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In the last decade, numerous statistical methods have been developed for analyzing

microbiome data generated from high-throughput next-generation sequencing

technology. Microbiome data are typically characterized by zero inflation, overdispersion,

high dimensionality, and sample heterogeneity. Three popular areas of interest

in microbiome research requiring statistical methods that can account for the

characterizations of microbiome data include detecting differentially abundant

taxa across phenotype groups, identifying associations between the microbiome

and covariates, and constructing microbiome networks to characterize ecological

associations of microbes. These three areas are referred to as differential abundance

analysis, integrative analysis, and network analysis, respectively. In this review, we

highlight available statistical methods for differential abundance analysis, integrative

analysis, and network analysis that have greatly advanced microbiome research. In

addition, we discuss each method’s motivation, modeling framework, and application.

Keywords: microbiome data, metagenomics data, differential abundance analysis, integrative analysis, network

analysis

1. INTRODUCTION

Bacteria, viruses, fungi, and other microscopic living things are referred to as microorganisms or
microbes. The term microbiome describes the collective genomes of the microorganisms or the
microorganisms themselves [1]. The human microbiome plays a vital role in controlling vital
functions in the body such as immune system development, protection against pathogens, and
modulation of the central nervous system [2]. Themicrobiome is dynamic and changes with factors
such as diet or the use of antibiotics [3]. Changes in the microbiome may affect host health and
cause disease [2, 4]. In the last decade, many advances in sequencing technology and statistical
methodology have made it possible to study and quantify the microbiome.

In quantitative microbiome research, there are three popular areas of interest that seek to
detect and quantify (i) differentially abundant taxa across phenotype groups, (ii) associations
between taxonomies and covariates, and (iii) associations between taxa in the whole microbiome
network. These three areas are referred to as differential abundance analysis, integrative analysis,
and network analysis, respectively. Many useful methods have been developed to perform these
downstream analyses while taking multiple issues into consideration that arise from differences
in sequencing technology such as 16S ribosomal RNA sequencing (16S rRNA) or metagenomic
shotgun sequencing (MSS) [5], technical issues of sequencing technology [6], the complex nature
of sequencing count data [7], and choice of data normalization techniques [8].
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16S rRNA and MSS are commonly used high-throughput
sequencing technologies that generate raw count data for
microbiome statistical analysis. Both technologies have their
advantages and disadvantages. In 16S rRNA, the 16S ribosomal
gene sequence is useful for the identification and classification
of bacteria and archaea [9] because it is conservative as well as
found in most microbes [10] and contains multiple sequences of
the gene within a single microbe [11]. 16S rRNA is a relatively
short sequence in the bacterial genome. Their sequences can be
clustered as operational taxonomic units (OTUs) or amplicon
specific variants, which better classify bacteria at the phyla and
genera levels but is less precise at the species level. Further,
16S rRNA has available reference genomes and pipelines to
perform data analysis such as DADA2, Mothur, and QIIME
[12–15]. In contrast, MSS targets entire genomes with greater
resolution giving it the capability to efficiently classify bacteria
at the species level as well as describe microbial communities and
their functional differences [16]. MSS identifies far more species
per read than 16S rRNA and is more advanced because it can also
identify viruses, fungi, and protozoa [12]. As a result,MSS ismore
costly per sample than 16S rRNA and so sample sizes tend to be
smaller in studies with MSS data [17]. Of course, these are not
the only existing sequencing methods. RNA-Seq, ChIP-Seq, and
MeDIP-Seq are some of the many sequencing technologies that
are also available.

Microbiome count data have characteristics that pose
numerous challenges to methodology such as zero inflation,
overdispersion, high dimensionality, and sample heterogeneity
[18, 19]. Further, when count data are transformed to
compositional data (i.e., total sum scaling), the counts in each
sample are only relative to each taxon and do not necessarily
reflect absolute abundance [20] due to variable sequencing depth
across samples [5]. Zero inflation is common where possibly up
to 90% of all counts are zeros [20]. Further, MSS count data are
typically much more sparse than 16S rRNA data [5]. Some of the
zeros are true zeros and others are false zeros. False zeros result
from technical variability and limitations in sequencing depth
when taxa with low abundance are completely missed at random
[8, 16]. Quality of DNA preparations such as inconsistencies
in the DNA extraction or how samples are handled can also
contribute to technical variability [16, 18]. Library size is the
total number of reads per sample (i.e., the sum of all the counts
in a sample). Different library sizes (i.e., sample heterogeneity)
result as a consequence of technical variability, which make it
difficult to compare the samples. Samples with greater library
size could contain higher reads for non-differentially abundant
features, which would lead to the spurious conclusion that
those features are differentially abundant [8]. Batch effects are
problematic andmay lead to spurious conclusions especially with
MSS data, which is generated over multiple sequencing runs [18].
Furthermore, biological, technical, and computational factors are
probable sources of batch effects [21]. Normalization alone does
not fully correct for batch effects [22]. Many statistical methods
are available that correct for batch effects including linear mixed
models via the LIMMA package in R [23], metagenomeSeq in the
Bioconductor software for users in R [24], Bayesian Dirichlet-
multinomial regression meta-analysis (BDMMA) [25], surrogate

variable analysis (SVA) [26], and remove unwanted variation
(RUV2 and RUV4) [27]. Other methods that help to remove
batch effects include batch mean centering (BMC) [28], ComBat
[29], or its extension ComBat-seq [22], removeBatchEffect [23],
FAbatch [30], RUVIII [31], percentile normalization [32], and
singular value decomposition (SVD) [33]. Assumptions such
as whether or not the batch effect is known or if the design
is balanced must be considered when selecting an appropriate
method to correct for batch effects.Wang and LêCao [21] provide
a detailed decision tree that is helpful for identifying appropriate
statistical methods that correct for batch effects.

In this paper, we first briefly describe the data one would
typically encounter in microbiome data analysis and introduce
their notations in Table 1. The sources referenced in this paper
vary in their data notations and so we present notations in
a consistent manner throughout this paper. Then, we discuss
available methods for differential abundance analysis, integrative
analysis, and network analysis. Specifically, we introduce the
methods, applications, motivations, normalization techniques,
models, statistical tests, and provide a brief discussion. Table 2
provides the classes and methods of statistical analyses discussed
in this paper.

2. DIFFERENTIAL ABUNDANCE ANALYSIS

Microbial dysbiosis, or microbial imbalances, is related to
disease. Microbiota have been implicated in the development
of numerous diseases such as colorectal cancer [34], type 2
diabetes [35], liver cirrhosis [36], and inflammatory bowel
disease [37]. The method of detecting differentially abundant
taxa across phenotype groups is known as differential abundance
analysis. Identifying differentially abundant taxa will help to
understand the relationship between the symbiotic organism
and human health as well as identify microbial biomarkers for
disease screening. We discuss multiple methods for differential
abundance analysis in this section including edgeR [38],
metagenomeSeq [24], DESeq2 [39], analysis of compositions of
microbiomes or ANCOM [40], a zero-inflated beta model or
ZIBSeq [5], a zero-inflated generalized Dirichlet-multinomial
model or ZIGDM [6], and count regression for correlated
observations with a beta-binomial model or corncob [41]. The
summary of these methods are found in Table 3 and their
implementations for users in R are in Table 4.

The common biological motivation of each method is to
determine if any particular features of Yn×p are significantly
different with respect to phenotype zn×1 in a high-dimensional
setting where the number of features is much greater than the
number of samples (i.e., p ≫ n). Additionally, each method has
its own statistical motivations. edgeR was motivated by the need
to separate biological and technical variability in order to reduce
bias when testing for significant phenotypic differences attributed
to abundances of RNA-Seq data. Sparsity (i.e., zero inflation)
is a common characteristic of MSS count data, which is one
motivational factor for metagenomeSeq, ZIBSeq, and ZIGDM.
For example, a particular bacterial species may be present in a
small percentage of samples for both biological and technical
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TABLE 1 | The notations and descriptions of typical microbiome data.

Label Notation Description

Count data Yn×p A n× p matrix of count data where each element yij ∈ N is the abundance for sample i = 1, . . . , n and feature j = 1, . . . ,p.

Denote yi· = (yi1, . . . , yip ) as the 1× p row vector of counts across all p features in sample i. Also, denote y·j = (y1j , . . . , ynj )
⊤

as the n× 1 column vector of counts for feature j in all n samples. Denote ỹij as relative abundance, y̆ij = log2(yij + c) as a

log-transformed count with an added pseudo-value c, and library size Ni =
∑p

j=1 yij .

Covariates Xn×q A n× q matrix where each element xik ∈ R is a measure for covariate k = 1, . . . ,q in sample i. Denote xi· = (xi1, . . . , xiq) as

the 1× q row vector of covariate measures across all q covariates in sample i. Also, denote x·k = (x1k , . . . , xnk )
⊤ as the n× 1

column vector of measures for covariate k in all n samples.

Phenotype zn×1 A n× 1 column vector for the phenotypic response, which is written as (z1, . . . , zn)
⊤ where each element zi is the

phenotypic response for sample i. The response is categorical∗ where zi = g indicates the phenotypic group of each

sample for group g = 1, . . . ,G.

∗Some models may have a continuous phenotypic response where each zi ∈ R.

TABLE 2 | Classes and alphabetized methods of statistical analyses discussed in this paper.

Differential abundance Longitudinal differential

abundance

Integrative analysis Network analysis

ANCOM maSigPro DMBVS CCLasso

corncob MetaDprof DMLMbvs HARMONIES

DESeq2 MetaLonDA DMR REBACCA

edgeR MetaSplines IntegrativeBayes SparCC

metagenomeSeq mixMC SpiecEasi

mixMC MetaLonDA SPRING

ZIBSeq NBMM

ZIGDM NBZIMM

ZINB-DPP

TABLE 3 | Summary of methods for differential abundance analysis in microbiome studies.

Method Model assumption Normalization References Availability

edgeR∗ Negative binomial TMM [42] Bioconductor

metagenomeSeq Zero-inflated normal or log-normal CSS [24] Bioconductor

DESeq2∗ Negative binomial RLE [39] Bioconductor

ANCOM ANOVA ALR [40] GitHub

ZIBseq Zero-inflated beta TSS [5] CRAN

ZIGDM Zero-inflated generalized Dirichlet-multinomial None† [6] CRAN

corncob Beta-binomial None† [41] GitHub

mixMC PCA/sPLS-DA‡ CSS/TSS+CLR [43] Bioconductor

maSigPro∗ Generalized linear models User specified†† [44] Bioconductor

NBME∗ Negative binomial mixed effects User specified†† [45] CRAN

MetaSplines Gaussian + SS-ANOVA CSS [46] Bioconductor

MetaDprof Gaussian + SS-ANOVA TMM [47] Online

MetaLonDA Negative binomial + SS-ANOVA TMM/CSS‡‡ [48] CRAN

NBZIMM Negative binomial or Gaussian mixed effects See below∗∗ [49] GitHub

∗Developed for RNA-Seq data analysis.
∗∗For these zero-inflated models, the negative binomial mixed effects model can incorporate the counts directly so normalization is not required; whereas, the Gaussian mixed effects

model requires the arcsine square root transformation of the compositional data.
†These models do not require data normalization.
††These models require the user to normalize the data beforehand.
‡Principal components analysis (PCA) and sparse partial least squares discriminant analysis (sPLS-DA).
‡‡Median-of-ratios scaling factor is a third normalization technique available in MetaLonDA.
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TABLE 4 | Implementation in R for differential abundance analysis in microbiome studies.

Method Implementation Updated

edgeR https://bioconductor.org/packages/release/bioc/html/edgeR.html 2021

metagenomeSeq https://rdrr.io/bioc/metagenomeSeq/ 2021

DESeq2 https://bioconductor.org/packages/release/bioc/html/DESeq2.html 2021

ANCOM https://github.com/FrederickHuangLin/ANCOM 2020

ZIBseq https://cran.r-project.org/web/packages/ZIBseq/index.html 2017

ZIGDM https://www.rdocumentation.org/packages/miLineage/versions/2.1 2017

corncob https://github.com/bryandmartin/corncob 2021

mixMC https://www.bioconductor.org/packages/release/bioc/html/mixOmics.html 2022

maSigPro https://www.bioconductor.org/packages/release/bioc/html/maSigPro.html 2021

NBME https://cran.r-project.org/web/packages/timeSeq/index.html 2019

MetaSplines https://rdrr.io/bioc/metagenomeSeq/ 2019

MetaDprof https://cals.arizona.edu/~anling/sbg/software.htm 2016

MetaLonDA https://cran.r-project.org/web/packages/MetaLonDA/index.html 2020

NBZIMM https://github.com/nyiuab/NBZIMM 2022

reasons. Biologically, this particular bacterial species may be
found in only a small percentage of samples. Limitations in
technology such as sequencing depth may miss a particular
bacterial species with low abundance completely at random. As
a result, the number of zero counts becomes inflated. DESeq2
wanted a model that can account for the presence of outliers and
small replicate sizes while producing interpretable results. Other
methods including ZIBSeq, ANCOM, ZIGDM, and corncob were
motivated by the need for models that can also account for the
compositional nature of the count data. ZIGDM was further
motivated by the need to account for correlation structure and
dispersion patterns amongst features.

Normalization is a transformation needed for robust analysis
that accounts for the challenges of microbiome data and
technical variability of sequencing technology [8, 16, 18, 20].
Measurable, informative, and direct comparisons of samples
are only possible after normalization [8]. Some methods for
normalization are based on either sample-specific scaling of
the raw counts or replacing the raw counts with normalized
counts [16]. Popular normalization methods include but are
not limited to total sum scaling (TSS), cumulative sum scaling
(CSS), variance stabilizing transformation (VST), relative log
expression (RLE), Aitchison’s centered log-ratio (CLR) or log
ratio (ALR) of compositions, trimmed mean of M-values
(TMM), and upper-quartile (Q75). The default normalization
methods for edgeR, metagenomeSeq, DESeq2, ANCOM, and
ZIBSeq are TMM, CSS, RLE, ALR, and TSS, respectively.
Further, TMM, RLE, Q75, and TSS can be applied by both
edgeR and DESeq2. Both ZIGDM and corncob apply model-
based normalization. Model-based normalization estimates the
normalized abundances via a distribution parameter rather than
using a separate normalization step. The choice of normalization
method produces more precise and biologically interpretable
results when it is chosen appropriately. For instance, the CSS
normalization technique used in metagenomeSeq scales the
data with cumulative count sums up to a certain quantile.
Further, CSS was shown to produce optimal model performance

particularly for MSS count data. CSS is also helpful when
there is zero inflation in the count data. Zero counts do
not imply the nonexistence of a feature but could be the
result of undersampling. On the other hand, TMM in edgeR
helped to minimize the false discovery rate (FDR). Additionally,
TMM attempts to trim away unwanted undersampling and
oversampling effects in the log-fold changes. Normalization in
edgeR was later updated to account for outliers by applying
weights to the normalized counts. Similarly, DESeq2 accounts for
outliers in the count data by taking advantage of the median-
of-ratios or RLE normalization techniques, which could result
in a more robust model. ANCOM normalizes the data via ALR
to map the data from the simplex S to R, which allows for the
use of classical tests such as ANOVA or Kruskal-Wallis to detect
differential abundance. Normalizing the counts using TSS offers
a way to model the compositional data directly as is done in
ZIBSeq.

The microbiome data are assumed to follow a particular
probabilistic model or distribution, which accounts for the noise
in the count data. The probability density functions (pdf) or
probability mass functions (pmf) and additional information for
the parameters of each of the models are listed in Table 5. In
general, the count data are sampled from

yij|· ∼ M(·) (1)

where M(·) is a probabilistic model that depends on either
the normalized or non-normalized abundances as well as other
parameters such as mean or dispersion when applicable. The
models discussed in this section choose candidates for M to
deal with at least one of the characterizations of count data.
The negative binomial distribution (NB) is the candidate for
M for both edgeR and DESeq2 and can be generalized as
yij|· ∼ NB(λij,φj) where λij is the mean and φj is the feature-
specific dispersion parameter. The mean λij is parameterized
as the product of a normalization factor si and a parameter
related to the count data µij, which is expressed as λij = siµij.
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TABLE 5 | Summary of the count data models that appear throughout this paper.

Method Model Additional information

edgeR yij |· ∼ NB(λij ,φj )
∗ The mean parameter λij = Ni ỹij accounts for variation in library size and relative abundance.

DESeq2 yij |· ∼ NB(λij ,φj ) λij = siqij where si is estimated by the median-of-ratios method; qij is proportional to the amount of

feature-wise cDNA fragments in a sample.

metagenomeSeq y̆ij |· ∼ N(µj , σ
2
j )

∗∗ In this zero-inflated model, πi (Ci ) is the probability that an observed count is zero and is estimated via

logit(πi ) = β0 + β1 logCi , where Ci is the normalized abundance via CSS, µj and σ
2
j are feature-specific

Gaussian mean and variance.

ANCOM Not applicable Uses standard ANOVA to model the ALR-transformed relative abundances.

ZIBSeq ỹij |· ∼ Beta(µij ,φij )
† In this zero-inflated model, πi is the probability that a relative abundance is zero, µij is the mean and φij is

precision. This parametrized beta distribution has shape parameters µijφij and (1− µij )φij .
ZIGDM yij |· ∼ GDM(ωi·, ai·, bi·)‡ In this zero-inflated model, πij is the probability that a count is zero.

corncob yij |· ∼ Binomial(Ni , ỹij )
†† The prior on ỹij is p(ỹij ) = Beta(a1j , a2j )

‡‡ with expected value µij = a1j/(a1j + a2j ), which allows the use of

the logit function to model the mean of the compositions.

DMR, DMBVS, DMLMbvs yi·|· ∼ DM(α i·)∗∗∗ This zero-inflated model depends on a single parameter, α i· which can be interpreted as the

model-based normalized abundances of sample i. Each αij ∈ R
+.

IntegrativeBayes yij |· ∼ NB(λij ,φj ) In this zero-inflated model, the mean parameter is λij = siαijg where size factor si is sequencing depth

and αijg is the CSS normalized abundance of feature j in sample i and phenotypic group g. The

feature-wise dispersion parameter is φj .

∗The NB pmf in general is f (y|·) = Ŵ(y+φ)
y!Ŵ(φ)

(

φ
λ+φ

)φ (

λ
λ+φ

)y
.

∗∗The normal pdf in general is f (y|µ, σ 2 ) = 1√
2πσ2

exp
(

− 1
2σ2

(y − µ)2
)

.

†
The beta pdf in general can be parametrized as f (y|µ,φ) = Ŵ(φ)

Ŵ(µφ)Ŵ((1−µ)φ) y
µφ−1 (1− y)(1−µ)φ−1.

†
The GDM pmf in general can be written as.

††
The binomial pmf in general is f (y|·) =

(N
y

)

px (1− p)N−y .
‡‡This beta pdf is non-parametrized and written generally as f (y|·) = Ŵ(α+β)

Ŵ(α)Ŵ(β) y
α−1 (1− y)β−1.

∗∗∗The DM pmf in general is f (yi·|αi· ) =
Ŵ(

∑p
j=1 yij+1)Ŵ(

∑p
j=1 αij )

Ŵ(
∑p

j=1 yij+
∑p

j=1 αij )

∏p
j=1

Ŵ(yij+αij )
Ŵ(yij+1)Ŵ(αij ) .

The choices for these two parameters for edgeR and DESeq2
are provided in Table 5. The variance of yij is λij + λ2ij/φj.

The variance increases as φj tends toward small values, which
accounts for overdispersion in the count data [19]. However, the
NB does not account for zero inflation. Next, a generalized linear
model (GLM) using a log-link to model the mean abundance of
feature j in sample i is fitted viamaximum-likelihood estimation.
The GLM can be written as log(µij) = β j·(1, zi, xi·)

⊤ where
β j· = (βj0,βj1, . . . ,βj,k+2) are the regression coefficients for the
intercept, phenotype, and covariates, respectively. Testing for
differential abundance here is the equivalent of testing H0 :βj1 =
0. edgeR uses the modified Fisher’s exact test by [50] where NB
replaces the hypergeometric distribution; whereas, DESeq2 used
the Wald test. Originally, edgeR was designed for only a binary
phenotype but has since been updated to handle multiple groups.

Zero-inflated models help to significantly reduce the bias of
sparse count data resulting from the undersampling effect of
limited sequencing depth. The zero-inflated model is a mixture
distribution with a continuous component and spike-mass at
zero. An attractive feature of the zero-inflated model is the ability
to estimate the probability that a zero count is a true zero (i.e.,
true absence of feature j) or false zero (i.e., undersampling) by
the use of a discrete spike-mass at zero [51]. Zero-inflated models
are employed by metagenomeSeq, ZIBSeq, and the ZIGDM.
Generally,M as a zero-inflated model can be expressed as yij|· ∼
πiI0(yij = 0)+ (1− πi)M(·). An equivalent way to model yij|· is

by the use of a latent binary variable rij such that

yij

{

= 0 when rij = 1
∼ M(·) when rij = 0

(2)

where πi is the probability that yij is zero [24] and rij is
sampled from a Bernoulli distribution with parameter πi [19].
A discrete spike assumes yij = 0 with positive probability
[51]; whereas, a continuous spike assumes yij = 0 with
zero probability [52]. The candidates for a zero-inflated M

are Gaussian or log-Gaussian, beta, and generalized Dirichlet-
multinomial for metagenomeSeq, ZIBSeq, and the ZIGDM,
respectively. Specifically, metagenomeSeq models the log2
continuity-corrected count data as y̆ij = log2(yij + 1) along
with the CSS-normalized scaling factor si for two population
groups. Pseudo counts are created by adding a positive value to
each yij to avoid taking a logarithm at zero. The mean model

here is written as µij|· = β j·[1, zi, xi·, log2(Ci + 1)]⊤ where
β j· = (βj0,βj1, . . . ,βj,k+3) are the regression coefficients for the
intercept, phenotype, and covariates. The term log2(Ci+ 1) is the
main contribution of metagenomeSeq, which includes the CSS-
normalized value, Ci, that helps to remove bias due to extremely
large counts in any sample. The expectation-maximization (EM)
algorithm is used to fit the model and estimate the parameters.
Testing for differential abundance here is the equivalent of
testing H0 :βj1 = 0. Then, metagenomeSeq computes q-values
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for multiple testing from a modified t-statistic calculated via
Empirical Bayes. One issue here is that FDR increases when either
sample size or effect size increases [20].

ZIBSeq models the relative abundances via a parametrized
beta distribution [53] where ỹij ∼ Beta(µij,φij) has mean
µij, precision φij, and variance µij(1 − µij)/(φij + 1). Then,
the mean is modeled by GLM binomial regression with a
logit-link, logit(µij) = β j·(1, zi)

⊤ where β j· = (βj0,βj1) are
regression coefficients for the intercept and phenotype. The
model parameters are estimated using maximum likelihood
estimation via the R package GAMLSS. Testing for differential
abundance here is the equivalent of testing H0 :βj1 = 0. ZIBSeq
computes q-values for multiple testing from either a Chi-square
or t-distribution depending on sample size.

The relative abundances are modeled by ZIBSeq one feature
at a time; whereas, the ZIGDM models the abundances directly
under a multivariate setting which can better capture the
compositional effects. Further, the Dirichlet-multinomial (DM)
distribution can account for overdispersion. But, the ZIGDM is a
more flexible model than the DM. The novelty of the ZIGDM
is two-fold: the use of the GDM to model count data and
account for zero inflation with additional parameters had not
been done before. The ZIGDMmodels the counts of each sample
as yi· ∼ ZIGDM(ωi·, ai·, bi·) where πij is a Bernoulli parameter
that controls the absence probability, and aij and bij are beta
distribution parameters that control the presence of feature j in
sample i. The beta mean of the proportion of feature j in sample
i is aij/(aij + bij). By letting the dispersion parameter be σij =
1/(1 + aij + bij), the beta variance can be expressed as µij(1 −
µij)σij which accounts for overdispersion. Similar to ZIBSeq,
the ZIGDM also uses GLMs to model the mean parameter
µij, but then uses score statistics and permutation p-values to
test for differential abundance. The mean model is written as
logit(µij) = β j·(1, zi, xi·)

⊤ where β j· = (βj0,βj1, . . . ,βj,q+2)
are the regression coefficients for the intercept, phenotype, and
covariates, respectively. Testing for differential abundance here is
the equivalent of testing H0 :βj1 = 0.

The beta-binomial distribution is the candidate for M in
corncob. In particular, corncob models the abundances as
yij ∼ Binomial(Ni, ỹij) to account for library size and relative
abundance. Further, corncob assumes a beta prior on the
probability parameter, which is expressed as ỹij ∼ Beta(a1j, a2j),
for model flexibility. Under this setting, the expected relative
abundance of feature j in sample i is estimated by µij =
E(ỹij) = a1j/(a1j + a2j) and provides convenient support on
(0,1) for modeling compositions via binomial regression. The
binomial variance of yij|Ni is Niµij(1 − µij) × [1 + φij(Ni −
1)] with an inflation factor of 1 + φij(Ni − 1) where φij =
1/(1 + a1j + a2j). The flexibility of the prior allows corncob
to account for library size and overdispersion when φij is large.

The mean model is written as logit(µij) = β j·(1, zi, xi·)
⊤ and

fitted using the trust region optimization algorithm for more
efficient computation. The regression coefficients are given by
β j· = (βj0,βj1, . . . ,βj,q+2) for the intercept, phenotype, and
covariates, respectively. Testing for differential abundance here is
the equivalent of testing H0 :βj1 = 0. The parametric bootstrap
Wald test is used to test for differential abundance.

ANCOM uses standard ANOVA to model the ALR-
transformed relative abundances. ALR is based on Aitchison’s
methodology of log ratios of compositional data [54]. The
ALR transformation overcomes the unit-sum constraint on the
relative abundances [18] and creates a map from the simplex S

toR, which then allows for the use of classical statistical methods
such as ANOVA [20]. Each feature is used as a reference feature
one at a time which produces p(p − 1) regression models [20].
Each model is written as

log
ỹijg

ỹij′g
= αjj′ + βjj′g + ǫijj′g (3)

where αjj′ is the mean, βjj′g captures the phenotypic group effect,
and ǫijj′g is the error term for sample i, taxa j 6= j′, and
phenotype zi = g. Covariates can also be included in the linear
model when applicable. Testing for differential abundance is the
equivalent of testing H0 :βjj′1 = · · · = βjj′G using classical tests
such as ANOVA, t-test, Wilcoxon, or Kruskal–Wallis depending
on the number of groups and linear assumptions. The p-
values are adjusted using the Benjamini–Hochberg procedure for
multiple testing.

The above models are univariate with the exception of the
ZIGDM. Multivariate models for analyzing microbiome data are
also available. However, themultivariate methods do not perform
better than the univariate methods for differential abundance
analysis [43, 55]. An advantage of multivariate methods are the
useful plots and numerical summaries of dimension reduction
techniques including, but not limited to, principal components
analysis (PCA), principal coordinates analysis (PCoA), canonical
correlation analysis (CCA), and partial least squares discriminant
analysis (PLS-DA) [43, 56]. For example, mixMC [43] is a
multivariate method available in the mixOmics package in
Bioconductor. Using CLR-transformed compositions, mixMC
applies PCA to visualize diversity patterns and multivariate
regression using sparse PLS-DA via a lasso penalty to select
the most differentially abundant features. Lastly, mixMC also
provides a multivariate approach for longitudinal differential
abundance analysis.

The literature for longitudinal differential abundance analysis
had been lacking until recently. The cost for sequencing
has decreased over time allowing for the production of
more longitudinal data [46]. Some earlier methods include
Next maSigPro (microarray Significant Profiles) available in
Bioconductor [44] and a negative binomial mixed effects model
(NBME) available in the R package timeSeq [45]. Both
Next maSigPro (the updated version of maSigPro) and NBME
do not have normalization methods built into the software
and so the user must normalize the data beforehand. Three
methods developed around the same time for longitudinal
differential abundance analysis include MetaSplines [46],
MetaDprof [47], and MetaLonDA (Metagenomic Longitudinal
Differential Abundance) [48, 57]. MetaSplines is available in
metagenomeSeq, MetaDprof has no R package available, and
MetaLonDA can be accessed through CRAN. MetaSplines,
MetaDprof, and MetaLonDA apply a semi-parametric method
known as smoothing spline ANOVA or SS-ANOVA to detect
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longitudinal differential abundance. MetaLonDA models the
count data using the negative binomial distribution; whereas,
MetaSplines and MetaDprof use the Gaussian distribution.
MetaLonDA is designed to handle inconsistencies in time
points, different number of samples per subject, and different
number of subjects per phenotypic group. Further information
regarding MetaSplines, MetaDprof, and MetaLonDA is provided
in detail by [58]. More recently, NBZIMM [49] allows for the
implementation of a negative binomial mixed effects model,
zero-inflated negative binomial model, and Gaussian mixed
effects model. NBZIMM is available for users in R via GitHub.

All of the above methods are useful. Appropriate model
selection should be determined by a statistical procedure rather
than by user choice. For example, a statistical procedure for
identifying zero-inflated and hurdle distributions (iZID) was
recently developed to appropriately model MSS data [59] and
can be implemented in R via the iZID package [60]. Hurdle
models, introduced by [61], are also referred to as zero-altered
(ZA)models. Generally, ZA consists of one process that generates
zeros and a second process truncated at zero that generates
positive counts [62]. Unlike zero-inflated models, the slab of
a zero-altered model cannot generate zeros. Wang et al. [60]
provide the details of multiple zero-inflated and hurdle models
along with any existing R packages. Keep in mind that there are
other zero-inflated models not discussed in this paper that are
available for microbiome data analysis. For example, a recent
zero-inflated negative binomial model with a Dirichlet-process
prior (ZINB-DPP) offers a Bayesian approach for differential
abundance analysis [63].

The count data for edgeR and DESeq2 were sequenced via
RNA-Seq. Other methods in this section such as metagenomeSeq
and ZIBSeq generated the count data via 16S rRNA sequencing
technology. An implication here is that these models were built
for specific types of count data. Consequently, one must also
consider the type of data when choosing a model. Further,
corncob used soil microbiome data with three treatments;
where as, human microbiome data were analyzed by the
other methods. Of course, a zero-inflated model should be
preferred when sparsity in the count data is high. Compared
to metagenomeSeq, ZIBSeq is better suited for larger sample
sizes and sparse count data based on its reported area
under the receiver operating characteristic curve (AUC) via
simulations. For smaller sample sizes, ZIBSeq is well-suited
for multinomial and binomial data but not for zero-inflated
Poisson or zero-inflated negative binomial data. Similar to
ZIBSeq, corncob uses a single-feature modeling approach which
does not take the compositional nature of the count data
into consideration. So, a multivariate version of both of these
two methods ought to be considered. Interestingly, ANCOM
outperformed metagenomeSeq by significantly reducing FDR
and increasing power even though it is not a zero-inflated
model. However, ANCOM accounts for the compositionality
of the count data using ALR normalization. ANCOM can
also perform longitudinal analysis to test differential abundance
at different time points. Later in 2020, Lin and Peddada
[20] released ANCOM-BC which is an improved version of
ANCOM that includes bias correction (BC). Most of the models

above assume that abundance dispersions between groups
are homogeneous. Both edgeR and DESeq2 use shrinkage to
estimate dispersion and log-fold changes. Shrinkage helped to
improve consistency and interpretation of results. The method
of shrinkage is what sets edgeR and DESeq2 apart. Shrinkage
in edgeR is determined by a user-adjusted parameter that
depends on the prior degrees of freedom to impose weight
on individual gene estimates and dispersions, which creates
a weighted likelihood conditional on the count data. The
conditional likelihood is based on the assumption that features
with similar observed abundances have similar variances. The
assumption of homogeneity may be problematic since phenotype
level abundances can be influenced by multiple factors (e.g.,
other features, covariates, host, environment, etc.). The ZIGDM
and corncob take differential dispersion into account, which is
the assumption that dispersions between phenotype groups are
heterogeneous. Also, tests for differential dispersion are available
for the ZIGDM and corncob to determine if there is a significant
association between dispersion and covariates. Notably, corncob
was the first method to develop a test for differential dispersion.
Finally, these models can be adjusted to include covariates.
The ability to incorporate covariates into a model brings us to
integrative analysis in the next section.

3. INTEGRATIVE ANALYSIS

There is an association between the microbiome and covariates
including but not limited to metabolites, antibiotic usage,
environmental factors, and host genetics that can influence
host health [64, 65]. Recently, numerous associations between
dietary covariates and taxa were implicated in the development
of chronic diseases such as obesity [66]. The goal of integrative
analysis is to identify and quantify associations between
the microbiome and covariates. We discuss four methods
for integrative analysis in this section including Dirichlet-
multinomial regression or DMR [67], Dirichlet-multinomial
Bayesian variable selection or DMBVS [68], a Bayesian
zero-inflated negative binomial (ZINB) also referred to as
IntegrativeBayes [19], and a Dirichlet-multinomial linear model
with Bayesian variable selection or DMLMbvs [66]. Table 6

provides a summary of the methods discussed in this section and
Table 7 summarizes the implementation of these methods in R.

The common biological motivation of each method is to
determine if associations exist between any of the p features
from Yn×p and q covariates from Xn×q while controlling for the
phenotypic response zn×1. Statistical motivations here are similar
to the differential abundance methods. DMR and DMLMbvs
model the count data directly to account for issues arising
from compositionality as well as overdispersion. DMBVS was
highly interested in the connection between disease development
and the association of the microbiome with other covariates.
The lack of available models for integrative analysis motivated
IntegrativeBayes to construct a model that could account for zero
inflation and overdispersion.

Three of the models employ the DM, which is one of
the distributions useful for model-based normalization. Other
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TABLE 6 | Summary of methods for integrative analysis in microbiome studies.

Method Model assumption Normalization Data type Covariate type References

DMR Dirichlet-multinomial None∗ 16S rRNA Nutrient intake [67]

DMBVS Dirichlet-multinomial None∗ 16S rRNA KEGG pathways [68]

IntegrativeBayes Zero-inflated negative binomial CSS MSS KEGG pathways; Metabolomics [19]

DMLMbvs Dirichlet-multinomial None∗ 16S rRNA Dietary [66]

∗The Dirichlet-multinomial model does not require data normalization.

TABLE 7 | Implementation of methods for integrative analysis in microbiome studies.

Method Implementation Updated

DMR http://statgene.med.upenn.edu/software.html 2013

DMBVS https://github.com/duncanwadsworth/dmbvs 2017

IntegrativeBayes https://github.com/shuangj00/IntegrativeBayes 2019

DMLMbvs https://github.com/mkoslovsky/DMLMbvs 2020

techniques of normalization decreases the power of the DM due
to some loss of variation when using compositions. Thus, using
the count data directly in the DM instead of the compositions
results in better model performance [67]. The ZINB is most
robust if the counts are first normalized using CSS when
compared to other normalization methods. Further, the results
of metagenomeSeq showed that CSS is highly beneficial for
analyzing zero-inflated count data.

The first step of integrative analysis is to model the count data
using Equation (1). The DM is the candidate forM to denoise the
count data in DMR, DMBVS, and DMLMbvs. The model learns
the compositionality while also accounting for uncertainty and
overdispersion in the count data. The count data are modeled as
yi·|αi· ∼ DM(αi·) where αi· = (αi1, . . . ,αip) is the i-th sample
row vector of normalized abundances estimated by the model.
The DM parameter is strictly positive where each αij ∈ R

+ and
the unit-sum constraint has been removed.

The DM is derived by each model as follows [66–68]. The
counts are assumed to follow a multinomial (Multi) distribution
yi·|Ni,ψ i· ∼ Multi(Ni,ψ i·). Then, a Dirichlet (Dir) prior is placed
on the multinomial parameter ψ i·|αi· ∼ Dir(αi·). The DM is the
result of integrating out the multinomial parameter, ψ i· which
is expressed as fDM(yi·|αi·) =

∫

p(yi·|Ni,ψ i·)p(ψ i·|αi·)dψ i·.
Integrating out this parameter makes the model more efficient by
having one less parameter. The variance of the DM is Var(yij) =
(Ni+Ai)/(1+Ai)E(ψij)[1−E(ψij)]Ni, where Ai =

∑p
j=1 αij. The

variance is inflated by a factor of (Ni + Ai)/(1 + Ai) relative to
the variance of the multinomial distribution. As a result, the DM
model accounts for overdispersion in the count data. Letting Ai

tend toward zero will result in large overdispersion. If Ai → ∞,
the DM model reduces to a multinomial model. DMBVS and
DMLMbvs are Bayesian adaptations of the DM.

IntegrativeBayes employs the NB as the candidate for the
zero-inflated M from Equation (2). If rij = 0 in Equation
(2), then the ZINB models the count data and their uncertainty
while accounting for sample-wise sequencing depth si by

reparameterizing each sample taxon-specific negative binomial
mean as the product of si and the CSS normalized abundances,
which are expressed as αijg . Further, the model also introduces a
latent binary vector γ = (γ1, . . . , γp) where γj = 1 indicates the j-
th feature is differentially abundant among the G groups. A beta-
Bernoulli prior is placed on each γj to quantify the proportion of
features that are believed to be discriminatory. Then, the ZINB
conditional on rij = 0 is expressed as

yij|rij = 0, γj, si,αijg ,αij0 ∼
{

NB(siαij0,φj) if γj = 0
NB(siαijg ,φj) if γj = 1, zi = g

(4)
where φj is the feature-specific dispersion parameter with a
Gamma prior. The parameter φj captures overdispersion in the
same manner as edgeR and DESeq2 described earlier.

Next, log-linear regression is employed by all four methods
to identify any feature-covariate associations. The general
framework of log-linear regression can be expressed as

logαijg = β j·(1, xi·)
⊤ (5)

where the abundance-related response is logαijg for the
covariates in sample i and group g. The feature-covariate
regression coefficients are β j· = (βj0,βj1, . . . ,βjq) where the
feature-specific intercept term is βj0 and βj1, . . . ,βjq estimate
the associations between the j-th feature and the q covariates in
the i-th sample. DMR, DMBVS, and DMLMbvs do not deviate
from this specification. However, IntegrativeBayes expresses their
log-linear regression model as

{

logαij0 = µ0j + x⊤i· β j· if γj = 0

logαijg = µ0j + µgj + x⊤i· β j· if γj = 1, zi = g
(6)

where µ0j is the feature-specific intercept term or baseline
and µgj captures the baseline shift between the g-th group
and reference group. Both µ0j and µgj are assigned zero-mean
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Gaussian priors. The regression coefficients β j· = (βj1, . . . ,βjq)
estimate the associations between the j-th feature and the q
covariates in the i-th sample. Equations (5) and (6) do not
require error terms because the uncertainty in the count data
is accounted for by Equation (1) before regression is applied.
DMLMbvs further calculates the mathematical balances B(ψ i·) of
the taxa proportions ψ i· estimated byM to predict a continuous
phenotypic response via

zi = (1,B(ψ)i·)
⊤βm + ǫi (7)

where βm = (β0,β1, . . . ,βM) contains the regression coefficients
for the balances. Further, β0 is the intercept term with a zero-
meanGaussian prior, βm is the coefficient of balancem or B(ψ)im,
and the error term ǫi has a zero-mean Gaussian prior. Equation
(7) requires an error term since the uncertainty in the phenotypic
response is not accounted for in any previous steps. The
multinomial prior ψ i· estimates the compositions and is usually
integrated out for model efficiency; however, DMLMbvs retains
this parameter because the phenotypic response depends on the
estimated compositions in Equation (7). Mathematical balances
are constructed via random sequential binary partitioning of ψ ,
which results in a total of M = p − 1 partitions. Mathematical
balances help to identify a subset of features having the greatest
association with the response rather than using a single feature
selection approach.

Equations (5), (6), and (7) are high-dimensional with q ×
(p + 1), q × (p + 2), and p parameters, respectively. Multiple
testing results in a loss of power in a high-dimensional setting
and so regularization would help to increase the power [67].
Thus, regularization of Equations (5), (6), and (7) is necessary
to optimize the model by reducing the parameter space [19].
Regularization for DMR, the only frequentist method here,
includes both group and individual ℓ1 penalties and is optimized
using an efficient block-coordinate descent algorithm, which
utilizes a quadratic approximation of the log-likelihood function.
Sparse ℓ1 regularization encourages sparsity in the regression
coefficients, which is useful for identifying significant taxa-
covariate associations whose regression coefficients are non-
zero. Then, DMR uses the likelihood ratio test to identify
significant feature-covariate associations. DMBVS, DMLMbvs,
and IntegrativeBayes employ spike-and-slab priors to reduce the
parameter space and for identifying significant feature-covariate
associations. Spike-and-slab priors are conventional for Bayesian
variable selection [19, 66, 68] and are defined as

βjk ∼ (1− δjk)I(βjk = 0)+ δjkN(0, σ 2
β ) (8)

where δjk = 1 indicates that feature j and covariate k are
associated (i.e., βjk 6= 0) and δjk = 0 otherwise. A beta-
binomial prior is imposed on the latent binary variable δjk
to control the number of significant associations selected by
the model. The variance term σ 2

β is assigned a conjugate
prior (inverse-gamma) for model efficiency. Model fitting and
sampling of non-zero regression coefficients is implemented
using the Markov Chain Monte Carlo (MCMC) Metropolis-
Hastings algorithm within a Gibbs sampler. The proportion of

posterior samples with non-zero coefficients, or where δjk =
1, is called the posterior probability of inclusion (PPI) and
makes a parsimonious quantification of uncertainty in variable
selection. PPI above a certain threshold indicates the significance
of any feature-covariate association, which is equivalent to testing
H0 :βjk = 0. The null hypothesis is retained if PPI is below the
chosen threshold and otherwise rejected. IntegrativeBayes uses a
threshold that controls FDR; whereas, DMBVS and DMLMbvs
use median PPI (i.e., 0.5) as the threshold.

Each of the four models here included numerous covariates.
For instance, DMR included dietary intake of nutrients. DMBVS
and IntegrativeBayes included molecular function covariates
from the Kyoto Encyclopedia of Genes and Genomes (KEGG).
IntegrativeBayes focused primarily on metabolomic covariates.
DMLMbvs included multiple dietary covariates. The three DM-
based models also included 16S rRNA count data as the features;
whereas, IntegrativeBayes applied their model to MSS count
data. IntegrativeBayes is the only model presented here that
accounts for zero inflation in the count data, estimates the effect
size for the discriminating features, and identifies differentially
abundant features while simultaneously quantifying feature-
covariate associations. Because IntegrativeBayes accounts for
zero inflation, it is a well-suited model for MSS data. However,
the ZINB is not the only zero-inflated model available for
integrative analysis. A comprehensive review of other practical
zero-inflated models is provided by [60, 74, 75]. All four models
here account for overdispersion, compositionality, and high
dimensionality of the data. DMLMbvs was the only model
that had a continuous phenotype (body mass index or BMI);
however, the authors noted that the model can be adjusted to
include a categorical response. DMLMbvs uses the estimated
compositional data to simultaneously identify feature-covariate
associations and predict a continuous phenotypic outcome.
The Bayesian approach is used by three of the four methods
because it has several advantages over frequentist methods.
Bayesian models can incorporate prior knowledge, quantify the
uncertainty of model parameters, offer efficient model fitting via
the MCMC algorithm, and calculate parsimonious inferential
summaries such as PPI in variable selection.

4. NETWORK ANALYSIS

Microbial ecological interactions affect microbiome function
and host health via the formation of complex communities
with various symbiotic relationships where microbes coexist.
Findings of a study implicated pH as a main factor for the
networking of microbial communities in arctic soil [76]. The
soil study found a two-cluster microbial network where one
cluster was correlated to pH and the second was uncorrelated
to pH. The goal of network analysis is to construct microbiome
networks that characterize microbial ecological associations (i.e.,
taxa-taxa dependencies), which may help discover fundamental
properties and mechanisms of microbial ecosystems [73].
Graphical models consist of nodes and edges, which are
used to visualize the estimated microbial network. Each node
corresponds to a taxon and an existing edge represents a
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direct association between any two nodes. Current statistical
methods for network analysis estimate the correlation or partial
correlation structure of the normalized count data to construct
a network of nodes and edges [73]. Correlation-based methods
include SparCC (Sparse Correlations for Compositional data)
[69], CCLasso (Correlation inference for Compositional data
through Lasso) [70], and REBACCA (Regularized Estimation of
the BAsis Covariance based on Compositional dAta) [71]. Partial
correlation-based methods include SpiecEasi (SParse InversE
Covariance Estimation for Ecological Association Inference)
[72] and HARMONIES (Hybrid Approach foR MicrobiOme
Network Inferences via Exploiting Sparsity) [73]. SPRING (Semi-
Parametric Rank-based approach for INference in Graphical
model) [7] employs both correlation and partial correlation
methods under a semi-parametric setting. Semi-parametric rank
(SPR) correlation can be used as an alternative to correlation
measures such as Pearson or Spearman, can be extended to
partial correlation, and can account for zero inflation [7]. Table 8
provides a summary of the methods discussed in this section and
Table 9 summarizes the implementation of these methods in R.

The main biological motivation of each of the above methods
is the exigency to estimate correlation or partial correlation
networks using normalized count data to make inferences about
microbial interactions. Since the dawn of high-throughput next-
generation sequencing technology, we have had the quantitative
ability to characterize microbial communities [71] and learn
how they associate with environmental conditions such as host
health, metabolism, etc. [72]. The number of spurious taxa-
taxa associations tend to be about three times the number of
true associations and miss about 60% of the true associations
when using conventional methods such as Pearson or Spearman
correlation on compositional data [69]. Small sample sizes are
common in microbiome studies, which can result in lower power
for network inference [72]. Many taxa-taxa associations have
not been verified in the literature and so benchmarking tools to
assess model quality are needed [7, 73]. Statistical motivations
are no different here than in previous sections. Microbiome data
tend to be zero-inflated [7]. Further, microbiome data have high
dimensionality, overdispersion, and sample heterogeneity [73].
Thus, network analysis models that consider the characteristics
of microbiome data are most appropriate.

One of the main issues of microbiome data is the unit-sum
constraint of compositional data. As stated earlier, Aitchison’s
log-ratios are a useful normalization technique for compositional
data. Methods such as SparCC, CCLasso, and REBACCA
apply ALR normalization. SpieceEasi and SPRING apply CLR
normalization. Unlike ALR, the CLR-transformed compositions
are p-dimensional since no feature is used as a baseline. Both
ALR and CRL map compositions from S to R. However,
ALR can be more advantageous because these ratios are
equivalent to the ratio of absolute abundances and have the
subcompositional coherence property where the ratio of two
features’ compositions is independent of other features [69].
HARMONIES applies model-based normalization where the
count data are modeled directly via the parameters of the
ZINB, which account for zero inflation, sample heterogeneity,
overdispersion, and high dimensionality.

Themethods discussed in this section use different approaches
to estimate networks. Without loss of generality, we write

ρjj′ ∼ L(·) (9)

whereL(·) is some process that estimates the covariance structure
of the data, which is expressed as 6̃, to infer the correlation
ρjj′ between features j and j′. Depending on the transformation,
the process estimates either a log-basis covariance (e.g., models
that use ALR or CLR transformations) or model-basis covariance
(e.g., probabilistic models such as ZINB). The various candidates
for L(·) used by each method are discussed below.

SparCC makes an iterative estimation of the correlation
matrix based on the Aitchison log-ratio transformation of relative
abundances of any two features with the assumption of sparsity,
which can be loosely summarized in two steps. First, SparCC
estimates the correlation matrix of the log-ratio transformation.
Secondly through iteration, the pair with the greatest correlation
is removed and the correlations are estimated again until certain
criteria are met. The log transformation contains information of
the true absolute abundances, or basis abundances, which means
that the ratio of the relative abundances of any two features is
equal to the ratio of their two basis abundances. Further, the ratio
of any two relative abundances is independent of any ratio of
other features. The relative abundances are estimated under a
Bayesian framework where they are treated as being not fixed.
While SparCC has advantages such as good overall performance,
robustness to sparsity, and does not depend on any underlying
distributions, it can be computationally intense and so it is not
the most efficient model. Further, SparCC does not account for
the influence of errors in the estimating equations that are used
to estimate the correlation matrix (e.g., some of the estimated
correlations can fall outside of [−1, 1]).

CCLasso accounts for the influence of error through the use
of a loss function and for sparsity with an ℓ1 penalty term
under a least squares framework to infer correlation structure.
Similar to SparCC, CCLasso considers the compositional nature
of microbiome data in estimating the correlation matrix with
consistent accuracy. CCLasso has several advantages over
SparCC. First, it produces a more accurate and positive definite
correlation matrix. Second, all elements of the correlation
matrix are contained in [−1, 1] . Third, CCLasso shrinks small
correlations to zero, unlike SparCC, especially in the case of a
shuffled microbiome dataset where correlations are actually zero.

REBACCA was published around the same time as CCLasso
and so its performance was compared to only SparCC. While
SparCC estimates the correlation matrix through an iterative
procedure, REBACCA estimates the pairwise correlations by
solving a linear system with deficient rank that is equivalent to
the log-ratio transformations using ℓ1-norm shrinkage to induce
sparsity in the network. The advantages of REBACCA include a
more efficient algorithm, higher power, lower false positive rate
(FPR), and more consistency than SparCC. Finally, it is worth
noting that SparCC, CCLasso, and REBACCA are based on linear
methods of correlation.

Partial correlation is a measure of association of two random
variables after removing the effects of confounding variables.
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TABLE 8 | Summary of methods for network analysis in microbiome studies.

Method Network type Method Normalization References Application

SparCC Correlation Iterative estimation of correlation ALR [69] GitHub

CCLasso Correlation Least squares with l1 penalty ALR [70] GitHub

REBACCA Correlation Fast l1-norm shrinkage ALR [71] Online

SpiecEasi Partial correlation Gaussian graphical model CLR [72] GitHub

SPRING Partial correlation, SPR correlation Truncated Gaussian copula model Modified CLR [7] CRAN

HARMONIES Partial correlation Gaussian graphical model DPP [73] GitHub

TABLE 9 | Implementation of methods for network analysis in microbiome studies.

Method Implementation Updated

SparCC https://www.rdocumentation.org/packages/SpiecEasi/versions/1.0.7/topics/sparcc 2012

CCLasso https://github.com/huayingfang/CCLasso 2016

REBECCA https://faculty.wcas.northwestern.edu/hji403/REBACCA.htm 2015

SpiecEasi https://github.com/zdk123/SpiecEasi 2021

SPRING https://rdrr.io/github/GraceYoon/SPRING/man/SPRING.html 2020

HARMONIES https://github.com/shuangj00/HARMONIES 2020

Controlling for confounding variables helps to reduce or
eliminate spurious results. Further, partial correlation can be used
to test for conditional independence of two random variables
U and V given another random variable W [77]. Two features
conditioned on abundances of all other features are conditionally
independent if one of the two features provides no information
about the abundance of the other feature. This implies that there
is no direct association between the two features. The methods
below estimate the partial correlation between features using
several different approaches.

SPIEC-EASI employs two types of commonly used inference
methods that utilize conditional independence for inferring
sparse graphical models for CLR-transformed microbiome data.
In short, covariance estimation and neighborhood selection
are the two employed inference methods. Network sparsity
is inferred through the Stability Approach to Regularization
Selection (StARS), which uses subsampling to estimate a sparse
network using minimal regularization [78]. For the first method,
the graphical network is inferred through the estimation of the
sparse inverse covariance matrix, which is regularized using
graphical lasso (or glasso) so that indirect associations shrink to
zero and only direct associations are selected. Glasso employs a
penalized maximum likelihood approach with a global optimal
solution for the reconstruction of the entire network. A Gaussian
graphical framework is employed specifically because the inverse
covariance matrix (or precision matrix) has the nice property of
revealing conditionally dependent variables in the off-diagonal
entries. For the second method, neighborhood selection is based
on the known framework of Meinshausen and Bühlmann (MB
method) to estimate local conditional independence one node at
a time via Lasso [79]. Both inferential methods are advantageous
because their formulations are convex optimizations, are useful
for high-dimensional settings, can incorporate prior information
regarding network topology, and outperformed SparCC overall.

SPRING is based on the use of novel SPR estimators of
correlation and partial correlation for relative abundance data
with a modified CLR transformation that can handle zero
inflation. The modified transformation is rank-preserving and
does not add a pseudo-value to zero counts. The semi-parametric
model combines a truncated Gaussian copula graphical model
with rank-based partial correlation to construct a sparse network
using MB for neighborhood selection and StARS for model
selection. SPRING outperformed existing methods such as
SparCC for correlation inference and SPIEC-EASI for partial
correlation inference. Also, the SPRING authors showed that
Pearson correlation is not useful for identifying sparse partial
correlations amongst features in microbiome data.

HARMONIES offers a competitive hybrid approach that
includes a Bayesian zero-inflated negative binomial model with
a Dirichlet process prior (ZINB-DPP). Further, glasso is applied
to induce sparsity in the Gaussian graphical model that is
regularized via StARS. The count data are normalized using
a model-based approach via the DPP on the size factor si.
ZINB-DPP accounts for overdispersion, zero inflation, sample
heterogeneity, and high dimensionality making it a suitable
model for estimating the true underlying abundances via the
normalized abundances. Next, the posterior means of the
normalized abundances on the log scale are used to fit a Gaussian
graphical model to estimate the precision matrix for inferring the
network with robust edge selection. HARMONIES demonstrated
superior performance over existing methodologies including
SPIEC-EASI and CCLasso in almost every scenario because it
is designed to handle multiple challenges of microbiome data.
Also, HARMONIES ensures proper biological interpretation of
detected taxa-taxa associations by suggesting that all associated
nodes are taxa of the same taxonomic level.

As an added bonus, SPIEC-EASI, SPRING, andHARMONIES
each have their own novel synthetic data-generating tools
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that incorporate various network topologies to be used as a
benchmark for assessing model quality. Synthetic data mimics
real microbiome data and is currently a well-adapted way
of assessing model quality due to the lack of a validated
gold-standard network. MB-GAN (Microbiome Simulation via
Generative Adversarial Network) [80] is another data synthesis
tool useful for assessing model quality. MB-GAN addresses the
challenges of simulating realistic microbiome data by learning
from the given count data. The simulated count data are
indistinguishable from the observed count data due to their
similar properties such as sparsity, diversity, and taxa-taxa
correlations. Other interesting features of MB-GAN include the
use of real data as input without requiring model assumptions
and efficient convergence.

Co-occurrence research within microbiomes has often
focused on taxa-taxa associations. This is especially true
in studies using amplicon sequencing techniques, such as
16S rRNA sequencing. However, recent work has begun to
focus on reconstructing functional associations in metagenomic
data [17, 81]. Genome-scale metabolic models (GEM), also
known as Stoichiometric Metabolic Network models (SMN),
computationally reconstruct and describe these associations [82].
The detailed information regarding the workflow, modeling,
simulation, computational tools, and applications of GEMs
can be found in [82–84]. These analyses used either the
inferred or directly observed genetic content within the sampled
metagenome to explore the microbial metabolic landscape. In
addition, microbiome functional profiling of metagenomic data
provides insight into what the microbial community has the
potential to do at a molecular level [85]. With this in mind,
research efforts have endeavored to model the community-
scale metabolic potential encoded within metagenomes [83,
84]. These models not only need to consider the genetic
content of the metagenome, but also must attempt to model
fundamental arrangements of the microbial community, such
as compartmentalization and availability of metabolites or
nutrients, static or dynamic time constraints, and environmental
sharing [84]. For example, Roume et al. [86] used a comparative
multi-omic approach to reconstruct community-level metabolic
networks within the microbial community present in wastewater.
This type of analysis could aggregate the whole genetic content
of the metagenome into one large community-scale organism.
Taken together, metabolic modeling of functional metagenomic
data allows for a closer mechanistic scrutinization of microbial
co-occurrence within communities.

5. CONCLUSION AND OUTLOOK

In summary, multiple statistical methods for three major areas
of microbiome research are available. Differential abundance
analysis seeks to identify features that are discriminatory between
phenotype groups. Since multiple diseases develop as a result of
microbial dysbiosis, the results of differential abundance analysis
may help find new and better ways to treat disease. Integrative
analysis quantifies associations between taxa and covariates that
potentially create an environment that enables the host to be
more prone to disease. Understanding these associations between
the microbiome and its environment can provide new insight to

the cause, diagnosis and treatment of disease. Network analysis
detects and quantifies taxa-taxa associations. Microbes commune
with one another, which can modulate microbiome functions
and host health. The methods discussed in this paper have
been developed over the last decade due to the demand for
statistical models that can handle the challenging characteristics
of count data generated by high-throughput next-generation
sequencing technology. At the very least, those challenges
include zero inflation, overdispersion, sample heterogeneity,
high dimensionality, correlation or partial correlation structure,
technological variability, biological variability, normalization
technique, and the compositional unit-sum constraint.

The available methods for analyzing microbiome data have
greatly advanced metagenomic research. Great efforts have
been made to account for the challenges of microbiome count
data, to determine the normalization technique best suited for
each model, and to assess model performance via available
reference databases or synthetic data-generating tools. While
some models do not account for the compositional nature
of the data, it is suggested that this characteristic ought to
be taken into consideration because the unit-sum constraint
invalidates the assumption of independence of the data [87].
Future considerations should include methods for longitudinal
studies, causal mediation analysis, and stochastic blocking, which
are currently limited in the microbiome literature compared to
other methods. Causal mediation analysis estimates the direct
and indirect effects of predictor and mediating variables on
the response variable [88]. An indirect effect is a relationship
where there exists a pathway from a predictor variable to
the response variable through a mediating variable; whereas,
a direct effect is the relationship between only the predictor
and response variables. For example, causal mediation could
separate the effect of excessive alcohol consumption (predictor)
on blood pressure (response) through a pathway such as BMI
(mediator) [89]. The stochastic block model is an extension
of network analysis where unsupervised learning is used to
cluster the nodes of a network based on similar connectivity
patterns [90, 91]. Unsupervised clustering methods can infer the
number of clusters (or communities) that make up an entire
network and the structure of taxa-taxa interactions within each
community, which would then require scientific interpretation.
Lastly, genomic reference databases need to be improved and
updated because they are inadequate for the current needs of
metagenomic research [92].

Microbiome research will continue to expand and
present many complex statistical, scientific, and computing
challenges. Future research must address these challenges
in a collaborative effort of experts in statistics, science,
and technology while building on the ideas from
previous peer-reviewed research to offer reliable and
interpretable solutions to the many important quests of
microbiome research.
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