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The classical Box-Pierce and Ljung-Box tests for auto-correlation of residuals possess

severe deviations from nominal type I error rates. Previous studies have attempted to

address this issue by either revising existing tests or designing new techniques. The

Adjusted Box-Pierce achieves the best results with respect to attaining type I error

rates closer to nominal values. This research paper proposes a further correction to the

adjusted Box-Pierce test that possesses near perfect type I error rates. The approach

is based on an inflation of the rejection region for all sample sizes and lags calculated

via a linear model applied to simulated data that encompasses a large range of data

scenarios. Our results show that the new approach possesses the best type I error rates

of all goodness-of-fit time series statistics.

Keywords: model selection, residuals, auto-correlation, type I error, diagnostic test, portmanteau Q statistic

1. INTRODUCTION

The Box-Jenkins algorithm is a1 general systematic approach for model checking of a time series
model. Examples of the approach can be found in [1–3]. A well-fitting model produces residuals
that are free of correlation. Thus, standard goodness-of-fit approaches are in essence global tests
for absence of correlation among estimated residuals. Accordingly, many statistical techniques have
been designed to assess the absence of correlation among the time series model residuals.

Following classical notation, let {Xt} be an observed time series generated by a stationary and
invertible ARMA(p,q) process φ(B)Xt = θ(B)ǫt , where φ(B) and θ(B) are the autoregressive and
moving average characteristic polynomial and BkXt = Xt−k is the backshift operator. The desired
parameters, φi and θi are estimated using maximum likelihood or least squares methods to obtain
φ̂i and θ̂i, the residuals are calculated via ǫ̂t = θ̂−1(B)φ̂(B)Xt and the sample auto-correlation
coefficients are in turn obtained from r̂k =

∑n
t=k+1 ǫ̂t ǫ̂t−k/

∑n
t=1 ǫ̂2t .

In recent years, many techniques have been employed to test the global hypothesis of all
autocorrelations up to a certain lag, H0 : r1 = r2 = . . . = rm = 0. In general, these techniques
are designed as weighted sums of squares of the estimated autocorrelations and they can produce
misleading conclusions due to deviations from the asymptotic limiting distribution in moderate
size samples [4–6]. Thus, a new andmore robust test is proposed in this research that attains precise
type I error rates for all sample sizes.

The history of portmanteau tests traces its roots back to the Box-Pierce diagnostic test defined
as [6, 7] :

QBP = n

m
∑

k=1

r̂2k , (1)
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where n, m, and r̂k represent the sample size, number of lags
being tested and the sample auto-correlation of order k of the
residuals, respectively. The authors showed that the asymptotic
distribution of QBP is approximately χ2(m-p-q) but considerable
deviations for moderate sample sizes have been observed [7–9].
That deficiency entails imperfections of type I error rates and
prompted the design of a weighted and improved versions of the
test. In their stimulation studies, Ray and Xiaolou [4] focused on
investigating the type I errors in the χ2

m setting. They remarked
that the Box-Pierce test has imperfect type I error rates for most
sample size and lag values.

Ljung and Box [7] were the first ones to propose a design that
assigns larger weights to residuals estimated with more data:

QLB = n(n+ 2)

m
∑

k=1

r̂2
k

n− k
= n

m
∑

k=1

n+ 2

n− k
r̂2k . (2)

The Box-Pierce and Ljung-Box tests are asymptotically
equivalent. The Ljung-Box test has been shown to overcorrect in
moderate samples [4]. They also realized that Ljung-Box inflates
the test statistic using a variance estimate of the residuals. They
further showed that on moderate sized data,QLB rejects too often
because the test statistic is too small.

Li and McLeod [9] refined the QBP test by proposing the
following statistic,

QLB = QBP +
m(m+ 1)

2n
=

m(m+ 1)

2n
+ n

m
∑

k=1

r̂k, (3)

This approach only corrects the mean of the Box-Pierce statistic
and consequently fails to properly adjust the type I error rates.

Monti [10] proposed a portmanteau test based on the residual
partial autocorrelations. The test is defined as,

QM = n(n+ 2)

m
∑

k=1

π̂2
k

n− k
, (4)

Monti [10] showed via simulations that the performance ofQM is
comparable to that QLB. In addition, he concluded that in certain
scenarios, QLB outperforms QM .

Peña and Rodríguez [11] proposed a test based on a different
measure of dependence of the residual autocorrelations,

D = n(1− |R̂m|
1/m), (5)

where

R̃m =











1 r̂1 . . . r̂m
r̂1 1 . . . r̂m−1

...
...

. . .
...

r̂m r̂m−1 . . . 1











(6)

In their work, the authors showed that under particular
conditions, their test greatly outperformed QLB test.
Furthermore, they demonstrated that the test had an advantage

over the McLeod and Li’s test regardless of sample size. However,
the convergence of the asymptotic distribution of the test
developed by Peña and Rodríguez is very slow [12].

Fisher proposed new weighted versions of the Box-Pierce and
Monti’s tests, the Q statistic [5]:

Q̃WL = n(n+ 2)

m
∑

k=1

m− k+ 1

m(n− k)
r̂2k , (7)

and

Q̃WM = n(n+ 2)

m
∑

k=1

m− k+ 1

m(n− k)
π̂2
k , (8)

A comparison simulation study by Safi and Al-Reqep [13]
showed that for small sample size and m values QWL performs
better than QLB. For moderate sample sized data, they also found
that QWL does better than QLB and QWM outperforms QM .

To remedy some of the shortcomings of all previously existing
tests, Kan and Wang [4] proposed a new modification of the
portmanteau test, widely called the adjusted Box-Pierce test. They
defined their statistic as,

Qa
BP = m+

√

2m

Var[QBP]
(QBP − E[QBP]), (9)

The authors conducted an evaluation of various tests including
Box-Pierce and Ljung-Box. The design of the adjusted Box-
Pierce statistic (9) explicitly recenters and rescales QBP to
attain the mean and variance of a χ2(m) variable. The authors
showed through simulations that the test possesses very good
adherence to nominal type I error rates. In their comparison
study, they found that both the distributions of QBP and QLB

deviate from the expected variance of χ2(m) distribution for
small and moderate sample sizes and almost all choices for the
value ofm.

All of the above-mentioned tests exhibit deviations from the
nominal type I error rates that compromise their performance.
Hassani and Yeganegi [14, 15] conducted simulation studies to
evaluate the optimal lag value for the Ljung-Box test. They found
that the optimal number of lags not only depends on the length
of the time series, but also on the significance level of the test.
Thus, a new approach is proposed which aims at correcting
the rejection region instead of redesigning the test statistic
itself. This technique was introduced by Bernard in his effort to
construct a more powerful alternative to Fisher’s exact test [16,
17] and later by Boschloo [18]. The same idea of rejection region
correction has been recently employed by Ehwerhemuepha et al.
[19] to produce the best performing test for homogeneity for
multinational distributions.

2. METHODS

A model based correction of the rejection region of the adjusted
Box-Pierce test was designed. A large scale simulation study was
then conducted to not only estimate the correction, but to also
assess the performance advantages (defined as adherence to the
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nominal type I error rates for all scenarios) of the proposed
corrected method.

2.1. Simulation Study
For sample size values of n = 40, 50, . . . , 300, we simulated 106

white noise samples, sn1, sn2, . . . , sn106 ∼ Nn(0, I). These mimic
the behavior of residuals of a well-fitting time series model (under
the null). Next, the adjusted Box-Pierce test was applied to every
sample and for all possible lags, m (2 ≤ m ≤ n − 1) and the
corresponding p-values, pnm1, pnm2, . . . , pnm106 were obtained.
For each pair (n,m), the estimated the type I error rate of the
adjusted Box-Pierce test at alpha level of 0.05 was empirically

estimated by Pn,mα=0.05 =
∑106

i=1 I{pnmi < 0.05}/106. Thus, for
each sample size n, n − 2 empirically estimated type I error
rates yielding a dataset with three columns, n, m, and Pn,mα=0.05.
Further, these datasets obtained from all individual sample sizes

n were stacked to get an aggregated dataset with number of rows
∑30

n=4 10n(10n− 2) = 934, 920.

2.2. Linear Model
The primary idea of this study was to provide a model-

based correction to the rejection region of the adjusted Box-
Pierce test in order to attain improved type I error rates for
all sample sizes and lags. We created six linear regression

models trained on the simulated data described in the section
above. These six models were trained on different subsets

of the data split into sample size intervals [0, 50], [51, 70],
[71, 90], [91, 120], [121, 200], and [201, 300]. The difference
in the type I error rate patterns for distinct sample seizes

(shown in Figure 1) necessitated the use of separate models
to achieve the desired level of fit. These linear models are

complex as they encompass different powers of n, m, and

FIGURE 1 | Parametric correction to the rejection region for sample sizes 50, 70, 90, 130, 200, and 300.
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their 2-way interactions. The general formula adopted for the
models was,

Y − 0.05 = α1n
s + α2m

p + α3(n
s ∗mp)+ α4(n

2s ∗m2p)+ α5n
2s

+ α6(n
3s ∗m2p)+ α7(n

3s ∗m3p)+ α8m
4p + α9m

5p.

(10)

Further, within the general form (10) an extensive grid search
to find the best values of the power transformation parameters
s and p was performed. The type I error rates from the
selected best models are presented in Table 1. The rates were
calculated using validation data with sample sizes of nval =

45, 65, 85, 100, 250.

TABLE 1 | Performance summary of the correction to the Adjusted Box-Pierce.

Sample size s p AdjBoxPierce Corrected version

n = 45 0.2 0.3 0.04868907 0.05001953

n = 65 10.0 1.0 0.05163921 0.05002905

n = 85 7.0 2.0 0.05305157 0.05045904

n = 100 1.3 1.7 0.05447408 0.05020469

n = 160 0.8 0.9 0.05629981 0.04987525

n = 250 1.9 0.8 0.05813593 0.05037286

TABLE 2 | Summary statistics for selected variables in interval sample size <50.

Variable Estimate Std.Error t-value p-value

ns 0.425295 0.251604 1.690 0.095008

mp −1.353900 0.793110 −1.707 0.091837

ns ∗mp 0.593460 0.396921 1.495 0.138960

n2s ∗m2p 0.149028 0.056476 2.639 0.010065*

n2s −0.183531 0.122355 −1.500 0.137706

n3s ∗m2p −0.070355 0.030893 −2.277 0.025539*

n3s ∗m3p 0.004419 0.002064 2.141 0.035436*

m4p −0.017762 0.004355 −4.079 0.000109***

m5p 0.002106 0.000461 4.570 1.83e-05***

The symbols *, *** designate the statistical significance level of the variables in a given

model.

TABLE 3 | Summary statistics for selected variables in finite sample size between

51 and 70.

Variable Estimate Std.Error t-value p-value

ns −2.652e-06 8.296e-07 −3.196 0.00179 **

mp 1.209e-03 2.984e-04 4.053 9.12e-05 ***

ns ∗mp −2.283e-07 7.347e-08 −3.108 0.00237 **

n2s ∗m2p −2.068e-12 3.852e-13 −5.369 4.07e-07 ***

n2s 4.910e-10 1.869e-10 2.627 0.00977 **

n3s ∗m2p 4.637e-16 8.877e-17 5.223 7.75e-07 ***

n3s ∗m3p −1.167e-18 2.439e-19 −4.784 5.05e-06 ***

m4p 6.138e-10 2.856e-10 2.150 0.03364 *

m5p 2.552e-12 1.811e-12 1.409 0.16150

The symbols *, **, *** designate the statistical significance level of the variables in a given

model.

3. RESULTS

Noticeable differences between the patterns of type I error rates
across the analyzed sample sizes (40–300) were discovered.
Therefore, sample-size specific models (0–50, 51–70, 71–90,
91–120, 120–200, 201–300) were constructed to capture the
exact pattern for that particular scenario. Table 1 displays a
condensed form of the comparative study between revised

TABLE 4 | Summary statistics for selected variables in finite sample size between

71 and 90.

Variable Estimate Std.Error t-value p-value

ns 3.214e-17 2.901e-17 1.108 0.269585

mp 3.833e-06 1.130e-06 3.392 0.000877 ***

ns ∗mp −1.392e-20 3.309e-20 −0.421 0.674609

n2s ∗m2p −4.627e-36 6.406e-37 −7.224 2.02e-11 ***

n2s −6.756e-31 6.616e-31 −1.021 0.308740

n3s ∗m2p 9.423e-50 1.523e-50 6.189 5.00e-09 ***

n3s ∗m3p −1.759e-54 4.077e-55 −4.315 2.80e-05 ***

m4p 2.816e-17 2.774e-18 10.153 < 2e-16 ***

The symbol *** designates the statistical significance level of the variables in a given model.

TABLE 5 | Summary statistics for selected variables in finite sample size between

91 and 120.

Variable Estimate Std.Error t-value p-value

ns 5.169e-06 3.434e-06 1.505 0.133211

mp 1.266e-05 3.809e-06 3.323 0.000994***

ns ∗mp −1.569e-09 9.362e-09 −0.168 0.867045

n2s ∗m2p −2.021e-13 1.482e-14 −13.641 < 2e-16***

n2s −1.216e-08 7.488e-09 −1.624 0.105408

n3s ∗m2p 3.782e-16 3.539e-17 10.687 < 2e-16***

n3s ∗m3p −4.778e-20 4.874e-21 −9.804 <2e-16***

m4∗p 3.367e-15 1.792e-16 18.793 < 2e-16***

m5p −4.058e-19 3.561e-20 −11.397 < 2e-16***

The symbol *** designates the statistical significance level of the variables in a given model.

TABLE 6 | Summary statistics for selected variables in finite sample size between

121 and 200.

Variable Estimate Std.Error t-value p-value

ns 5.966e-05 2.343e-05 2.546 0.01102*

mp 8.195e-04 5.830e-05 14.056 < 2e-16***

ns ∗mp −1.227e-05 1.336e-06 −9.181 < 2e-16***

n2s ∗m2p −8.989e-09 3.701e-10 −24.290 < 2e-16***

n2s −1.271e-06 3.925e-07 −3.237 0.00124**

n3s ∗m2p 1.864e-10 5.775e-12 32.280 < 2e-16***

n3s ∗m3p −1.079e-12 2.925e-14 −36.873 < 2e-16***

m4p 1.233e-09 8.712e-11 14.147 < 2e-16***

m5p 6.308e-12 6.042e-13 10.440 < 2e-16***

The symbols *, **, *** designate the statistical significance level of the variables in a given

model.
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version of Box-Pierce, which to the best of our knowledge is
the last version, and the correction that we have brought into

TABLE 7 | Summary statistics for selected variables in finite sample size between

201 and 300.

Variable Estimate Std.Error t-value p-value

ns 1.740e-07 5.213e-08 3.338 0.000868***

mp 2.056e-04 5.313e-05 3.870 0.000114***

ns ∗mp 1.206e-08 5.327e-09 2.263 0.023777*

n2s ∗m2p −9.680e-14 6.970e-15 −13.889 < 2e-16***

n2s −1.845e-11 2.884e-12 −6.396 2.22e-10***

n3s ∗m2p 5.841e-18 1.928e-19 30.295 < 2e-16***

n3s ∗m3p −5.966e-20 2.469e-21 −24.161 < 2e-16***

m4p −4.111e-09 5.612e-10 −7.326 4.14e-13***

m5p 1.660e-10 7.322e-12 22.678 < 2e-16***

The symbols *, *** designate the statistical significance level of the variables in a given

model.

the study. For different time series lengths, the corresponding
s- and p-values along with the type I error rates for the
adjusted Box-Pierce and those of the corrected version that we
designed. It is important to realize that the results from the
implementation of these models show that in all settings, the
proposed regression-based correction provided almost perfect
type I error rates. In particular, the adjusted type I error rates
after the correction to the rejection regions were exactly 0.05 with
detailed results.

Tables 2–7 show detailed summary from the sample-size
specific model fits. These models provide a parametric correction
of the type I error rates. Graphical representation of results from
the implementation of these models for several scenarios are
shown in Figure 1.

Form left-to-right-up-to-down the fitting curves
with appropriately found models in cases where
(n = 50, 70, 90, 120, 300) can be viewed. Empirically, it can
be seen that the models that best fit the specific curve in a given
data were found.

FIGURE 2 | Parametric correction to the rejection region for the real EQT Corporation data is size 50.
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4. DATA EXAMPLE

An application of our corrected version of the adjusted Box-
Pierce test was performed using S&P 500 stock data. We provide
instances of both false positive and false negative results obtained
by the standard adjusted Box-Pierce test using EQT Corporation
stock. This corporation created in 1884 and headquartered in
Pittsburg is one of the leading companies extensively devoted to
the exploration and transportation of hydrocarbon (Petroleum,
natural gas, natural gas liquid). The average daily price of the EQT
Corporation was calculated by collecting its opening and closing
prices over a period over 8 years (2010–2018). For a window
size of 50, numerous false negative and false positive points were
found at different lags. In this case, instead of a critical value we
have a critical boundary or curve exists. In this setting, the same
rejection conditions are the same as in the normal case.

In Figure 2, instances of a false positive rejection at lag
26 are shown where the adjusted Box-Pierce test obtains a
p-value of 0.0504 but the proposed model correction inflates
the rejection region to start at 0.058. The graph also shows a
false negative results with p-value of 0.046 at lag 47. However,
the proposed correction shrinks the rejection region to start
at 0.045.

5. DISCUSSION

In this work a new approach for correction of adjusted
Box-Pierce test recently developed by Kan and Wang [4].
Conceptually, the rejection region correction idea is similar
to the ones successfully employed in the work of [18, 19] to
counterbalance the conservativeness of exact homogeneity tests.
The provided method combines large scale simulations with
subsequent scenario-specific regression modeling that includes
complex interaction terms to achieve exceptionally good fit that
entails nominal type I error rates for all sample sizes and lags used
in the test statistic. The regression models that were constructed
depend on the length of the series (n) and the lag order (m). The

exponents (s) and (p) of different variables present in the models
are treated as hyperparameters in order to control the learning
process. To obtain optimal values for those hyperparameters
an extensive search through chosen subset values for (s) and
(p) was conducted. The simulation study showed that the test
outperforms all existing competing goodness-of-fit approaches
for sample sizes up to 300.

It shall be noted that, in this study, we are not developing
any new statistic but improving the best test among the current
goodness-of-fit methods for time series. Our contribution is the
introduction of a completely new idea to time series diagnostics, a
rejection region correction via a range of parametric regressions
fitted to large sample simulation data. Our study is an extension
of the Adjusted Box-Pierce, as presented earlier.

The merit to the novel correction to the adjusted Box-Pierce
proposed in this study is that it allows to find a test with vastly
improved type I error rates for all sample size and lag values.
This proposed technique of rejection region correction has direct
implication on precise decisionmaking by investors and financial
institutions. The same technique can be easily extended to larger
sample sizes.
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