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The control of general nonlinear systems is a challenging task in particular for large-scale

models as they occur in the semi-discretization of partial differential equations (PDEs) of,

say, fluid flow. In order to employ powerful methods from linear numerical algebra and

linear control theory, one may embed the nonlinear system in the class of linear parameter

varying (LPV) systems. In this work, we show how convolutional neural networks can

be used to design LPV approximations of incompressible Navier-Stokes equations. In

view of a possibly low-dimensional approximation of the parametrization, we discuss the

use of deep neural networks (DNNs) in a semi-discrete PDE context and compare their

performance to an approach based on proper orthogonal decomposition (POD). For a

streamlined training of DNNs directed to the PDEs in a Finite Element (FEM) framework,

we also discuss algorithmical details of implementing the proper norms in general loss

functions.

Keywords: model reduction and model simplification, Navier-Stokes equation, data driven learning, linear

parameter varying (LPV), convolutional neural network

AMS subject classifications: 65M22, 76D05.

NOVELTY STATEMENT

- Conceptual: Due to the quadratic nature of the Navier-Stokes equations, any encoder-decoder
with a linear decoding part provides an affine LPV approximation of the state-space equations.
We propose the use of convolutional neural networks (CNNs).

- Algorithmical: An efficient realization of the correct FEM norms within the training of a neural
network. As a result, we provide basic routines that combine the Finite Element package FEniCS
and theMachine Learning toolbox PyTorch.

- Numerically: A very low-dimensional, that is 3-dimensional, performant LPV approximation of
a flow around a cylinder in the vortex shedding regime.

1. INTRODUCTION

The computer-aided controller design for a nonlinear control system

υ̇ = f (υ)+ Bu

with an input u and an input operator B typically resorts to system insights (like in backstepping
[1], feedback linearization [2, Ch. 5.3], or sliding mode control [3]), or the repeated computation
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for subobtimal control laws like in model predictive control
(MPC) [4]. The holistic but general approach via the Hamilton-
Jacobi-Bellmann (HJB) equations is only feasible for very
moderate system sizes or calls for model order reduction; see e.g.,
Breiten et al. [5] for a relevant discussion and an application in
fluid flow control.

For general large-scale systems, MPC schemes seem to
be a good choice since modern hardware and optimization
algorithms can well mitigate the computational complexity while
the continuous update of the prediction realizes a feedback
loop as it is needed to react on inevitable perturbations in
simulations and measurements. Nonetheless, stability guarantees
for MPC schemes are difficult to establish a priori and the
solving of nonlinear optimization problems at runtime limits
their performance in particular for large-scale systems.

In view of these two limiting factors, alternatives are
presented by methods that base on extended linearizations or
state-dependent coefficients (SDC) (see e.g., Banks et al. [6])
schemes that are particular realizations of the representation of
a nonlinear model as a linear parameter varying (LPV) system.

In an exact SDC representation, the flow f of the model is
factorized as

f (υ) = N(υ) v

with a suitable A : R
n → R

n,n which exists under mild
conditions. The SDC is a special case of an LPV representation

f (υ) = Ñ(ρ(υ)) v

with ρ : R
n → R

r and N : R
r → R

n,n suitably chosen and,
possibly, r < n.

While these representations are exact reformulations of the
model, a low-dimensional (r ≪ n) and affine-linear parameter
dependency might only exist as an approximation

f (υ) ≈ [N0 +

r
∑

i=1

ρi(υ)Ni] v.

If an approximation can be afforded, many numerical approaches
for the derivation of low-dimensional LPV representations apply.
In fact, any model order reduction scheme that encodes the state
in a reduced coordinate ρ = µ(υ) ∈ R

k and lifts it back to
υ̃ = λ(ρ) can turn an SDC representation into a low-dimensional
LPV approximation via

f (υ) = N(υ) v ≈ N(ṽ) v = N(λ(ρ)) υ = : Ñ(ρ) v.

Even more, if the state-dependent coefficient matrix N is affine-
linear in its argument and if the lifting λ is affine-linear, then the
resulting LPV approximation is affine-linear. We will make use
of this observation when discussing the Navier-Stokes equations
and when designing the low-dimensional encodings.

An immediate advantage in view of large-scale systems is
that for these pointwise linear problems, linear methods for
controller design apply. Generally, an a-priori proof that a
controller will stabilize the system is by no means easier in an

LPV context. Nonetheless, conditions that can be checked or
monitored numerically have been developed; see e.g., Benner and
Heiland [7] for a result on SDC systems or [8] for a result for
(affine) LPV systems.

This paper investigates the use of convolutional neural
networks in combination with bases obtained from a POD to
design such approximative LPV systems with affine parameter
dependency:

υ̇ = [A0 +

r
∑

i=1

ρi(υ)Ai] υ + Bu. (1)

We focus on Navier-Stokes equations but the methodology
applies to any system with states that are distributed in a spatial
domain like spatially discretized approximations to PDE models.

The motivation for this study is the potential use of low-
dimensional LPV representations in controller design. For
example, for affine-linearly parametrizable coefficients as in
Equation (1), one can derive series expansions (see e.g., Beeler
et al. [9]) of the solution to the associated parameter-dependent
Riccati equations and exploit them for efficient controller design;
cp. [10]. Furthermore, if the image of ρ for the given system
can be confined to a polygon, then one can provide a globally
stabilizing controller (see e.g., Apkarian et al. [11]) through
the scheduling of a set of linear controllers. Both approaches,
however, hinge on a small dimension of ρ(υ) since the series
expansion has to be considered in all parameter directions and
since the scheduling requires the solution of a coupled system of
r linear matrix inequalities of the size of the system dimension.

In view of these considerations, this work provides a particular
solution to the following general problem:

Problem 1. Given a nonlinear system υ̇ = f (υ)+ Bu,

(a) how to encode a current state υ(t) ∈ R
n in a low dimensional

parameter ρ(t) ∈ R
r and

(b) how to provide embeddings ρ → Ñ(ρ) = N0+
∑r

i=1 ρiNi ∈

R
n,n so that

f (υ) ≈ Ñ(ρ(υ)) v.

Existing general solutions for this task are known to result in
larger dimensions of the parametrization ρ; see Koelewijn and
Tóth [12] for relevant references and a neural network based
approach toward a reduced order of ρ.

In any case, the existing strategies were designed for ODE
models of moderate size rather than the treatment of high-
dimensional nonlinear models that are associated with PDEs.

Therefore, we propose the use of model reduction techniques
to derive LPV approximations with low parameter dimensions
independently of the system size. Similar efforts can be spotted
in earlier works (see e.g., Hashemi and Werner [13] where
the Burgers’ equation was considered) though with a different
strategy: the model reduction techniques were used for reducing
the overall system so that the natural SDC representation could
be interpreted as a low-dimensional LPV approximation.

In what we propose, however, the system dimensions are not
touched in order to ensure accuracy and feature-completeness,
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but only parts of the nonlinear functions are replaced by de–
and encoded variables to provide the low-dimensional LPV
representation. Certainly, if controllers are to be designed, a state-
space reduction might be necessary but can then be directed
to the purpose of the controller model rather than the actual
state equations.

In a regime that is dominated by convection, the encoding
of a state of a Navier-Stokes equation in a very-low dimensional
coordinate system cannot be simply done by a linear projection.
This has been observed in numerical studies of flow problems
and specifically analyzed for equations with wave like patterns
[14, 15].

Successful low-dimensional parametrizations for convective
phenomena have been established using a nonlinear
preprocessing like the detection and explicit treatment of
wave patterns; see e.g., Reiss et al. [16] for a method of adaptive
shifting of POD modes along with wave fronts and [17] for
a recent update that resorts to neural networks. A more
generic approach was used in Sarna and Benner [18], where a
superposition of the phase space of hyperbolic and parabolic
parts was introduced and successfully exploited for efficient
reduction of parabolic parts. A purely neural network based
appraoch that explicitly addresses wave patterns has been
discussed in Deo and Jaiman [19].

Recently, the use of neural networks for finding low-
dimensional coordinates has been proposed, e.g., as an alternative
to established POD techniques [20–23] or as an enhancement to
them [24].

Considering fluid flow or Burgers’ equations, it has been
observed that neural networks can significantly outperform POD
approaches at very-low dimensions in terms of approximation
quality; see e.g., Lee and Carlberg [20, Figure 3] or Kim et al. [21,
Figure 2]. However, the effort for setting up the surrogate model
(cp. [24, Table 3] or [20, Section 8]) as well as the evaluation at
runtime can be inferior to a plain POD approach; compare, e.g.,
the reported speed-ups in Kim et al. [21, Table 1].

We note that we can easily tolerate these performance
limitations, as the major motivation of our work is to establish
a model approximation of a particular structure.

In summary of the preceding considerations, we state that
the presented investigations are motivated by and directed to
support the following working hypotheses:

Working Hypothesis 1.

1. Neural networks can efficiently encode the state of a PDE and
thus provide very low dimensional parametrizations.

2. For the synthesis of a controller model for a nonlinear
PDE, the use of high-dimensional data and demanding
computations is appropriate.

2. PRELIMINARIES

We briefly introduce the PDE model of interest, the
concept of convolutional neural networks, and state
relevant observations.

2.1. Navier-Stokes Equations
The incompressible Navier-Stokes equations

∂

∂t
υ + (v · ∇)υ −

1

Re
1υ + ∇p = f (2a)

∇ · υ = 0 (2b)

is a set of partial differential equations that is widely used to
model incompressible fluid flows in a domain � ⊂ R

d, d = 2, 3,
on a time interval [0,T] ⊂ R in terms of the evolution of
the velocity field v : [0,T] × � → R

d and the pressure field
p : [0,T] × � → R. Here, Re is the so-called Reynolds number
that parametrizes the flow setup and f contains forces that act on
the flow like gravity or, in a flow control setup, external inputs.

As we will detail below (in Section 4.1) after a spatial
discretization and by means of divergence-free coordinates, the
flow model reads

υ̇ + N(υ)υ + A0v = f (3)

and is readily expressed as a so-called state-dependent coefficient
system

υ̇ + N0(υ)υ = f , (4)

with

N0(υ) = A0 + N(υ). (5)

Remark 1. The decomposition N0(υ) = A0 + N(υ) is by
no means unique. In particular, a similarly natural factorization
N1(υ) v : = A0v+ N(υ)υ exists and any combination

Ns(υ) = sN1(υ)+ (1− s)N0(υ)

for a scalar s can be considered, too. Such a blending of the
coefficients can be used to improve the model performance as we
did in our numerical examples; cp. Remark 5.

In what follows, we will consider LPV systems that generalize
state-dependent coefficient (SDC) systems by encoding the state
in a parameter variable ρ. We will refer to ρ(υ) as the code of v
and also distinguish an associated encoder

µ : R
n → R

r , with µ(υ) = ρ(υ).

It will be convenient to refer to a decoder as

µ−1
: R

r → R
n, with µ−1(ρ) = ṽ,

by the vague requirement that υ̃ = µ−1(ρ(υ)) ≈ v for all v of
interest although an inverse to µ may not exist and although the
inference of µ and µ−1 may be unrelated in practice.

Given an encoder µ and a decoder µ−1, an LPV
approximation to the state-dependent coefficient (Equation
5) is readily given as

N0(υ) ≈ A0 + Ñ(ρ) : = A0 + N(µ−1(ρ)).
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Remark 2. A particular property of quadratic systems and, thus,
of the Navier-Stokes equations is that the natural choices of
the state-dependent coefficient N(υ) are linear, i.e., N(λ1υ1 +

λ2υ2) = λ1N(υ1) + λ2N(υ2). Accordingly, if the decoder µ−1

is affine-linear, i.e.,

µ−1(ρ) = ṽ(ρ) = ṽ0 +

r
∑

i=1

ρiυ̃i,

for a shift ṽ0 and a some vectors {υ̃1, . . . , υ̃r}, then the induced
LPV representation is affine-linear as

A0 + N(µ−1(ρ)) = A0 + N(ṽ0 +

r
∑

i=1

ρiυ̃i) = A0 + N(ṽ0)

+

r
∑

i=1

ρiN(υ̃i) = :A0 + Ñ0 +

r
∑

i=1

ρiÑi.

Remark 3. If the decoder µ−1 or the SDC relation v → A(υ)
is nonlinear, then an additional approximation step is needed for
an affine-linear LPV representation; see Koelewijn and Tóth [12].

2.2. Convolutional Neural Networks
Generally, a neural network of NL layers can be expressed as a
recursively defined map

x(ℓ) = σ (W(ℓ)x(ℓ−1) + b(ℓ)), ℓ = 1, . . . ,NL

that maps the input variable x(0) onto the output variable x(NL).
It is defined in terms of the layer widths nℓ, the weights meaning
the coefficients of the matrix W(ℓ) ∈ R

nℓ ,nℓ−1 and the bias term
b(ℓ) ∈ R

nℓ , and the activation function σ : R → R that is applied
componentwise to the vectors x(ℓ) ∈ R

nℓ .
The term of training a neural network refers to determining

the weights by an optimization toward an optimality criterion
(the loss function) evaluated at given sample points.

In convolutional neural networks, the linear map W(ℓ) in
each a layer is defined by a number of convolution kernels that
convolve the current state. Typically, a linear contraction follows
that merges neighboring states. The advantages of convolutional
layers for PDE data is manifold.

• In each layer, the learnable parameters are given by the
parameters of the convolution kernels so that the amount
of parameters is independent of the possibly large state
dimensions

• The convolution acts upon neighboring states which can
respect and, notably, detect coherent spatial structures as they
may be inherent in states of PDEs.

• The contraction operation reduces the number of variables in
each channel in every layer so that a CNN can be designed to
provide low-dimensional encodings.

An immediate obstacle that stands against the use of CNNs
for PDEs is the need of tensorized grids, whereas a simulation
of complex phenomena typically requires a locally refined
and unstructured grid. We overcome this issue by simply

interpolating the state values from the FEM grid to a tensorized
grid.

For an introduction to the techniques of CNNs, we refer to
O’Shea and Nash [25]. An application for spatially distributed
data as in our case is well explained in Lee and Carlberg [20].

3. IMPLEMENTATION SETUPS

The provision of a low-dimensional affine-linear LPV
approximation

N(υ) υ ≈ [N0 +

r
∑

i=1

ρi(υ)Ni] υ

for the Navier-Stokes equations amounts to learning or
computing

• an encoder µ : υ 7→ ρ and
• an embedding or lifting λ : ρ 7→ [N0 +

∑r
i=1 ρi(υ)Nk].

Note that λ can be defined without a decoder µ−1. On the other
hand, for the Navier-Stokes case, if an affine-linear decoder is
given, then λ : ρ 7→ N(µ−1(ρ)) readily provides an affine-linear
parametrization; cp. Remark 2.

3.1. POD Parametrization
As a benchmark and for later use as a basis for the decoding,
we consider the LPV representation that is induced by a POD
reduction. Here, one uses a projection basis

Ṽp =
[

υ̃1 υ̃2 . . . υ̃r
]

(6)

that consists of the r leading singular vectors of a matrix of
snapshots like

V =
[

υ1 υ2 . . . vk
]

. (7)

The POD reduction itself bases on the property that the
projection VpV

T
p minimizes the average projection error over the

given data set (Equation 7), meaning that

1

k

k
∑

j=1

‖vj − ṼpṼ
T
p vj‖M

is minimal over all r-dimensional linear projections of the data
set, where the subscript M stands for a weight in the norm
induced, e.g., by the symmetric positive (mass) matrix of an
underlying an FEM scheme; cp. [26].

Accordingly, with

υ̃ ≈ ṼrṼ
T
r v = : Ṽrρ,

the POD basis Vr defines a r-dimensional encoding via µ : υ 7→

ṼT
r v, a decoding via µ−1

: ρ 7→ Vrρ, and an embedding λ for the
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FIGURE 1 | Snapshot of the domain and the magnitude of the fully developed velocity field at Re = 40.

FIGURE 2 | Close up view of the computational domain with the FEM mesh (right) and the data representation on the tensorized mesh (left).

LPV approximation via

N(υ) v ≈ N(ṼrṼ
T
p v) v = N(Ṽrρ) v = [

r
∑

i=1

ρiN(υ̃i)]

v = :[

r
∑

i=1

ρiÑi] v.

Remark 4. As it is common practice, for a better approximation
quality and for consistency reasons, the data for the POD and,
thus, also the POD bases, are shifted by a vector vs. which will be
chosen to be the initial value in the simulations. Accordingly, the
correct reconstruction reads υ̃(t) = ṼWρ(t)+ υs, which simply
adds a constant and a few linear terms to the approximation or
the corresponding loss functions.
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3.2. Encoding of POD Coordinates
In this setup, we investigate whether a CNN can replace the POD
encoding of the state

υ → (CNN) → ρ ∈ R
r

and also provide an enhanced decoding to POD coordinates via
a full linear mapW

ρ → (W) → ρ̃ ∈ R
r̃ , r̃ > r,

and the embedding via the p-dimensional POD basis υ̃ : = Ṽr̃ρ̃.
In this approach, the CNN and the matrixW ∈ R

r̃,r is learned
as neural network

υ → (CNN) → ρ → (W) → ρ̃ ∈ R
r̃

with the loss function

l(v, ρ) : = ‖v− Ṽr̃Wρ̃‖M .

If r < r̃, and the resulting embedding outperforms the standard
r̃-dimensional POD reduction, then this approach provides a
countable improvement in terms of dimensionality.

Moreover, the loss functions can be changed in order to
direct the learning to best approximate the resulting convective
behavior as described in the following subsection.

3.3. Convection-Informed Encoding of POD
Coordinates
With the same approach but with

l(v, ρ) : = ‖N(υ)υ − N(Ṽr̃Wρ)υ‖M−1 .

as the loss function, the training of the decoder can be directed
toward the actual goal—the low-dimensional parametrization of
the convection part. Note the M−1 norm, that is the discrete
version of the norm of N(υ) as a functional on the state space
L2(�).

4. IMPLEMENTATION ISSUES

In this section, we discuss implementation issues as the arise
in the numerical treatment of incompressible Navier-Stokes
equations by finite elements and the inclusion of FEM-norms in
learning algorithms.

4.1. Semi-discretization, Divergence-Free
Coordinates, and Boundary Conditions
A spatial discretization (see e.g., Behr et al. [27]) of the
incompressible Navier-Stokes equations (2) leads to a system of
type

Mv̇+ N(υ)υ + A0v− JTp = f ,

Jv = g,

where M is a positive definite (mass) matrix, where N(υ) is the
matrix that realizes the convection for a state υ(t), where A0

TABLE 1 | Table of parameters for the CAE-model.

Parameter Description Value in simulation

cs Code size {3, 5, 8}

k Dimension of the POD basis for the

decoding

15

#layers Number of convolutional layers 4

#channels Number of channels in each layer

(including the input layer)

(2)-4-8-10-12

kernel size The size of the convolution kernels in each

layer

5 x 5

stride The stride in both spatial directionsa 2

activation The the nonlinear activation function torch.ELU

aThe factor by which the data is condensed after each convolution.

encodes the diffusion part, where JT and J stand for the discrete
gradient and divergence operator, and where the vectors f and g
accommodate possible inhomogenities and boundary conditions.

In order to eliminate the inhomogeneity and possibly nonzero
boundary conditions, one may shift the state by some vector vs.
that fulfills the boundary conditions and the algebraic constraint,
i.e., Jυs = g, so that the shifted system for υd(t) = υ(t)−υs reads

Mυ̇d + N(υd)υd + Ā0υd − JTp = f̄

Jυd = 0,

where

Ā0υd : = A0υd + N(υs)υd + N(υd)υs

and f̄ : = f − A0υs − N(υs)υs.

Finally, with the reasonable assumption that JTM−1J
is invertible, we find that with the projector 5 = I −

M−1JT(JM−1JT)J it holds that υd = 5υd and that the solution
υd is completely defined through the projected system (see e.g.,
Heiland [28, Thm. 8.6])

Mυd + 5TN(υd)υd + 5TĀ0υd = 5T f̄ .

The practical implications are as follows: in a simulation, one
needs to consider all data shifted by a constant vector vs. that
fulfills the boundary conditions so that the snapshots υi can
be assumed to comply with zero Dirichlet conditions. Then a
reduced parametrization will target the shifted space with zero
boundary conditions and can be lifted to the physical space by
adding vs. again.

Generally, the projection 5 needs not be computed explicitly
as it will be implicitly realized during the time integration; [29].
However, if only the velocity is of interest, the model could
be trained to best approximate 5TN(υ)υ which resides on a
submanifold of dimension (nv−rank5). If however, the pressure
is of interest too, the LPV approximation should be trained
toward a good representation of

N(υ)υ = 5TN(υ)υ + (I − 5T)N(υ)υ

as the part (I − 5T) defines how the convection enters the
pressure approximation.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 April 2022 | Volume 8 | Article 879140

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Heiland et al. CNNs for LPV NSE Approximations

FIGURE 3 | Schematic illustration of the data sizes in each layer of the CAE-3 network that was used in the numerical example: Four convolutional layers, one

reshape of the data to the vector (flat data), a full linear layer that reduces the data to ρ and a linear layer without activation for the decoding to ρ̃.

4.2. Interpolation to Tensor Grids
Asmentioned above, in order to employ standard CNNs, the data
on an FEMmesh has to be interpolated to a tensorized mesh. For
that and for a generic 2D flow setup we proceed as follows.

Let � ⊂ R
2 be the computational domain and let (ξ1, ξ2) ∈ �

denote the spatial coordinates. Let

V : = {φ1,φ2, . . . ,φnv} ∈ L2(�;R2)
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FIGURE 4 | Drag and lift trajectories (top) over time and their phase portrait (bottom picture) for an LPV approximation of the incompressible flow around a 2D cylinder

using a parameter dimension of cs= 3.

be the ansatz space of the finite element discretization.
Then every solution snapshot υi has the function
representation via

υi(ξ1, ξ2) =

nv
∑

j=1

[υi]jφj(ξ1, ξ2) ⊂ R
2

where [υi]j is the j-th component of the vector of coefficients υi.
Accordingly, it can be interpolated onto a tensorization

T = {(xj, yk) : j = 1, . . . , nx, k = 1, . . . , ny}

of two 1D grids

{x1 < x2 < · · · < xny} and {y1 < y2 < · · · < yny}

into a 2× nx × ny tensor vi as

[vi]ℓjk =

{

[υi(xj, yk)]ℓ, if (xj, yk) ∈ �

0, elsewhere
.

We denote this interpolation operator with the operator
P : Rnv → R

2×nx×ny . The application of P to the data points υi is
the first operation in the processing of the υi’s in a CNN.

4.3. Realization of the FEM Norms in the
Loss Functions
For the implementation of the learning based on FEM data, we
need to includeM orM−1 in the loss functions without breaking
the automated computation of sensitivities1. For the realization
of the M norm, we can resort to sparse factorizations M = FFT

and use the equivalence of ‖v‖M = ‖FTv‖2. In this way, the M-
norm can realized in standardML packages that have the 2-norm
implemented as themean square error loss function and that also
support sparse matrix multiplication.

For the realization of M−1, where no sparse factorization can
be provided, we compute a M−1 optimal (cp. [26, Lem. 2.5])
snapshot basis L ∈ R

nv ,kc for N(υi)υi, i = 1, . . . , k of dimension
kc. With that we can best approximate

‖N(υi)υi‖M−1 ≈ ‖LLTF−1N(υi)υi‖2 = ‖LTF−1N(υi)υi‖2

1A particularly powerful feature of DNN architectures that comes with the explicit

formulation of DNNs in terms of fundamental functions is that the gradients of the

current realization with respect to the parameters can be computed by algorithmic

differentiations in a straight-forward way. All packages for neural networks make

use of this functionality during the training of the network. Once, new functional

dependencies are introduced, e.g., in the loss function, one has to take care that this

so called back propagation of gradients is maintained.
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FIGURE 5 | Drag and lift trajectories (top) over time and their phase portrait (bottom picture) for an LPV approximation of the incompressible flow around a 2D cylinder

using a parameter dimension of cs= 5. In the phase portrait plot, parts of CAE-5 were truncated.

where F is a factor of M = FFT and where we have used that
L is orthogonal so that it does not affect the 2-norm. In this
way, the M−1 norm of N(υi)υi can be well approximated with
the standard mean-squared error and a premultiplication by the
dense matrix LTF−1 ∈ R

kc ,nv .

5. NUMERICAL EXAMPLE

We consider the well-known benchmark example of a 2D
flow around a cylinder in a channel. In nondimensionalized
coordinates the channel covers the rectangle [0, 5] × [0, 1] with
the cylinder of radius R = 0.05 centered at ( 23 , 0.5). The
regime is parametrized by the Reynolds number Re that is
computed using the velocity of the inflow parabola averaged
over the inflow boundary and the radius and set to Re = 40
in the presented simulations. As the starting value for t = 0,
we impose the associated steady-state Stokes solution. With this
initialization the flow immediately starts the transition into the
characteristic periodic vertex-shedding regime which seems to be
well developed at around t = 8. A snapshot of the domain and
the developed flow at t = 8 is presented in Figure 1.

We will use data from the initial phase from t = 0 till t = 8
to generate low-dimensional LPV models. The performance of

the reduced-order models will be directed toward how well the
periodic regime is captured on a time frame till t = 50.

For the spatial discretization, we use P2 − P1 Taylor-Hood
finite elements on a nonuniform grid that results in 42764
degrees of freedom in the velocity approximation. For the
time integration we use the implicit one-step Crank-Nicolson
scheme for the linear part and the explicit 2-step Adams-
Bashforth scheme for the nonlinear part which combines into
a 2nd order approximation. The finite element discretization
was realized in the FEM toolbox FEniCS [30], the time
integration and the connection to PyTorch (which was used
for the setup, training and evalution of the (C)NNs) was
handled via the SciPy interface dolfin-navier-scipy
[31].

The solution is monitored via the induced forces onto the
cylinder periphery that we compute by testing the (numerically
computed) residual of the FEM solution (υ(t), p(t)) against (a
numerical realization of) the function φ that takes on the value
(1, 1) at the cylinder boundary and (0, 0) elsewhere:

F(t) =

∫

�

[(υ(t) · ∇)υ(t)−
1

Re
1υ(t)+∇p(t)− f (t)]φ dξ , (8)
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FIGURE 6 | Drag and lift trajectories (top) over time and their phase portrait (bottom picture) for an LPV approximation of the incompressible flow around a 2D cylinder

using a parameter dimension of cs= 8.

where � is the computational domain; see Babuǎka and Miller
[32]. Since the flow passes the channel in ξ1 direction, the first
component of F(t) represents the current drag and the second
component represents the lift force.

Once the semi-discrete model is defined, the overall
procedure of setting up and evaluating a low-dimensional
LPV surrogate model can be summarized in four
major steps:

1. Data Aquisition and Preparation. This step generates the

data used for computing the PODbasis and for the CAEmodel

training. For that, a simulation on the base of the original

model is performed and solution snapshots at dedicated time

instances are stored. In view of being used for the training of

the CAE model, among others, the data is interpolated to a

tensor grid.
2. Training of the Encoder and Decoder. By means of the

snapshot data, a POD basis is computed. Also, the interpolated
data are used to optimize the parameters of the CAE encoder
and decoder.

3. Setup of the LPV Approximation. The CAE and the
POD encoder and decoders that approximate a current
velocity υ(t) by υ̃(t) = W̃ρ(t) for some basis W̃ and

the code ρ(t) is used to approximate the actual nonlinear
N(υ(t)) υ(t) term in the model by a low-dimensional LPV
approximation Ñ(ρ(t)) υ(t).

4. Simulation with the LPV Model. Finally, simulations of the
original model with the nonlinearity replaced by the LPV
approximation are performed and evaluated.

All these steps are explained in detail in the following
subchapters.

5.1. Data Acquisition and Preparation
The data [V] for the training of the CNN and the computation
of POD bases Ṽ and W̃ of the states υi and of the convection
fieldN(υi)υi is collected from the simulation on the time interval
[0, te] at ndp equally spaced data points.

For the use for training of the CNN, the states data υi is
interpolated to the tensor grid by means of the interpolation
operator P : Rnv → R

2×nx×ny to give the data set

[V] = [v1, v2, . . . vndp] = [Pυ1,Pυ2, . . .Pυndp] (9)

Additionally, we recorded themaximal andminimal values of the
data in [V] and linearly scaled all interpolations to the range of
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FIGURE 7 | Summarized results for the case of Re = 60. Drag and lift trajectories over time and their phase portraits for an LPV approximation of the incompressible

flow around a 2D cylinder using a variable parameter dimension cs in the POD and CAE approximation and in comparison to the full order model (FOM).
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[−1, 1]. The scaled and partially doubled data, we will denote by
[V+].

Note that the interpolation to the tensor grid is not
lossless in particular in the considered case where the
dimension of the tensorized data is 2 x 63 x 127
= 16,002 is much smaller than the data on the full
FEM grid, where the tensor grid is not adapted to the
problem whatsoever, and where geometrical features of
the domain are not represented in the tensorized data;
cp. Figure 2.

At first, as preliminary tests showed, the trained neural
network performed poorly on the first data points, e.g., the initial
phase of the simulation. To shift the focus of the training toward
the initial phase, we doubled a defined amount of the data points
as follows: for a given percentage p, a subgrid of the snapshot
time instances was computed that contained p percent of the
data points exponentially distributed of the time range of the
data. Hereby, the time differences between the data points were
smallest at the beginning and grew exponentially toward the end
of the time range. The selected data was appended to the data
set. In this way, no additional information was added but due to
the unequal distribution of the doubled data points, the iterative
training of the CNN will focus more on the initial phase. As done
in the presented numerical study, this doubling of data can be
repeated with varying percentages.

5.2. Convolutional Neural Network Setup
and Training
We define the CNN for the encoding via a number Ncl of
convolutional layers followed by a fully connected linear layer
with activation that maps the output of the repeated convolutions
onto a vector of size cs—the code size. This encoding part will be
denoted by CAE and we will write

ρ(t) = CAE(Pυ(t))

to express that a velocity state υ(t) has been encoded to ρ(t) of
dimension cs via the neural network. Note the inclusion of the
interpolation P to the tensor grid.

For the decoding, we use a truly linear layer of input
dimension cs and output dimension k, so that with a POD basis
Ṽ of dimension k the reconstruction reads

υ̃(t) = ṼWρ(t)+ υs, (10)

where W is the k × cs-matrix that realizes the linear layer that
maps ρ 7→ ρ̃ and where vs. is the shift vector that was used to
center the POD data; cp. Remark 4.

The parameters of the architecture of the CAE-model used
in the presented numerical results are given in Table 1. See also
Figure 3 for an illustration.

The parameters of CAE as well as the coefficients of W are
then trained to fit the data of [V+] with respect to the loss
function

∥

∥N(υi)υi−N
(

ṼWCAE(Pυi)
)

υi)
∥

∥

2

M−1+
∥

∥υi−VWCAE(Pυi)
∥

∥

2

M
.

(11)

For that, the data [V+] is randomly split into batches of size Bs,
the mean value of Equation (11) over a batch is computed, and
the parameters of CAE andW updated according to a stochastic
gradient method. This procedure is repeated over the same data
in a number of epochs.

5.3. Numerical Realization of the LPV
Approximation
With the decoder matrix W, the POD basis Ṽ , and the
CAE model for variable code sizes cs at hand, we approximate
the actual nonlinearity N(υ)υ by the linear-affine LPV
approximation

N(υ)υ ≈
1

2

[

N(ṼWρ)υ + N(υ)ṼWρ
]

(12)

of dimension cs where ρ = CAE(υ).
For comparison, we considered the plain POD LPV

approximation

N(υ)υ ≈
1

2

[

N(Ṽcsρ)υ + N(υ)Ṽcsρ
]

(13)

with the POD basis Ṽcs of dimension cs and the POD
coordinates ρ = ṼT

csv.

Remark 5. The blending

sN(·)ṽ(ρ)+ (1− s)N(ṽ(ρ))(·)

of the two natural LPV representations was found to be beneficial
since N(·)ρ tended to damp out the fluctuations whereas
N(ρ)(·) triggered the unsteady behavior very well but led to
blowups regardless whether the CAE or the POD approximation
was considered. This observation can be explained by known
stabilizing effect of linearizations of the first type (cp., e.g.,
the convergence analysis of iterative linearization schemes in
Karakashian [33]) whereas in a linearization like N(·)ρ the ρ

undergoes a differentiation which can explain the tendency for
a blow-up.

Certainly, the value of s can be another parameter in the
optimization of the approximation. For simplicity, we simply
fixed it to s = 1

2 .

5.4. Numerical Simulation
For a variable code size cs that eventually defines the
dimension of the affine-linear LPV approximation, we checked
the performance of the CAE-cs-model and compared it to a
POD approximation of the same dimension.

Since the cylinder wake is a chaotic system, in the sense
that, e.g., the transition to the periodic regime is severely
influenced by perturbations, a direct comparison of trajectories
is uninformative. Therefore, we plotted the resulting curves
of drag and lift for the full order simulation FOM and the
approximations on top of each other to get a qualitative
expression of the approximation. An informative comparison,
however, can be derived from the analysis how well the
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TABLE 2 | Table of parameters for the CAE-model optimization.

Description Value in simulation

Number of data points 2000

Percentage of duplicated datapointsa 15&10

Optimization algorithm torch.optim.Adam

Learning rateb 0.0075

Size of batches for the trainingc 25

Number of epochsd 25

aWe duplicated some data points to have a better focus on the initial phase of the

simulation. Here, 15&10 means that we added 15% percent of the data and another

10% of the initial data on top of it; cp. Section 5.1.
bThe optimization algorithm has many other parameters that can be altered. We used the

default values except for the learning rate.
cHow many data points are evaluated until the optimization algorithm updates the

parameters.
dHow often the optimization iterates over the full data set.

approximations capture the limit cycle of the periodic regime. For
that, we plot the phase portrait of drag vs. lift.

For the smallest investigated code size cs=3 (cp. Figure 4)
we found that the CAE-3 approximation departed from the
FOM-simulation in the initial phase but captured the limit
cycle well with but a small distortion of the symmetry and an
overestimation of the drag by about 2%. ThePOD-3-simulation,
i.e., the LPV approximation by a POD basis of dimension 3, did
not reach a clear limit cycle within the comparatively long time
horizon and did not well reproduce the nominal values of drag
and lift either.

For an increased code size cs=5, the POD approximation
qualitatively and quantitatively (cp. Figure 5) improved
to approximately the same level as CAE-3. The
CAE approximation for this code size did not perform
well at all.

For cs=8, the POD approximation improved only marginally
whereas the CAE-model approximation reached a limit cycle
again though with a huge distortion of the symmetry and a
significant overestimation of drag and lift (cp. Figure 6).

Since, theoretically, the CAE-8 and CAE-5 model contain
the CAE-3 model, their failure in the approximation basically
means a failure of the optimization of the model parameters
during the training. The manifold ways of adapting the
parameters of the network architecture as well as those of the
optimization procedure offers many ways of improving.

Even more, the interpolation to the uniform tensor grid
(cp. Figure 2) means a significant loss of information so that
slight improvements here, e.g., through a local refinement that
preserves the tensor structure, will likely improve the approach.

Nonetheless, the good performance of CAE-3 fully supports
our initial working hypotheses that a convolutional neural
network can provide a very low-dimensional encoding targeted
to an efficient affine LPV approximation of the incompressible
Navier-Stokes equations. In this case, it took a parameter
space of dimension cs=3 to well approximate the nonlinear
incompressible Navier-Stokes equations of dimension 42764
just in the velocity part.

Finally, for a rough orientation about the computational costs,
we provide the computational times as they can be read off the log
files (i.e., only a single wall clock measurement). All experiments
have been conducted on a computing cluster but without GPU
support and restricted to two computing kernels. The training of
the individual CAE models took about 30 min, the simulation
of the full order model over the full time frame from t = 0 to
t = 50 took about 80 min. The same simulation but with the
POD reduced LPV model took about 130 min, whereas the CAE
model took 420 min. The computational overhead of the POD
model is mainly due to the blending that requires the evalution of
the nonlinearity twice as often. This also holds true for the CAE
model but accounts only for a part of the overtime.

Certainly, these timings can be improved significantly.
However, the focus of the presented work was on reducing the
model in terms of its structure by replacing the nonlinear term
by a low-dimensional LPV formulation.

To evaluate the robustness of the presented method, we
conduct the same experiments at Re = 60, i.e., in a regime that is
evenmore convection-dominated and that is expected to bemore
difficult to approximat by a linear projection method. The results
are displayed in Figure 7 and are well inline with those reported
for Re = 40 before. The CAE-3-model outperformed all POD-
configurations, once a satisfactory setup of hyperparameters was
found. In fact, for the training of the CAE-model for Re = 60 we
added another batch p=20 percent of data focussed on the initial
phase (cp. Table 2) while for the simulation we set s = 1

3 (cp.
Remark 5). Both updates to the Re = 40 case are natural as in
this regime, the initial phase is shorter and the simulation is less
stable. Interestingly, the POD-models gave a solid performance
at small cs, but deteriorated for larger sizes of the POD basis.
An explanation for this behavior might lie in the sensitivity of the
problem and in numerical errors in the POD vector computation.
We also note that adding stability to the system by an even
smaller s was of no help as it damped the periodic behavior (with
a result similar to the POD-3 approximation in Figure 7).

6. CONCLUSION AND OUTLOOK

In the presented work, we have provided a proof of concept on
how CNNs in combination with POD can be used to generate
very low-dimensional LPV approximations to nonlinear systems.
For the considered Navier-Stokes equations and, generally, for
any quadratic system, the LPV approximation is affine-linear
if only the decoding from the coded variable ρ to the state
reconstruction ṽ is a linear map.

The myriad of parameters that can be tuned in the design
of DNNs and their training have not been investigated in depth
(once a satisfying working setup has been found). Accordingly,
there is a huge potential for improvements since the well
working CAE-3 example is certainly no global optimum and
the larger code sizes could, theoretically, be tuned for better
approximations. A systematic investigation of the parameters is
left to future research efforts.

Another future research direction is the direct identification of
the parametrization matrices Ni, i = 0, . . . , r, for an affine-linear
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LPV-representation

N(υ) ≈ Ñ(ρ(υ)) = Ñ0 +

r
∑

i=1

ρi(υ)Ñi

without resorting to POD coordinates. It was mentioned in
Koelewijn and Tóth [12], that a neural network without the
nonlinear activation that approximates ρ(υ) → N(ρ(υ)) is
such an affine-linear map with coefficients Ñi defined through
the weighting matrices of the neural net. Accordingly, the
same architectures and optimization algorithms can be used
to design the parametrization from scratch. However, in the
large-scale setting, it is not feasible to learn (and even just to
store) these coefficients. A general approach to that would be
sparsity enforcing methods in the learning of the weights. Amore
specific approach could consider transposed convolutional layers
that reverses the convolutions and contractions but without the

nonlinear activations. Certainly, the concatenated operations of
the transposed convolutions and the reversal of the interpolation
from the FEM to the tensor grid can be represented as one sparse
operator. This is subject to further investigations.
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