaggio et al. [20] to model how
microenvironmental signals influence cancer-related phenotypes
along the epithelial-to-mesenchymal transition (EMT). The
original network consists of 56 components, ten of them being
inputs and two readouts or outputs (see Figure 5). Since the
original model is multivalued, we work with its booleanized
version obtained with GINsim [19]. This booleanization maps
a multivalued component of maximum value m to m Boolean
components. For instance, a component taking the values 0, 1,
2, 3 is encoded using 3 Boolean variables that would take values
000, 100, 110, 111, respectively (see Table 2). Although this
method introduces states that do not correspond to any value of
the multivalued variable (non-admissible states), these cannot
be part of any attractor since they always have at least one path
to an admissible state and do not have incoming transitions
from admissible states. Therefore, the asymptotic behavior
generated strictly replicates the original model. The booleanized
network of this case study consists of 60 Boolean variables,
whose regulatory functions can be found in the PyBoolNet
repository [18].

The asynchronous dynamics has 1,452 attractors, all of
them steady states. They are classified according to the values
of the readout components AJ and FA, which represent
the different degrees of cell adhesions by adherens junctions
and focal adhesions, respectively [20]. The eight resulting
biological phenotypes are divided in four groups: epithelial (E1),
mesenchymal (M1, M2, M3), hybrid (H1, H2, H3), and unknown
(UN) (see Table 2).

To show the flexibility of our method, we analyse different
control targets. We start by targeting single steady states
(attractor control). Then, we target the subspaces corresponding
to each phenotype (target control). Finally, we study the
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FIGURE 5 | EMT multivalued network. Boolean nodes are represented by ellipses and multivalued nodes by rectangles. Input and output nodes are colored in gray

and black respectively. Image obtained using GINsim [19], model from [20]. Further information about the model can be found in [20].

TABLE 2 | Relation of the phenotypes of the EMT network, the values of the multivalued readouts (AJ, FA) in bold, and the values of the equivalent Boolean components

(AJ1, AJ2, FA1, FA2, FA3).

AJ AJ1 AJ2 FA FA1 FA2 FA3 Number of steady states

Epithelial phenotype E1 2 1 1 0 0 0 0 60

Hybrid phenotypes H1 2 1 1 1 1 0 0 40

H2 1 1 0 2 1 1 0 36

H3 2 1 1 3 1 1 1 48

Mesenchymal phenotypes M1 0 0 0 1 1 0 0 208

M2 0 0 0 2 1 1 0 368

M3 0 0 0 3 1 1 1 672

Undefined phenotype UN 0 0 0 0 0 0 0 20

The number of steady states belonging to each phenotype is also shown.

avoidance of the hybrid phenotype, setting as target the
complement of the general hybrid phenotype.

5.1.1. Attractor Control: Steady States
Here we consider the problem of attractor control. Since the
control targets are steady states, the minimum number of
interventions in each control strategy is at least the number
of inputs (each input component needs to be fixed to the
corresponding value in the attractor).

For each of the 1,452 steady states, the control strategies up
to size 13 were identified. Seven hundred and eighty-eight steady

states have minimal control strategies of size 10, meaning that the
dynamics can be controlled to the steady state only by fixing the
values of the input components to their values in the attractor.
Of the remaining ones, 396 need an extra component to be fixed,
212 require fixing at least two more components and the last 56
steady states require fixing three extra components.

Figure 6 shows the number of control strategies identified
for each size (10–13) with steady states grouped by phenotype,
distinguishing between control strategies identified by direct
percolation or only by the model checking approach. In most
of the cases, our approach is able to identify many control
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FIGURE 6 | Number of control strategies identified for the steady states grouped by phenotype and size. The control strategies obtained by direct percolation are

represented in red and the additional control strategies identified by model checking in green. The number of steady states per phenotype can be found in Table 2.

strategies that are missed by direct percolation. In addition,
we observe that the mesenchymal phenotypes are the ones
with the highest amount of control strategies, which is to be
expected since they are also the ones containing more attractors.
The number of steady states per phenotype can be found in
Table 2. Interestingly, no control strategies consisting of only
input variables lead to hybrid steady states.

5.1.2. Target Control
The minimal control strategies up to size 3 are identified for
each of the phenotypes, taking as target the subspace defined
by the corresponding values of the phenotypic components in
each case (see Table 2). The five phenotypic components are
excluded from the candidate interventions, since they represent
the readouts of the model that we want to control. Table 3
shows the number of control strategies identified per phenotype
and size. Similarly to the case of attractor control, we observe
that the phenotypes with higher number of control strategies
are the mesenchymal phenotypes (over a hundred), while
the epithelial and the hybrid phenotypes have fewer or no
control strategies up to size 3. This is consistent with the bias
of the model toward the mesenchymal phenotypes in terms
of attractors.

All of the control strategies obtained are also identified by
direct percolation, except for three minimal control strategies for
the phenotype M3 that are only identified by model checking.
These are: {BCat-AJ = 1, GSK3B = 1, ITG-AB = 1}, {ECad-AJ1
= 1, GSK3B= 1, ITG-AB= 1}, and {ECad-AJ2= 1, GSK3B= 1,
ITG-AB= 1}.

5.1.3. Avoidance of Hybrid Phenotypes
According to [20], hybrid phenotypes may provide advantageous
abilities to cancer cells such as drug resistance or tumor-initiating
potential. Therefore, interventions avoiding these phenotypes
might be good candidates for drug targets in therapeutic
treatment against cancer cells presenting these traits.

The authors of [20] define the hybrid phenotype as the
one containing steady states with both components AJ and FA
activated, that is, AJ ≥ 1 and FA ≥ 1. Therefore, the subset
defining the avoidance of the hybrid phenotype is

P = {AJ1 = 0, AJ2 = 0} ∪ {FA1 = 0, FA2 = 0, FA3 = 0}.

As in the previous case, the five phenotypic components are
excluded from the candidate interventions. Setting the upper
bound on the size of the control strategies to 1, 12 control
strategies are obtained:

{ECad= 0}, {ROS= 1}, {SLUG= 1}, {SNAIL= 1}, {TGFB= 1},
{TGFBR= 1}, {ZEB= 1},
{BCat= 0}, {CSL= 1}, {SMAD= 1}, {TCF-LEF= 0},
{miR200= 0}.

The first seven control strategies can be identified using direct
percolation to the maximal subspaces of the target subset. The
last five are not identified by using only percolation but are
captured by the model checking approach. Two of the obtained
interventions correspond to input variables (ROS and TGFB)
while the other ten correspond to internal components. Looking
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TABLE 3 | Number of minimal control strategies identified per size for each phenotype.

Phenotype E1 H1 H2 H3 M1 M2 M3 UN

Size 1 0 0 0 0 0 0 0 0

Size 2 0 0 0 2 3 3 17 0

Size 3 0 0 6 2 113 111 83 14

All the control strategies are obtained by direct percolation except three control strategies of size 3 for the phenotype M3 which are only identified by model checking.

TABLE 4 | Overview of the versatility of the different control methods in terms of the types of targets and update schemes.

Control target Update

Method Tool Steady state Trap space attractor Complex attractor Subspace Arbitrary subset Async Sync Gen. async

Basins BA CABEAN [14] X X X – – X – –

Stable motifs SM StableMotifs [7] X X – – – X – –

Percolation-only PO Caspo [21] X X – X – X X X

Trap spaces TS PyBoolNet [9] X X – X – X X X

Completeness CN PyBoolNet X X – X – X X X

Model checking MC PyBoolNet X X X X X X X X

at the regulatory functions, we observe that TGFBR is uniquely
regulated by TGFB, so setting TGFB to 1 implies that TGFBR
is also set to 1 and, therefore, these interventions are equivalent
in terms of their effect on phenotypic components. Moreover,
since there are no control strategies of size 1 for individual
phenotypes, we deduce that these interventions lead to systems
where multiple phenotypes coexist, none of them being hybrid.

The components involved in the control strategies identified
include the epithelial markers (ECad and miR200) and the
mesenchymal ones (BCat, SNAIL, SLUG, TCF-LEF, and ZEB)
as described in [20]. In addition, the authors of [20] performed
a systematic analysis of the effect of single mutants on the
attractor landscape, excluding the input variables. All the single
mutants corresponding to the non-input interventions found by
our approach were identified as having only attractors in non-
hybrid phenotypes. Moreover, there was no other single mutation
that produced this result. In other words, the results obtained
by our approach are in complete correspondence to the ones
presented in [20].

5.2. Comparison With Other Methods
In this section, we compare the model checking approach
to other control methods currently available. We show
that our method is able to capture all the minimal control
strategies identified by other methods, uncovering in some
cases minimal control strategies that might be missed
by them.

In order to be able to compare different approaches, certain
common features need to be chosen. Here, we consider
control for any possible initial state. We separately compare to
methods tackling attractor control and target control. Although
approaches for target control can also be used for attractor
control when the target attractor is a steady state or minimal
trap space, they are usually aimed at targeting larger subspaces,

determined for example by a phenotype, which often include
several attractors. For this reason, we consider two different
scenarios: one for attractor control and one for target control.
The case of an arbitrary subset as target could not be considered
for comparison, since no other method, to our knowledge, allows
this possibility.

The comparison presented here encompasses each of the
main approaches for control strategy identification discussed in
previous sections (an overview of the main features of the control
methods is shown in Table 4):

• For attractor control:

• Stable-motifs approach (SM), attractor control method
based on the identification of stable motifs as described in
[7].
• Basins approach (BA), attractor control method that uses
the basin of attraction of the target attractor to identify
control strategies as implemented in [14].
• Model checking approach (MC), as presented in Section 4.

• For target control:

• Percolation-only approach (PO), target control method
based on percolation into the target subspace as
implemented in [21].
• Trap-spaces approach (TS), target control method based on
percolation into selected trap spaces introduced in [9].
• Completeness approach (CN), introduced in Section 3.2.
• Model checking approach (MC), presented in Section 4.

Since the methods for attractor control considered here (BA
and SM) only work for asynchronous update, the comparison
is only made for this dynamics. In the case of target control,
control strategies are identified for both synchronous and
asynchronous dynamics.
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TABLE 5 | Main features of the biological networks used in the comparison.

Network Size Inputs Outputs Attractors

Steady Cyclic

Cell-Fate [2] 28 3 3 27 0

MAPK [3] 53 4 3 12 6

T-LGL [4] 60 6 3 0 3

Input components are fixed in the T-LGL network and free in the Cell-Fate and MAPK

networks, unless specified otherwise.

In view of the different nature of each method, we do not
compare their running times. Some approaches require the
computation of the system attractors to identify the control
strategies (BA, SM). Others do not allow the choice of a certain
attractor as target and identify control strategies for all the
attractors simultaneously (SM). Therefore, a fair comparison
with respect to the running times is hard to achieve. For this
reason, we focus on the amount and size of the control strategies
identified, provided that the program terminates within several
hours. In particular, our method takes between a few minutes
and 2 h for the networks and targets chosen for attractor control
and between half an hour and 12 h for the networks and targets
chosen for target control.

In order to capture different control scenarios, several
biological networks of different sizes with different type and
number of attractors are considered. A short description of each
network is provided below. See Table 5 for an overview of the
networks and their features. The Boolean rules for each biological
network can be found in the PyBoolNet repository [18].

1. T-LGL network, introduced by Zhang et al. [4] to model the
T cell large granular lymphocyte (T-LGL) survival signaling
network. In order for SM to terminate the processing of
the network within a few hours, it has been adapted as in
[7], removing the outgoing interactions of Apoptosis and
setting Stimuli and IL15 to 1 and the remaining inputs to
0. The simplified network consists of 60 Boolean variables
and its asynchronous dynamics has 3 cyclic attractors, vs.
the 156 (steady states and cyclic) of the original. For sake of
simplicity, the same modified network is used for attractor
control and target control.

2. MAPK, introduced by Grieco et al. [3] to model the effect of
the Mitogen-Activated Protein Kinase (MAPK) pathway on
cell fate decisions taken in pathological cells. The network
consists of 53 Boolean variables and it has 18 attractors in
the asynchronous dynamics, 12 steady states, and 6 cyclic
attractors.

3. Cell-Fate network, introduced by Calzone et al. [2] to model
the cell fate decision process. The network uses 28 Boolean
variables and its asynchronous dynamics has 27 attractors,
all of them steady states. These are classified in four different
phenotypes (Apoptosis, Survival, Non-Apoptotic Cell Death,
and Naive) according to the values of the output components
of the network.

TABLE 6 | Number and size of the control strategies up to size 4 identified by

each method (SM, BA, and MC) for the corresponding attractor of each biological

network, with the input components fixed as mentioned in the main text.

Network Method Size 1 Size 2 Size 3 Size 4

Cell-Fate SM 0 2 28 (12) 2 (0)

BA 0 8 0 0

MC 0 8 28 0

T-LGL SM 3 0 5 (0) 1 (0)

BA 4 0 0 0

MC 4 0 0 0

MAPK SM 0 0 0 16 (0)

BA 0 0 2 0

MC 0 0 2 0

When a method obtains non-minimal control strategies, the number of minimal control

strategies identified is indicated in parenthesis. Note that BA does not look for larger

control strategies once a minimal one (with respect to size) is obtained.

As mentioned in Section 4.3, our method takes as input a
constant-free Boolean function. Therefore, all the networks with
constant coordinate functions considered for comparison have
been pre-processed so that the constant values are percolated
and removed from the network. In such cases, for the sake
of the comparison, all the methods have taken as input the
reduced network.

5.2.1. Attractor Control
We compare ourmodel checking approach (MC) to twomethods
for attractor control: stable motifs (SM) [7] and basins of
attraction (BA) [14]. SM works for steady states and the complex
attractors captured by the stable motifs (in some cases, complex
attractors are not identified and the method cannot be applied).
BA works for any kind of attractors and computes their basins of
attraction to identify minimal control strategies.

The control problems selected for each network are described
below.

1. T-LGL network. The three attractors of this network can be
classified in two types (Survival and Apoptosis) according to
the values of the output components. For this comparison,
the apoptotic attractor is chosen, that is, the one with
Apoptosis= 1. Similar results would be obtained for another
choice of attractor.

2. MAPK network. The 18 attractors of this network can also
be classified in two types (Survival and Apoptosis) according
to the values of the output components. In order to apply
BA to this network, we set some input components to fixed
values. We consider all the input combinations that allow the
two phenotypes to coexist. Three input-value combinations
satisfy this condition. For sake of space, we only show the
results for one of the combinations, the one fixing EGFR-
stimulus = 0 and FGFR3-stimulus = 0 and targeting an
apoptotic attractor. Similar results for BA and MC would
be obtained for the other input-value combinations and
different choices of attractor. Results for SM might vary
depending on the target attractor that is chosen.
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TABLE 7 | Minimal control strategies up to size 4 identified by each method (SM, BA, and MC) for the selected attractor of each biological network.

Network Minimal control strategies SM BA MC

Cell-Fate {BAX = 1, MPT = 0} – X X

{BAX = 1, ROS = 0} – X X

{CASP3 = 1, MPT = 0} X X X

{CASP3 = 1, ROS = 0} X X X

{CASP8 = 1, MPT = 0} – X X

{CASP8 = 1, ROS = 0} – X X

{MOMP = 1, MPT = 0} – X X

{MOMP = 1, ROS = 0} – X X

T-LGL {Ceramide = 1} – X X

{PDGFR = 0} X X X

{S1P = 0} X X X

{SPHK1 = 0} X X X

MAPK {DNA-damage = 1, TGFBR-stimulus = 0, GAB1 = 0} – X X

{DNA-damage = 1, TGFBR-stimulus = 0, PI3K = 0} – X X

X and − denote whether the control strategy is obtained by the method or not, respectively. For simplicity, only the control strategies of size 2 are included for the Cell-Fate network.

TABLE 8 | Number and size of the control strategies identified by each method (PO, TS, CN, and MC) for the corresponding target subspace of each biological network

in the asynchronous and synchronous dynamics.

Asynchronous Synchronous

Network Method Size 1 Size 2 Size 3 Size 1 Size 2 Size 3

Cell-Fate PO 0 17 173 0 17 173

TS 0 17 173 0 17 173

CN 0 21 191 0 17 189

MC 0 21 191 0 17 189

T-LGL PO 0 224 (77) 327 (77) 0 224 (164) 327 (97)

TS 3 195 (77) 282 (77) 0 224 (164) 327 (97)

CN 10 116 204 0 232 (172) 762 (109)

MC 10 116 204 3 251 261

MAPK PO 2 124 (59) 175 (45) 2 124 (88) 175 (49)

TS 3 106 (59) 162 (45) 2 124 (88) 175 (49)

CN 8 105 66 2 164 (112) 195 (155)

MC 8 105 66 4 118 216

When a method obtains non-minimal control strategies, the number of minimal control strategies identified is indicated in parenthesis.

3. Cell-Fate network. The 27 attractors of this network can be
classified in four different phenotypes (Apoptosis, Survival,
Non-Apoptotic Cell Death, and Naive) according to the
values of the output components. The control strategies up
to size 4 obtained by eachmethod for each of the attractors of
the network are the same, except for five attractors, where the
SM approach missed some of the minimal control strategies
obtained by BA and MC. In order to gain more insight, we
also compare the results when fixing the input components.
We analyse the five input-value combinations that allow
the three relevant phenotypes (Apoptosis, Survival, and
NonACD) to coexist. For sake of space, we only show the
results for one of the combinations, the one fixing FADD= 0,
FASL= 1, and TNF= 1 and targeting the apoptotic attractor.

Similar results would be obtained for the other input-value
combinations and different choices of attractor.

Table 6 contains the size and number of the control strategies
up to size 4 computed by each approach for each network. MC
is able to identify all the minimal control strategies for every
network. SM obtains some non-minimal control strategies of
larger size, which are supersets of minimal ones. BA identifies all
the minimal control strategies of minimum size, as done by MC.
However, while BA does not identify any control strategy larger
than the minimum size, MC computes all the strategies minimal
with respect to inclusion. The minimal control strategies for each
network and themethods that are able to identify them are shown
in Table 7.
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5.2.2. Target Control
We compare our model checking approach (MC) in
asynchronous and synchronous dynamics to several methods
for target control: percolation to target (PO) [21], percolation
via trap spaces (TS) [9], and the completeness approach (CN),
developed in Section 3.2. An overview of the features of each
control method is shown in Table 4.

The target subspaces chosen for each network are the ones
corresponding to the apoptotic phenotype, a common target in
drug identification studies for cancer therapeutic treatments [22].
They are defined in terms of the output components of each
network:

1. T-LGL: {Apoptosis= 1, Proliferation= 0}.
2. MAPK: {Apoptosis = 1, Proliferation = 0,

Growth-Arrest= 1}.
3. Cell-Fate: {Apoptosis= 1, Survival= 0, NonACD= 0}.

Table 8 contains the size and number of the control strategies
computed by each approach for the asynchronous and
synchronous dynamics. It is important to note that all the
minimal control strategies obtained by PO are included in the
ones identified by TS, since TS is built on top of PO. Moreover,
direct percolation is a pre-check for CN and MC methods
and, therefore, all minimal control strategies found by PO are
obtained by CN and MS as well. PO is able to identify a high
number of minimal control strategies, as is to be expected
since regulatory functions modeling biological systems usually
induce a lot of percolation. Nonetheless, in some networks this
number is still far from the number of minimal control strategies
identified by MC.

Control strategies are update-dependent by definition.
However, all the control strategies identified by PO are valid
in all the dynamics considered here. The number of these
control strategies that are minimal might vary from one update
to another (see results for T-LGL and MAPK networks). On
the other hand, methods TS, CN, and MC are sensitive to
the update. In the case of TS, since none of the networks
is complete in the synchronous dynamics, attractors cannot
be approximated by minimal trap spaces and, therefore, no
additional control strategies compared to PO are obtained.
Interestingly, the methods CN and MC obtain the same number
of control strategies for the asynchronous dynamics. This is
not the case for the synchronous dynamics, where additional
control strategies are obtained by MC for the T-LGL and MAPK
networks. This is caused by the fact that the CN method cannot
classify a subspace as a control strategy if the restricted network
is not complete. The CN method is likely to obtain better results
when the original network is complete, which is usually the case
for the asynchronous dynamics of biological networks [16].

These case studies illustrate how an exhaustive approach
like the one provided by the model checking method
introduced in this article has the capacity to identify, in
networks of practical relevance, simple sets of interventions
that might otherwise not be identified, and that can furnish
additional insights into the model, widening the possibility for
potential applications.

6. DISCUSSION

This work presents a novel method to identify all the minimal
control strategies for an arbitrary target subset. It is able to deal
not only with the problems of attractor control and target control,
already tackled by existing methods, but also with subset control,
providing maximal flexibility on the definition of the control goal
and allowing for instance the possibility of dealing with attractor
avoidance problems.

The comparison performed in Section 5.2 shows that our
approach is able to identify all the minimal control strategies
obtained by the methods analyzed and, in many cases, to
uncover new control strategies. It also provides flexibility to study
different control problems, which can lead to additional insights
into the network. For these reasons, the method presented here
can be a good option when a deep analysis of the control
strategies of the model is required.

Even though running times are not compared in this work, the
model checking approach is likely to entail more computational
time than other approaches due to its exhaustiveness, since
in some cases the full exploration of the state space might
be required. Although the use of symbolic states allows one
to deal with relatively large networks, the computational time
required to explore their state spaces might still be too high.
For this reason, several steps have been developed to reduce
the candidate space and the dimensionality of the problem,
improving the overall performance. The case studies of Section 5
show the applicability of the method to real models of interest.
In cases where this reduction might still be insufficient, our
approach could be used to complement faster methods for
the particular scenarios in which a more exhaustive analysis
is needed.

This new approach is able to adapt to different types of targets
and updates. This flexibility, provided by the versatility of model
checking, results in the potential to be extended to other control
problems. Possible future works could include its extension to
tackle control from a set of initial states or the addition of other
types of interventions.
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