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In this article, we construct exact traveling wave solutions of the loaded Korteweg-de

Vries, the loaded modified Korteweg-de Vries, and the loaded Gardner equation by the

functional variable method. The performance of this method is reliable and effective and

gives the exact solitary and periodic wave solutions. All solutions to these equations

have been examined and 3D graphics of the obtained solutions have been drawn by

using the Matlab program. We get some traveling wave solutions, which are expressed

by the hyperbolic functions and trigonometric functions. The graphical representations of

some obtained solutions are demonstrated to better understand their physical features,

including bell-shaped solitary wave solutions, singular soliton solutions, and solitary

wave solutions of kink type. Our results reveal that the method is a very effective and

straightforward way of formulating the exact traveling wave solutions of non-linear wave

equations arising in mathematical physics and engineering.

Keywords: the loaded Korteweg-de Vries equation, the loaded modified Korteweg-de Vries equation, periodic

wave solutions, soliton wave solutions, the loaded Gardner equation, functional variable method
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1. INTRODUCTION

The investigation of exact traveling wave solutions to non-linear evolutions equations plays an
important role in the study of non-linear physical phenomena. These equations arise in several
fields of science, such as fluid dynamics, physics of plasmas, biological models, non-linear optics,
chemical kinetics, quantum mechanics, ecological systems, electricity, ocean, and sea. One of the
most important non-linear evolution equations is Korteweg De Vries (KdV) equation.

The KdV equation was first observed by John Scott Russell in experiments, and then Lord
Rayleigh and Joseph Boussinesq studied it theoretically. Finally, in 1895, Korteweg and De Vries
formulated a model equation to describe the aforementioned water wave, which helped to prove
the existence of solitary waves. In the mid-1960s, Zabusky and Kruskal discovered the remarkably
stable particle-like behavior of solitary waves. According to their study, solitary waves described
by the KdV equation can pass through each other keeping their speed and shape unchanged. As a
result, the name “soliton” is defined. In the wake of these discoveries, solitary wave theory boosted
the development of many areas of science and technology. After 100 years, integrable systems
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developed deeply and soliton theory was widely applied in many
areas. The KdV equation

ut + 6uux + uxxx = 0, (1)

has many connections to several branches of physics. The
Equation (1) is especially important due to the potential
application of different properties of electrostatic waves in
the development of new theories of chemical physics, space
environments, plasma physics, fluid dynamics, astrophysics,
optical physics, nuclear physics, geophysics, dusty plasma, fluid
mechanics, and different other fields of applied physics [1–11].

In recent years, studying electrostatic waves specifically to
discuss different properties of solitary waves in the field of soliton
dynamics has played a significant role for many researchers
and has received considerable attention from them. The ion-
acoustic solitary wave is one of the fundamental non-linear wave
phenomena appearing in plasma physics. In 1973, Hans Schamel
studies a modified Korteweg-de Vries equation for ion-acoustic
waves which is expressed in the following basic form

ut + 6u2ux + uxxx = 0. (2)

This equation has been applied widely, e.g., in the molecular
chain model, the generalized elastic solid, and so on [12–14].
Non-linear interactions between low-hybrid waves and plasmas
can be described well by using the mKdV equation [15].

In 1968, the Gardner equation is an integrable non-linear
partial differential equation introduced by the mathematician
Clifford Gardner to generalize the KdV equation and modified
the KdV equation. This equation can be written in a normalized
form as follows:

ut + 2αuux + 3βu2ux + uxxx = 0. (3)

If the coefficient β > 0, Equation (3) admits two families of
solitons and oscillating wave packets (called breathers), whereas
if β < 0, only one category of solitons exists [16]. The Gardner
equation plays an important role in various branches of physics,
such as plasma physics, fluid physics, and quantum field theory
[17, 18]. It also describes a variety of wave phenomena in plasma
and solid state physics [19, 20].

In arterial mechanics, a model is widely used in which the
artery is considered as a thin-walled prestressed elastic tube with a
variable radius (or with stenosis) and blood as an ideal fluid [21].
The governing equation that models weakly non-linear waves
in such fluid-filled elastic tubes is the modified Korteweg–de
Vries equation

ut − 6u2ux + uxxx − h(t)ux = 0,

where t - is a scaled coordinate along the axis of the vessel after
static deformation characterizing axisymmetric stenosis on the
surface of the arterial wall. x - is a variable that depends on
time and coordinates along the axis of the vessel. h(t)- is a form
of stenosis and u(x, t) characterizes the average axial velocity of
the fluid.

We suppose that a form of stenosis h(t) is proportional to
u(0, t), and we consider the loaded KdV, the loadedmodified KdV
and the loaded Gardner equation

ut − 6αuux + uxxx + γ (t)u(0, t)ux = 0, (4)

ut − 12αu2ux + uxxx + γ (t)u(0, t)ux = 0, (5)

ut + 2αuux + 3βu2ux + uxxx + γ (t)u(0, t)ux = 0, (6)

where u(x, t) is an unknown function, x ∈ R, t ≥ 0, α, and β are
any constants, γ (t) is the given real continuous function.

Many powerful and direct methods have been developed to
find special solutions of non-linear evolution equations such as,
Weierstrass elliptic function method [22], Jacobi elliptic function
expansion method [23], tanh-function method [24], inverse
scattering transformmethod [25], Hirota method [26], Backlund
transform method [27], exp-function method [28], truncated
Painleve expansion method [29], extended tanh-method [30],
and the homogeneous balancemethod [31] are used for searching
the exact solutions.

We establish exact traveling wave solutions of the loaded
KdV, the loaded modified KdV, and the loaded Gardner equation
by the functional variable method. The performance of this
method is reliable and effective and gives the exact solitary
wave solutions and periodic wave solutions. The traveling
wave solutions obtained via this method are expressed by
hyperbolic functions and trigonometric functions. The graphical
representations of some obtained solutions are demonstrated
to better understand their physical features, including bell-
shaped solitary wave solutions, singular soliton solutions, and
solitary wave solutions of kink type. This method presents wider
applicability for handling non-linear wave equations.

In the recent years, the study of the stability of traveling
waves of periodic and soliton types associated with non-linear
dispersive equations has increased significantly. A rich variety of
newmathematical problems have emerged, as well as the physical
importance related to them. This subject is often studied in
relation to the natural symmetries associated with the model and
by perturbations of symmetric classes, e.g., the class of periodic
functions with the same minimal period as the underlying wave.
In the case of shallow-water wave models, a formal stability
theory of periodic and soliton traveling waves has started.

It is known that the loaded differential equations contain
some traces of an unknown function. In [32–38], the term
“loaded equation” was used for the first time, the most general
definitions of the loaded differential equation were given, and
also detailed classifications of the differential loaded equations, as
well as their numerous applications, were presented. A complete
description of solutions of the non-linear loaded equations and
their applications can be found in articles [39–45].

2. DESCRIPTION OF THE FUNCTIONAL
VARIABLE METHOD

Consider non-linear evolution equations with independent
variables x, y, and t is of the form

F(u, ux, uy, ut , uxx, utt , uyy, uxy, uxt , uyt ...) = 0, (7)
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where F is a polynomial in u = u(x, y, t) and its partial
derivatives. In [46, 47], Zerarka and others have summarized the
functional variable method in the following:
Step 1.We use the wave transformation

ξ = px+ qy− kt, (8)

where p and q are constants, and k is the speed of the
traveling wave.

Next, we can introduce the following transformation for a
traveling wave solution of Equation (7)

u(x, y, t) = u(ξ ), (9)

and the chain

∂u

∂x
= p

du

dξ
,
∂u

∂y
= q

du

dξ
,
∂u

∂t
= −k

du

dξ
, ... (10)

Using Equations (9) and (10), the non-linear partial differential
Equation (7) can be transformed into an ordinary differential
equation of the form

P(u, u′, u′′, u′′′, ...) = 0, (11)

where P is a polynomial in u(ξ ) and its total derivatives, u′ = du
dξ
.

Step 2. Then we make a transformation in which the unknown
function u is considered a functional variable in the form

u′ = F(u), (12)

then, the solution can be found by the relation

∫

du

F(u)
= ξ + ξ0,

here, ξ0 is a constant of integration which is set equal to zero for
convenience. Some successive differentiations of u in terms of F
are given as

u′′ = dF(u)
du

du
dξ

= dF(u)
du

F(u) = 1
2
d(F2(u))

du
,

u′′′ = 1
2
d2(F2(u))

du2

√

F2(u),

u′′′′ = 1
2

[

d3(F2(u))
du3

F2(u)+ d2(F2(u))
du2

d(F2(u))
du

]

.

(13)

Step 3. The ordinary differential Equation (11) can be reduced in
terms of u, F, and its derivatives upon using the expressions of
Equation (13) into Equation (7) gives

H(u,
dF(u)

du
,
d2F(u)

du2
,
d3F(u)

du3
, ...) = 0. (14)

The key idea of this particular form Equation (14) is of special
interest because it admits analytical solutions for a large class of
non-linear wave type equations. After integration, Equation (14)
provides the expression of F and this, together with Equation
(12), give appropriate solutions to the original problem.

3. SOLUTIONS OF THE LOADED KDV
EQUATION

We will show how to find the exact solution of the loaded KdV
by the functional variable method. Using the wave variable

u(x, t) = u(ξ ), ξ = px− kt,

that will convert Equation (4) to an ordinary differential equation

− ku′ − 6αpuu′ + p3u′′′ + γ (t)pu(0, t)u′ = 0. (15)

Integrating once Equation (15) with respect to ξ , and put the
constant of integration zero, we have

u′′ =
1

p3

(

3αpu2 +
(

k− γ (t)pu(0, t)
)

u
)

. (16)

Following Equation (13), it is easy to deduce from Equation (16)
an expression for the function F(u)

1

2

d
(

F2(u)
)

du
=

1

p3

(

3αpu2 +
(

k− γ (t)pu(0, t)
)

u
)

. (17)

Integrating Equation (17) and setting the constant of integration
to zero yields

F2(u) =
1

p3

(

2αpu3 +
(

k− γ (t)pu(0, t)
)

u2
)

F(u) = u

√

2α

p2

√

u−
γ (t)pu(0, t)− k

2αp

F(u) = u

√

2α

p2

√

u− η(t), (18)

where η(t) = γ (t)pu(0,t)−k
2αp . From Equation (12) and Equation

(18), we deduce that

du

u
√

u− η(t)
=

√

2α

p2
dξ . (19)

After integrating Equation (19), with zero constant of integration,
we have the following exact solution

u(x, t) =
γ (t)pu(0, t)− k

2αp

1

cos2
√

γ (t)pu(0,t)−k

4p3

(

px− kt
)

. (20)

It is obvious that the function u(0, t) can be easily found based on
expression (20).

We have several types of traveling wave solutions of the loaded
KdV equation as follows:

1) When
√

γ (t)pu(0,t)−k

4p3
> 0, we have the periodic wave solution

u(x, t) =
γ (t)pu(0, t)− k

2αp

1

cos2
√

γ (t)pu(0,t)−k

4p3

(

px− kt
)

.
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FIGURE 1 | Periodic wave solution of the loaded KdV equation for k = −1, α = 0.5, p = 1, and γ (t) = t.

FIGURE 2 | Solitary wave solution of the loaded KdV equation for k = 1, α = 0.5, p = −1, and γ (t) = −t.

2) When
√

γ (t)pu(0,t)−k

4p3
< 0, we have the solitary wave solution

u(x, t) =
γ (t)pu(0, t)− k

2αp

1

cosh2
√

γ (t)pu(0,t)−k

4p3

(

px− kt
)

.

Now, by choosing free parameters, we will write the traveling
wave solutions of the loaded KdV equation in the simple form
which can be used for the graphical illustrations.

If k = −1, α = 0.5, p = 1 and γ (t) = t, then we have

u(x, t) =
tu(0, t)+ 1

cos2
√

tu(0,t)+1
4 (x+ t)

, (21)

It is obvious that the function u(0, t) can be easily found based on
expression (21).

If k = 1, α = 0.5, p = −1, and γ (t) = −t, then we have

u(x, t) = −
tu(0, t)+ 1

cosh2
√

tu(0,t)+1
4 (t − x)

, (22)

It is obvious that the function u(0, t) can be easily found based on
expression (22).

4. GRAPHICAL REPRESENTATION OF THE
LOADED KDV EQUATION

We have presented some graphs of solitary and periodic waves
constructed by taking suitable values of the involved unknown
parameters to visualize the underlying mechanism of the original
physical phenomena. Using mathematical software Matlab, 3D
plots of the obtained solutions have been shown in Figures 1,
2. A soliton or solitary wave in the concept of mathematical
physics is defined as a self-reinforcing wave package that retains
its shape. It propagates at a constant amplitude and velocity.
Solitons are solutions of a common class of non-linearly partially
differential equations with weak linearity describing physical
systems. The existence of periodic traveling waves usually
depends on the parameter values in a mathematical equation. If
there is a periodic traveling wave solution, then there is typically
a family of such solutions, with different wave speeds. For partial
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differential equations, periodic traveling waves typically occur for
a continuous range of wave speeds. The physical description of
the 3D loaded KdV equation of the installed exact moving wave
solutions is discussed in this section. In the physical definition
section, 3D surface drawings, contour maps, and 2D drawings of
the developedmoving wave solutions of the latest 3D loaded KdV
equations are discussed. The 3D line plot emphasizes the amount
of variability over time or compares multiple wave elements.
The wave points were sequentially designed using equal interval
breaks and connected by a line to emphasize the relationship of
the wave points. Three-dimensional elegance is used to give visual
attention to the diagram. Two-dimensional line drawings are
used to represent very high and low frequencies and amplitudes.

5. SOLUTIONS OF THE LOADED
MODIFIED KDV EQUATION

Assume that Equation (5) has an exact solution in the form of a
traveling wave

u(x, t) = u(ξ ), ξ = px− kt,

the Equation (5) can be converted to an ordinary
differential equation

− ku′ − 12αpu2u′ + p3u′′′ + γ (t)pu(0, t)u′ = 0. (23)

Once integrating (23), setting the constant of integrating to zero,
we obtain

u′′ =
1

p3

(

4αpu3 +
(

k− γ (t)pu(0, t)
)

u
)

. (24)

Following Equation (13), it is easy to deduce from Equation (24)
an expression for the function F(u)

1

2

d
(

F2(u)
)

du
=

1

p3

(

4αpu3 +
(

k− γ (t)pu(0, t)
)

u
)

. (25)

Integrating Equation (25) with respect to u and after the
mathematical manipulations, we have

F2(u) =
1

p3

(

2αpu4 +
(

k− γ (t)pu(0, t)
)

u2
)

F(u) =
u

p

√
2α

√

u2 −
γ (t)pu(0, t)− k

2αp

F(u) =
u

p

√
2α

√

u2 − ϕ(t), (26)

where ϕ(t) = γ (t)pu(0,t)−k
2αp . From Equation (12) and Equation

(26), we deduce that

du

u
√

u2 − ϕ(t)
=

√
2α

p
dξ . (27)

After integrating Equation (27), with zero constant of integration,
we have the following exact solution

u(x, t) =

√

γ (t)pu(0, t)− k

2αp

1

cos
√

γ (t)pu(0,t)−k

p3

(

px− kt
)

. (28)

It is obvious that the function u(0, t) can be easily found based on
expression (28).

We have several types of traveling wave solutions of the loaded
modified KdV equation as follows:

1) When
√

γ (t)pu(0,t)−k

p3
> 0,α > 0, we have the periodic wave

solution

u(x, t) =

√

γ (t)pu(0, t)− k

2αp

1

cos
√

γ (t)pu(0,t)−k

p3

(

px− kt
)

.

2) When
√

γ (t)pu(0,t)−k

p3
< 0,α < 0, we have the solitary wave

solution

u(x, t) =

√

γ (t)pu(0, t)− k

2αp

1

cosh
√

γ (t)pu(0,t)−k

p3

(

px− kt
)

.

Now, by choosing free parameters, we will write the traveling
wave solutions of the loaded modified KdV equation in the
simple form which can be used for the graphical illustrations.

If k = −1, α = 0.5, p = 1, and γ (t) = t, then we have

u(x, t) =

√
tu(0, t)+ 1

cos
√
tu(0, t)+ 1 (x+ t)

, (29)

It is obvious that the function u(0, t) can be easily found based on
expression (29).

If k = 1, α = −0.5, p = 1, and γ (t) = −t, then we have

u(x, t) =

√
tu(0, t)+ 1

cosh
√
tu(0, t)− 1 (x− t)

, (30)

It is obvious that the function u(0, t) can be easily found based on
expression (30).

6. PHYSICAL EXPLANATION OF THE
LOADED MODIFIED KDV EQUATION

We have shown how to find the solutions of the loaded modified
KdV equation in 3D plot formats to make it easier to imagine.
Graphical representation is an effective tool for communication
and it exemplifies evidently the solutions to the problems. The
graphical illustrations of the solutions are depicted in Figures 3,
4. Solitary and periodic wave solutions represent an important
type of solutions for non-linear partial differential equations as
many non-linear partial differential equations have been found
to have a variety of solitary wave solutions. The solitary wave
solutions obtained in this article are encouraging, applicable,
and could be helpful in analyzing long wave propagation on the
surface of a fluid layer under the action of gravity, iron sound
waves in plasma, and vibrations in a non-linear string.
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FIGURE 3 | Periodic wave solution of the loaded modified KdV equation for k = −1, α = 0.5, p = 1, and γ (t) = t.

FIGURE 4 | Solitary wave solution of the loaded modified KdV equation for k = 1, α = −0.5, p = 1, and γ (t) = −t.

7. SOLUTIONS OF THE LOADED
GARDNER EQUATION

Assume that Equation (6) has an exact solution in the form of a
traveling wave

u(x, t) = u(ξ ), ξ = px− kt,

that will convert Equation (6) to an ordinary differential equation

− ku′ − 2αpuu′ − 3βu2u′ + p3u′′′ + γ (t)pu(0, t)u′ = 0. (31)

Integrating once Equation (31) with respect to ξ , and putting the
constant of integration at zero, we have

u′′ =
1

p3

(

βu3 + αpu2 +
(

k− γ (t)pu(0, t)
)

u
)

. (32)

Following Equation (13), it is easy to deduce from Equation (32)
an expression for the function F(u)

1

2

d
(

F2(u)
)

du
=

1

p3

(

βu3 + αpu2 +
(

k− γ (t)pu(0, t)
)

u
)

. (33)

Integrating Equation (33) and setting the constant of integration
to zero yields

F(u) =
u

p

√

λu2 + τu+ µ(t), (34)

where λ = β
2p , τ = 2α

3 ,µ(t) = k−γ (t)pu(0,t)
p . From Equation (12)

and Equation (34), we deduce that

du

u
√

λu2 + τu+ µ(t)
=

1

p
dξ . (35)

After integrating Equation (35), with zero constant of integration,
we have the following exact solution

u(x, t) =
2µ(t)e

−
√

µ(t)
p (px−kt)

(

e
−
√

µ(t)
p (px−kt) − τ

2

)2

− τ
2
2 − λµ(t)

. (36)

It is obvious that the function u(0, t) can be easily found based on
expression (36).
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We have several types of traveling wave solutions of the loaded
Gardner equation as follows:
1) When

√

µ(t) > 0, we have the periodic wave solution

u(x, t) =
2µ(t)e

−
√

µ(t)
p (px−kt)

(

e
−
√

µ(t)
p (px−kt) − τ

2

)2

− τ
2
2 − λµ(t)

.

2) When
√

µ(t) < 0, we have the solitary wave solution

u(x, t) =
2µ(t)e

−
√

µ(t)
p (px−kt)i

(

e
−
√

µ(t)
p (px−kt)i − τ

2

)2

− τ
2
2 − λµ(t)

.

Now, by choosing free parameters, we will write the traveling
wave solutions of the loaded Gardner equation in the simple form
which can be used for the graphical illustrations.

If k = 1, α = 3, p = −1, β = 2, γ (t) = −t, then we have

u(x, t) =
2
(

tu(0, t)− 1
)

e
√
tu(0,t)−1(x+t)

(

e
√
tu(0,t)−1(x+t) − 1

)2
+ tu(0, t)− 1

, (37)

It is obvious that the function u(0, t) can be easily found based on
expression (37).

If k = 1, α = 3, p = −1, β = 2, γ (t) = t, then we have

u(x, t) = −
2
(

tu(0, t)+ 1
)

e
√

tpu(0,t)+1(x+t)i

(

e
√

tpu(0,t)+1(x+t)i − 1
)2

−
(

tu(0, t)+ 1
)

, (38)

It is obvious that the function u(0, t) can be easily found based on
expression (38).

FIGURE 5 | Solitary wave solution of the loaded Gardner equation for k = 1, α = 3, p = −1, β = 2, γ (t) = −t.

FIGURE 6 | Periodic wave solution of the loaded Gardner equation for k = 1, α = 3, p = −1, β = 2, γ (t) = t.
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8. GRAPHICAL REPRESENTATIONS OF
TRAVELING WAVE SOLUTIONS OF THE
LOADED GARDNER EQUATION

This section aims to present graphical illustrations of the
obtained traveling wave solutions of the Gardner equation.
Using mathematical software Matlab, 3D plots of the obtained
solutions have been shown in Figures 5, 6. In the concept of
mathematical physics, a soliton or solitary wave is defined as
a self-reinforcing wave packet that upholds its shape. At the
same time, it propagates at a constant amplitude and velocity.
Solitary waves can be obtained from each traveling wave solution
by setting particular values to its unknown parameters. By
adjusting these parameters, one can get an internal localized
mode. We have presented some graphs of solitary waves
constructed by taking suitable values of the involved unknown
parameters to visualize the underlying mechanism of the original
physical phenomena.

9. CONCLUSION

The functional variable method has been successfully used to
obtain several traveling wave solutions of the loaded KdV, the
loaded modified KdV, and the loaded Gardner equation. The
method does not require linearization of differential equations
because it is a method of directly solving some non-linear
physical models. A wide and general class of modern examples
representing real physical problems from plasma physics, fluid

dynamics, non-linear optics, and non-linear fields of gas
dynamics can be solved easily and elegantly using this method.
The exactness of the obtained results is studied by using the
software Matlab. The received solutions with free parameters
may be important to explain some physical phenomena. The
advantage of the method is to give more solution functions
such as periodic solutions and hyperbolic solutions than other
popular analytical methods. We conclude that the functional
variable method is significant and important for finding the
exact traveling wave solutions of non-linear evolution equations.
The proposed method can be applied to many other non-linear
evolution equations in mathematical physics.
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