
TECHNOLOGY AND CODE
published: 06 July 2022

doi: 10.3389/fams.2022.838601

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 July 2022 | Volume 8 | Article 838601

Edited by:

Paolo Bientinesi,

Umeå University, Sweden

Reviewed by:

Matthew Fishman,

Simons Foundation, United States

Devin Matthews,

Southern Methodist University,

United States

*Correspondence:

Dmitry I. Lyakh

quant4me@gmail.com

Specialty section:

This article was submitted to

Mathematics of Computation and

Data Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 18 December 2021

Accepted: 15 June 2022

Published: 06 July 2022

Citation:

Lyakh DI, Nguyen T, Claudino D,

Dumitrescu E and McCaskey AJ

(2022) ExaTN: Scalable

GPU-Accelerated High-Performance

Processing of General Tensor

Networks at Exascale.

Front. Appl. Math. Stat. 8:838601.

doi: 10.3389/fams.2022.838601

ExaTN: Scalable GPU-Accelerated
High-Performance Processing of
General Tensor Networks at Exascale
Dmitry I. Lyakh 1*, Thien Nguyen 2, Daniel Claudino 2, Eugene Dumitrescu 3 and

Alexander J. McCaskey 4

1Oak Ridge National Laboratory, National Center for Computational Sciences, Oak Ridge, TN, United States, 2Computer

Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States, 3Computational Science

and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States, 4NVIDIA Corporation, Santa Clara,

CA, United States

We present ExaTN (Exascale Tensor Networks), a scalable GPU-accelerated C++ library

which can express and process tensor networks on shared- as well as distributed-

memory high-performance computing platforms, including those equipped with GPU

accelerators. Specifically, ExaTN provides the ability to build, transform, and numerically

evaluate tensor networks with arbitrary graph structures and complexity. It also provides

algorithmic primitives for the optimization of tensor factors inside a given tensor network

in order to find an extremum of a chosen tensor network functional, which is one of the

key numerical procedures in quantummany-body theory and quantum-inspired machine

learning. Numerical primitives exposed by ExaTN provide the foundation for composing

rather complex tensor network algorithms. We enumerate multiple application domains

which can benefit from the capabilities of our library, including condensed matter

physics, quantum chemistry, quantum circuit simulations, as well as quantum and

classical machine learning, for some of which we provide preliminary demonstrations

and performance benchmarks just to emphasize a broad utility of our library.

Keywords: tensor network, quantum many-body theory, quantum computing, quantum circuit, high performance

computing, GPU

1. INTRODUCTION

Tensor networks have recently grown into a powerful and versatile tool for capturing and
exploiting low-rank structure of rather diverse high-dimensional computational problems.
A properly constructed tensor network, that is, a specific contraction of low-order/low-
rank tensors forming a higher-order/higher-rank tensor, is capable of exposing the essential
correlations between the components of the tensorized Hilbert space in which the solution
to a given problem lives. The traditional application is quantum many-body theory where
the exact quantum many-body wave-function is a vector in a high-dimensional Hilbert
space constructed as a direct (tensor) product of elementary Hilbert spaces associated with
individual quantum degrees of freedom. Having its roots in condensed matter physics, the
structure of a tensor network is normally induced by the geometry of the problem (e.g.,
geometry of a spin lattice) and a suitably chosen renormalization procedure, reflecting the
structure of the many-body entanglement (correlation) between quantum degrees of freedom

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.838601
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.838601&domain=pdf&date_stamp=2022-07-06
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:quant4me@gmail.com
https://doi.org/10.3389/fams.2022.838601
https://www.frontiersin.org/articles/10.3389/fams.2022.838601/full

Lyakh et al. ExaTN

(e.g., spins, bosons, fermions). The well-known tensor network
architectures from condensed matter physics include the matrix-
product state (MPS) [1, 2] or tensor train (TT) [3], the
projected entangled pair state (PEPS) [4], the tree tensor network
(TTN) [5], and the multiscale entanglement renormalization
ansatz (MERA) [6]. Not surprisingly, similar tensor network
architectures have also been successfully utilized in quantum
chemistry for describing electron correlations in molecules [7],
[8], where individual molecular orbitals form quantum degrees
of freedom (similar to spin sites in quantum lattice problems).
Furthermore, tensor networks have found a prominent use in
quantum circuit simulations, where they can be used for both the
direct quantum circuit contraction [9–11] as well as approximate
representations of the multi-qubit wave-functions and density
matrices during their evolution [12–15], which reduces the
computational cost of the simulation. Tensor networks have also
found a prominent use in loading data into quantum circuits [16].

The ability of tensor networks to provide an efficient low-
rank representation of high-dimensional tensors has recently
spurred a number of applications in data analytics and machine
learning. For example, tensor networks can be used for the tensor
completion problem [17] or for the compression of the fully-
connected deep neural network layers [18]. It was also shown
that tensor networks can be employed in classification tasks
(e.g., image classification) instead of deep neural networks [19–
22]. Additionally, generative quantum machine learning can also
benefit from tensor network representations [23].

Such a broad class of successful applications has resulted in
a need for efficient software libraries [24] providing necessary
primitives for composing tensor network algorithms. Apart
from a plethora of basic tensor processing libraries, which
are not the focus here, a number of specialized software
packages have been developed recently, directly addressing the
tensor network algorithms (in these latter software packages
a tensor network is the first-class citizen). The ITensor
library has been widely adopted in the quantum physics
community [25], in particular because of its advanced support
of abelian symmetries in tensor spaces. ITensor provides a
rather rich set of features mostly targeting the density matrix
renormalization group (DMRG) based algorithms executed on a
single computer core/node (a recently introduced Julia version
of ITensor brought in the GPU support). A more recent
TensorTrace library focuses on more complex tensor network
architectures, like MERA, and provides a nice graphical interface
for building tensor networks [26] [the primary backend of
TensorTrace is NCON [27]]. Another library gaining some
popularity in condensed matter physics is TeNPy [28]. The
CTF library [29] has been used to implement a number of
advanced tensor network algorithms capable of running on
distributed HPC systems [30, 31], also providing support for
higher-order automated differentiation [31]. Perhaps the most
advanced Python library for tensor network construction and
processing is Quimb [32], which has been used in a number
of diverse applications. Importantly, Quimb also supports
distributed execution, either directly via MPI or via the DASK
framework [33]. It also supports GPU execution via JAX [34].
Another Python library for performing tensor decompositions is

TensorLy [35] which is mostly used in machine learning tasks. A
more recent tensor network library is TensorNetwork [36], which
is built on top of the TensorFlow framework aimed at quantum
machine learning tasks.

Our C++ library ExaTN [37] has been independently
developed in the recent years, with a main focus on high
performance computing on current and future leadership
computing platforms, in particular those equipped with
GPU accelerators. The ExaTN library is not biased to any
particular application domain and is rather general in the
type of tensor networks that can be constructed, manipulated,
and processed. It also provides several higher-level data
structures and algorithms that can be used for remapping
standard linear algebra problems to arbitrary tensor network
manifolds. In this paper, we report the core functionality of
ExaTN and show some initial demonstrations and performance
benchmarks. To our knowledge, ExaTN provides one of the
richest set of features for tensor network computations in C++,
combined with native asynchronous parallel processing
capabilities with support of distributed computing and
GPU acceleration.

2. EXATN LIBRARY

2.1. Tensor Network Structures
The C++ API of ExaTN consists of two main groups
of functions: declarative API and executive API. The
declarative API functions (provided by multiple headers in
src/numerics within the exatn::numerics namespace)
are used for constructing and transforming tensor-based data
structures, whereas the executive API functions (collected
in the src/exatn/exatn_numerics.hpp header)
are used for numerical processing (evaluation) of the
constructed tensor-based data structures. Such separation
of concerns enables a low-overhead manipulation with
complex tensor networks consisting of tensors of arbitrary
shape and size. The tensor storage allocation and the actual
numerical computation is only performed when explicitly
requested. Importantly, the specifics of the tensor storage
and processing is completely transparent to the user, keeping
the focus on the expression of the domain-specific numerical
tensor algorithms without unnecessary exposure to the
execution details.

The main basic object of the ExaTN library is
exatn::Tensor (defined in tensor.hpp), which is
an abstraction of the mathematical tensor. Loosely, we define a
tensor Tabc...

ijk...
as a multi-indexed vector living in a linear space

constructed as a direct product of basic (single-index) vector
spaces. From the numerical point of view, a tensor (e.g., Tabc

ijk
)

can simply be viewed as a multi-dimensional array of real or
complex numbers, T[a,b,c,i,j,k] . exatn::Tensor is
defined by the following attributes:

• Name: Alphanumeric with optional underscores;
• Shape: Total number of tensor dimensions and their extents;
• Signature (optional): Identifies the tensor as a specific slice of

a larger tensor, if needed;

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 July 2022 | Volume 8 | Article 838601

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

Since an exatn::Tensor is subject to
asynchronous processing, it must always be created as
std::shared_ptr<exatn::Tensor> (a helper function
exatn::makeSharedTensor is provided for convenience),
for example:

#include ‘‘exatn.hpp’’
auto my_tensor = exatn::makeSharedTensor(‘‘MyTensor

’’,TensorShape{16,8,42});

In addition to the array-like tensor shape constructors, the
ExaTN library also defines explicitly the concept of a vector space
and subspace (spaces.hpp), enabling an optional definition of
tensor dimensions over specific (named) vector spaces/subspaces
which are expected to be defined and registered by the user
beforehand (custom tensor signature). Otherwise, the tensor
signature is simply specified by a tuple of base offsets defining
the location of a tensor slice inside a larger tensor (defaults to a
tuple of zeros). For example,

auto tensor_slice = makeSharedTensor("MyTensorSlice"
,TensorShape{12,8,20},TensorSignature{4,0,10});

defines a tensor slice [4:12,0:8,10:20] where each pair is
Start_Offset:Extent.

Necessitated by many applications, ExaTN also enables the
specification of the isometric groups of tensor dimensions. An
isometric group is formed by one or more tensor dimensions
such that a contraction over these dimensions with the complex-
conjugate tensor results in the identity tensor over the remaining
dimensions coming from both tensors, for example:

T†
ijmnTklmn = δij,kl (1)

where mn is an isometric group of indices (a summation over
mn is implied). The identity tensor is just the identity map
between the two groups of indices left after contraction over
the isometric group of indices. A tensor can have either a single
isometric group of dimensions or at most two such groups which
together comprise all tensor dimensions, in which case the tensor
is unitary, that is, in addition to Equation (1) we will also have:

T†
mnijTmnkl = δij,kl (2)

In order to register an isometric index group, one will need
to invoke the registerIsometry method specifying the
corresponding tuple of tensor dimensions (for example, first two
dimensions of MyTensor):

my_tensor->registerIsometry({0,1});

ExaTN is capable of automatically identifying tensor contractions
containing tensors with isometric index groups and subsequently
simplifying them without computation by using rules analogous
to (1) and (2). Apart from accounting for isometries, in a more
general case, the current processing backend does not yet provide
a special treatment for diagonal tensors of other kinds or other
types of tensor sparsity (future work).

Of all basic tensor operations, tensor contraction is the most
important operation in the tensor network calculus. A general
contraction of two tensors can be expressed as

Di1i2 ...iN = Lk1k2 ...kM ij1 ij2 ...ijL
Rk1k2 ...kM ijL+1 ijL+2 ...ijN

(3)

up to an arbitrary permutation of indices inside each tensor,
where a summation over all r.h.s-only indices is implied. The
opposite operation, i.e., tensor decomposition, which decomposes
a tensor into a contracted product of two tensors, is also
supported by ExaTN. A tensor network, that is, a specific
contraction of two or more tensors [2], is represented by the
exatn::TensorNetwork class (tensor_network.hpp).
Following the standard graphical notation illustrated in Figure 1,
a tensor is graphically represented as a vertex with a number
of directed or undirected edges, where each edge is uniquely
associated with a specific tensor dimension (index), also called
mode. A contraction over a pair of dimensions (modes) coming
from two different tensors is then represented by a shared edge
between two vertices associated with those tensors. In this case, a
tensor network is generally represented as a directed multi-graph
(note that Figure 1 shows only undirected edges). In some cases,
one may also need to consider tensor networks containing hyper-
contractions, that is, simultaneous contractions of three or more
dimensions (modes) coming from the same or multiple tensors
that are labeled by the same index (hyper-edge). In such a case,
the tensor network is generally represented as a directed multi-
hypergraph in which some (hyper)-edges may connect more than
two vertices. Currently, ExaTN does not support construction of
general tensor hypergrahs, although it does support execution of
pairwise pieces of tensor hyper-contractions, for example

Di1i2j1 = Li1k1j1Rj1i2k1 , (4)

where index j1 is not summed over as it is present in the
l.h.s. tensor as well (only the r.h.s.-only indices are implicitly
summed over in our notation). We should note that tensor
hypergraphs can always be converted to regular tensor graphs
(tensor networks) by inserting order-3 Kronecker tensors which
will convert all hyper-edges into regular edges connected to the
Kronecker tensors.

An exatn::TensorNetwork object is constructed from
one or more tensors called input tensors. Additionally, the
ExaTN library automatically appends the so-called output
tensor to each tensor network, which simply collects all
uncontracted tensor dimensions from the input tensors. The
total number of input tensors in a tensor network defines
its size. The order of the output tensor defines the order
of the tensor network. Additionally, one can also specify
whether a tensor network describes a manifold in the primary
(ket) or dual (bra) tensor space. ExaTN provides multiple
ways for building a tensor network (see the placeTensor ,
appendTensor , and appendTensorGate methods in
“tensor_network.hpp” for details). The most general way
is to append tensors one-by-one by explicitly specifying their
connectivity, i.e., connections between dimensions of distinct
tensors via graph edges (placeTensor). In this way, one

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 July 2022 | Volume 8 | Article 838601

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

FIGURE 1 | Graphical diagrams representing tensors and tensor operations.

can construct an arbitrarily complex tensor network but this
gradual constructionmechanism has to be fully completed before
a tensor network can be used. As an alternative, ExaTN also
allows gradual construction of tensor networks where each
intermediate tensor network is also a valid tensor network that
can be used immediately. This is achieved by appending new
input tensors by pairing their dimensions with those of the
current output tensor, thus indirectly linking the input tensors
to a desired network connectivity graph (appendTensor and
appendTensorGate). Finally, exatn::TensorNetwork
class also accepts user-defined custom builders (OOP builder
pattern), that is, concrete implementations of an abstract
OOP builder interface (exatn::NetworkBuilder) that are
specialized for the construction of a desired tensor network
topology (like MPS, TTN, PEPS, MERA, etc.) in one shot.

There are a number of transformation methods provided by
the exatn::TensorNetwork class. These include inserting
new tensors in the tensor network, deleting tensors from the
tensor network, merging two tensors in the tensor network,
splitting a tensor inside the tensor network into two tensors,
combining two tensor networks into a larger tensor network,
identifying and removing identities caused by the isometric
tensor pairs, etc. All these are manipulations on abstract tensors
that are not concerned with an immediate numerical evaluation
(and storage). However, numerical evaluation of the tensor

network, that is, evaluation of the output tensor of that tensor
network, or any other necessary numerical operation can be
performed at any stage via the executive API. Importantly,
numerical evaluation of a tensor network requires determination
of a cost-optimal tensor contraction path which prescribes the
order in which the input tensors of the tensor network are
contracted. The cost function is typically the total Flop count,
but it can be more elaborate (Flop count balanced with memory
requirements and/or arithmetic intensity). There is no efficient
algorithm capable of determining the true optimum for a general
case, but some efficient heuristics exist [38, 39]. For the sake
of generality, ExaTN provides an abstract interface for the
tensor contraction path finder that can bind to any concrete
user-provided implementation of a desired contraction path
optimization algorithm. The default optimization algorithm used
by ExaTN is a simplified variant of the recursive multi-level
graph partitioning algorithm from [38] implemented via the
graph partitioning library Metis [40] (without Bayesian hyper-
parameter optimization). Users who use NVIDIA CUDA can
also leverage the cuQuantum::cuTensorNet library 1 which is
fully integrated with ExaTN as an optional dependency. It
delivers the state-of-the-art quality as well as performance in
contraction path searches (in addition to highly-efficient tensor

1https://docs.nvidia.com/cuda/cuquantum/cutensornet/index.html

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 July 2022 | Volume 8 | Article 838601

https://docs.nvidia.com/cuda/cuquantum/cutensornet/index.html
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

contraction execution). There is also an experimental binding to
CoTenGra [38] (in a separate branch of ExaTN).

Importantly, apart from constructing and processing
individual tensor networks, ExaTN also provides API for
constructing and processing linear combinations of tensor
networks, implemented by the exatn::TensorExpansion
class (tensor_expansion.hpp). Specifically, a tensor
network expansion is a linear combination of tensor networks
of the same order and output shape (an example is illustrated
in Figure 2A). A tensor network expansion can be constructed
by gradually appending individual tensor networks with their
respective complex coefficients. Numerical evaluation of a tensor
network expansion results in computing the output tensor of
each individual tensor network component, followed by the
accumulation of all computed output tensors which have the
same shape. ExaTN also provides API for constructing the
inner and outer products of two tensor network expansions.
By design, a given tensor network expansion either belongs
to the primary (ket) or to the dual (bra) tensor space where
it defines a tensor network manifold (a manifold of tensors
which can be represented by the given tensor network or
tensor network expansion exactly). In order to introduce
the operator algebra on such tensor network manifolds,
ExaTN provides the exatn::TensorOperator class
(tensor_operator.hpp). A tensor network operator is a
linear combination of tensor networks in which additionally
the dimensions of the output tensor in each tensor network are
individually assigned to either the ket or the bra tensor spaces (an
example is illustrated in Figure 2B). Thus, such a tensor network
operator defines an operator manifold, establishing a map
between the ket and bra tensor spaces populated by the tensor
network manifolds defined by the tensor network expansions.
Naturally, ExaTN provides API for applying arbitrary tensor
network operators to arbitrary tensor network expansions and
for defining matrix elements of tensor network operators with
respect to arbitrary ket and bra tensor network expansions, that
is, in Dirac notation:

MatrixElement(i, j) = 〈TensorExpansion(i)|TensorOperator|

TensorExpansion(j)〉, (5)

In this construction, a tensor network expansion replaces the
notion of a vector, and a tensor network operator replaces the
notion of a linear operator: A tensor network operator maps
tensor network expansions (tensor network manifolds) from
one tensor space to tensor network expansions (tensor network
manifolds) in another (or same) tensor space.

In many applications of tensor networks the computational
problem lies in the optimization of a suitably chosen tensor
network functional to find its extreme values. In ExaTN,
a tensor network functional is defined as a tensor network
expansion of order 0 (scalar), thus having no uncontracted
edges. By optimizing the individual tensor factors inside the
given tensor network functional, one can find its extrema
using gradient-based optimization techniques. This requires
computing the gradient of the tensor network functional
with respect to each optimized tensor. ExaTN provides API

FIGURE 2 | (A) An example of a tensor network expansion as a linear

combination of two tensor networks of the same order; (B) An example of a

tensor network operator as a linear combination of two tensor networks with

open legs establishing a map between the ket and bra spaces.

for computing the gradient of an arbitrary tensor network
functional with respect to any given tensor. Furthermore, ExaTN
implements numerical procedures that can efficiently project
a tensor network expansion living on one tensor network
manifold to a tensor network expansion living on another tensor
network manifold, as well as solve linear and eigen systems
defined on arbitrary tensor network manifolds. This higher-level
functionality, however, is not the focus of the current paper and
will be described elsewhere.

2.2. Tensor Network Processing
Processing of tensors, tensor networks and tensor expansions
is done via the executive API (exatn_numerics.hpp)
by the ExaTN parallel runtime (ExaTN-RT). The
ExaTN parallel runtime provides a fully asynchronous
execution of basic numerical tensor operations extending
the abstract exatn::TensorOperation class
(tensor_operation.hpp), in particular tensor creation,
tensor destruction, tensor initialization, tensor transformation,
tensor norm evaluation, tensor copy/slicing/insertion,
tensor addition, tensor contraction, tensor decomposition
(via the singular value decomposition of the tensor
matricization), and some tensor communication/reduction
operations. Additionally, new user-defined numerical
tensor operations can be implemented either via
extending the exatn::TensorTransformation
class (for unary tensor transformations) or via extending
the abstract exatn::TensorOperation class
(tensor_operation.hpp) for more general operations
(non-unary).

The executive API can be used for submitting individual basic
tensor operations as well as entire tensor networks and tensor
network expansions for their numerical evaluation. The latter

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 July 2022 | Volume 8 | Article 838601

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

are first decomposed into basic tensor operations which are then
submitted to the ExaTN runtime for asynchronous processing.
The synchronization is done by either synchronizing on a desired
tensor (to make sure all update operations have completed on
that particular tensor) or synchronizing all outstanding tensor
operations previously submitted to the ExaTN runtime (barrier
semantics). Few examples:

include "exatn.hpp"

//Declare tensors:
auto tensor_A = exatn::makeSharedTensor("A",

TensorShape{12,8,20});
auto tensor_B = exatn::makeSharedTensor("B",

TensorShape{8,64,20});
auto tensor_C = exatn::makeSharedTensor("C",

TensorShape{64,12});

//Allocate tensor storage:
bool success = true ;
success = exatn::createTensor(tensor_A,

TensorElementType::REAL64);
success = exatn::createTensor(tensor_B,

TensorElementType::REAL64);
success = exatn::createTensor(tensor_C,

TensorElementType::REAL64);

//Initialize tensors:
success = exatn::initTensorRnd("A");
success = exatn::initTensorRnd("B");
success = exatn::initTensorRnd("C",0.0);

//Perform tensor contraction (1.0 is a scalar
multiplier):

success = exatn::contractTensors("C(a,b)+=A(b,i,j) * B
(i,a,j)",1.0);

//Declare, allocate, and initialize a new tensor:
auto tensor_D = exatn::makeSharedTensor("D",

TensorShape{12,12});
success = exatn::createTensor(tensor_D,

TensorElementType::REAL64);
success = exatn::initTensorRnd("D",0.0);

//Evaluate a tensor network:
success = exatn::evaluateTensorNetwork("MyNetwork","

D(a,b)+=A(b,i,j) * B(i,k,j) * C(k,a)");

//Sync all submitted tensor operations to this point
(barrier):

success = exatn::sync();

In the above code snippet, all executive API calls are non-blocking
(except exatn::sync). All submitted tensor operations will
be complete after return from the exatn::sync call. When
submitted for processing, tensor operations are appended to
the dynamic directed acyclic graph (DAG) stored inside the
ExaTN runtime. The dynamic DAG is tracking data (tensor)
dependencies automatically, thus avoiding race conditions.
Inside the ExaTN runtime, the DAG is being constantly traversed
by the ExaTN graph executor which identifies dependency-
free tensor operations and submits them for execution by the
ExaTN node executor. The ExaTN graph executor implements
the OOP visitor pattern where the visitor (ExaTN node executor)
visits/executes DAG nodes (tensor operations) by implementing

overloads of the execute method for each supported tensor
operation. The default implementation of the polymorphic
ExaTN node executor interface is backed by the tensor processing
library TAL-SH [41]. However, other tensor processing backends
can also be easily plugged-in as long as they provide the
implementation of all required basic tensor operations. The
default TAL-SH tensor processing backend supports concurrent
execution of basic tensor operations on multicore CPU as well as
single/multiple NVIDIA or AMD GPU (AMD support is largely
experimental at the ExaTN level). TAL-SH provides an automatic
tensor storage and residence management within the combined
Host+GPU memory pool, supporting a fully asynchronous
execution on GPUs. In particular, a tensor contraction involving
large tensors can be executed on multiple GPUs using the entire
Host memory pool. The selection of the execution device is
performed by the TAL-SH library automatically during run
time, based on tensor sizes, flop count (and possibly arithmetic
intensity), and current data residence (data locality). The default
GPU tensor contraction algorithm is based on the matrix-
matrix multiplication (e.g., via cuBLAS) accompanied by an
optimized tensor transpose algorithm [42, 43]. Optionally, the
default tensor contraction implementation can be swapped with
the NVIDIA cuTENSOR backend2 integrated with the TAL-
SH library as an external dependency specifically for NVIDIA
GPU. Finally, we have recently integrated ExaTN with the
cuQuantum::cuTensorNet library1 that allows ExaTN to process
a whole tensor network in one shot, with superior performance
in both the contraction path search and actual numerical
computation on NVIDIA GPUs.

During the execution of tensor workloads, the storage and
execution details are completely hidden from the user (client).
The only data exchange between the client and the runtime
occurs when the client is initializing a tensor with some
data or retrieving tensor data back to the user space. The
tensor initialization accepts real or complex scalars or arrays
of single or double precision. The tensor retrieval requires
tensor synchronization and returns a C++ talsh::Tensor
object defined in the talshxx.hpp header of the TAL-SH
library [41]. A tensor can be retrieved either in whole or in part
(by a slice), but in both cases it is just a copy of the tensor (or its
slice). Tensors can also be stored on disk.

The ExaTN library also supports distributed execution
across many (potentially GPU-accelerated) compute nodes via
the MPI interface. Currently, there are multiple levels of
distributed parallelism. At the most coarse level, a tensor
network expansion submitted for numerical evaluation across
multiple MPI processes can distribute evaluation of its individual
components (tensor networks) among subgroups of those MPI
processes. Then, each tensor network can be evaluated by
multipleMPI processes within a subgroup in parallel. Specifically,
the intermediate tensors of the tensor network, that is, temporary
tensors which are neither inputs nor outputs of the tensor
network, can be decomposed into smaller slices which can be
computed independently (slices are obtained via segmentation
of tensor dimensions). The complete tensor network evaluation

2https://docs.nvidia.com/cuda/cutensor/index.html

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 July 2022 | Volume 8 | Article 838601

https://docs.nvidia.com/cuda/cutensor/index.html
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

requires computation of all slices of intermediate tensors that
can be distributed among multiple/many MPI processes, with
a minimal communication at the end (MPI_Allreduce
reduction of the output tensor). The ExaTN library provides an
explicit API for creating and splitting groups of MPI processes
into subgroups, thus providing a multi-level composable
resource isolation mechanism. Additionally, another level of
parallelization is possible by utilizing a distributed tensor
processing backend for basic numerical tensor operations
executed by the ExaTN runtime, which will allow (distributed)
storage of larger tensors but will result in a dense communication
pattern within an executing group of MPI processes.

3. RESULTS AND DISCUSSION

3.1. Condensed Matter Physics Simulations
Quantum-mechanical condensed matter problems are typically
too complex to be addressed by brute-force numerical methods
because the dimension of the matrix representation of the
Hamiltonian grows exponentially with the number of spin
lattice sites. Aside from a small set of exactly solvable
models, which eliminate complexity by exploiting underlying
symmetries and constants of motion, approximate techniques
are needed to address this important class of problems. Mean-
field approximations and low-order perturbation theory are only
appropriate for problems containing relatively limited inter-
particle correlations. Quantum Monte-Carlo is a state-of-the-art
technique but is rendered inefficient in many settings by the
ubiquitous sign problem [44]. Tensor network factorizations,
with complexity varying with dimensionality of the problem and
the system correlation length, constitute an alternative formalism
to describe quantum states in condensed matter systems.
A numerical solution to Wilson’s renormalization group,
specifically for the Kondo impurity problem, was the original
motivation for the matrix-product state (MPS) tensor network
[45], although the explicit MPS structure was not realized until
later [1]. Following the famous density matrix renormalization
group algorithm [45], the numerical optimization consists of a
series of linear algebra operations, including tensor contractions
and singular value decompositions (SVD), which are swept across
the spatial extent of the MPS spin chain [46]. Building on
early MPS developments, a suite of more flexible and advanced
tensor networks have been developed to deal with situations
which are not naturally amenable to the MPS description. For
example, the extension of tensor networks to problems arising
in two spatial dimensions may be addressed by the projected
entangled-pair states (PEPS) [47, 48]. Further modifications of
the MPS formalism have resulted in the tree tensor network
(TTN) [47] and the multiscale entanglement renormalization
ansatz (MERA) [6, 49]. The latter tensor network ansatz can
efficiently represent critical long-range ordered states. Aside from
the variational MPS optimization, real and imaginary time-
evolving block decimation (TEBD) algorithms [50–53] are the
other two algorithms worth mentioning as they provide ways
to deal with dynamical correlations and provide alternative
means for determining quantum eigenstates and sample partition
functions [54], respectively.

FIGURE 3 | Graphical diagram depicting a fragment of the 3:1 MERA tensor

network.

The ExaTN library, combined with standard BLAS/LAPACK
libraries, provides all necessary utilities for implementing
the aforementioned numerical algorithms for arbitrary tensor
network ansaetze, regardless of particular details such as network
topology (as long as it is a graph-based topology). This also
includes numerical algorithms for dealing with formally infinite
(periodic) tensor networks [55]. Typically, all these algorithms
are based on tensor contraction and tensor decomposition
operations, where the latter is traditionally implemented via
tensor matricization and SVD. Figure 3 shows a typical example
of a tensor network fragment (expressed graphically as a many-
body diagram) for the 1D MERA 3:1 ansatz taken from Pfeifer
et al. [56]. Such tensor network fragments are common in
tensor network optimization procedures, representing gradients
of optimization functionals, density matrices, etc. To illustrate
the performance of the ExaTN library, we numerically evaluated
this representative tensor network fragment on 4, 8, 16, 32, 64,
and 128 nodes of the Summit supercomputer (each Summit
node consists of 2 IBM Power 9 CPU with 256 GB RAM
each and 6 NVIDIA V100 GPU with 16 GB RAM each). All
tensor dimensions in this tensor network fragment were set
to have the same extent of 64 (bond as well as lattice site
dimension of 64). Table 1 shows execution times and absolute
performance. We observe both excellent parallel efficiency and
high absolute efficiency when executed in a hybrid CPU+GPU
setting (NVIDIA V100 GPU has a theoretical single-precision
peak at∼15 TFlop/s).

3.2. Quantum Chemistry Simulations
Tensor network methods used in condensed matter physics
have also found many applications in quantum chemistry
[7, 8] by simply remapping molecular (or spin) orbitals to
spin sites while employing ab initio Hamiltonians instead of
model Hamiltonians. However, these ab initio Hamiltonians,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 July 2022 | Volume 8 | Article 838601

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

TABLE 1 | Performance of numerical evaluation of the 3:1 MERA fragment on

Summit supercomputer.

Number of nodes Time, s Performance, TFlop/s/GPU

4 77.11 10.743

8 38.88 10.716

16 19.96 10.435

32 10.54 10.117

64 5.53 9.637

128 3.96 7.333

Each Summit node has 6 NVIDIA V100 16 GB GPUs. The peak (single-precision)

performance per GPU is around 15 TFlop/s.

although quite accurate, could be numerically costly, limiting
the scope of applicability of such tensor network methods.
Fortunately, chemical properties that are largely governed by
certain physical features can greatly benefit from reduced
(effective) Hamiltonians, where the Hamiltonian is designed
to specifically target the sought chemical property. For
example, certain organic polymers and protein aggregates
exhibit pronounced photochemical activity mediated by weakly-
interacting chromophores [57]. The ab initio treatments in
such cases are often intractable due to an enormous dimension
of the corresponding Hilbert space, and this is aggravated
by the requirement of inclusion of multiple low-lying excited
states. Fortuitously, these problems lend themselves naturally
to the so-called ab initio exciton model (AIEM) [58]. In this
model, each (weakly-interacting) subunit/monomer is initially
described by its own local ab initio Hamiltonian. The fact that
the constituent monomers are spatially separated provides the
justification for the approximations used by the model, namely
(1) cross-fragment fermionic antisymmetry is relaxed, which
means 2-body interactions can be reduced to dipole interactions
between monomers, (2) only nearest-neighbor interactions are
of numerical significance, and (3) the energy eigenspectrum can
be approximated by configuration interaction of tensor products
of ground and several subsequent excited monomer states.
Consequently, the AEIM Hamiltonian can simply be expressed
as a sum of monomer and dimer terms:

Ĥ =
∑

A

hAĤA +
∑

A,B

hABĤA ⊗ ĤB, (6)

where A and B are the subunit (monomer) labels and the
compound index AB sums over nearest-neighbor pairs of
subunits (dimers), with the scalars hA and hAB quantifying
the local and interaction energies, respectively. These
matrix elements are normally computed by a relatively
cheap self-consistent-field method, for example, the density
functional theory.

The workflow involved in the AIEM Hamiltonian can be
briefly summarized as follows: (1) local Hamiltonian is obtained
from monomer quantum chemistry simulations; (2) dipole
interactions between adjacent monomers using the outputs
from (1) are computed; (3) AEIM Hamiltonian is constructed

TABLE 2 | Convergence of the ground state correlation energy with respect to the

maximal bond dimension for the AIEM Hamiltonian describing a combined system

of 48 2-level chemical fragments.

Max bond dimension Correlation energy, Hartree

1 −1.967

2 −1.983

4 −1.992

8 −1.992

Total Hilbert space dimension is 248.

from computations in (2); (4) AIEM Hamiltonian in (3) is
diagonalized in the space of configurations of tensor products
of individual monomer states. In the simplest case, where only
the first excited state in each monomer is considered, the
eigenspace of Equation (6) is a 2N-dimensional Hilbert space,
with N being the number of monomers, which quickly becomes
intractable with a growing N. However, the weakly entangled
nature of many eigenstates of the AIEM Hamiltonian makes it
an ideal target for approximations based on tensor networks.
Alternatively, when a stronger entanglement is present, the AIEM
Hamiltonian is a prospect application for quantum computing
by exploring the isomorphism between the AIEM Hamiltonian
in k-fold monomer excitations with a spin lattice Hamiltonian
that is immediately expressible in the tensor product space of
k-dimensional qudits [59].

To demonstrate the utility of the ExaTN library in this case,
we implemented a brute-force version of the direct ground-state
search procedure based on a chosen (arbitrary) tensor network
ansatz. Specifically, given the AIEM Hamiltonian and a fully
specified tensor network ansatz, the ExaTN library was used to
minimize the Hamiltonian expectation value by optimizing the
constituting tensors (inside the chosen tensor network ansatz)
using the steepest descent algorithm. For demonstration, we
chose the AIEM model representing a chemical system with 48
2-level fragments (monomers) that can be mapped to 48 qubits,
with the total Hilbert space dimension of 248. We used the binary
planar tensor tree topology for the tensor network ansatz and
limited the maximal bond dimension in the tree to 1, 2, 4, and
8. Table 2 shows the convergence of the obtained ground state
correlation energy with respect to the maximal bond dimension.
As one can see, the mHartree accuracy for the ground electronic
state is already reached at the maximal bond dimension of 4,
showing low entanglement in this weakly-interacting system.
This electronic ground state search in a 248-dimensional Hilbert
space was executed on 16 nodes of Summit supercomputer,
with each iteration of the steepest descent algorithm taking
around 20 s. We should note that in this illustrative example
we did not enforce isometry on the tensors constituting the
tree tensor network used for representing the ground state of
the AIEM Hamiltonian. Further enforcing and exploiting tensor
isometry will significantly reduce the computational cost, making
it possible to treat much larger systems. We should also note
that the convergence of the steepest descent algorithm used here
was rather slow. Alternative algorithms, like conjugate gradient,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 July 2022 | Volume 8 | Article 838601

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

FIGURE 4 | Quantum circuit simulation by direct contraction of the circuit

tensor network with ExaTN. Qubits are represented as order-1 tensors.

Tensors describing quantum gates are appended to the qubit register

according to the quantum circuit specification. Full contraction of the tensor

network produces the complete wave-function.

FIGURE 5 | ExaTN tensor network for bit-string amplitude computation. The

tensor network representing the input quantum circuit is constructed as

described in Figure 4. Triangular-shaped order-1 tensors are 0/1 tensors,

representing the projected state.

or density matrix renormalization group, or imaginary-time
evolution could potentially result in a faster convergence.

3.3. Simulations of Quantum Circuits
The ExaTN library has also been extensively employed as
a parallel processing backend in the HPC quantum circuit
simulator called TN-QVM [12, 60], one of the virtual quantum
processing unit (QPU) backends available in the hybrid

TABLE 3 | Average GPU performance in evaluation of a single amplitude of the

53-qubit Sycamore 2D random quantum circuit of depth 14.

Computing system Precision Average TFlop/s/GPU

DGX-A100, 8 A100 GPU TF32 34.73

DGX-A100, 8 A100 GPU FP32 15.06

Summit, 64 nodes, 384 V100 GPU FP32 7.99

Dual 64-core AMD Rome CPU FP32 2.98

quantum/classical programming framework XACC [61]. TN-
QVM implements a number of advanced quantum circuit
simulation methods, where each method creates, transforms, and
processes all necessary tensor network objects via the ExaTN
library. Below we briefly discuss the utility of ExaTN in the
implementation of these different simulation methods.

3.3.1. Direct Contraction of Quantum Circuits

In this mode of simulation [9], TN-QVM represents the initial
state of an n-qubit register as a rank-1 product of n order-1
tensors. Then it appends order-2 and order-4 tensors to this
qubit register to simulate single- and two-qubit gates, respectively
(Figure 4). Finally, for each qubit line one can either choose to
keep it open or project it to any 1-qubit state, thus specifying
an output wave-function slice to be computed in a chosen basis,
as shown in Figure 5. Effectively, TN-QVM constructs a tensor
network for

〈9f |Ucircuit|90〉, (7)

where 90 is the initial rank-1 state of the n-qubit register while
9f defines the output wave-function slice.

Once the obtained tensor network is submitted to ExaTN
for parallel processing, the library analyzes the tensor network
graph to heuristically determine the tensor contraction sequence
(contraction path) which is pseudo-optimal in terms of the Flop
count or time to solution (given some performance model). Any
intermediate tensors that require more memory than available
per MPI process are automatically split into smaller slices by
splitting selected tensor modes. The computation of these slices
is distributed across all MPI processes. Intermediate slicing in
principle enables simulation of output amplitudes of arbitrarily
large quantum circuits, that is, the memory constraints are
lifted by the increased execution time. The resulting overhead in
execution time is highly sensitive to the selection of tensor modes
to be sliced, but there exists a rather efficient simple heuristics
[62].

Table 3 illustrates performance of the TN-QVM/ExaTN
software in simulating a single bit-string amplitude of a 2D
random quantum circuit of depth 14 from Google’s quantum
supremacy experiments [63] on different classical HPC hardware
[the performance data is taken from [60]].

3.3.2. Computation of Operator Expectation Values

A ubiquitous use case in quantum circuit simulations is
calculation of the expectation values of measurement operators,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 July 2022 | Volume 8 | Article 838601

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

FIGURE 6 | ExaTN tensor network for expectation value evaluation using the circuit conjugation technique. Hashed-filled tensors represent the complex conjugates of

the solid-filled counterparts.

which can be done with tensor networks very conveniently. TN-
QVM provides two different methods for this purpose. First is
based on appending the string of measurement operators to the
output legs of the quantum circuit tensor network, followed by
a closure with the conjugate tensor network, as illustrated in
Figure 6. Numerical evaluation of this combined tensor network
delivers the scalar expectation value. All necessary operations
for combining tensor networks and subsequent numerical
evaluation are provided by ExaTN API. Additionally, ExaTN can
intelligently collapse a unitary tensor and its conjugate upon their
direct contact in a tensor network, thus simplifying the tensor
network if the measurement operators are sparse.

The second method is based on wavefunction slicing, where
TN-QVM slices the output wave-function tensor as dictated by
the memory constraints, computes the expectation value for each
slice, and recombines them to form the final result, all done via
the ExaTN API. As compared to the circuit conjugation method,
this approach has an advantage in simulations of deeper quantum
circuits with non-local observables and a moderate number of
qubits. The partial expectation value calculation tasks can be
distributed in a massively parallel manner.

3.3.3. Approximate Evaluation of Quantum Circuits

In addition to exact simulation methods, TN-QVM also provides
the ability to evaluate the quantum circuit wave-function
approximately as a projection on a user-defined tensor network
manifold. Specifically, a user can choose a tensor network
ansatz with arbitrary topology and bond dimensions. Once
the ansatz is chosen, TN-QVM will cut the quantum circuit
into chunks of equal depth and evaluate the action of each
chunk on the chosen tensor network ansatz while remapping
the result back to the same tensor network form (in general,
one should allow tensor network bond dimensions to grow
along the quantum circuit). In this simulation method, the

FIGURE 7 | An example of reconstruction of one (more complex) tensor

network as another (simpler) tensor network by minimizing the Euclidean norm

of the difference.

key procedure is a projection of a given tensor network to a
tensor network manifold of a different form (different topology
and/or bond dimensions), as illustrated in Figure 7 where a
more complex tensor network is approximately reconstructed
by a simpler tensor network. ExaTN provides a simple API
to perform such a reconstruction procedure, implemented
by the exatn::TensorNetworkReconstructor class.
Importantly, the reconstruction procedure also returns the
reconstruction fidelity which can then be used for making
decisions on dynamically increasing the bond dimensions in the
reconstructing tensor network (adaptive tensor networks). The
execution of the tensor network reconstruction automatically
leverages multiple levels of parallelization provided by the ExaTN
parallel runtime as described above.

Another approximate quantum circuit simulation
method implemented in TN-QVM is based on a matrix
product state (MPS) representation of the multi-qubit
wave-function [60] which is evaluated via the classical
contract/decompose algorithm [12]. This algorithm adapts

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 July 2022 | Volume 8 | Article 838601

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

the simulation accuracy to the available computational resources.
ExaTN provides a convenient MPS builder utility via the
exatn::numerics::NetworkBuilder interface as well
as API for tensor contraction and decomposition.

3.4. Machine Learning
The utility of tensor networks in classical machine learning
was realized relatively recently. Here we can distinguish two
categories of applications: (1) Building machine learning models
with tensor networks, and (2) using tensor networks in
conventional deep neural network models for compressing
the neural network layers. In the first approach, a tensor
network model can be trained to fulfill classification tasks
[19–22]. The input data, for example, an image, is typically
encoded as a direct-product state of many quantum degrees of
freedom, where each quantum degree of freedom corresponds
to a single pixel (in case of images). By optimizing the
tensors constituting the tensor network, one minimizes the
error of the classification. Image classification is particularly
amenable to the tensor network analysis because of the locally
correlated structure of typical images. In the second approach,
tensor networks, i.e., MPS, are used for compressing the
layers of a deep neural network, thus reducing the memory
requirements and introducing regularization in the training
phase [18, 64]. The ExaTN library provides necessary primitives
for both use cases, in particular construction and contraction
of an arbitrary tensor network as well as evaluation of the
gradient of a tensor network functional with respect to a
given tensor. Additionally, the first use case may also benefit
from the availability of the exatn::TensorExpansion
class suitable for representing a linear combination of tensor
networks projected on different instances from the training
data batch.

4. CONCLUSIONS

As demonstrated above, the ExaTN library provides state-of-
the-art capabilities for construction, transformation, and parallel
processing of tensor networks on laptops, workstations, andHPC
platforms, including GPU-accelerated ones, in multiple domains.
Furthermore, building upon regular tensor networks, ExaTN also
introduces higher-level objects, specifically linear combinations
of tensor networks or tensor network operators which serve as
more flexible analogs of tensors and tensor operators living on
differential manifolds instead of regular linear spaces. ExaTN
also provides a general tensor network reconstruction procedure
which can efficiently project any tensor network to another
tensor network of different topology/configuration. Importantly,
these mathematical primitives enable a systematic derivation of
approximate tensor network renormalization schemes as well
as reformulation of linear algebra solvers on low-rank tensor
network manifolds, which is currently an active field of research
in applied math. We are actively working on implementing
such solvers in the ExaTN library, leveraging all benefits of
multi-level parallelization and GPU acceleration provided by the

ExaTN parallel runtime. Another direction of our development
work is further adoption of vendor-provided highly-optimized
math libraries that will enhance the performance of ExaTN on
respective HPC platforms.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found at: https://github.com/ORNL-QCI/exatn.git.

AUTHOR CONTRIBUTIONS

DL was the technical lead for the research and development
efforts described in this paper, including conceptualization,
algorithm/software design and implementation, simulations, and
manuscript writing. TN was responsible for integrating the
ExaTN library into the TN-QVM simulator as well as performing
actual quantum computing simulations and describing them
in the text. DC was responsible for performing quantum
chemistry simulations and describing them in the text. ED
was responsible for condensed matter physics applications
and relevant text. AM coordinated the ExaTN development
efforts and contributed to software design and implementation.
All authors contributed to the article and approved the
submitted version.

FUNDING

We would like to acknowledge the Laboratory Directed Research
and Development (LDRD) funding provided by the Oak Ridge
National Laboratory (LDRD award 9463) for the core ExaTN
library development efforts. DL, DC, and AM would like to
acknowledge funding by the US Department of Energy Office
of Basic Energy Sciences Quantum Information Science award
ERKCG13/ERKCG23.

ACKNOWLEDGMENTS

This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC05-00OR22725.

LICENSES AND PERMISSIONS

This manuscript has been authored by UT-Battelle, LLC under
Contract No. DE-AC05-00OR22725 with the U.S. Department
of Energy. The United States Government retains and the
publisher, by accepting the article for publication, acknowledges
that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for
United States Government purposes. The Department of Energy
will provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan (http://
energy.gov/downloads/doe-public-access-plan).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 July 2022 | Volume 8 | Article 838601

https://github.com/ORNL-QCI/exatn.git
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

REFERENCES

1. Schollwöck U. The density-matrix renormalization group in the age of matrix

product states. Ann Phys. (2011) 326:96–192. doi: 10.1016/j.aop.2010.09.012

2. Orús R. A practical introduction to tensor networks: Matrix product

states and projected entangled pair states. Ann Phys. (2014) 349:117–58.

doi: 10.1016/j.aop.2014.06.013

3. Oseledets IV. Tensor-train decomposition. SIAM J Sci Comput. (2011)

33:2295–317. doi: 10.1137/090752286

4. Verstraete F, Cirac JI. Valence-bond states for quantum computation. Phys Rev

A. (2004) 70:060302. doi: 10.1103/PhysRevA.70.060302

5. Shi YY, Duan LM, Vidal G. Classical simulation of quantum many-

body systems with a tree tensor network. Phys Rev A. (2006) 74:022320.

doi: 10.1103/PhysRevA.74.022320

6. Vidal G. Class of quantum many-body states that can be efficiently simulated.

Phys Rev Lett. (2008) 101:110501. doi: 10.1103/PhysRevLett.101.110501

7. Chan GKL, Keselman A, Nakatani N, Li Z, White SR. Matrix product

operators, matrix product states, and ab initio density matrix renormalization

group algorithms. J Chem Phys. (2016) 145:014102. doi: 10.1063/1.4955108

8. Nakatani N, Chan GKL. Efficient tree tensor network states (TTNS) for

quantum chemistry: generalization of the density matrix renormalization

group algorithm. J Chem Phys. (2013) 138:134113. doi: 10.1063/1.4798639

9. Markov IL, Shi Y. Simulating quantum computation by contracting tensor

networks. SIAM J Comput. (2008) 38:963–81. doi: 10.1137/050644756

10. Villalonga B, Boixo S, Nelson B, Henze C, Rieffel E, Biswas R, et al.

A flexible high-performance simulator for verifying and benchmarking

quantum circuits implemented on real hardware. NPJ Quant Inform. (2019)

5:1–16. doi: 10.1038/s41534-019-0196-1

11. Villalonga B, Lyakh D, Boixo S, Neven H, Humble TS, Biswas R, et al.

Establishing the quantum supremacy frontier with a 281 pflop/s simulation.

Quant Sci Technol. (2020) 5:034003. doi: 10.1088/2058-9565/ab7eeb

12. McCaskey A, Dumitrescu E, Chen M, Lyakh D, Humble T. Validating

quantum-classical programming models with tensor network simulations.

PLoS ONE. (2018) 13:e0206704. doi: 10.1371/journal.pone.0206704

13. Zhou Y, Stoudenmire EM, Waintal X. What limits the simulation of quantum

computers? Phys Rev X. (2020) 10:041038. doi: 10.1103/PhysRevX.10.041038

14. Pang Y, Hao T, Dugad A, Zhou Y, Solomonik E. Efficient 2D tensor network

simulation of quantum systems. In: SC20: International Conference for High

Performance Computing, Networking, Storage and Analysis. (2020). p. 1–14.

doi: 10.1109/SC41405.2020.00018

15. Noh K, Jiang L, Fefferman B. Efficient classical simulation of noisy

random quantum circuits in one dimension. Quantum. (2020) 4:318.

doi: 10.22331/q-2020-09-11-318

16. Holmes A, Matsuura AY. Efficient quantum circuits for accurate state

preparation of smooth, differentiable functions. In: 2020 IEEE International

Conference on Quantum Computing and Engineering (QCE). (2020). p.

169–79. doi: 10.1109/QCE49297.2020.00030

17. Song Q, Ge H, Caverlee J, Hu X. Tensor completion algorithms in

big data analytics. ACM Trans Knowl Discov Data. (2019) 13:1–48.

doi: 10.1145/3278607

18. Gao ZF, Cheng S, He RQ, Xie ZY, Zhao HH, Lu ZY, et al. Compressing deep

neural networks by matrix product operators. Phys Rev Res. (2020) 2:023300.

doi: 10.1103/PhysRevResearch.2.023300

19. Stoudenmire E, Schwab DJ. Supervised learning with tensor networks. In:

Proceedings of the 30th International Conference on Neural Information

Processing Systems. Barcelona (2016). p. 4806–14.

20. Reyes J, Stoudenmire EM. A multi-scale tensor network architecture

for classification and regression. arXiv[Preprint].arXiv:2001.08286. (2020).

doi: 10.48550/arXiv.2001.08286

21. Evenbly G. Number-state preserving tensor networks as classifiers

for supervised learning. arXiv[Preprint].arXiv:190506352. (2019).

doi: 10.48550/arXiv.1905.06352

22. Martyn J, Vidal G, Roberts C, Leichenauer S. Entanglement

and tensor networks for supervised image classification.

arXiv[preprint].arXiv:200706082. (2020). doi: 10.48550/arXiv.2007.06082

23. Wall ML, Abernathy MR, Quiroz G. Generative machine learning with tensor

networks: benchmarks on near-term quantum computers. Phys Rev Res.

(2021) 3:023010. doi: 10.1103/PhysRevResearch.3.023010

24. Psarras C, Karlsson L, Bientinesi P. The landscape of software

for tensor computations. arXiv[Preprint].arXiv:210313756. (2021).

doi: 10.48550/arXiv.2103.13756

25. Fishman M, White SR, Stoudenmire EM. The ITensor software library

for tensor network calculations. arXiv[Preprint].arXiv:200714822. (2020).

doi: 10.48550/arXiv.2007.14822

26. Evenbly G. TensorTrace: an application to contract tensor networks.

arXiv:191102558. (2019). doi: 10.48550/arXiv.1911.02558

27. Pfeifer RNC, Evenbly G, Singh S, Vidal G. NCON: a tensor network

contractor for MATLAB. arXiv[Preprint].arXiv:14020939. (2015).

doi: 10.48550/arXiv.1402.0939

28. Hauschild J, Pollmann F. Efficient numerical simulations with Tensor

Networks: tensor Network Python (TeNPy). SciPost Phys Lect Notes. (2018)

5. doi: 10.21468/SciPostPhysLectNotes.5. Available online at: https://scipost.

org/SciPostPhysLectNotes.5/pdf

29. Solomonik E, Matthews D, Hammond J, Demmel J. Cyclops tensor

framework: reducing communication and eliminating load imbalance

in massively parallel contractions. In: Proceedings of the 2013 IEEE

27th International Symposium on Parallel and Distributed Processing,

IPDPS ’13. Boston, MA: IEEE Computer Society (2013). p. 813–24.

doi: 10.1109/IPDPS.2013.112

30. Levy R, Solomonik E, Clark BK. Distributed-memory DMRG via sparse and

dense parallel tensor contractions. In: SC20: International Conference for High

Performance Computing, Networking, Storage and Analysis. (2020). p. 1–14.

doi: 10.1109/SC41405.2020.00028

31. Ma L, Ye J, Solomonik E. AutoHOOT: Automatic high-order optimization

for tensors. In: Proceedings of the ACM International Conference on

Parallel Architectures and Compilation Techniques, PACT ’20. New

York, NY: Association for Computing Machinery (2020). p. 125–37.

doi: 10.1145/3410463.3414647

32. Gray J. quimb: a python library for quantum information and many-body

calculations. J Open Source Softw. (2018) 3:819. doi: 10.21105/joss.00819

33. Rocklin M. Dask: parallel computation with blocked algorithms and task

scheduling. In: Proceedings of the 14th Python in Science Conference. Vol. 130.

Austin, TX: Citeseer (2015). p. 136. doi: 10.25080/Majora-7b98e3ed-013

34. Bradbury J, Frostig R, Hawkins P, Johnson MJ, Leary C, Maclaurin D,

et al. JAX: Composable Transformations of Python+NumPy Programs. (2018).

Available online at: https://github.com/google/jax

35. Kossaifi J, Panagakis Y, Anandkumar A, Pantic M. TensorLy: tensor learning

in python. J Mach Learn Res. (2019) 20:1-6. doi: 10.5555/3322706.33

22732

36. Roberts C, Milsted A, Ganahl M, Zalcman A, Fontaine B, Zou Y,

et al. TensorNetwork: a library for physics and machine learning.

arXiv[Preprint].arXiv:190501330. (2019). doi: 10.48550/arXiv.1905.

01330

37. Lyakh DI, McCaskey AJ, Nguyen T. ExaTN: Exascale Tensor Networks. (2018-

2022). Available online at: https://github.com/ORNL-QCI/exatn.git

38. Gray J, Kourtis S. Hyper-optimized tensor network contraction. Quantum.

(2021) 5:410. doi: 10.22331/q-2021-03-15-410

39. Kalachev G, Panteleev P, Yung MH. Recursive multi-tensor contraction

for XEB verification of quantum circuits. arXiv[Preprint].arXiv:210805665.

(2021). doi: 10.48550/arXiv.2108.05665

40. Karypis G, Kumar V. Multilevel algorithms for multi-constraint

graph partitioning. In: SC ’98: Proceedings of the 1998 ACM/IEEE

Conference on Supercomputing. Dallas, TX: ACM; IEEE (1998). p. 28.

doi: 10.1109/SC.1998.10018

41. Dmitry I Lyakh. TAL-SH: Tensor Algebra Library for Shared-Memory

Platforms. (2014–2022). Available online at: https://github.com/

DmitryLyakh/TAL_SH

42. Lyakh DI. An efficient tensor transpose algorithm for multicore CPU, Intel

Xeon Phi, and NVidia Tesla GPU. Comput Phys Commun. (2015) 189:84–91.

doi: 10.1016/j.cpc.2014.12.013

43. Hynninen AP, Lyakh DI. cutt: A high-performance tensor transpose

library for cuda compatible gpus. arXiv[Preprint].arXiv:170501598. (2017).

doi: 10.48550/arXiv.1705.01598

44. Troyer M, Wiese UJ. Computational complexity and fundamental limitations

to fermionic quantum Monte Carlo simulations. Phys Rev Lett. (2005)

94:170201. doi: 10.1103/PhysRevLett.94.170201

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 12 July 2022 | Volume 8 | Article 838601

https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1137/090752286
https://doi.org/10.1103/PhysRevA.70.060302
https://doi.org/10.1103/PhysRevA.74.022320
https://doi.org/10.1103/PhysRevLett.101.110501
https://doi.org/10.1063/1.4955108
https://doi.org/10.1063/1.4798639
https://doi.org/10.1137/050644756
https://doi.org/10.1038/s41534-019-0196-1
https://doi.org/10.1088/2058-9565/ab7eeb
https://doi.org/10.1371/journal.pone.0206704
https://doi.org/10.1103/PhysRevX.10.041038
https://doi.org/10.1109/SC41405.2020.00018
https://doi.org/10.22331/q-2020-09-11-318
https://doi.org/10.1109/QCE49297.2020.00030
https://doi.org/10.1145/3278607
https://doi.org/10.1103/PhysRevResearch.2.023300
https://doi.org/10.48550/arXiv.2001.08286
https://doi.org/10.48550/arXiv.1905.06352
https://doi.org/10.48550/arXiv.2007.06082
https://doi.org/10.1103/PhysRevResearch.3.023010
https://doi.org/10.48550/arXiv.2103.13756
https://doi.org/10.48550/arXiv.2007.14822
https://doi.org/10.48550/arXiv.1911.02558
https://doi.org/10.48550/arXiv.1402.0939
https://doi.org/10.21468/SciPostPhysLectNotes.5
https://scipost.org/SciPostPhysLectNotes.5/pdf
https://scipost.org/SciPostPhysLectNotes.5/pdf
https://doi.org/10.1109/IPDPS.2013.112
https://doi.org/10.1109/SC41405.2020.00028
https://doi.org/10.1145/3410463.3414647
https://doi.org/10.21105/joss.00819
https://doi.org/10.25080/Majora-7b98e3ed-013
https://github.com/google/jax
https://doi.org/10.5555/3322706.3322732
https://doi.org/10.48550/arXiv.1905.01330
https://github.com/ORNL-QCI/exatn.git
https://doi.org/10.22331/q-2021-03-15-410
https://doi.org/10.48550/arXiv.2108.05665
https://doi.org/10.1109/SC.1998.10018
https://github.com/DmitryLyakh/TAL_SH
https://github.com/DmitryLyakh/TAL_SH
https://doi.org/10.1016/j.cpc.2014.12.013
https://doi.org/10.48550/arXiv.1705.01598
https://doi.org/10.1103/PhysRevLett.94.170201
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Lyakh et al. ExaTN

45. White SR. Density matrix formulation for quantum renormalization groups.

Phys Rev Lett. (1992) 69:2863–6. doi: 10.1103/PhysRevLett.69.2863

46. Schollwöck U. The density-matrix renormalization group. Rev Modern Phys.

(2005) 77:259–315. doi: 10.1103/RevModPhys.77.259

47. Cirac JI, Verstraete F. Renormalization and tensor product

states in spin chains and lattices. J Phys A. (2009) 42:504004.

doi: 10.1088/1751-8113/42/50/504004

48. Orús R. Advances on tensor network theory: symmetries, fermions,

entanglement, and holography. Eur Phys J B. (2014) 87:280.

doi: 10.1140/epjb/e2014-50502-9

49. Vidal G. Entanglement renormalization. Phys Rev Lett. (2007) 99:220405.

doi: 10.1103/PhysRevLett.99.220405

50. Vidal G. Efficient classical simulation of slightly entangled

quantum computations. Phys Rev Lett. (2003) 91:147902.

doi: 10.1103/PhysRevLett.91.147902

51. White SR, Feiguin AE. Real-time evolution using the density

matrix renormalization group. Phys Rev Lett. (2004) 93:076401.

doi: 10.1103/PhysRevLett.93.076401

52. Daley AJ, Kollath C, Schollwöck U, Vidal G. Time-dependent density-matrix

renormalization-group using adaptive effective Hilbert spaces. J Stat Mech.

(2004) 2004:P04005. doi: 10.1088/1742-5468/2004/04/P04005

53. Vidal G. Classical simulation of infinite-size quantum lattice

systems in one spatial dimension. Phys Rev Lett. (2007) 98:070201.

doi: 10.1103/PhysRevLett.98.070201

54. Evenbly G, Vidal G. Tensor network renormalization. Phys Rev Lett. (2015)

115:180405. doi: 10.1103/PhysRevLett.115.180405

55. Nishino T, Okunishi K. Corner transfer matrix renormalization group

method. J Phys Soc Jpn. (1996) 65:891–4. doi: 10.1143/JPSJ.65.891

56. Pfeifer RNC, Haegeman J, Verstraete F. Faster identification of optimal

contraction sequences for tensor networks. Phys Rev E. (2014) 90:033315.

doi: 10.1103/PhysRevE.90.033315

57. Li X, Parrish RM, Liu F, Kokkila Schumacher SIL, Martínez TJ. An ab

initio exciton model including charge-transfer excited states. J Chem Theory

Comput. (2017) 13:3493–504. doi: 10.1021/acs.jctc.7b00171

58. Sisto A, Glowacki DR, Martinez TJ. Ab initio. nonadiabatic dynamics

of multichromophore complexes: a scalable graphical-processing-unit-

accelerated exciton framework. Acc Chem Res. (2014) 47:2857–66.

doi: 10.1021/ar500229p

59. Parrish RM, Hohenstein EG, McMahon PL, Martínez TJ. Quantum

computation of electronic transitions using a variational quantum

eigensolver. Phys Rev Lett. (2019) 122:230401. doi: 10.1103/PhysRevLett.122.

230401

60. Nguyan T, Lyakh D, Dumitrescu E, Clark D, Larkin J, McCaskey A. Tensor

network quantum virtual machine for simulating quantum circuits at exascale.

arXiv [Preprint]. (2021). arXiv: 2104.10523. doi: 10.48550/ARXIV.2104.10523

61. McCaskey AJ, Lyakh DI, Dumitrescu EF, Powers SS, Humble TS.

XACC: a system-level software infrastructure for heterogeneous

quantum–classical computing. Quant Sci Technol. (2020) 5:024002.

doi: 10.1088/2058-9565/ab6bf6

62. Schutski R, Khakhulin T, Oseledets I, Kolmakov D. Simple heuristics

for efficient parallel tensor contraction and quantum circuit

simulation. Phys Rev A. (2020) 102:062614. doi: 10.1103/PhysRevA.102.

062614

63. Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, et al. Quantum

supremacy using a programmable superconducting processor. Nature. (2019)

574:505–10. doi: 10.1038/s41586-019-1666-5

64. Hrinchuk O, Khrulkov V, Mirvakhabova L, Orlova E,

Oseledets I. Tensorized embedding layers for efficient

model compression. arXiv[Preprint].arXiv:190110787. (2020).

doi: 10.18653/v1/2020.findings-emnlp.436

Conflict of Interest: AM is currently employed by NVIDIA Corporation.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Lyakh, Nguyen, Claudino, Dumitrescu and McCaskey. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 July 2022 | Volume 8 | Article 838601

https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1088/1751-8113/42/50/504004
https://doi.org/10.1140/epjb/e2014-50502-9
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1088/1742-5468/2004/04/P04005
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1103/PhysRevLett.115.180405
https://doi.org/10.1143/JPSJ.65.891
https://doi.org/10.1103/PhysRevE.90.033315
https://doi.org/10.1021/acs.jctc.7b00171
https://doi.org/10.1021/ar500229p
https://doi.org/10.1103/PhysRevLett.122.230401
https://doi.org/10.48550/ARXIV.2104.10523
https://doi.org/10.1088/2058-9565/ab6bf6
https://doi.org/10.1103/PhysRevA.102.062614
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.18653/v1/2020.findings-emnlp.436
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	ExaTN: Scalable GPU-Accelerated High-Performance Processing of General Tensor Networks at Exascale
	1. Introduction
	2. ExaTN Library
	2.1. Tensor Network Structures
	2.2. Tensor Network Processing

	3. Results and Discussion
	3.1. Condensed Matter Physics Simulations
	3.2. Quantum Chemistry Simulations
	3.3. Simulations of Quantum Circuits
	3.3.1. Direct Contraction of Quantum Circuits
	3.3.2. Computation of Operator Expectation Values
	3.3.3. Approximate Evaluation of Quantum Circuits

	3.4. Machine Learning

	4. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Licenses and Permissions
	References

