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The local consistency of the method of Smoothed Particle Hydrodynamics (SPH) is

proved for a multidimensional continuous mechanical system in the context of measure

theory. The Wasserstein distance of the corresponding measure-valued evolutions is

used to show that full convergence is achieved in the joint limit N → ∞ and h → 0,

where N is the total number of particles that discretize the computational domain

and h is the smoothing length. Using an initial local discrete measure given by µN
0 =

∑N
b=1m(xb, h)δ0,xb(0), where mb = m(xb, h) is the mass of particle with label b at position

xb(t) and δ0,xb(t) is the xb(t)-centered Dirac delta distribution, full consistency of the SPH

method is demonstrated in the above joint limit if the additional limit N → ∞ is also

ensured, where N is the number of neighbors per particle within the compact support of

the interpolating kernel.

Keywords: particle method, SPH interpolation, consistency, scaling laws, similarity relation, convergence of the

SPH method, measure theory, Wasserstein distance

1. INTRODUCTION

In the late 1970s, the method of Smoothed Particle Hydrodynamics (SPH) was introduced
independently by Gingold and Monaghan [1] and Lucy [2] as a tool for the simulation of
astrophysical flows. SPH is a Lagrangian method for solving the equations of hydrodynamics,
where the continuum is represented by a finite collection of point masses, or particles, which,
in addition to mass, carry information of any other properties of the physical system. Since
1993, after being widely used in different applications in astrophysics, the method has found
applications in a ever increasing number of areas in science and engineering. As an example,
it has been used in such dissimilar problems as the friction dynamics of massive black holes
[3] and the Taylor-Green vortex problem [4], just to mention a few. Even though the method
is always gaining more practitioners, there still remain important drawbacks related to its poor
convergence properties and loss of mathematical consistency. However, in the course of the
years a notable amount of work has been devoted to solve the problem of SPH consistency
[5–14]. In particular, the loss of consistency in standard SPH occurs because of zeroth-order
truncation errors that arise when passing from the kernel to the particle approximation [12, 14].
Different sources of particle inconsistency have been previously identified by Liu et al. [15] to
be associated with irregular particle distributions, kernel deficiencies at physical boundaries, and
variable smoothing lengths. A new source related to the traditionally low number of neighbors
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within the kernel support was more recently discovered by Zhu
et al. [12]. An alternative methodology that decreases the SPH
discretization error to machine precision was introduced by da
Silva et al. [16]. The method uses a post-processing technique
based on repeated Richardson extrapolation (RRE) to improve
the accuracy of the numerically obtained SPH solution. With an
almost null cost in CPU time and memory usage, they obtained
truncation error magnitudes of the same level of the machine
round-off error for both a steady and unsteady heat diffusion
model. Such level of error implies that consistency is actually
restored to machine precision.

Measure theory has provided a powerful mathematical
framework to successfully address the convergence of SPH
by estimating the distance between a discrete measure and a
smoothed measure of the continuum, when the total number
of particles approaches infinity [5, 6, 13]. An early attempt to
prove the convergence of SPH was reported by Di Lisio et al.
[6], who used measures in combination with the Wasserstein
distance. In particular, they employed the Wasserstein distance
between a discrete measure and a regularized measure adopting
a kernel function of extended domain and developed a proof of
convergence for the regularized version of Euler’s equations for
a polytropic fluid model. Recently, Evers et al. [13] generalized
the formalism of Di Lisio et al. and obtained a convergence proof
for standard SPH [17]. They provided the order of convergence
of SPH for a general class of force fields, including external
and internal conservative forces, frictional dissipation, and non-
local interactions. In this paper, we extend the convergence
theorems derived by Evers et al. [13] to interpolation kernel
functions of local finite (i.e., compact) support. We demonstrate
that it is possible to limit the Wassertein distance between
the initial discrete measure, associated with a non-uniform
distribution of particles, and a continuous measure, associated
with a regularization of a kernel with compact support.

The paper is organized as follows. The fundamentals of the
SPH method are briefly described in Section 2. The convergence
theorems of SPH in the context of measure theory are derived
in Section 3. The Wasserstein distance between the discrete and
the continuous measures is calculated for a non-uniform particle
distribution and the convergence theorems proved by Evers et al.
[13] are extended to interpolation kernel functions of compact
support. The main conclusions are summarized in Section 4.

2. THE SPH METHOD

2.1. Action for a Continuous Setting
In the standard SPH formalism [17], the derivation of the SPH
equations of motion for a system of point masses starts from the
discrete version of the Lagrangian L(t) for a continuous setting
[13, 18], namely

L(t) : =

∫

�s,t

[

1

2
u · u− e

(

ρ(y, t), y
)

]

ρ(y, t)dny, (1)

where u is the velocity field and ρ is the density, both defined
as a function of time, t ∈ R

+ ≡ [0,∞), and position, y ∈ R
n,

where R
n denotes an n-dimensional Eulerian space, while e is

the internal energy, defined as a function of density and position.
The integration is performed over a volume domain �s,t ⊂ R

n,
which may deform during the time evolution of the system. As
the integration is carried over space, the Lagrangian is only a
function of time.

The trajectory of a material particle of the system, initially
located at x = 8(x, 0), can be defined by the coordinate
transformation y = 8(x, t) so that

u
(

8(x, t), t
)

=
d

dt
8(x, t). (2)

According to this motion mapping, the integral above can be
transformed into

L[8](t) :

=

∫

�s,0

[

1

2

∣

∣

∣

∣

d

dt
8(x, t)

∣

∣

∣

∣

2

− e(ρ(8(x, t), t),8(x, t))

]

ρ(x, 0)dnx,

(3)

where the coordinate transformation 8(x, t) is such that �s,t =

8(�s,0), where �s,0 denotes the initial domain. In writing
Equation (3), it has been assumed that ρ(x, t) and ρ(x, 0), as
defined in the initial domain �(s, 0), are related by the same
transformation mapping 8(x, t). Invoking mass conservation,
this relation reads as follows [19].

ρ(x, 0) = ρ(8(x, t), t)
∣

∣J8(x, t)
∣

∣ , (4)

where |J8(x, t)| denotes the determinant of the Jacobian matrix
of the coordinate transformation (2) and the integration is
performed over the entire initial volume �s,0 occupied by the
continuous system. The action of the continuous system is given
by the integral

S[8] =

∫ T

0
L[8] (t) dt. (5)

The equations of motion in SPH form can be derived by the
principle of least action, that is, by minimizing the action (5)
[17, 18]. The minimization of the action leads to the Euler-
Lagrange equations, which for the particle discrete version
of the Lagrangian, lead to the particle discretization of the
equations of hydrodynamics. The smoothing and discretization
procedure applied on a smooth function is called SPH function
interpolation, or simply particle estimate of the function [14, 20].
The SPH discretization of the governing differential equations is
performed in a two-step process. The first step is known as the
kernel or smoothing approximation and the second step is the
particle or SPH approximation. In what follows we shall provide
a brief description of both approximations.

2.2. Kernel Approximation
The smoothing, or kernel approximation, consists of a weighted
average of a field A(x) via an interpolation function or kernel
W(|x− x′|, h)

Ã(x) =

∫

�n

A(x′)W(|x− x′|, h)dnx′, (6)
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where Ã(x) is the kernel estimate of the fieldA(x) and�n ⊆ R
n is

the volume of the integration domain. The parameter h is called
the smoothing length and determines the volume of influence of
the smoothing function [21]. It is operationally defined as twice
the standard deviation of the kernel [22], i.e.,

h = 2n1/2
[∫

Rn
(x · x)W(|x|, h)dnx

]1/2

, (7)

where as before n denotes the dimension of the Euclidean space.
The kernel function W must satisfy the following conditions

[14, 18, 20, 22, 23]:

(i) It must be positive definite, symmetric, and depend on the
smoothing kernel and the distance between the field point and
its neighbors.

(ii) In the limit h → 0, the kernel must tend to the Dirac delta
distribution.

(iii) The kernel must be doubly continuous and differentiable.
Furthermore, for all h it takes its maximum value at the
location of the field point (x = 0) andmust be amonotonically
decreasing function everywhere.

(iv) It must satisfy the normalization condition

∫

�n

W(|x− x′|, h)dnx′ = 1.

(v) In modern applications most kernels have compact support,
�n,x ⊂ R

n centered at x, so that only the attributes of
neighboring particles contained within the sphere of influence
of radius H and volume Vn,x are taken into account in the
interpolation procedure. HenceW = 0 if |x− x′| ≥ H, where
H = kh and k is a constant factor that determines the size of
the kernel support.

2.3. Particle Approximation
In the particle approximation the domain is divided into N
Lagrangian subdomains, or cells, in much the same way as for
traditional grid-based methods. A particle is placed at the center
of each cell and the boundaries of the cells are such that the
particle masses remain always constant. Using the mean value
theorem, the particle estimate of the smoothed field Ã(x) defined
by Equation (6) at the position xa of particle a is given by the
approximation

Aa =

N(xa ,h)
∑

b=1

AbW(|xa − xb|, h)1Vb, (8)

where xb (for b = 1 · · ·N(xa, h)) denotes the positions of
neighboring particles within the compact support �n,xa ⊂ R

n of
particle a,1Vb is the volume associated to particle b, andN(xa, h)
is the average number of particles enclosed by the compact
support of the kernel. It is common practice in SPH to replace the
volume 1Vb by the ratiomb/ρb, wheremb is the mass of particle
b and ρb is its density. For a non-uniform distribution of particles
N(xa, h) can be expressed as [14],

N(xa, h) = Vn,a
ρ(xa)

m(xa, h)
+ O

(

hn+2
)

, (9)

when h ≪ 1. Kernels with a compact support are characterized
by two parameters: h and H = kh, where H is the effective radius
of the spherical support [14, 22]. Therefore, the dependence of
N(xa, h) on kh is evident. The dominant term in Equation (9)
is just the quotient between the volume of the compact support,
Vn,a, and the volume 1Va of particle a. This ratio defines the
total number of neighbors of particle a up to order n + 2 in the
smoothing length. For sufficiently small values of h this provides
a very good approximation to determine the average number of
neighbors per particle.

If the positions xb (with b = 1, 2, . . .,N(xa, h)) of all
neighbors of particle a are known then we can obtain maximum
information on their number and distribution. For example,
the distance between pairs of particles, 1(xa, xb), which is a
scalar correlation measure of how the particles are distributed
within the compact support, is a set ofN(xa, h)

[

N(xa, h)− 1
]

/2
elements over which we can construct as measures the minimum
distance, 1min, the maximum distance, 1max, and the average
distance, 1mean, between all countable pairs of neighbors within
the compact support of the kernel. The mean distance 1mean

between pairs of particles can be defined as

1mean =

[

Vn,a

N(xa, h)

]1/n

. (10)

The position xb of particle identified by label b can be interpreted
as a mapping between a Euclidean space R

n of configurations,
where the particles take their possible positions, and a vector label
space b ∈ R

n. The determinant of the Jacobian matrix Jxb (b) of
the mapping xb in the context of the SPH interpolation is given
by [14].

∣

∣Jxb (b)
∣

∣ =

∣

∣

∣

∣

∂(x1b, x2b, · · · , xnb)

∂(b1, b2, · · · , bn)

∣

∣

∣

∣

=
mb

ρb
6= 0, (11)

where b = b(xb) is a bijective map that admits the inverse
xb = xb(b) and the kernel of the transformation is of zero
dimension. Therefore, two particles xa and xb, with labels a 6= b,
are two disjoint particles without interstices between them (see
Figure 1). If kernel functions of compact support are used to
perform the SPH interpolation, Sigalotti et al. [14] demonstrated
that partition of unity can be achieved only up to the order
O

(

hn+2
)

, i.e.,

1

Vn,a





N(xa ,h)
∑

b=1

1Vb



 = 1+ O
(

hn+2
)

. (12)

That is, the ratio of the sum of the volumes of all neighbors
over the volume of the kernel support is exactly unity only when
h → 0 andN(xa, h) → ∞, in which case N → ∞ also. This can
be easily observed from Figure 1, where neighbors located close
to the border of the compact support may contribute by excess or
defect to the sum of the particle volumes 1Vb.

2.4. Scaling Laws and Resolution of the
SPH Interpolation
In most SPH simulations it has been a common practice to fix
the resolution by simply choosing the value of h as a factor
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FIGURE 1 | Schematic drawing illustrating the SPH interpolation in two-space

dimensions (n = 2). The circle of radius H = kh defines the compact support of

the kernel functionW(|xa − xb|, h) centered at the position xa of the observation

particle a. Although the particles are depicted as point-like masses, their

geometrical shape corresponds to an irregular rectangular cell of area mb/ρb.

Due to the Lagrangian nature of SPH, the rectangles deform during the

evolution. However, they do not overlap and do not have empty interstices

between them, which is consistent with the requirement that mb/ρb 6= 0.

of the interparticle distance. However, Zhu et al. [12] derived
scaling relations complying with the resolution limit h → 0 when
N → ∞. If a kernel of compact support is employed, then full
consistency for the SPH interpolation is achieved when the limit
N(xa, h) → ∞ is also satisfied. Only when this joint limit is met
the particle approximation, defined by Equation (8), converges
locally to the kernel approximation, defined by Equation (6).

According to Equation (9) and for a non-uniform distribution
of particles, the limit N(xa, h) → ∞ is achieved for h → 0 if the
mass, m(xa, h), of particles scales with h as hβ with β > n [14].
Consequently, a local scaling law is obtained for the number of
neighborsN(xa, h) within the compact support�n,a of the kernel
as

N(xa, h) ∼ hn−β , for β > n. (13)

This is the same scaling law obtained by Zhu et al. [12] for the case
when n = 3. A global scaling law for the total number of particles
N is obtained by invoking a relation of similarity between the
average particle density in the compact support�n,a of the kernel
and the particle density in the full computational domain of total
volume V :

N(xa, h)

Vn,a
=

N

V
. (14)

Since the volume V of the computational domain does not
depend on the parameters of the SPH interpolation, the global
scaling law is obtained as follows

N ∼ h−β , for β > n, (15)

which complies with the joint limit for full particle consistency.

3. SPH CONVERGENCE THEOREM

A measure-value formulation was used by Evers et al. [13] to
prove the convergence of SPH as a special case of a class of
approximating measures that is much broader than just a sum of
weighting kernel functions. In their case the proof was obtained
in the limit when N → ∞ for kernel functions of extended
support. Here we generalize the measure-value formulation
implemented by Evers et al. [13] to prove the theorem of
SPH convergence for kernel functions of locally finite support
�n,y ⊂ R

n, where y is the coordinate in a Eulerian description.
The analysis applies equally well to regularly and irregularly
distributed particles. For a fixed instant of time t ∈ [0,T], where
T defines the evolution time, the compact support of the kernel
will be denoted by �y,t . Motion mapping, y = 8(x, t), is invoked
(with the initial condition x = 8(x, 0)), in order to transform
from Eulerian (y) to Lagrangian (x) coordinates (see Equation 2).

3.1. SPH Interpolation in the Context of
Measure Theory
In the context of measure theory, the mass differential ρ(y, t)dny
is associated with the measure µt(d

ny) for a given time t, while at
time t = 0 the mass differential ρ(x, 0)dnx is associated to the
measure µ0(d

nx). Therefore, the kernel approximation for the
mass density of the fluid is

ρ̃h(y, t) =

∫

�y,t

W
(∣

∣y− y′
∣

∣ , h
)

µt(d
ny). (16)

In this regularization process the kernel function W(|y − y′|, h)
has compact support �y,t and meets the conditions listed in
Section 2.2. Note that the regularized density depends on the
smoothing length h. If we invoke the motion mapping y =

8(x, t) (or motion push-forward) in the context of measure
theory, then the kernel approximation of themass density ρ̃h(y, t)
becomes

ρ̃h(8(x, t), t) =

∫

�x,0

(∣

∣8(x, t) − 8
(

x′, t
)∣

∣ , h
)

µ0

(

dnx′
)

. (17)

Equation (16) for ρ̃h(y, t) is a functional of µt(•), while Equation
(17) for ρ̃h(8(x, t), t) is a functional of 8(x, t).

The particle approximation is obtained by substituting the
measure µ0(•) by the discrete measure µN

0 (•) so that

µN
0 =

N
∑

b=1

mbδxb ,0, (18)

where the mass mb of particle b scales with h as hβ , with β > n
[14]. The discrete measure µN

t (•) is constructed using the Dirac
delta measures δ0,xb(t) centered at xb(t), which evolve according
to the push-forward motion, xb(t) = 8(xb, t), with xb(0) =

xb. Substitution of the initial discrete measure µN
0 (•) given by

Equation (18) into the Lagrangian L(t) of the continuous system
given by Equation (3) and in the regularized density ρ̃h(8(x, t), t)
defined by Equation (17), we obtain the discrete version of the
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Lagrangian for a system of point masses as it applies to the
traditional SPH method [17, 22], i.e.,

L(t) =

N
∑

b=1

mb

[

1

2

∣

∣ẋb(t)
∣

∣

2
− e (ρ̃h (xb (t) , t) , xb (t))

]

, (19)

with

ρ̃h (xa (t)) =

N(xa(t),h)
∑

b=1

mbW
(

|xa (t) − xb (t)| , h
)

,

where N is the total number of particles that discretize
the computational volume and N(xa(t), h) is the number of
neighbors within the compact support of the kernel W(|xa(t) −
xb(t)|, h) centered at the position xa(t) of the observation
particle a.

3.2. The Limit µ
N
0 → µ0 When N → ∞

In order to compute the limit of the discrete measure µN
0

when N → ∞ it is necessary to define eigenobjects
in the measure theory, such as the push-forward, the
joint representation, and the Wasserstein distance
[13].

Definition 3.1 (Push-forward). For a map8 :A1 → A2 between
twomeasurable spaces (A1, σ1) and (A2, σ2) the push-forward for
the measure µ : σ1 → 0 ∪ R

+ is the measure that is constructed
by means of the map 8:

[8#µ] (B) = µ
[

8−1 (B)
]

∀B ∈ σ2,

or in its integral form

∫

B
f (y) [8#µ]

(

dny
)

=

∫

8−1(B)

f (8 (x)) µ
(

dnx
)

,

where the map 8 defines the change of coordinates y = 8(x, t).

The push-forward definition contains the change of variables
in the integration methods, as observed in the change from the
Eulerian to the Lagrangian representation through the motion
mapping y = 8(x, t) (see Equations 1–3, 16, and 17). In
particular, the particle approximation can be expressed as

8SphPA :V ⊂ R
n −→

{

1Vb , with b = 1, 2, . . . ,N
}

, (20a)

with

8SphPA(x) = xb if x ∈ 1Vb for some b ∈ {1, 2, . . . ,N} , (20b)

where 1Vb is the volume of particle b and xb is its position. Then

∫

V
f (x)

[

8SphPA#µ0

] (

dnx
)

=

∫

V
f
(

8SphPA (x)
)

µ0

(

dnx
)

,

with . . . µn
0

(

dnx
)

= . . .
[

8SphPA#µ0

] (

dnx
)

=
∑N

b=1mbδxb ,0 . . . dnx.
Note that for all x ∈ V there always exists b that belongs to the

set of labels {1, 2, . . . ,N} such that

∣

∣x− 8SphPA(x)
∣

∣ = |x− xb| < α1mean. (21)

For bounded V , there exists α ∈ R
+ such that 1sup = α1mean,

where1sup is themaximumdistance between all pairs of particles
1(xa, xb) for a, b = 1, 2, . . . ,N. In the present analysis we
consider the parameter α of the distribution of particles and not
of the total number of particles N. This is consistent with the
similarity relationship (14).

The partition of unity as introduced by Sigalotti et al. [14]
can be expressed in the context of measure theory. Let Vn,a

be the spherical volume of the compact support �n,a of the
kernel functionW(|xa − x′|, h), centered at position xa and with
smoothing length h, then the partition of unity can be written as

∫

Vn,a
dnx

Vn,a
=

∫

Vn,a

[

1
ρ0(x)

]

µ0

(

dnx
)

Vn,a
= 1, (22)

where the domain of integration is taken over the volume of the
kernel support. When passing from the smoothed to the particle
approximation, the partition of unity will then take the form [14]:

∫

Vn,a

[

1
ρ0

(

8SphPA(x)
)

]

µ0

(

dnx
)

Vn,a
→

∑N(xa ,h)
b=1

1Vb

Vn,a
= 1

+O
(

hn+2
)

, (23)

where N(xa, h) is the number of neighbors that belong to �n,a

and 1Vb = mb/ρ(xb) is the volume of particle b located at
the point xb, with xb ∈ �n,a. In the particle approximation
the partition of unity is reproduced only approximately to order
O

(

hn+2
)

. In Figure 1, where the kernel support is represented
schematically in the plane (n = 2), the partition of unity deviates
from one due to those particle volumes that are intersected by the
circular compact support.

Definition 3.2 (Joint representation). Let two measures be
µ1 : σ → 0 ∪ R

+ and µ2 : σ → 0 ∪ R
+ of a space of measure

(A, σ ). The joint representation of µ1 and µ2 is the measure
π : σ × σ → 0 ∪ R

+ such that

∫

σ×σ

f (xi)π
(

dx1, dx2
)

=

∫

σ

f (x)µi(dx), i = 1, 2.

Definition 3.3 (Wasserstein distance). Let 5(µ1,µ2) be the
set of all joint representations of µ1 and µ2. The Wasserstein
distance between two measures µ1 and µ2 of a measurable space
(A, σ ) is

W (µ1,µ2) : = inf
π∈5(µ1 ,µ2)

∫

σ×σ
|x− y|π(dx, dy).
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Using Equation (21), the Wasserstein distance between the
discrete measure µN

0 and the continuous measure µ0 is

W
(

µN
0 ,µ0

)

≤

∫

V

∣

∣x− 8SphPA(x)
∣

∣ µ0

(

dnx
)

<

α1mean

∫

V
µ0

(

dnx
)

< αV1mean. (24)

In the limit N → ∞, the result of Evers et al. [13] is obtained
from the above inequality provided that the similarity relation
(14) holds. Hence

W
(

µN
0 ,µ0

)

≤

∫

V

∣

∣x− 8SphPA(x)
∣

∣ µ0

(

dnx
)

< α

[

Vn−1

N

]1/n

,(25)

and therefore taking the limit when N → ∞ gives

lim
N→∞

W
(

µN
0 ,µ0

)

−→ 0. (26)

Furthermore, if we add the necessary requirement to satisfy the
global scaling (15), we immediately find that

W
(

µN
0 ,µ0

)

= W

(

µh
0 ,µ0

)

< hβ/n with β > n, (27)

so that in the limit when h → 0

lim
h→0

W

(

µh
0 ,µ0

)

−→ 0. (28)

3.3. Dynamics of the Regularized
Continuous System
According to Evers et al. [13] the Lagrangian L(t) (see Equation 3)
is regularized as follows. First, ρ(x, 0)dnx is replaced by µ

(

dnx
)

and then the density is regularized according to Equation (17)
for ρ̃h

(

8(x, t), t
)

, where now the kernel function W(|8(x, t) −
8(x′, t)|, h) has compact support initially centered at x.

The dynamics of the regularized system is obtained by
generalizing the principle of least action [13]. The dynamics
obtained this way describe the evolution of two fields: the
trajectory of the material point 8(x, t) and the measure µt .
The dynamic state is well-defined if the initial position of each
material point, namely 8(x, 0) = x, its initial velocity field 8̇0 =

v0(x), and the initial measure µ0, which is associated with the
geometry of the space where the continuous system evolves, are
all known.

Then the dynamical system to be described is:
Given T > 0, we have a V ⊂ R

n and a σ -algebra, denoted
by 6, of the set V with the initial measure µ0 over the
Measurable Space (V ,6) that satisfies µ0 :6 −→ [0,+∞)
and an initial velocity field v0 ∈ C1 (Rn;Rn). The
evolution is then governed by the following set of equations



























8̈(x, t) = − ∂e
∂ρ̃

[

ρ̃h
(

8(x, t)
)]

∇ρ̃h
(

8(x, t)
)

−
(

∇Wh ∗
[(

∂e
∂ρ̃

◦ ρ̃h

)

µt

])

(

8(x, t)
)

−∇U
(

8(x, t)
)

− η
(

8(x, t)8̇(x, t)
)

+ (K ∗ µh)
(

8(x, t)
)

,
ρ̃h : = Wh ∗ µt ,
µt = 8(x, t) #µ0,

8(x, 0) = x ; 8̇(x, 0) = v0(x).

(29)

For all x ∈ V and all t ∈ (0,T] the notationWh ∗ µt emphasizes
that the evolution in the regularization is caused by the push-
forward 8(x, t) #µ0, where U ∈ C2 (Rn;R) is the potential
due to external fields. The internal energy e(ρ) ∈ C2

(

R
+;R

)

is associated only with the thermodynamic properties of the
continuum, with e(ρ, y) = U(y)+e(ρ). The field η ∈ C1

(

R
n
R
+
)

describes the viscosity and the field K ∈ C1 (Rn
R
n) represents a

non-local internal interaction in the continuous system.

3.4. The Theorem of Existence-Uniqueness
and Continuity With Respect to the Initial
Conditions
The main theorem of Evers et al. [13] ensures that the regularized
dynamical system given by Equation (29), with the initial
conditions of 8(x, 0) = x and 8̇(x, 0) = v0(x), has a unique
solution

(

µt ,8(x, t)
)

for all x ∈ V and t ∈ (0,T], if the initial
measure µ0 is known. Also the solutions of Equation (29) are
continuous with respect to the initial measure. The following
theorems hold:

Theorem 3.1 (Existence-uniqueness). For all t ∈ (0,T], let h > 0
and the initial conditions8(x, 0) = x and 8̇(x, 0) = v0(x) known
for the regularized continuous system of Equation (29). Then for
each initial measure µ0 over the measurable space (V ,6) there
is a unique pair solution

(

µt ,8(x, t)
)

to the dynamical system
defined by Equation (29).

Theorem 3.2 (Continuity with respect to µ0). For all t ∈

(0,T], let be h > 0 and the initial conditions 8(x, 0) = x

and 8̇(0, x) = v0(x) known for the regularized continuous
system of Equation (29). Given two initial measures µ1

0 and
µ2
0 over the measurable space (V ,6), the supremum of the

Wasserstein distance between the two solutions
(

µ1
t ,8

1(x, t)
)

and
(

µ2
t ,8

2(x, t)
)

of the regularized dynamical system given by
Equation (29) is bounded by:

sup
t∈[0,T]

W
(

µ1
t ,µ

2
t

)

6
(

1+ T
(

‖∇v0‖∞ + ‖η‖∞
))

exp

(

‖η‖∞ T +
1

2
(M4 +M5)T

2

)

W
(

µ1
0,µ

2
0

)

,

whereM4 andM5 are both positive and independent of the initial
measurements µ1

0 and µ2
0.

Corollary 3.1 (Convergence of the particle approximation to the
smoothing approximation). For all t ∈ (0,T], let be h > 0
and the initial conditions be 8(x, 0) = x and 8̇(0, x) = v0(x)
known for the regularized continuous system of Equation (29).
Consider a sequence of initial discrete measures

{

µN
0

}

N∈N
over

the measurable space (V ,6) that converge to measure µ0 over
(V ,6), then
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W
(

µN
0 ,µ0

) N→∞
−−−−→ 0.

For each sequence of initial discrete measures,
(

µN
0 ,8(x, 0)

)

,

there is a unique sequence
(

µN
t ,8

N(x, t)
)

solution of the
dynamical system given by Equation (29). Let

(

µt ,8(x, t)
)

be the
solution of the dynamical system of Equation (29) with initial
conditions

(

µ0,8(x, 0)
)

. Then µN
t converges to µt as

sup
t∈[0,T]

W
(

µN
t ,µt

) N→∞
−−−−→ 0. (30)

Remark (On the convergence of the particle approximation to
the kernel approximation when h → 0). Corollary 3.1 ensures
that in the limit h → 0 the SPH particle approximation, 8SphPA

(see Equation 20), converges to the kernel approximation. This is
true if the local scaling law (13) and the similarity relation (14)
are satisfied [or equivalently, the similarity relation (14) and the
global scaling law (15) are both satisfied].

4. ANALYTICAL PROOF OF
CONVERGENCE

Full consistency of the particle approximation is guaranteed only
when the joint limit N → ∞, h → 0 and N → ∞ is achieved
[12]. Previous studies on the SPH consistency were mostly
based on how well the discrete kernel normalization condition is
reproduced [12, 14]. For low discrepancy sequences of particles,
the standard deviation of the density field approximately varies
as N−1 when N is larger than about 200 [12]. According
to Corollary 3.1, the Wasserstein distance can be used to
measure how the particle approximation converges to the
continuous kernel approximation. Let us first consider the
case of an n-dimensional system of volume V , for which
the kernel approximation is implemented using a non-local
kernel function (i.e., without compact support). The Wasserstein
distance between a discrete measure µN

t and a continuous
measure µt can be estimated from its upper bound given by
Equation (25) as

W
(

µN
t ,µt

)

≈ α

[

Vn−1

N

]1/n

. (31)

If, on the other hand, the kernel approximation is implemented
using an interpolation function of compact support, from
Equation (27) it follows that

W

(

µh
t ,µt

)

≈ hβ/n with β > n. (32)

From the triangular inequality, the convergence properties of
W

(

µN
t ,µt

)

, with t ∈ [0,T], can be studied by assessing that µN
t

is a Cauchy sequence, that is

W

(

µ
N1
t ,µN2

t

)

≤ W

(

µ
N1
t ,µt

)

+W

(

µ
N2
t ,µt

)

,

where N2 > N1 → ∞. Numerical calculations to assess that
µN
t is a Cauchy sequence under the Wasserstein distance must

require using finite linear programming techniques. However,
the numerical calculation of the Wasserstein distance is a rather
hard task because the computational complexity scales poorly as
N. According to Panaretos and Zemel [24], the best algorithms
to compute the optimal solution have the prohibitive complexity
N3 logN. Therefore, a proper numerical three-dimensional test
showing the SPH convergence in terms of the Wasserstein
distance for high values of N and N and sufficiently low values
of h will be the subject of a further research paper in this line.

When the SPH interpolation is performed using a kernel
function of compact support, the Wasserstein distance between

discrete measures, namely µ2k
t and µ2k+1

t , for k ≫ 1 is given
asymptotically by the relation

Wk,k+1 : =

(

αV
n−1
n

) (

2
1
n + 1

)

2
k+1
n

≥ W

(

µ2k

t ,µ2k+1

t

)

, (33)

while the convergence rate for an n-dimensional system is given
by

Cn
k+1

: = log2

(

Wk+1,k+2

Wk,k+1

)

= − (1/n) , (34)

where n is the dimension of the Euclidean spaceRn. In particular,
Evers et al. [13] have obtained numerically the convergence rate
for n = 1 and 2, but using SPH parameters, i.e., low values of N
and h, for which consistency cannot be guaranteed.

For a kernel function of a compact support, the Wasserstein

distance between the two discrete measures µh
t and µh+1h

t

approaches asymptotically the form

Wh,h+1h : = hβ/n +
(

h+ 1h
)β/n

≥ W

(

µh
t ,µ

h+1h
t

)

, (35)

for β > n when 1h ≪ h → 0. Hence, the rate of convergence
obeys the relation

d

dh
Wh,h+1h : = (β/n) h(β/n)−1

{

1+
(

1+ 1h/h
)(β/n)−1

}

,(36)

which embodies a rather slow convergence even when 1h/h <<

1 and h → 0.

5. CONCLUSIONS

In this paper the formulation introduced by Evers et al.
[13] to prove the convergence of the method of Smoothed
Particle Hydrodynamics (SPH) in the Wasserstein distance
of the corresponding measure-valued evolutions is extended
to kernel functions of locally finite support and irregular
particle distributions. The present analysis has demonstrated the
convergence and consistency of SPH in the joint limit h → 0 and
N → ∞. In this limit consistency of the particle approximation
solution of the equations of motion of the regularized continuum
system is obtained when the number of neighbors within the
compact support of the kernel, N, tends simultaneously to
infinity, albeit at a rate slower than N so that N/N → 0. It
is important to recall that, in contrast to previous proofs of
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SPH convergence in the framework of measure theory, here the
continuous system considered is regularized by means of a kernel
function of compact support. The particle approximation of the
exact differential equations has been done in compliance with the
similarity relation N/V = N/V , where V is the volume enclosed
by the kernel support and N is the total number of particles that
discretize the computational domain, and the global scaling law
N ∼ h−β for β > n, where h is the smoothing length and
n is the dimension of the Euclidean space R

n. Convergence is
also achieved if the above global scaling law is replaced by the
local scaling N ∼ hn−β for β > n, as was first derived by
Zhu et al. [12] and later on by Sigalotti et al. [14] following
different methodologies. Since most modern SPH simulations
employ interpolation functions of compact support, the present
analysis demonstrate that in the most favorable case when both
N → ∞ and h → 0 simultaneously, then full consistency is
achieved only when alsoN → ∞.
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