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Mathematical analysis of cholera
typhoid co-infection
transmission dynamics

Lunga Matsebula* and Farai Nyabadza

Department of Mathematics and Applied Mathematics, University of Johannesburg, Johannesburg,

South Africa

Typhoid fever and cholera remain a huge public health problem on the

African continent due to deteriorating infrastructure and declining funding for

infrastructure development. The diseases are both caused by bacteria, and

they are associated with poor hygiene and waste disposal systems. In this

paper, we consider a nonlinear system of ordinary di�erential equations for the

co-infection of typhoid and cholera in a homogeneously mixing population.

Themodel’s steady states are determined and analyzed in terms of themodel’s

reproduction number. Impact analysis—how the diseases impact on each

other—is carried out. Numerical simulations and sensitivity analysis are also

given. The results show that the control of the diseases should be carried out

in tandem for the greatest impact of disease control. The results have important

implications in the management of the two diseases.
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1. Introduction

Cholera, an acute gastro-intestinal water-borne infection, is caused by the bacterium

Vibrio Cholerae, V. cholerae O1 or O139. Some of the symptoms are vomiting and

diarrhea. If treatment is delayed, it can lead to severe dehydration and death within a

few hours. The disease has two modes of transmission: direct and indirect transmission.

Direct transmission (human-human) is very uncommon, whilst indirect transmission

(environment-human), which occurs through the ingestion of contaminated food or

water [1], is more frequent. Known estimates of the incubation period for the cholera

disease is 1.4 days [2]. On the other hand, the Salmonella Typhi bacteria is responsible

for causing the life threatening typhoid fever disease. Cholera and typhoid fever have

the same transmission modes. The recticuloendothelical system, the intestinal lymphoid,

and the gall bladder are severely damaged by the typhoid fever disease. Once a susceptible

individuals is infected by the disease, roughly 19 days are required for the disease to

incubate within the host [3].

Mathematical models have been used for the past decades to give insights into the

transmission dynamics of co-infections within the human population. Akinyi et al.

[4], showed that whenever the basic reproduction number is lowered to below one,

then the malaria and the pneumonia cases will be reduced in a model of malaria-

pneumonia coinfection. Onyinge et al. [5] modeled the co-dynamics of pneumonia
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and HIV, and they showed that the model was mathematically

and epidemiologically sound; Mushayabasa et al. [6] modeled

malaria-typhoid co-infection and demonstrated that a typhoid

outbreak will inevitably lead to a spike in the malaria cases.

A number of mathematical models on typhoid have been

proposed by a number of researchers.Mushayabasa [7], modeled

how vaccines can help mitigate the spread of typhoid in Ghana.

Pitzer et al. [8], extended the work in Mushayabasa [7] by

applying the model to South Asia. Khan et al. [9], studied the

typhoid disease with a saturated incidence rate.

To the best of our knowledge, the co-dynamics of typhoid

and cholera have not been investigated in the literature. A recent

outbreak of these two infections in Zimbabwe prompted this

theoretical inquiry into how these infections interact. Due to

the complicated nature of the co-infection model, we begin

our analysis by studying the underlying sub-models; namely,

the cholera only and the typhoid only sub-models. For each of

the models, a number of pertinent questions are investigated.

The questions explored include: Which factors in the models

are key to decreasing the prevalence of each disease and

the co-infection? Within the population, are the infections

in competition with each other, or are they symbiotic? The

implications of the results to the public health are discussed.

The paper is arranged as follows; the development of the

model and the properties of the basic reproduction number are

established in Section 2. Section 3 contains the stability analysis

of the model at the fixed points. Numerical simulations and

parameter estimations are done in section 4. Section 5 concludes

the articles.

2. Methodology

2.1. Model development

Our typhoid cholera co-infection model partitions the

human population N(t), at time t, into a susceptible class S(t),

a cholera infection class Ic(t), a typhoid infection class It(t), a

coinfection class Ict(t), a cholera recovery class Rc(t), a typhoid

recovery class Rc(t), and a coinfection recovery class Rct(t).

Thus,

N(t) =S(t)+ Ic(t)+ Rc(t)+ It(t)+ Rt(t)+ Ict(t)+ Rct(t).

The bacterial concentration of Salmonella Typhi, Bt(t), and

Vibrio Cholerae, Bc(t), in the environment are incorporated into

the model as well. The formulation of this model is an extension

to the work carried out by Matsebula et al. [10].

Since the incubation periods of the two infections are

different, we assume that dually infected individuals can only

transmit either cholera or typhoid but not both infections

simultaneously. Transmission of cholera to susceptible

individuals occurs in one of two routes—the direct transmission

route (human-to-human) and the indirect transmission route

(envirnment-to-human). The rates of the transmission routes,

respectively, are given by

λc1 =
βc1 (Ic + ηcIct)

N
, λc2 =

βc2Bc

Bc + κc
.

The parameter βc1 denotes the person-to-person cholera

transmission. The effective contact rate for cholera multiplied

by the probability of cholera transmission per contact gives

the person to person cholera transmission. The modification

parameter ηc, accounts for the relative infectiousness of

individuals in class Ic relative to individuals in class Ict . We

assume that ηc ∈ (0, 1). This assumption is motivated by

the fewer numbers of co-infected individuals as compared to

those infected with cholera only. The parameter βc2 denotes

the environment-to-humans per capita contact rate and the

Vibrio Cholerae in the contaminated environment, whilst the

parameter κc denotes the half saturation constant of the

Vibrio Cholerae. The half saturation constant is the bacterial

concentration that is required to support half of the maximum

rate, βc2 .

Similarly, the transmission of typhoid to susceptible

individuals occurs in one of two routes—the direct transmission

route (human-to-human) and the indirect transmission route

(envirnment-to-human). The rates of the transmission routes,

respectively, are given by

λt1 =
βt1 (It + ηtIct)

N
, λt2 =

βt2Bt

Bt + κt
.

The parameter βt1 denotes the effective person-to-person

typhoid transmission rate. The effective contact rate for typhoid

multiplied by the probability of typhoid transmission per

contact gives the person to person typhoid transmission.

The modification parameter ηt , accounts for the relative

infectiousness of individuals in class It relative to individuals

in class Ict . We also assume that ηt ∈ (0, 1) following the

assumptions given in the cholera infection dynamics. The per

capita contact rate between the susceptibles and Salmonela typhi

is represented by βt2 , and the half saturation constant for λc2 is

κt .

Transmission of cholera to typhoid infected individuals

occurs in one of two routes—the direct transmission route

(human-to-human) and the indirect transmission route

(environment-to-human). The rates of the transmission routes,

respectively, are given by

λc3 =
βc3 (Ic + ηcIct)

N
, λc4 =

βc4Bc

Bc + κc
.

The parameter βc3 denotes the effective person-to-person

cholera transmission rate of individuals in class It . The

parameter βc4 denotes the environment-to-humans per capita

contact rate for individuals in class It and the Vibrio Cholerae

in the contaminated environment. Transmission of typhoid to
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FIGURE 1

The cholera typhoid co-infection compartmental model. For

the concise presentation of our model flow diagram, we make

use of the following expressions:

χ1 = gcBc

(

1− Bc
kc

)

+ αcIc + θcIct, χ2 = gtBt

(

1− Bt
kt

)

+ αtIt +

θtIct, λc = λc1 + λc2 , λt = λt1 + λt2 , λ1 = λt3 + λt4 , λ2 = λc3 + λc4 .

cholera infected individuals occurs in one of two routes—the

direct transmission route (human-to-human) and the indirect

transmission route (environment-to-human). The rates of the

transmission routes, respectively, are given by

λt3 =
βt3 (It + ηtIct)

N
, λt4 =

βt4Bt

Bt + κt
.

The parameter βt3 denotes the person-to-person typhoid

transmission rate of individuals in class Ic. The parameter βt4

denotes the environment-to-humans per capita contact rate

for individuals in class Ic and the Salmonella Typhi in the

contaminated environment.

Infected individuals in classes Ic, It and Ict experience disease

related death at rates given, respectively by δc, δt and δct .

Individuals in the infectious states Ic and It , respectively, excrete

Vibrio Cholerae bacteria and Salmonella Typhi bacteria into the

environment at rates αc and αt . Coinfected individuals shed

Vibrio Cholerae and Salmonella Typhi into the environments

at rates θc and θt , respectively. Infection is assume to confer

temporary immunity. The cholera and typhoid immunity wanes

at rates ρc, ρt and ρct .

The generation rate of Vibrio Cholerae is gcBc

(

1− Bc
kc

)

, and

its growth is enhanced by cholera infected individuals and the

coinfected individuals that are shedding into the environment.

The generation rate of Salmonella Typhi is gtBt

(

1− Bt
kt

)

and its growth is enhanced by typhoid infected individuals

and the coinfected individuals that are shedding into the

environment. We assume that the Vibrio Cholerae and the

Salmonella Typhi bacteria in the environment are respectively

removed by interventions such as improved sanitation and

treatment of contaminated environments at ratesµc andµt . The

parameter 3 represents the recruitment into the susceptibles,

while the parameter µ represents the natural death rate. It is

assumes that individuals mix homogeneously and that they are

indistinguishable in each of the classes. The model diagram is

shown in Figure 1.

The dynamical system associated with the schematic

diagram in Figure 1 is;

dS

dt
=3 − (λc1 + λc2 + λt1 + λt2 )S− µS+ ρcRc + ρtRt

+ρctRct ,

dIc

dt
=(λc1 + λc2 )S− (λt3 + λt4 )Ic − (µ + δc + ǫc)Ic,

dIt

dt
=(λt1 + λt2 )S− (λc3 + λc4 )It − (µ + δt + ǫt)It ,

dIct

dt
=(λt3 + λt4 )Ic + (λc3 + λc4 )It − (µ + δct + ǫct)Ict ,

dRc

dt
=ǫcIc − (µ + ρc)Rc, (1)

dRt

dt
=ǫtIt − (µ + ρt)Rt ,

dRct

dt
=ǫctIct − (µ + ρct)Rct ,

dBc

dt
=gcBc

(

1−
Bc

kc

)

+ αcIc + θcIct − µcBc,

dBt

dt
=gtBt

(

1−
Bt

kt

)

+ αtIt + θtIct − µtBt ,

with initial conditions

S(0) =S0 > 0, Bc(0) = Bc0 ≥ 0, Bt(0) = Bt0 ≥ 0,

Ic(0) =Ic0 ≥ 0, It(0) = It0 ≥ 0, Ict(0) = Ict0 ≥ 0,

Rc(0) =Rc0 ≥ 0, Rt(0) = Rt0 ≥ 0,Rct(0) = Rct0 ≥ 0.

2.2. Cholera only model

We define the cholera only model as the model obtained

from setting all the typhoid classes and its associated parameters

to zero. We thus have the following

dS

dt
= 3 − (λ̃c1 + λc2 )S− µS+ ρcRc,

dIc

dt
= (λ̃c1 + λc2 )S− qcIc,

dRc

dt
= ǫcIc − (µ + ρc)Rc, (2)

dBc

dt
= gcBc

(

1−
Bc

kc

)

+ αcIc − µcBc,

where

λ̃c1 =
βc1 Ic

Nc
, qc = µ + δc + ǫc, Nc = S+ Ic + Rc,
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with initial conditions

S(0) =S0 > 0, Bc(0) = Bc0 ≥ 0, Ic(0) = Ic0 ≥ 0,

Rc(0) =Rc0 ≥ 0.

2.2.1. Boundedness and non-negative
trajectories

We argue that model (Equation 2) yields bounded-

non negative-trajectories in this section provided the initial

conditions are non-negative.

Theorem 1. All solutions of the cholera only sub-model

(Equation 2) are non-negative if all the initial conditions are

non-negative.

Proof. Define t1 = sup
{

t > 0|S(τ1) > 0, Ic(τ1) ≥ 0,

Rc(τ1) ≥ 0,Bc(τ1) ≥ 0,∀τ1 ∈ [0, t]
}

. It follows t1 > 0

since

S0 > 0, Ic0 ≥ 0,Rc0 ≥ 0,Bc0 ≥ 0.

Assume t1 < ∞, then S(t1) > 0, Ic(t1) = 0,Rc(t1) = 0,Bc(t1) =

0. Applying variation of constants to

dS

dt
= 3 − (λ̃c1 + λc2 )S− µS+ ρcRc,

yields

S(t1) =

∫ t1

0
f (r) exp

(

−

∫ t1

r
P(x)dx

)

dr

+S0 exp

(

−

∫ t1

0
P(x)dx

)

,

where P(x) = (λ̃c1 + λc2 +µ) and f (r) = 3+ ρcRc. Clearly,

S(t1) > 0

Since f (r) > 0 and P(x) > 0 when x, r ∈ [0, t1]. Similarly,

Ic(t1) > 0 and Rc(t1) > 0. This produces a contradiction, hence

t1 = ∞.

Theorem 2. All solutions of the cholera only sub-model

(Equation 2) are bounded within � whenever gc ≥ µc.

Proof. The time derivative of the population for the cholera

model (Equation 2) is bounded above by

dNc

dt
= 3 − µNc − δcIc ≤ 3 − µNc,

Upper bounds for the human population,Nc(t), are obtained

by integrating the separable differential inequality as follows,

Nc ≤
3 −M exp(−µt)

µ
≤

3

µ
.

By extension, 3/µ is also the upper bound for each of the

human classes. Whereas, owing to Ic ≤ Nc ≤ 3/µ, an upper

bound for the bacterial classes can be obtained as follows,

dBc

dt
= gcBc

(

1−
Bc

kc

)

+ αcIc − µcBc ≤ gcBc

(

1−
Bc

kc

)

+ αc
3

µ
− µcBc. (3)

From inequality (3), if

Bc ≥ αc
3

µ
, (4)

Where αc
3

µ
is the maximum shedding rate from the cholera

infected individuals, then

dBc

dt
≤ (gc − µc)Bc −

gc
kc
B2c + Bc

= (gc − µc + 1)Bc

(

1−
gcBc

kc(gc − µc + 1)

)

. (5)

The constant

kc(gc − µc + 1)

gc
, (6)

is the upper bound for the differential inequality (Equation 5)

since (Equation 5) is the logistic growth model with carrying

capacity (Equation 6). For some t ≥ 0, (αc + θc)3/µ is an

upper bound for Bc whenever (Equation 4) is false, whilst Bc is

bounded above by Equation (6) for the rest of the time points

in the domain of Bc if (Equation 4) is true. Thus, in both cases,

Bc ≤ max

{

kc(gc − µc + 1)

gc
,αc

3

µ

}

.

Within the feasible region,

�c =

{

(S, Ic,Rc,Bc)

∣

∣

∣

∣

0 ≤ Nc ≤
3

µ

]

,

Bc ∈

[

0,max

{

kc(gc − µc + 1)

gc
,αc

3

µ

}]}

,

We have summarized the results on the boundedness and

positivity of the solutions of the cholera only sub-model 2.

2.2.2. The stability of the disease free
equilibrium and the reproduction number,RC

The disease free equilibria of system (Equation 2) is given by

x0 = (S, Ic,Rc,Bc) =

(

3

µ
, 0, 0, 0

)

,

x1 = (S, Ic,Rc,Bc) = (c1, 0, 0, c2),
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where c1 =
3(gc − µc)kc + gcκc

(µ + βc2 )(gc − µc)kc + µκcgc
and c2 =

gc − µc

gc
kc. The equilibrium x1 > 0 if gc > µc. The Jacobian

of dynamical system (Equation 2) is given by

J(x0) =













−µ −βc1 ρc −
3βc2
µκc

0 βc1 − qc 0
3βc2
µκc

0 ǫ −(µ + ρc) 0

0 αc 0 gc − µc













.

The dynamical system (Equation 2) is locally asymptotically

stable if all four of its eigenvalues have negative real parts. Two

of the eigenvalues for the Jacobian, J, are λ1 = −µ and λ2 =

−(µ + ρc). The other two eigenvalues for J are the eigenvalues

from the sub-matrix

J̄ =

(

βc1 − qc
3βc2
µκc

αc gc − µc

)

.

The characteristic equation for matrix J̄ is λ2 + ν̄1λ + ν̄2,

where

ν̄1 =−
(

(gc − µc)+ (βc1 − qc)
)

,

ν̄2 =(βc1 − qc)(gc − µc)

(

1−
αcβc23

(βc1 − qc)(gc − µc)κcµ

)

=(βc1 − qc)(gc − µc) (1−RC) ,

and

RC =
αcβc23

κcµµcqc(1−Rh)(1−Rb)
, Rh =

βc1

qc
Rb =

gc

µc
.

The constants Rb and Rh are the bacterial regeneration

threshold and the human-to-human sub reproduction number,

respectively. The constantRC is the so-called basic reproduction

number for the system (Equation 2). Clearly, Rh,Rb < 1 or

Rh,Rb > 1 if and only ifRC > 0.

It follows from the Routh Hurwitz criterion that the two

eigenvalues of J̄ have negative real parts if ν̄1, ν̄2 > 0. It is easy

to see that ν̄1, ν̄2 > 0 ifRh < 1,Rh < 1 andRC < 1. Hence, a

positive basic reproduction number for system (Equation 2) that

is less than unity implies that the system is locally asymptotically

stable at the disease free equilibrium.

2.2.3. Endemic equilibrium

Setting the derivatives of the classes to zero gives the endemic

equilibrium for the cholera only sub-model (Equation 2). Let

λ = λ̃c1 + λc2 .

0 = 3 − (λ∗ + µ)S∗ + ρcR
∗
c , (7)

0 = λ∗S∗ − qcI
∗
c , (8)

0 = ǫcI
∗
c − (µ + ρc)R

∗
c , (9)

0 = gcB
∗
c

(

1−
B∗c
kc

)

+ αcI
∗
c − µcB

∗
c . (10)

From Equation (8),

S∗ =
qc

λ∗
I∗c .

From Equation (7),

R∗c =
1

ρc

[

(

λ∗ + µ
)

qcI
∗
c

λ∗
− 3

]

.

Consider (Equation 9),

ǫI∗c −
(µ + ρc)

ρc

[

(

λ∗ + µ
)

qcI
∗
c

λ∗
− 3

]

= 0,

therefore

I∗c =
λ∗3 (µ + ρc)

qc (λ∗ + µ) (µ + ρc) − ǫcρcλ∗
.

Given that

λ∗ =
βc1 I

∗
c

S+ Ic + Rc
+

βc2Bc

Bc + κc
.

Using (Equation 10), we have a quadratic equation in Bc of

the form

ν̄2B
2
c + ν1Bc + ν0 = 0,

where

ν2 = gc
[

qc
(

λ∗ + µ
)

(µ + ρc) − ǫcρcλ
∗
]

,

ν1 = −µcκc(Rb − 1)ν2, ν0 = −λ∗3κcαc (µ + ρc) ,

with

Rb =
gc

µc
.

Clearly, ν0 < 0, ν1 < 0 ifRb > 1. Since

Bc =
−ν1 ±

√

ν21 − 4ν2ν0

2ν2
, (11)

it follows that if ν2 < 0, Rb > 1, then it follows from Descartes’

rule of signs that Bc has no positive roots, and if ν2 > 0, Rb > 1,

then Bc has only one positive root. We shall call the positive root

B+c .

Let

B =
B+c

B+c + κc
.

Then

λ∗c2 =
βc2B

+
c

B+c + κc
= βc2B.
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We have an expression for λ∗ such that

a2λ
∗2 + a1λ

∗ + a0 = 0 (12)

where,

a2 =µ + ǫc + ρc > 0, a1 = qc (µ + ρc) − (βc1 (µ + ρc)

+ Bβc2 (µ + ǫc + ρc)),

a0 =− Bqcβc2 (µ + ρc) < 0.

Since

λ =
−a1 ±

√

a21 − 4a2a0

2a2
,

it follows that if a1 > 0, then the polynomial (Equation 12) has a

positive root, and if a1 < 0, then the polynomial (Equation 12)

has a positive root. So the polynomial (Equation 12) will always

have one positive root.

So system (Equation 2) has a unique endemic equilibrium if

Rb > 1.

Remark 1.Due to the symmetric structure of the cholera only

and typhoid only sub-models, the typhoid only sub-model has

similar structural results to those obtained for the cholera only

sub-model. To avoid repetition, we have not shown the analysis

of the typhoid only sub-model.

2.3. Cholera-typhoid co-infection model

We study the full co-infection model (Equation 1) in

this section.

2.3.1. Non-negative trajectories and
boundedness

We prove in this subsection that model (Equation 1) has

non-negative trajectories.

Theorem 3. All solutions of the co-infection model (Equation 1)

are non-negative if all the initial conditions are non-negative.

Proof. Define t1 = sup{t > 0|S(τ1) > 0, Ic(τ1) ≥ 0, It(τ1) ≥

0, Ict(τ1) ≥ 0,Rc(τ1) ≥ 0,Rt(τ1) ≥ 0,Rct(τ1) ≥ 0,

Bc(τ1) ≥ 0,Bt(τ1) ≥ 0,∀τ1 ∈ [0, t]}. It follows that t1 > 0 since

S0 > 0, Ic0 ≥ 0, It0 ≥ 0, Ict0 ≥ 0,Rc0 ≥ 0,

Rt0 ≥ 0,Rt0 ≥ 0,Bc0 ≥ 0,Bt0 ≥ 0.

Assume t1 < ∞, then S(t1) > 0, Ic(t1) = 0, It(t1) = 0, Ict(t1) =

0,Rc(t1) = 0,Rt(t1) = 0,Rct(t1) = 0,

Bc(t1) = 0,Bt(t1) = 0. Applying variation of constants to

dS

dt
= 3− (λc1 +λc2 +λt1 +λt2 )S−µS+ρcRc+ρtRt +ρctRct

yields

S(t1) =

∫ t1

0
f (r) exp

(

−

∫ t1

r
P(x)dx

)

dr

+S0 exp

(

−

∫ t1

0
P(x)dx

)

,

Where P(x) = λc1 +λc2 +λt1 +λt2 +µ and f (r) = 3+ρcRc+

ρtRt + ρctRct . Clearly,

S(t1) > 0

since f (r) > 0 and P(x) > 0 when x, r ∈ [0, t1]. Similarly,

Ic(t1) > 0, It(t1) > 0, Ict(t1) > 0,Rt(t1) > 0 and Rc(t1) > 0.

This produces a contradiction, hence t1 = ∞.

Theorem 4. All solutions of the co-infection model (Equation 1)

are bounded within � whenever gc ≥ µc and gt ≥ µt .

Proof. Since δct(Ic + Ict) ≥ 0, it follows that the upper bound

for the time derivative of the total human population, N(t), is

dN

dt
= 3 − µN − δct(Ic + Ict) ≤ 3 − µN.

Using separation of variables, we obtain the following upper

bound for the human population,

N ≤
3 −M exp(−µt)

µ
≤

3

µ
.

This upper bound for the population implies that each of the

classes are also bounded above by the same constant 3/µ. Since

Ic, Ict ≤ 3/µ, it follows that the upper bound for the bacterial

concentration of Vibros Cholerae is bounded above by

dBc

dt
=gcBc

(

1−
Bc

kc

)

+ αcIc + θcIct − µcBc

≤gcBc

(

1−
Bc

kc

)

+ (αc + θc)
3

µ
− µcBc. (13)

From inequality (Equation 13), if

Bc ≥ (αc + θc)
3

µ
, (14)

then

dBc

dt
≤ (gc − µc)Bc −

gc

kc
B2c + Bc

= (gc − µc + 1)Bc

(

1−
gcBc

kc(gc − µc + 1)

)

. (15)

The constant

kc(gc − µc + 1)

gc
, (16)

is the upper bound for the differential inequality (Equation 15)

since (Equation 15) is the logistic growth model with carrying

capacity (Equation 16). For some t ≥ 0, (αc + θc)3/µ is an

upper bound for Bc whenever (Equation 14) is false, whilst Bc is

bounded above by Equation (16) for the rest of the time points

in the domain of Bc if (Equation 14) is true. The constant (αc +
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θc)
3

µ
is the maximum shedding rate from the cholera infected

individuals and dually infected individuals. In both cases,

Bc ≤ max

{

kc(gc − µc + 1)

gc
, (αc + θc)

3

µ

}

.

J(X0) =

































−µ −βc1 −βt1 −(βc1ηc + βt1ηt) ρc ρt ρct −
3βc2
µκc

−
3βt2
µκt

0 βc1 − qc 0 ηcβc1 0 0 0
3βc2
µκc

0

0 0 βt1 − qt ηtβt1 0 0 0 0
3βt2
µκt

0 0 0 −(µ + δct + ǫct) 0 0 0 0 0

0 ǫc 0 0 −(µ + ρc) 0 0 0 0

0 0 ǫt 0 0 −(µ + ρt) 0 0 0

0 0 0 ǫct 0 0 −(µ + ρct) 0 0

0 αc 0 θc 0 0 0 gc − µc 0

0 0 αt θt 0 0 0 0 gt − µt

































, (17)

Within the feasible region,

�co =

{

(S, Ic, It , Ict ,Rc,Rt ,Rct ,Bc,Bt) ∈ R
9
+

∣

∣

∣

∣

0 ≤ N ≤
3

µ
,

Bc ∈

[

0,max

{

kc(gc − µc + 1)

gc
, (αc + θc)

3

µ

}]

,

Bt ∈

[

0,max

{

kt(gt − µt + 1)

gt
, (αt + θt)

3

µ

}]}

,

We have summarized the results on the boundedness

and positivity of the solutions to the co-infection model

(Equation 1).

2.3.2. Stability analysis of the disease free
equilibrium and reproduction number,R0

We find the conditions required for the disease free

equilibrium for dynamical system (Equation 1) to be locally

asymptotically stable in this section. The disease free equilibria

of dynamical system (Equation 1) are

X0 =(S, Ic, It , Ict ,Rc,Rt ,Rct ,Bc,Bt) =

(

3

µ
, 0, 0, 0, 0, 0, 0, 0, 0

)

,

X1 =(S, Ic, It , Ict ,Rc,Rt ,Rct ,Bc,Bt) = (c3, 0, 0, 0, 0, 0, 0, c4, c5) ,

X2 =(S, Ic, It , Ict ,Rc,Rt ,Rct ,Bc,Bt) = (c6, 0, 0, 0, 0, 0, 0, c4, 0) ,

X3 =(S, Ic, It , Ict ,Rc,Rt ,Rct ,Bc,Bt) = (c7, 0, 0, 0, 0, 0, 0, 0, c5) ,

where

c3 =
3
(

(gc − µc)kc + gcκc
) (

(gt − µt)kt + gtκt
)

µ
(

(gc − µc)kc + gcκc
) (

(gt − µt)kt + gtκt
)

+ βc2 gt(gc − µc)kc + βt2 gc(gt − µt)kt
,

c4 =
gc − µc

gc
kc, c5 =

gt − µt

gt
kt ,

c6 =
3
(

(gc − µc)kc + gcκc
) (

gtκt
)

µ
(

(gc − µc)kc + gcκc
) (

gtκt
)

+ βc2gt(gc − µc)kc
,

c7 =
3
(

gcκc
) (

(gt − µt)kt + gtκt
)

µ
(

gcκc
) (

(gt − µt)kt + gtκt
)

+ βt2gc(gt − µt)kt
.

It is observed that the disease free equilibria, X1,X2,X3,

are always unstable due to the condition, gc ≥ µc, that is requires

for their existence.

The Jacobian of the full system is

The dynamical system (Equation 1) is locally asymptotically

stable if all nine of its eigenvalues have negative real parts. Five

of the eigenvalues for the Jacobian, J, are λ1 = −µ, λ2 = −(µ+

ρc), λ3 = −(µ+ρt), λ4 = −(µ+ρct) and λ5 = −(µ+δct+ǫct).

The other four eigenvalues for J are the eigenvalues from the

sub-matrix

J̄ =













βc1 − qc 0
3βc2
µκc

0

0 βt1 − qt 0
3βt2
µκt

αc 0 gc − µc 0

0 αt 0 gt − µt













.

The characteristic equation for matrix J̄ is (λ2 + ν1λ +

ν2)(λ
2 + ν3λ + ν4), where

ν1 = −
(

(gc − µc)+ (βc1 − qc)
)

,

ν2 = (βc1 − qc)(gc − µc) (1−RC) ,

ν3 = −
(

(gt − µt)+ (βt1 − qt)
)

,

ν4 = (βt1 − qt)(gt − µt) (1−RT) ,

and

RC =
αcβc23

κcµµcqc(1−R
c
h
)(1−R

c
b
)
,

RT =
αtβt23

κtµµtqt(1−R
t
h
)(1−R

t
b
)
,

R
c
h =

βc1

qc
R

c
b =

gc

µc
, R

t
h =

βt1

qt
R

t
b =

gt

µt
.

The constants R
c
b
and R

c
h
are the bacterial regeneration

threshold and the human-to-human sub reproduction number,

respectively, for the cholera only sub-model. The constants Rt
b

and R
t
h
are the bacterial regeneration threshold and the human-

to-human sub reproduction number, respectively, for the typhoid

only sub-model. The constants RC and RT are the so-called

basic reproduction numbers for the cholera only sub-model and

the typhoid only sub-model, respectively. Clearly, Rc
h
,Rc

b
< 1

orRc
h
,Rc

b
> 1 if and only ifRC > 0; Similarly,Rt

h
,Rt

b
< 1 or

R
t
h
,Rt

b
> 1 if and only ifRT > 0.
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TABLE 1 Parameter values used for numerical simulation.

Par. Range Point value Source Par. Range Point value Source

βc1 1 Assumed gt 0.014 [21]

βt1 1 [7] αc 10 Assumed

βc2 (0.1—1) 1.97× 10−11 [11–14] αt 10 [21]

βt2 1.97× 10−11 [15] µ (0.017—0.123) 0.02 [14, 22, 23]

βc3 0.5 Assumed µt 0.0345 [21]

βt3 1 Assumed 3 (100—467) 449.32 [24]

βc4 10−1 Assumed µc 0.0345 Assumed

βt4 10−1 Assumed ǫc (0.07—0.245) 0.07 [14, 16, 19, 25]

kc (106—109) 5× 106 [11] ǫt 0.1 [26, 27]

kt 5× 106 Assumed ǫct 0.1 Assumed

δc 6.58× 10−1 [14, 16, 17] κc 0.62 Assumed

δt 0.6 [15] κt 0.62 Assumed

ρc 8.12× 10−3 [18, 19] θc 0.8 Assumed

ρt 1.3× 10−3 [20] θt 0.8 Assumed

ρct 1.3× 10−3 Assumed ηc 7× 10−4 Assumed

gc 0.014 Assumed ηc 7× 10−2 Assumed

We note that

ν2 >(βc1 − qc)(gc − µc) (1−max {RC ,RT}) ,

ν4 >(βt1 − qt)(gt − µt) (1−max {RC ,RT}) .

Thus

R0 = max {RC ,RT} .

The constant R0 is the basic reproduction number for

the systems (Equation 1). It follows from the Routh Hurwitz

criterion that the four eigenvalues of J̄ have negative real parts

if ν1, ν2, ν3, ν4 > 0. It is easy to see that ν1, ν2, ν3, ν4 > 0 if

R
t
h

< 1,Rt
b

< 1, Rt
h

< 1,Rt
b

< 1 and R0 < 1. Hence, a

positive basic reproduction number for system (Equation 1) that

is less than unity implies that the system is locally asymptotically

stable at the disease free equilibrium.

2.3.3. Impact analysis

In this section, we show how cholera affects typhoid, and

through symmetry, we show how typhoid affects cholera.

The reproduction numbers for cholera and typhoid are

RC =
αcβc23

κcµµcqc(1−R
c
h
)(1−R

c
b
)
,

RT =
αtβt23

κtµµtqt(1−R
t
h
)(1−R

t
b
)
, (18)

respectively. These two reproduction numbers are dependent on

each other. The constant, 3/µ, allows for the expression of one

reproduction number in terms of the other. From the second

equation above, Equation (18), isolating, 3/µ, yields

RC = RT

αcβc2κtµtqt(1−R
t
h
)(1−R

t
b
)

αtβt2κcµcqc(1−R
c
h
)(1−R

c
b
)
. (19)

DifferentiatingRC with respect toRT gives

∂RC

∂RT
=

αcβc2κtµtqt(1−R
t
h
)(1−R

t
b
)

αtβt2κcµcqc(1−R
c
h
)(1−R

c
b
)
. (20)

We conclude that an increase in cholera cases may be

associated with an increase in typhoid cases, and an increase

in typhoid cases may be associated with an increase in cholera

cases. This conclusion is subject to the following conditions:

firstly, the the bacterial regeneration threshold for both cholera

and typhoid must be less than unity; secondly, the human-to-

human sub reproduction number for both cholera and typhoid

must also be less than unity. This result proves the symbiotic

nature of the relationship between the typhoid disease and the

Cholera disease.

3. Numerical simulations

In this section, we give a brief outline of the numerical results

obtained in the investigation. Table 1 shows the parameters of

the cholera typhoid co-infection model (Equation 1). The basic

reproduction number,R0, obtained from the Table 1 is 1.4. The

initial conditions used to produce the figures in this section were:

S(0) = 99980, Ic(0) = 20, It(0) = 20, Ict(0) = 20, Rc(0) =

0, Rt(0) = 0, Rct(0) = 0, Bc(0) = 40000, Bt(0) = 40000. Note
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FIGURE 2

The correlation between the co-infected class and each of the model’s parameter are shown in this bar graph (PRCC). (A) Shows the PRCC

values for {3,βc1 ,βt1 ,βc2 ,βt2 , κc, κt,µ}. (B) Shows the PRCC values for {ρc, ρt, ρct, δc, δt, ǫc, ǫt, ǫct}. (C) Shows the PRCC values for

{gc,gt, kc, kt,αc,αt,µc,µt}. (D) Shows the PRCC values for {βt3 , βt4 , βc3 , βc4 , θc, θt, ηc, ηt}.

that all figures in this section are presented in the logarithmic

scale since the range of some of the plots spanned several orders

of magnitude.

Coupled with the parameters from Table 1, the sensitivity

indices of the variables above are shown on Figure 2. Latin

Hypercube sampling was utilized to generate the plot above

(Figure 2). Thismethod returns the correlation between the state

variable Ict and each of the model parameters, and it also returns

the ranks of all these correlations (PRCC). The simulation was

carried out over 1,000 runs. A parameter with a negative PRCC

value means that parameter is negatively correlated with Ict ,

whilst a parameter with a positive PRCC value represents a

positive correlation between that parameter and Ict . Relative to

the current model parameters, we note that the coinfection class

is most sensitive to changes to the person-to-person typhoid

transmission rate, βt1 , and the correlation is positive between

this parameter and the state variable. The typhoid induced death

rate is that second most sensitive parameter to the coinfection

class, and it is negatively correlated to the coinfection class. Due

to the large number of parameters in model 1, we have opted to

split the PRCC values into 4 equal sets, see Figure 2.

The contour map of R0 as a function of the typhoid

recovery rate, ǫt , and the cholera recovery rate, ǫc is shown

in Figure 3. Using the parameters from Table 1, the base case
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FIGURE 3

The contour map of the basic reproduction number, R0, as a

function of the typhoid recovery rate, ǫt, and the cholera

recovery rate, ǫc.

as well as the contour levels are also shown in Figure 3. The

basic reproduction number R0 attains its global minimum if

both the typhoid and cholera recovery rate are maximized. It

is be observed that, locally, a reduction in the reproduction

number,R0, —moving the base case to a lower contour level—is

only achieved by increasing the cholera recovery rate. Since the

reproduction number,R0, is the maximum of the reproduction

numbers of the individual diseases, it follows that a reduction

in the reproduction number, R0, means a reduction in the

reproduction numbers of each of the diseases. Hence, locally,

an increase in the cholera recovery rate will not only reduce the

cholera reproduction number,Rc, but it has the added benefit of

indirectly reducing the reproduction number for typhoid,Rt , as

well. It is also observed that increasing the typhoid recovery rate

exclusively will have no immediate benefits locally. This finding

is consistent with the previous findings of an optimal treatment

plan being centered around the recovery rate of cholera.

We show the trajectories of the three infectious classes of

model (Equation 1). An initial surge in infections followed

closely by an immediate recovery is shown in Figure 4. The

phenomenon of waning immunity results in the smaller second

wave of infections. The co-infected class is the only exception

to this observation. We see the co-infected class reach a local

minimum before the first surge in cholera only or typhoid only

infections is reached. A possible reason for this is that, unlike the

cholera and typhoid classes, the co-infected class does not recruit

directly from the susceptible class. This is due to the fact that the

cholera disease has a shorter incubation period than the typhoid

disease. The incubation periods are 1.4 days for cholera [2] and

19 days for typhoid [3]. What is then observed in the co-infected

class is a case of people leaving the class either through death or

FIGURE 4

The trajectories of the infectious classes.

recovery coupled with the delayed recruitment into the class. All

the diseases reach stability after the second waves of infection.

In order to understand how the diseases interact with each

other, we vary the different recovery rates and observe how the

prevalence of each of the infections change. In Figures 5A,B

show the impact of varying the recovery rate of the co-infected

on the cholera and typhoid prevalence, whilst (Figures 5C,D)

show the impact of varying the recovery rates of cholera

and typhoid on the prevalence of the co-infected individuals.

Figure 5C shows a significant reduction in the co-infected class’

prevalence when the cholera recovery rate is increased, whilst

plots (Figure 5D) shows that this reduction is negligible when

the typhoid recovery rate was increased. Figures 5A,B show

that an increase in the co-infected class’ recovery rate reduces

the typhoid prevalence more than the cholera prevalence.

The net effect is that an increased cholera recovery rate may

be associated with a decreased prevalence of the co-infected

individuals and a higher co-infected recovery rate. This in turn,

produces a reduced typhoid prevalence. Given the currentmodel

parameters, this finding suggests that an optimal treatment plan

for the two infections should primarily focus on increasing the

cholera recovery rate as opposed to the typhoid recovery rate.

This also underscores the point made earlier about the symbiotic

nature of the two diseases.

4. Discussion and conclusion

In this article, we formulated and analyzed a theoretical

model for the transmission dynamics of a cholera typhoid co-

infection model. Through numerical simulations, we were able

to verify a number of the results obtained analytically.

The birth and death rates of the bacteria are central

to proving the boundedness and positivity of all three
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FIGURE 5

Plots (A,B) show the cholera and typhoid prevalence, respectively, as the co-infection recovery rate, ǫct, runs through {0.1, 0.6, 1.1, 1.6}. Plots

(C,D) show the prevalence of the co-infected as the cholera and typhoid recovery rates are varied through the sets {0.07, 0.075, 0.08, 0.085} and

{0.1, 0.2, 0.3, 0.4}, respectively.

models—cholera only sub-model, typhoid only sub-model,

and the full cholera typhoid co-infection model. For the

cholera-only model, if the birth rate of the Vibrio Cholerae

bacteria exceeds its death rate, then the cholera only model

has non-negative and bounded trajectories. For the typhoid

only model, if the birth rate of the Salmonella Typhi

bacteria exceeds its death rate, then the typhoid only

model has non-negative and bounded trajectories. For the

full cholera typhoid co-infection model, if the birth rates

of the Vibrio Cholerae bacteria and the Salmonella Typhi

bacteria exceed their death rates, simultaneously, then the

cholera-typhoid co-infection model has non-negative and

bounded trajectories.

In analyzing the equilibria of the co-infection models,

several key sights were discovered. We showed the existence of

the disease free equilibria, by finding them, for all three models.

Sufficient conditions for the existence of the endemic equilibria

for the cholera only sub-model and the typhoid only sub-model

were documented. We showed that if the reproduction number

is less than one for the all the models, then the disease free

equilibria are locally asymptotically stable, otherwise they are

unstable. Global stability could not be guaranteed, both at the
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disease free equilibria and the endemic equilibria, in any of

the models. Sensitivity analysis revealed the parameters in the

model were at the heart of the spread of the cholera typhoid

co-infection. The prevalence of cholera is decreased whenever

ηt , βt3 , βt4 are increased and/or βc1 , βc2 , ǫct , ηc and θc are

decreased. The prevalence of typhoid is decreased whenever ηc,

βc3 , βc4 are increased and/or βt1 , βt2 , ǫct , ηt and θt are decreased.

From the impact analysis section, we found that an increase

in cholera cases may be associated with an increased risk

of typhoid and that an increase in typhoid cases may be

associated with an increased risk of cholera. This result proves

the symbiotic nature of the relationship between the typhoid

disease and the cholera disease.

The findings in this investigation come with some

limitations. The most glaring of all is the lack of data to fit

the model to. Our model also fails to take into account the

highly seasonal nature of each of the diseases. For the two

infections, fear has a significant impact on the transmission

dynamics. Future work should also be able to account for the

effects of fear in the transmission dynamics of both infections.

Notwithstanding these limitations, we believe that the findings

of this investigation can still be useful to policy makers in

containing an outbreak of these two diseases.
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