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The non-linear space-time fractional Estevez-Mansfield-Clarkson (EMC) equation and the

non-linear space-time fractional Ablowitz-Kaup-Newell-Segur (AKNS) equation showed

the motion of waves in the shallow water equation and the optical fiber equation,

respectively. The process used to solve these equations is to transform the non-linear

fractional partial differential equations (PDEs) into the non-linear ordinary differential

equations by using the Jumarie’s Riemann-Liouville derivative and setting the solution

in the finite series combined with the simple equation (SE) method with the Bernoulli

equation. The new traveling wave solutions were the exponential functions resulting in

the physical wave effects are produced in the form of kink waves and represented by the

two-dimensional graph, three-dimensional graph, and contour graph. In addition, the

comparison of the solutions revealed that the new solutions have a more convenient and

easier format.

Keywords: simple equation method, fractional partial differential equations, traveling wave solution, Estevez-

Mansfield-Clarkson equation, Ablowitz-Kaup-Newell-Segur equation

1. INTRODUCTION

The partial differential equations (PDEs) are very important in studying and explaining the
phenomena of mathematical physics. The most widely used scenarios are plasma physics, optical
fibers, fluid mechanics, solid state physics, plasma waves, capillary-gravity waves, and water waves.
At present, the researchers are interested in studying the exact solutions or the numerical solutions
[1–3] in order to apply the results obtained in the above studies. To study the effects of these
matters more closely, it is necessary to study the form of the exact traveling wave solution of non-
linear fractional PDEs. There are a variety of methods to solve non-linear fractional PDEs such as
generalized Kudryashov method [4, 5], extended Kudryashov method [6], modified Kudryashov
method [7, 8], first integral method [9–11], G′/G-expansion method [12–14], fractional sub-
equation method [15–17], and Poincaré-Lighthill-Kuo method [18, 19].

In 2006, the Jumarie’s Riemann-Liouville derivative [20] was given as follows,

Dαt f (t) =































f (t) ,α = 0

1

Ŵ(1− α)

d

dt

∫ t

0
(t − ψ)−α[f (ψ)− f (0)]dψ , 0 < α < 1

dn

dtn
Dα−n
t f (t) , n ≤ α < n+ 1, n ≥ 1,

(1)
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where α is an order of the fractional derivative.
The important properties of fractional Riemann-Liouville

derivatives [21] were discovered in 2009 as follows,

Dαt t
k =

Ŵ(k+ 1)

Ŵ(k− α + 1)
t(k−α), k ≥ 0, (2)

Dαt [f (t)g(t)] = f (t)Dαt g(t)+ g(t)Dαt f (t), (3)

Dαt f [g(t)] = Dαg f [g(t)][g
′(t)]α = f ′g[g(t)]D

α
t g(t). (4)

Mansfield and Clarkson [22] introduced the Estevez-Mansfield-
Clarkson (EMC) equation in 1997. This equation was applied to
understand the non-linear dispersion of patterns in liquid drops.
Zhen-Ya [23] suggested the two-parameter family of fully EMC
equation E(m, n) in 2002 as follows,

(umy )yyt + δ(u
n
yut)y + utt = 0 (5)

where δ is a constant. If (m, n) = (1, 1) then Equation (5) reduces
to the EMC equation

uyyyt + δuyuyt + δuyyut + utt = 0. (6)

In 1970, Ablowitz, Kaup, Newell, and Segur [24] purposed
the Ablowitz-Kaup-Newell-Segur (AKNS) equations which were
motivated by the applications to non-linear optics. The AKNS
equation can be reduced to some non-linear evolution equations
such as the non-linear Schrödinger, the sine-Gordon equations,
the kdV equation, and others. The fourth-order non-linear
AKNS equation with the parameter β in this form,

4uxt + uxxxt + 8uxuxy + 4uxxuy − βuxx = 0. (7)

In this article, we have solved the non-linear space-time fractional
EMC equation and the non-linear space-time fractional AKNS
equation by applying Jumarie’s Riemann-Liouville derivative and
the SE method with the Bernoulli equation. We have shown the
new exact solutions and the wave effects in a two-dimensional
graph, three-dimensional graph, and contour graph. Finally, we
have compared the new solutions with some effective articles
[25] to show that our solutions had a more convenient and
simpler form.

2. ALGORITHM OF SE METHOD

In this section, we discuss the SE method with the Bernoulli
Equation [26] for solving fractional PDEs. The general form of
fractional PDEs is shown as

G(u,Dαxu,D
α
y u,D

α
t u,D

2α
x u,DαyD

α
xu,D

α
t D

α
xu, . . .) = 0, t > 0,

0 < α ≤ 1. (8)

This method is described in the following steps,

Step 1. Wave transformation

The traveling wave solution of fractional PDEs is a solution that
satisfies

u(x, y, t) = U(ψ),ψ =
kxα

Ŵ(α + 1)
+

lyα

Ŵ(α + 1)
−

ctα

Ŵ(α + 1)
, (9)

whereψ is a general term for a traveling wave, c is a wave velocity
constant. We called stationary wave when c = 0. For c > 0, the
wave moves in the positive direction, and for c < 0, the wave
moves in the negative direction [27]. Reducing Equation (8) into
an ODE,

Q

(

U,
dU

dψ
,
d2U

dψ2
,
d3U

dψ3
, . . .

)

= 0, (10)

where Q is a polynomial in U(ψ) and its derivatives.
Step 2. Solution supposition

The solution of Equation (10) can be written in the finite series,

U(ψ) =

N
∑

i=0

aiH
i(ψ), (11)

where ai are real constants with aN 6= 0 and H(ψ) depends on
the simple equation (SE) method with Bernoulli equation which
states as follows.

H′(ψ) = µH(ψ)+ ηH2(ψ) (12)

where µ and η are the non-zero constant. The solutions of
Equation (12) have two cases with ψ0 as an integration constant,

Case 1 : µ > 0, η < 0,

H(ψ) =
µeµ(ψ+ψ0)

1− ηeµ(ψ+ψ0)
. (13)

Case 2 : µ < 0, η > 0,

H(ψ) = −
µeµ(ψ+ψ0)

1+ ηeµ(ψ+ψ0)
. (14)

Step 3. Finding the integer N
Balance the highest order derivative and non-linear terms in
Equation (10) to get the integer N in Equation (10).
Step 4. Solution obtaining

Find the parameters ai, (i = 1, 2, 3, . . . ,N) and c by collecting
the coefficients all terms with the same order of Hi, (i =

1, 2, 3, . . . ,N) and setting them to zero [28]. Hence, we constitute
the analytical solutions of Equation 10.

3. APPLICATIONS

We present the traveling wave effects of the non-linear space-
time fractional EMC equation and the non-linear space-time
fractional AKNS equation.
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FIGURE 1 | Kink wave solution of Equation (25) in 3D, contour and 2D for Case I.

FIGURE 2 | Kink wave solution of Equation (26) in 3D, contour and 2D for Case II.
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3.1. The Space-Time Fractional EMC
Equation
The fourth-order non-linear space-time fractional EMC
Equations [22, 25] is stated as follows,

D3α
y Dαt u+ δDαy uD

α
yD

α
t u+ δD2α

y uDαt u+ D2α
t u = 0, t > 0, 0 < α ≤ 1,

(15)
where u = u(x, y, t) and δ is constant. Supposing the solution
u(x, y, t) = U(ψ) and applying the transformation

ψ =
kxα

Ŵ(α + 1)
+

lyα

Ŵ(α + 1)
−

ctα

Ŵ(α + 1)
, (16)

where k, l, and c are non-zero constants. The Equation (15)
changed into an ODE,

− l3
d4U

dψ4
− 2l2δ

dU

dψ
·
d2U

dψ2
+ c

d2U

dψ2
= 0. (17)

Integrating Equation (17) with zero constant, we get

− l3
d3U

dψ3
− l2δ

(

dU

dψ

)2

+ c
dU

dψ
= 0. (18)

Using the SE method. The solution was set in the form of
Equation (11). Next, we balanced the non-linear terms and the
highest order derivative of Equation (18). Thus, N = 1. The
Equation (11) turned into

U(ψ) = a0 + a1H(ψ). (19)

Replacing Equation (18) with Equation (19). We collected all
terms of the same power of H(ψ) and set each coefficient to zero
as follows,

H1(ψ) : −a1l
3µ3 + a1cµ = 0, (20)

H2(ψ) : −7a1l
3µ2η − a21l

2δµ2 + a1cη = 0, (21)

H3(ψ) : −12a1l
3µη2 − 2a21l

3δµη = 0, (22)

H4(ψ) : −6a1l
3η3 − a31l

2δη2 = 0. (23)

Solving the system of Equations (20)–(23), we get

a1 =
−6lη

δ
, c = l3µ2. (24)

By Equations (13), (14), (16), and (24), the exact traveling wave
solutions of the non-linear space-time fractional EMC equations
are represented in two cases with arbitrary constant ψ0:
Case I: µ > 0, η < 0,

u(x, y, t) = a0 −
6lη

δ

(

µeµ(ψ+ψ0)

1− ηeµ(ψ+ψ0)

)

, (25)

Case II: µ < 0, η > 0,

u(x, y, t) = a0 +
6lη

δ

(

µeµ(ψ+ψ0)

1+ ηeµ(ψ+ψ0)

)

, (26)

where ψ =
kxα

Ŵ(α + 1)
+

lyα

Ŵ(α + 1)
−

l3µ2tα

Ŵ(α + 1)
.

Next, we present the example graph of wave effects of the
non-linear space-time fractional EMC equation by setting some
parameter to obtain proper graph. Equation (25) shows the exact
exponential solutions which forms a kink wave effect, increasing
from one state to another, with a0 = 0, δ = 1, k = 1, l = 1,
µ = 1, η = −1, α = 0.5, 0 ≤ x ≤ 90, 0 ≤ y ≤ 90, and
t = 200, 400 shown in Figure 1. We set the parameters a0 = 0,
δ = 1, k = 1, l = 1, µ = −1, η = 1, α = 0.5, 0 ≤ x ≤ 90,
0 ≤ y ≤ 90, and t = 100, 300 into an Equation (26), kink wave
effect shown in Figure 2.

3.2. The Space-Time Fractional AKNS
Equation
The fourth-order non-linear space-time fractional AKNS
equation is defined as follows [25],

4DαxD
α
t u+ D3α

x Dαt u+ 8Dαx uD
α
xD

α
y u+ 4D2α

x uDαy u− βD2α
x u =

0, t > 0, 0 < α ≤ 1, (27)

where u = u(x, y, t) and β is constant. Similar to the previous
equation, we set the solution and transform Equation (27) by
Equation (16), we obtain

−4ck
d2U

dψ2
− ck3

d4U

dψ4
+ 8k2l

dU

dψ
·
d2U

dψ2
+ 4k2l

dU

dψ
·
d2U

dψ2
− βk2

d2U

dψ2
= 0

−(4c+ βk)
d2U

dψ2
− ck2

d4U

dψ4
+ 12kl

dU

dψ
·
d2U

dψ2
= 0. (28)

Integrating Equation (28) and set constant to zero,

− (4c+ βk)
dU

dψ
− ck2

d3U

dψ3
+ 6kl

(

dU

dψ

)2

= 0. (29)

Balancing Equation (29), we got N = 1. Thus, Equation (11)
changed to

U(ψ) = a0 + a1H(ψ). (30)

Replacing Equation (29) with Equation (30). Collecting all terms
which have the same power of H(ψ). Setting each coefficient of
them to zero, we have

H1(ψ) : −a1cµ− a1βkµ− a1ck
2µ3 = 0, (31)

H2(ψ) : −4a1cη − a1βkη−7a1ck
2µ2η + 6a21klµ

2=0, (32)

H3(ψ) : −12a1ck
2µη2 + 12a21klµη = 0, (33)

H4(ψ) : −6a1ck
2η3 + 6a21klη

2 = 0. (34)

Solving Equations (31)–(34), we get

a1 = −
βk2η2

4lη + k2lµ2
, c = −

βkη

4η + k2µ2
. (35)

Substituting Equation (35) into Equations (16), (25), and (26),
the exact traveling wave solutions of the non-linear space-time
fractional AKNS equation can be explained as follows with
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FIGURE 3 | Kink wave solution of Equation (36) in 3D, contour and 2D for Case I.

FIGURE 4 | Kink wave solution of Equation (37) in 3D, contour, and 2D for Case II.
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TABLE 1 | Solutions comparison of the non-linear space-time frational

Estevez-Mansfield-Clarkson (EMC) equation between G′/G-expansion method

and simple equation (SE) method.

G′/G-expansion method Simple equation method

Case I: λ2 − 4µ > 0 Case I: µ > 0, η < 0,

u = a0 +
6l

β

[

−λ

2
+ ϑ1

(

c1 sinh (ϑ1ζ )+ c2 cosh (ϑ1ζ )

c1 cosh (ϑ1ζ )+ c2 sinh (ϑ1ζ )

)]

u = a0 −
6lη

δ

(

µeµ(ψ+ψ0 )

1− ηeµ(ψ+ψ0 )

)

Case II: λ2 − 4µ < 0 Case II: µ < 0, η > 0,

u = a0 +
6l

β

[

−λ

2
+ ϑ2

(

−c1 sin (ϑ2ζ )+ c2 cos (ϑ2ζ )

c1 cos (ϑ2ζ )+ c2 sin (ϑ2ζ )

)]

u = a0 +
6lη

δ

(

µeµ(ψ+ψ0 )

1+ ηeµ(ψ+ψ0 )

)

Case III: λ2 − 4µ = c = 0 where

ψ =
kxα

Ŵ(α + 1)
+

lyα

Ŵ(α + 1)
−

l3µ2tα

Ŵ(α + 1)

u = a0 +
6l

β

(

−λ

2
+

c2

c1 + c2ζ

)

where ζ =
kxα

Ŵ(α + 1)
+

lyα

Ŵ(α + 1)
−

ctα

Ŵ(α + 1)
,

ϑ1 =

√

c/l3

2
,ϑ2 =

√

−c/l3

2

TABLE 2 | Solutions comparison of the non-linear space-time fractional

Ablowitz-Kaup-Newell-Segur (AKNS) equation between G′/G-expansion method

and simple equation (SE) method.

G′/G-expansion method Simple equation method

Case I: λ2 − 4µ > 0 Case I: µ > 0, η < 0,

u = a0 −

ck

l









−λ

2
+ ̺1









c1 sinh

(

ζ̺1

2

)

+ c2 cosh

(

ζ̺1

2

)

c1 cosh

(

ζ̺1

2

)

+ c2 sinh

(

ζ̺1

2

)

















u =

a0 −

(

βk2η2

4lη + k2 lµ2

)(

µeµ(ψ+ψ0 )

1− ηeµ(ψ+ψ0 )

)

Case II: λ2 − 4µ < 0 Case II: µ < 0, η > 0,

u = a0 −

ck

l









−λ

2
+ ̺2









−c1 sin

(

ζ̺2

2

)

+ c2 cos

(

ζ̺2

2

)

c1 cos

(

ζ̺2

2

)

+ c2 sin

(

ζ̺2

2

)

















u =

a0 +

(

βk2η2

4lη + k2 lµ2

)(

µeµ(ψ+ψ0 )

1+ ηeµ(ψ+ψ0 )

)

Case III: λ2 − 4µ =
4c+ γ k

ck2
= 0 where

u = a0 −
ck

l

(

−λ

2
+

c2

c1 + c2ζ

)

ψ =
kxα

Ŵ(α + 1)
+

lyα

Ŵ(α + 1)
+

βkηtα

Ŵ(α + 1)(4η + k2µ2 )

where ζ =
kxα

Ŵ(α + 1)
+

lyα

Ŵ(α + 1)
−

ctα

Ŵ(α + 1)
,

̺1 =

√

4c+ γ k

4ck2
, ̺2 =

√

−
4c+ γ k

4ck2

arbitrary constant ψ0:
Case I: µ > 0, η < 0,

u(x, y, t) = a0 −

(

βk2η2

4lη + k2lµ2

)

(

µeµ(ψ+ψ0)

1− ηeµ(ψ+ψ0)

)

, (36)

Case II: µ < 0, η > 0,

u(x, y, t) = a0 +

(

βk2η2

4lη + k2lµ2

)

(

µeµ(ψ+ψ0)

1+ ηeµ(ψ+ψ0)

)

, (37)

where ψ =
kxα

Ŵ(α + 1)
+

lyα

Ŵ(α + 1)
+

βkηtα

(4η + k2µ2)Ŵ(α + 1)
.

We set some parameter to get the example graph of wave
effects of the non-linear space-time fractional AKNS equation.
Equation (36) gives a kink wave effect when setting a0 = 0,
β = 1, k = 1, l = 1, µ = 1, η = −1, α = 0.5, 0 ≤ x ≤ 90,
0 ≤ y ≤ 90, and t = 400, 800 shown in Figure 3. Substituting
a0 = 0, β = 1, k = 1, l = 1, µ = −1, η = 1, α = 0.5,
0 ≤ x ≤ 90, 0 ≤ y ≤ 90, and t = 200, 600 into an Equation (37),
kink wave effect shown in Figure 4.

4. SOLUTIONS COMPARISON

In this section, the analytical solutions of the non-linear

space-time fractional EMC equation and the non-
linear space-time fractional AKNS equation obtained
by the SE method can be expressed in a simpler

form than the G′/G-expansion method [25] as in
Tables 1, 2.

5. CONCLUSION

In this study, we solved some fractional shallow water

equations and fractional optical fiber equations which
are the non-linear space-time fractional EMC equation
and the non-linear space-time fractional AKNS equation,

respectively. We converted these equations to nODEs by
Jumarie’s Riemann-Liouville derivative and defined the
solutions by an efficient method, the SE method with the

Bernoulli equation. The new analytical solutions of the non-
linear space-time fractional EMC equation are presented in

2 cases of the exponential solutions as shown in Equations
(25)-(26). After we set some parameters, the wave effects
of this equation were kink waves as displayed in Figures 1,
2. The 2 cases of the new analytical solutions of the non-
linear space-time fractional AKNS equation were exponential
solutions as appeared in Equations (36)-(37). The kink
wave effects of this equation are displayed in Figures 3,
4. Tables 1, 2 showed our solutions have a simpler form
compared to the solution obtained by the G′/G-expansion
method [25].
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