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On the Global Positivity Solutions of
Non-homogeneous Stochastic
Differential Equations

Farai Julius Mhlanga* and Lazarus Rundora

Department of Mathematics and Applied Mathematics, University of Limpopo, Turfloop Campus, Sovenga, South Africa

In this article, we treat the existence and uniqueness of strong solutions to the Cauchy

problem of stochastic equations of the form dXt = αXt dt + σX
γ

t dBt,X0 = x > 0.

The construction does not require the drift and the diffusion coefficients to be Lipschitz

continuous. Sufficient and necessary conditions for the existence of a global positive

solution of non-homogeneous stochastic differential equations with a non-Lipschitzian

diffusion coefficient are sought using probabilistic arguments. The special case γ = 2

and the general case, that is, γ > 1 are considered. A complete description of every

possible behavior of the process Xt at the boundary points of the state interval is provided.

For applications, the Cox-Ingersoll-Ross model is considered.

Keywords: geometric Brownian motion, Itô diffusion, Lipschitz continuous, scale function, speed measure

1. INTRODUCTION

The theory of stochastic differential equations was developed by [1]. Stochastic differential
equations are valuable tools for modeling systems and processes with stochastic disturbances in
many fields of science and engineering. For the general theory of stochastic differential equations,
one can refer to [2–5]. Several authors have discussed results concerning the existence and
uniqueness of solutions of stochastic differential equations [2, 6, 7]. Mishura and Posashkova
[8] provided a sufficient condition on coefficients which ensures almost surely positivity of
the trajectories of the solution of the stochastic differential equation with non-homogeneous
coefficients and non-Lipschitz diffusion. Appleby et al. [9] investigated highly non-linear stochastic
differential equations with delays and showed that properties on the coefficients of stochastic
differential equations that guarantee stability also guarantee positivity of solutions as long as the
initial value is non-zero. Xu et al. [10] investigated the global positive solution of a stochastic
differential equation, where they generalized the mean-reverting constant elasticity of variance
process by replacing the constant parameters with the parameters modulated by a continuous-time,
finite-state, Markov chain. Zhang [11] treated the properties of solutions to stochastic differential
equations with Sobolev diffusion coefficients and singular drifts. Bae et al. [12] proved the existence
of and uniqueness of solution to stochastic differential equations under weakened and Hölder
conditions and a weakened linear growth condition. Conditions for positivity of solutions of
fractional stochastic differential equations with coefficients that do not satisfy the linear growth
Lipschitz continuous conditions were obtained by [13].
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The aim of this article is to prove the existence of a global
positive solution of stochastic differential equations of the form

dXt = αXt dt + σX
γ
t dBt ,X0 = x > 0, (1)

where Bt is a standard Brownian motion, for different values of γ
where α denotes the drift, σ denotes the volatility. X = (Xt)t≥0

describes the underlying asset price. Such stochastic differential
equations arise in modeling asset prices and interest rates on
financial markets and it is crucial that Xt never becomes negative.
Mao and Yuan [2] discussed the analytical properties when 1

2 ≤
γ ≤ 1 and showed that for a given initial value X0 = x > 0,
the solution of (1) remains positive with probability 1, namely,
Xt > 0 for all t ≥ 0 almost surely. The cases γ = 0 and γ = 1
give rise to the Ornstein-Uhlenbeck process and the Geometric
Brownianmotion, respectively, and this has been dealt with in the
literature, see [4, 5, 14, 15]. When γ > 1, the diffusion coefficient
of Equation (1) does not satisfy the linear growth condition,
even though it is locally Lipschitz continuous. In view of this,
it is not straightforward from the general theory of stochastic
differential equations to obtain a unique global positive solution
to Equation (1) that is defined for all t ≥ 0. Nevertheless, there
is a way to overcome such difficulties which we present in this
article and we also provide detailed proofs that there is unique
solutions to equations of the form (1). This article is an extension
of the work done in [16] and [17] to non-homogeneous stochastic
differential equations.

This article is structured as follows. In Section 2, we consider
the existence of a positive global solution for non-homogeneous
stochastic differential equations with non-Lipschitz coefficients.
In particular, we treat the case γ = 2 and prove that if α ≥ 0
and x ≥ 0 is arbitrary, then a unique strong solution of Equation
(1) exists. Section 3 deals with the existence and uniqueness
of a positive global solution to non-homogeneous stochastic
differential equation (1). In particular, we consider the general
case, that is, γ > 1. We provide a detailed proof of the existence
of a unique solution to Equation (1). In Section 4, we investigate
the behavior of the underlying process Xt at the boundaries of the
state space (0,∞). The main tool used are simple probabilistic
arguments. We only require the coefficients of our model to
be continuous in the usual sense. In Section 5, we provide a
brief conclusion.

2. EXISTENCE OF POSITIVE GLOBAL

SOLUTIONS: γ = 2

We want to prove that a unique global positive solution to
Equation (1) exists and investigate its properties. We notice that
if X0 = x = 0, then by strong uniqueness we have Xt = 0 for all
t ≥ 0. In addition, if a solution Xt exists for all t < τ (ω) ≤ ∞ for
some x > 0 and XT = 0 for some T = T(ω) < τ (ω), then by the
Strong Markov property we haveXt = 0 for all t ∈ [T(ω), τ (ω)].
In particular, x ≥ 0 implies that Xt ≥ 0.

We call (�,F , (Ft),P) a stochastic basis if (�,F ,P) is a
complete probability space and (Ft) is a right continuous
filtration on � augmented by the P-null sets. Let B = (Bt)t≥0

be a standard Brownian motion defined on a stochastic basis
(�,F , (Ft),P).

We consider a stochastic differential equation of the form

dXt = α(Xt) dt + σ (Xt) dBt , (2)

where the coefficients α :R → R and σ :R → R are both Borel
measurable functions. By the definition of stochastic differential,
Equation (2) is equivalent to the stochastic integral equation:

Xt = x+
∫ t

0
α(Xs) ds+

∫ t

0
σ (Xs) dBs. (3)

Definition 2.1. [2, p. 48] An R-valued stochastic process
{Xt}t∈[0,T] is called a solution of Equation (2) if it has the
following properties:

1. {Xt} is continuous and Ft-adapted.

2.
∫ t
0 | α(Xs) | ds < ∞ and

∫ t
0 σ 2(Xs)ds < ∞.

3. Equation (3) holds for every t ∈ [0,T] with probability 1.

Definition 2.2. [18, p. 167] A solution (X,B) of Equation (2)
defined on (�,F , (Ft),P) is said to be a strong solution if X is
adapted to the filtration {FB

t }, that is, the filtration of B = (Bt)t≥0

completed with respect to P.

Definition 2.3. [7, p. 300] A weak solution is a triple
((�,F ,P), (B,X), (Ft)) where (�,F ,P) is a probability space,
{Ft} is a filtration of sub-σ -fields of F satisfying the usual
conditions, X is a continuous, adapted R-valued process, B is the
standard Brownian motion such that Equation (3) is satisfied.

Remark 2.1.

1. Definition 2.2 says that if the probability space (�,F ,P), the
filtration {Ft}t≥0, the Brownian motion Bt and the coefficients
α(x) and σ (x) are all given in advance, and then the solution
Xt is constructed, such a solution is called a strong solution.

2. Definition 2.3 says that if we are only given the coefficients
α(x) and σ (x), and we are allowed to construct a suitable
probability space, a filtration and find a solution to the
Equation (2), then such a solution is called a weak solution.

A solution {Xt}t∈[0,T] is said to be unique if any other solution
{Xt} is indistinguishable from {Xt}, that is

P(Xt = Xt ∀ 0 ≤ t ≤ T) = 1.

Following [19], we impose the following hypothesis:
(H) The drift coefficient is globally Lipschitz, that is, for all

x, y ∈ R,

| α(x)− α(y) |≤ K | x− y | (4)

where K is a fixed constant, while the diffusion coefficient is
globally Hölder continuous, that is, for all x, y ∈ R,

| σ (x)− σ (y) |≤ h(| x− y |) (5)
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where h :[0,∞) → [0,∞) is a strictly increasing function with
h(0) = 0 and the integral

∫ ε

0

du

h2(u)
= ∞, ∀ε > 0.

It is known [see [19]] that under the hypothesis (H), the strong
uniqueness solution holds for the stochastic differential equation
(2).

For the case γ = 2, Equation (1) takes the form

dXt = αXt dt + σX2
t dBt . (6)

If we let Yt = ln | Xt | then an application of Itô’s formula yields

dYt = (α − 1

2
σ 2X2

t ) dt + σXt dBt (7)

which is equivalent to

ln | Xt |= ln | x | +αt − 1

2
σ 2

∫ t

0
X2
s ds+ σ

∫ t

0
Xs dBs. (8)

This solution presents a challenge as the coefficients in Equation
(8) do not satisfy the linear growth and Lipschitz conditions.
However, there is a way to go around this. In the next result we
prove the existence of a global solution to Equation (6) following
arguments presented in [20].

Theorem 2.1. Suppose α ≥ 0 and x ≥ 0 is arbitrary, then the
stochastic differential equation of the form (6) has a unique, strong
solution Xt defined for all t ≥ 0.

Proof: The result is proved by a truncation procedure. For each
n ≥ 1, we set α = αn(x) and the truncation function

σn(x) =
{

σx2 if | x |≤ n,
σn2 if | x |> n

.

Then, αn(x) and σn(x) satisfy the hypothesis (H). Hence, there is

a unique solution Xt = X
(n)
t defined for all t to the equation

X
(n)
t = x+

∫ t

0
αn(X

(n)
s ) ds+

∫ t

0
σn(X

(n)
s ) dBs. (9)

Define the stopping time

τn = inf{t > 0; | X(n)
t |≥ n}, n = 1, 2, .... (10)

Then, by strong uniqueness we have

X
(n)
t (ω) = X

(n+1)
t (ω) for all t ≤ τn a.s. (11)

Therefore,

τn = inf{t > 0; | X(n)
t |≥ n} < inf{t > 0; | X(n+1)

t |≥ n+ 1} =
τn+1. (12)

Hence, {τn} is an increasing sequence of stopping times. Put

τ (ω) = lim
n→∞

τn(ω) ≤ ∞.

Then, for t < τ (ω), a process Xt can be defined by setting

Xt(ω) = X
(n)
t (ω), if t < τn(ω). (13)

It is clear that if t < τ (ω) then one can easily show that t <

τn(ω) for some n. Therefore, by (11), this defines Xt(ω) uniquely.
Hence, we have

Xt = x+
∫ t

0
αXs ds+

∫ t

0
σX2

s dBs for t < τ (ω). (14)

3. EXISTENCE AND UNIQUENESS OF

POSITIVE GLOBAL SOLUTION

In this section, we provide a detailed proof that there
is a unique positive global solution to Equation (1). In
particular, we focus on the case γ > 1. To establish the
existence of a unique positive global solution, we need the
following result.

Lemma 3.1. [3, p. 57] The coefficients of Equation (1)
satisfy the local Lipschitz condition for given initial
condition X0 = x > 0, that is, for every integer k > 1,
there exists a positive constant Lk and x, y ∈ [0, k]
such that

| αx− αy |2 + | σxγ − σyγ |2≤ Lk | x− y |2 . (15)

Therefore, there exists a unique local solution to Equation (1).

We now state our result in the following theorem.

Theorem 3.1. For any given initial value X0 = x > 0, α and
σ > 0 there exists a unique positive global solution Xt to Equation
(1) on t ≥ 0 for γ > 1.

Proof: It is clear that the coefficients of Equation (1) are locally
Lipschitz continuous. Therefore, for any given initial value X0 =
x > 0, there is a unique local solution Xt , t ∈ [0, τ (ω)] of
Equation (1) where τ (ω) is the explosion time. To prove that the
solution is global, it suffices to show that τ (ω) = ∞ almost surely.
We prove this by contradiction. If τ (ω) 6= ∞, then we can find a
pair of positive constants ǫ and T such that

P(τ (ω) ≤ T) > ǫ. (16)

For each integer n > 1, we define a stopping time

τn = inf{t ≥ 0 : | Xt |≥ n}. (17)

Since τn → τ (ω) almost surely, we can find a sufficiently large n0
for which

P(τn ≤ T) >
ǫ

2
, for all n ≥ n0. (18)
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For θ ,β > 0, we define a function V ∈ C2 as

V(X) : = θ
√
X + βX−2, (19)

which is continuously twice differentiable in X. We observe that
V(X) → +∞ as X → +∞ or X → 0. For any 0 < t < T, an
application of Itô formula gives

dV(Xt) = LV(Xt) dt + σXγ

(
1

2
θX

− 1
2

t − 2βX−3
t

)
dBt , (20)

where

LV(Xt) = αXt

(
1

2
θX

− 1
2

t − 2βX−3
t

)

+1

2
σ 2X

2γ
t

(
−1

4
θX

− 2
3

t + 6βX−4
t

)
. (21)

By boundedness of polynomials, there exists a constant K
such that

αXt

(
1

2
θX

− 1
2

t − 2βX−3
t

)
+ 1

2
σ 2X

2γ
t

(
−1

4
θX

− 2
3

t + 6βX−4
t

)
≤K.

(22)
Therefore, for any t ∈ [0,T]

E[V(Xt∧τn )] = V(x)+ E

[∫ t∧τn

0
LV(Xs) ds

]
≤ V(x)+ KT

+KE

[∫ t

0
E[V(Xs∧τn )] ds

]
. (23)

The application of the Grownwall inequality yields

E[V(XT∧τn )] ≤ [V(x)+ KT]eKT (24)

which is equivalent to

E[V(Xτn )1{τn≤T}] ≤ [V(x)+ KT]eKT . (25)

On the other hand, we define

Mn = inf{V(Xt) | Xt > n, t ∈ [0,T]}. (26)

As n → +∞,Mn → +∞. It now follows from (18) and (26) that

[V(x)+ KT]eKT ≥ MnP({τn ≤ T}) ≥ 1

2
ǫMn. (27)

Letting n → +∞ yields a contradiction, so we must have τ (ω) =
∞ almost surely. Therefore, there exists a unique positive global
solution Xt to Equation (1) for all t ≥ 0.

4. ANALYSIS OF THE SOLUTION AT THE

BOUNDARIES OF THE STATE SPACE

We now investigate the behavior of the underlying process Xt

at the boundaries of the state space (0,∞) using probability
arguments. Xt is the solution of the stochastic differential

equation (1), where Xt is defined on the state space (0,∞), that
is, the whole positive real line.

We first consider the Itô diffusion of the form

dXt = α(Xt) dt + σ (Xt) dBt , X0 = x, (28)

where α :R → R and σ :R → R are functions satisfying the
hypothesis (H). Note that here we do not have the time argument.
We assume that the state space of Xt is a finite or infinite interval.
Such a process is a continuous Markov process and under weak
regularity conditions the drift coefficient α(x) and the diffusion
coefficient σ (x) are characterized, respectively, by

α(x) = lim
h↓0

h−1E[Xh − x] (29)

and

σ 2(x) = lim
h↓0

h−1E[(Xh − x)2] = lim
h↓0

h−1Var(Xh). (30)

For details about these conditions as well as the foregoing, see
[21]. The above conditions can conveniently be weakened to give
the following three conditions.

h−1E[(Xh − x)1{|Xh−x|≤1}] → α(x), (31)

h−1E[(Xh − x)21{|Xh−x|≤1}] → σ 2(x), (32)

and

h−1
P(|Xh − x| > ε) → 0 ∀ ε > 0, (33)

where 1{·} is the indicator function. These conditions enable us
to perform the analysis of (28) without assuming the Lipschitz
conditions to the coefficients. We will, however, assume that α(x)
and σ (x) are continuous.
Fix q ∈ R and define the scale function u by

u(x) =
∫ x

q
exp

(
−
∫ t

q

2α(z)

σ 2(z)
dz

)
dt, u(q) = 0. (34)

The function u has a continuous, strictly positive derivative and
u′′ exists almost everywhere and satisfies

u′′(x) = −2α(x)

σ 2(x)
u′(x). (35)

We also introduce the speed measure

m(dx) = 2

u′(x)σ 2(x)
dx. (36)

Now, let p(t, x, y) be the transition density of Xt . Then, the
Kolmogorov backward equation is given by

∂p

∂t
= 1

2
σ 2(x)

∂2p

∂x2
+ α(x)

∂p

∂x
. (37)

At t = 0, p(0, x, y) = δ(x−y), where δ(·) is Dirac’s delta function.
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Let [a, b] be a fixed interval and start the process at X0 = x ∈
(a, b). We want to find the probability p+(x) that the process Xt

hits b before it hits a. By the Markov property, we have

p+(x) = E[p+(Xs)]+ O
(
P(|Xs − x| > ε)

)
.

It follows from Equation (33) that

s−1
(
P(|Xs − x| > ε)

)
→ 0,

when s ↓ 0 if a + ε < x < b − ε. Using the Itô’s formula and
Equation (37), we can show that p+(x) satisfies the Kolmogorov’s
backward equation

1

2
σ 2(x)p′′+(x)+ α(x)p′+(x) = 0, (38)

for x ∈ (a, b) with the boundary conditions p+(a) = 0 and
p+(b) = 1. The explicit solution to Equation (38) is

p+(x) = A

∫ x

q
exp

(
−
∫ t

q

2α(z)

σ 2(z)
dz

)
dt + B. (39)

We can write Equation (39) in the form

p+(x) = Au(x)+ B, (40)

where u(x) is of the form Equation (34) for a fixed q ∈ (a, b), with
A and B constants. Now, an application of boundary conditions
p+(a) = 0 and p+(b) = 1 gives:

A = 1

u(b)− u(a)
and B = −u(a)

u(b)− u(a)
,

so that

p+(x) =
u(x)− u(a)

u(b)− u(a)
. (41)

Equations (34) and (41) will be important when applied to our
specific problem.

Following similar arguments, we define

e(x) = E[Tab], (42)

where Tab = inf{t > 0 :Xt /∈ (a, b)}. An application of the
Markov property gives

e(x) = s+ E[e(Xs)]+ O(P(|Xs − x| > ε)).

Dividing by s and letting s tend to 0 and an application of the Itô
formula gives

1

2
σ 2(x)e′′(x)+ α(x)e′(x) = −1. (43)

This equation can be solved by the standard Green function
techniques as follows. The corresponding homogeneous
equation is

e′′(x)+ 2α(x)

σ 2(x)
e′(x) = 0

and its solution is

e(x) = u(x)− u(a)

u(b)− u(a)
, (44)

with boundary conditions e(a) = 0 and e(b) = 1 where u(x)
is defined in Equation (34). The Green function, G(a,b)(x, y), is
calculated as

G(a,b)(x, y) =
{

1
W · e1(x)e2(y) if x ≤ y,
1
W · e1(y)e2(x) if x ≥ y,

(45)

where e1 and e2 take the form of Equation (44) and W is the
Wronskian given by

W = u′(x)

u(b)− u(a)
.

Therefore, the solution to Equation (43) is given by

e(x) =
∫ b

a
G(a,b)(x, y)m(dy),

where G(a,b)(x, y) is given by

G(a,b)(x, y) =





2(u(x)−u(a))(u(b)−u(y))
u(b)−u(a)

if x ≤ y,

2(u(y)−u(a))(u(b)−u(x))
u(b)−u(a)

if x > y,

(46)

andm(dy) is given by Equation (36).
We now consider Equation (1). We note that the diffusion

coefficient σ (x) = σxγ in Equation (1) is defined only on (0,∞),
that is, the state space of the process is made up of the positive
reals. The process Xt in Equation (1) is a diffusion process, and
the coefficients σ and α are continuous on (0,∞). Following the
arguments in [17], we investigate the behavior of Equation (1) at
the boundaries of the state space. It is of interest whether or not
the boundary points 0 and/or ∞ can be reached by the process
Xt in a finite time.

A boundary point is said to be accessible if it can be reached in
finite time with positive probability. Otherwise it is inaccessible
[17]. The accessible boundary points are of two different types,
namely, the exit and regular boundary points. For the exit
boundary, the process is absorbed after the boundary is reached
while the regular boundary point is imposed on a standard
Brownian motion and could either be absorbed or reflected once
the boundary is reached. The inaccessible boundaries are also of
two types, namely, the entrance and natural boundary points. The
boundary is said to be of entrance type if it is possible to start the
process at infinity and then reach the interior of the state interval,
otherwise it is called natural.

Let [a, b] be a fixed interval and the process Xt starts in X0 =
x ∈ (a, b). Let α and σ be continuous on a state interval whose
interior is (c, d). We note that we may have c = −∞ and/or
d = +∞. It is assumed that σ 2(x) > 0 on (c, d). Further,
let (̃c, d̃) = (u(c), u(d)), where u is the scale function given by
Equation (34).
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Definition 4.1. A natural upper boundary point d is said to be
attracting if there is a positive probability that Xt shall converge to
d as t → ∞.

The following classification theorem, taken from [17], will be
the framework of the analysis of Equation (1).

Theorem 4.1. Let u be the scale function given by Equation (34)
and m(dy) be the speed measure given by Equation (36). Let b be
a point in the interior of the state space (c, d). Then, the following
statements hold.

1. A necessary and sufficient condition for d to be accessible is that

u(d) < ∞ and

∫ d

b
(u(d)− u(y))m(dy) < ∞.

2. An accessible boundary point d is regular if and only if∫ d

b
m(dy) < ∞. Otherwise it is exit boundary.

3. An inaccessible boundary point d is natural if and only if∫ d

b
u(y)m(dy) = ∞.

4. A natural boundary point d is attracting if and only if u(d) <

∞ and at the same time

∫ d

b
m(dy) = ∞.

We are now in a position of analyzing the non-
homogeneous stochastic differential equation (1), repeated
here for convenience,

dXt = αXt dt + σX
γ
t dBt , γ > 1, X0 = x > 0. (47)

This is a diffusion process with α(x) = αx, σ (x) = σxγ and
natural state interval c = 0 to d = ∞. Let b be a point in
the interior of this state interval. From Equation (34) and (36),
we calculate the scale function and speed measure, respectively,
corresponding to Equation (47) to be

u(x) =
σ 2

2α

(
b2γ−1 − x2γ−1 exp

(
α

σ 2(1− γ )
(b2−2γ − x2−2γ )

))
,

and

m(dy) = 1

σ 2y2γ
exp

(
− α

σ 2(1− γ )
(b2−2γ − y2−2γ )

)
dy. (48)

It remains only to classify our boundary points on the basis of
these results. We note that

u(d) = σ 2

2α

(
b2γ−1−d2γ−1 exp

(
α

σ 2(1− γ )
(b2−2γ − d2−2γ )

))
.

Since d = ∞ in our state space (0,∞), we use a
limiting argument:

lim
d→∞

u(d) = σ 2b2γ−1

2α
,

provided 0 < γ < 1
2 . Now, since b is a finite fixed

point in (0,∞), the limit is finite. We also need to investigate
the integral

∫ d

b
(u(d)− u(y))m(dy) =

∫ d

b

1

2αy
dy− 1

2α
exp

( −α

σ 2(1− γ )
d2−2γ

)
d2γ−1

×
∫ d

b

1

y2γ
exp

(
α

σ 2(1− γ )
y2−2γ

)
dy. (49)

We observe that as d → ∞ the term exp
(
− α

σ 2(1−γ )
d2−2γ

)

approaches 0 provided 0 < γ < 1. So in this case we
remain with

∫ d

b
(u(d)− u(y))m(dy) ≈

∫ d

b

1

2αy
dy −→ ∞ as d → ∞.

We therefore, according to Theorem 4.1, conclude that the upper
boundary point d = ∞ is inaccessible if 0 < γ < 1. Now for the
lower boundary point 0 we have

u(0) = σ 2b2γ−1

2α
< ∞,

since b is a finite fixed point in the state space (0,∞). We
also have

∫ b

0
(u(0)− u(y))m(dy) =

∫ b

0

1

2αy
dy → ∞, as y → 0.

This shows that the boundary point 0 is inaccessible for all γ 6= 1.
It remains to establish whether our boundary points are natural
or not. Theorem 4.1 says the boundary point d is natural if and
only if

∫ d

b
u(y)m(dy) = ∞.

Now,

∫ d

b
u(y)m(dy) =

∫ d

b

(
b2γ−1

2αy2γ
exp

(
− α

σ 2(1− γ )
(b2−2γ − y2−2γ )

)
− 1

2αy

)
dy

=
b2γ−1 exp

(
−α

σ 2(1−γ )
b2−2γ

)

2α

∫ d

b

1

y2γ
exp

(
α

σ 2(1− γ )
y2−2γ

)
dy

−
∫ d

b

1

2αy
dy.

We observe that for 0 < γ < 1 the integral

∫ d

b

1

y2γ
exp

(
α

σ 2(1− γ )
y2−2γ

)
dy
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explodes to infinity very fast as d → ∞. Although the
second integral,

∫ d

b

1

2αy
dy,

also tends to infinity as d → ∞, the whole integral
∫ d
b u(y)m(dy)

tends to infinity as d → ∞ because the second integral goes to
infinity very slowly as compared to the first one. Hence,

∫ d

b
u(y)m(dy) = ∞,

provided 0 < γ < 1. This tells us that the boundary point d = ∞
is natural if 0 < γ < 1.
Using similar arguments, we can show that

∫ b

0
u(y)m(dy) = ∞.

Therefore, for 0 < γ < 1, the boundary point 0 is natural.
Next, we investigate if our natural boundary points are attracting.
According to Theorem 4.1 the boundary point d is attracting if

and only if u(d) < ∞ and at the same time

∫ d

b
m(dy) = ∞.

Now we have already seen that u(d) < ∞ if d = 0 and/or d = ∞
provided 0 < γ < 1. Further

∫ d

b
m(dy) = 1

σ 2
exp

(
− α

σ 2(1− γ )
b2−2γ

)

×
∫ d

b

1

y2γ
exp

(
α

σ 2(1− γ )
y2−2γ

)
dy,

which, for the reason given before, explodes to infinity as d → ∞
for all 0 < γ < 1. Therefore,

∫ ∞

b
m(dy) = ∞,

for 0 < γ < 1. Hence, the upper boundary point d = ∞ is
attracting for 0 < γ < 1. Similarly the lower boundary point 0 is
shown to be attracting.

Now, we have established that both boundary points are
attracting when 0 < γ < 1. In this case we will show that, by
Equation (41), our process will converge to ∞ with probability
p+(x), where x = X0 ∈ (0,∞). It turns out that

p+(x) =

∫ x

0
exp

(
− α

σ 2(1− γ )
y2−2γ

)
dy

∫ ∞

0
exp

(
− α

σ 2(1− γ )
y2−2γ

)
dy

, 0 < γ < 1. (50)

Evaluating the integrals yields

p+(x) = lim
y→∞

(
x

y

)2γ−1

exp

(
α

σ 2(1− γ )
(y2−2γ − x2−2γ )

)
= 0,

for 1
2 < γ < 1. This shows that although the upper boundary

d = ∞ is attracting for 0 < γ < 1, the process Xt will not
converge to ∞ if 1

2 < γ < 1. Furthermore, the process Xt

converges to 0 with probability 1 − p+(x) which turns out to
be 1 in this case. Thus it is certain that Xt will converge to 0
when 1

2 < γ < 1. We observe that if 0 < γ < 1
2 we have a

problem since, in this case, it is not possible to proceed using a
probabilistic argument. Our analysis is not complete if we do not
consider the case γ > 1. We now proceed to make this analysis.
As seen earlier

u(d) = σ 2

2α

(
b2γ−1 − d2γ−1 exp

(
α

σ 2(1− γ )
(b2−2γ − d2−2γ )

))
.

If γ > 1, for example, if γ = 2, we have

u(d) −→ −∞ as d → ∞,

since α, σ and b are fixed positive numbers. Therefore, we have

lim
d→∞

u(d) < ∞ ∀ γ > 1.

Observe also that for such γ we have that

u(0) = σ 2b2γ−1

2α
< ∞,

effectively. Now, we consider again Equation (49). If γ > 1, for
instance, γ = 2, we have

∫ d

b
(u(d)−u(y))m(dy) =

∫ d

b

1

2αy
dy− d3

2α
e

α

σ2d2

∫ d

b

1

y4
e
− α

σ2y2 dy.

We immediately observe that as d → ∞,
∫ d
b (u(d)−u(y))m(dy) → −∞ since the integral

∫ d

b

1

2αy
dy goes

to∞ very slowly. Therefore, effectively we have

∫ d

b
(u(d)− u(y))m(dy) < ∞,

for the boundary point d = ∞ and whenever γ > 1. This,
together with u(d) < ∞ for d = ∞ and γ > 1, shows that
the upper boundary point d = ∞ is always accessible whenever
γ > 1. However, it is clear that if d = 0,

∫ b

0
(u(0)− u(y))m(dy) =

∫ b

0

1

2αy
dy = ∞,

which shows that the lower boundary point 0 is always not
accessible for γ > 1. In fact, the boundary point 0 is always
inaccessible for all γ 6= 1 as also shown earlier. So from definition
we have seen that the upper boundary point∞ can be reached in
finite time with positive probability provided γ > 1.
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Finally we want to classify the accessible boundary point ∞,
that is. is it regular or exit? From Theorem 4.1 it is regular if and

only if

∫ d

b
m(dy) < ∞. Now, as obtained earlier on

∫ d

b
m(dy) = 1

σ 2
exp

(
− α

σ 2(1− γ )
b2−2γ

)

×
∫ d

b

1

y2γ
exp

(
α

σ 2(1− γ )
y2−2γ

)
dy.

If γ > 1, the integral is always less than∞ because of the negative
exponent since α, σ are fixed positive numbers. So we have

∫ d

b
m(dy) < ∞ ∀γ > 1

since in this case the exponent is always negative. Hence for
γ > 1, the accessible upper boundary point∞ is always regular,
i.e., apart from absorption and reflection there are also other
possibilities after the boundary point is reached.
We, therefore, have the following result.

Theorem 4.2. Let x ∈ (0,∞) with α ∈ R arbitrary. Then,
the stochastic differential equation (1) has a unique strong global
solution Xt : t ≥ 0. The solution has the following properties:

1. x = 0 implies that Xt = 0 for all t > 0 and x ≥ 0 implies
Xt > 0 for all t ≥ 0.

2. If 1
2 < γ < 1, then lim

t→∞
Xt = 0 with probability 1 − p+(x)

where p+(x) is given by Equation (50).
3. If γ > 1, then lim

t→∞
Xt = ∞ with positive probability.

4. If γ = 1, we have the usual Geometric Brownian motion
whereas if γ = 0, we have the Ornstein-Uhlenbeck process.

In mathematical finance, our result is of particular interest
for the Cox-Ingersoll-Roll (CIR) model which describes the
stochastic evolution of interest rates (rt)t≥0 by the stochastic
differential equation

drt = α(µ − r) dt + σ
√
rt dBt , t ≥ 0,

with r0 ≥ 0 and αµ ≥ 1
2σ

2 where α, µ and σ denote
real constants.

5. CONCLUDING REMARKS

In this article, we proved the existence of global positive solutions
to non-homogeneous stochastic differential equations whose
diffusion coefficient is non-Lispchitz. We relied on both the
classical sense and probabilistic arguments. We provided detailed
proofs in both cases. The probability arguments save as an
alternative method of dealing with non-homogeneous stochastic
differential equations where classical methods cannot be applied.
Using the scale function and the speed of measure, we provided a
complete classification of boundary types and boundary behavior
of Equation (1). The results of this article can be applied to
Cox-Ingersoll-Ross model. In addition, the positivity of solutions
is important to other non-linear models that arise in sciences
and engineering.
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