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In the typology of coefficients of correlation, we seem to miss such estimators

of correlation as rank–polyserial (RRPS) and rank–polychoric (RRPC) coefficients of

correlation. This article discusses a set of options as RRP, including both RRPS and

RRPC. A new coefficient JTgX based on Jonckheere–Terpstra test statistic is derived,

and it is shown to carry the essence of RRP. Such traditional estimators of correlation as

Goodman–Kruskal gamma (G) and Somers delta (D) and dimension-corrected gamma

(G2) and delta (D2) are shown to have a strict connection to JTgX , and, hence, they also

fulfil the criteria for being relevant options to be taken as RRP. These estimators with a

directional nature suit ordinal-scaled variables as well as an ordinal- vs. interval-scaled

variable. The behaviour of the estimators of RRP is studied within the measurement

modelling settings by using the point-polyserial, coefficient eta, polyserial correlation, and

polychoric correlation coefficients as benchmarks. The statistical properties, differences,

and limitations of the coefficients are discussed.

Keywords: rank–biserial correlation, rank–polyserial correlation, point-polyserial correlation, polyserial

correlation, Goodman–Kruskal G, Somers D, dimension-corrected G, dimension-corrected D

INTRODUCTION

Over the years, scholars have developed many estimators of the association of two variables
X and Y, depending on their scale properties. Usually, these are based either on the
covariance between X and Y (e.g., Pearson’s tetrachoric, biserial, polyserial, point-biserial,
point-polyserial, or polychoric correlation) or the ratio of the favourable combinations and all
combinations (e.g., Cureton’s rank-biserial correlation, Goodman–Kruskal tau, lambda, gamma,
Kendall’s tau family, Pearson’s eta and phi, or Somers’ delta). These coefficients are divided
into coefficients of observed and inferred association (see [1]). The observed association is
estimated for the manifested variables and the inferred association for the latent variables
or for the combination of an observed and a latent variable (see Figure 1). This difference
between the latent and observed variables is discussed first, after which the factual estimators
are discussed.

Statistical Model Latent to Correlations
Assume two continuous variables ξ and η with the unknown joint distribution. For the later use
of variables with different scales related to the proposed rank–polyserial coefficients of correlation,
let these latent variables be manifested as two observed variables g with a narrower scale and X
with a wider scale with xi = 1, . . . , r with distinctive ordinal categories and X with yi = 1, . . . , c
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FIGURE 1 | Two latent variables η and ξ manifested as X and g with ordinal or

interval scales.

distinctive categories with metric properties (ordinal, interval,
pseudo-continuous1 or continuous scales), respectively, and
r<<c. The variable g is related to ξ and X to η with the class
limits or thresholds γi and τj so that

g = xi, if γi−1 ≤ ξ < γi, i = 1, 2, . . . , r (1a)

and

X = yj, if τj−1 ≤ η < τj, j = 1, 2, . . . , c (1b)

For the observed values, x1 < x2 < ... < xr−1 and y1 <

y2 < ... < yr−1, and for convenience, γ0 = τ0 = −∞ and
γr = τc = +∞. The relation of the variables with related symbols
is illustrated in Figure 1 where ngX denotes the number of times
the observation (g, X) is obtained in the sample, and the latent
variables are assumed to be normally distributed.

In the measurement modelling settings used in the numerical
examples, an item g and a score variable X compiled by a

1The contemporary measurement modelling settings result in score variables

that are, factually, categorical ones, either ordinal, interval-scaled, or pseudo-

continuous type, with the limited number of categories (see the discussion in, e.g.,

[2]). To obtain a truly continuous scale necessitates a truly continuous scale in

at least one test item and a very large number of test takers. This kind of scale

always leads to an even distribution because all test takers will get a unique score.

Truly continuous scales are very rare in the testing settings. A raw score forms

usually a categorical (ordinal or interval-scaled) score and the one-parameter item

response theory (IRT) modelling or Rasch modelling forms a pseudo-continuous

score where the number of categories in the score variable equals the number of

the raw score, but the “names” of the categories come from a continuous scale. The

scores by factor analysis and two- or three-parameter IRT models produce scales

with more categories, although these, too, are pseudo-continuous scales where the

number of categories is strictly bound to the number of test takers, the number of

items, and the number of categories in the items.

FIGURE 2 | One latent variable θ manifested in two different scales.

set of test items share the common latent variable θ, such
as achievement in mathematics, which is manifested in two
variables, item g and the test score X. As above, the threshold
values of θ for each category in g and X are denoted by γi
and, respectively. Hence, g with r = 1, . . . , r distinctive ordinal
categories and score variable X with c = 1, . . . , c distinctive
categories with a metric scale are related to θ so that g = xi, if
γi−1 ≤ θ <γi, i = 1, 2, . . . , r and X = yj, if τj−1 ≤ θ < τj, j = 1,
2, . . . , c, and γ0 = τ0 = −∞ and γR = τC = +∞. Often, the
scoring starts from zero, which is illustrated in Figure 2. Then,
the degrees of freedom are df (g)= r – 1 and df (X)= c – 1.

Multitudes of Coefficients of Association
The estimators of the association are really many. Olsson et al.
[1] collected some estimators as a typology, and their work is
elaborated and rethought in what follows (see Table 1).

At the beginning of the twentieth Century, Karl Pearson
initiated and developed many coefficients for the observed
association that still are in our use. The mechanics of the
product-moment correlation coefficient between two observed
variables with a metric scale (PMC; Pearson [4] onwards based
on Bravais [5]) is used in the point–biserial correlation (RPB =

ρgX) between an observed dichotomized or binary g and ametric-
scaled X and in point–polyserial correlation (RPP = ρgX) between
a polytomous ordinal g and a metric-scaled X. These are classic
estimators of the item–score association in the measurement
modelling settings.

Pearson also presented coefficient phi [6] suitable for two
observed nominal-scaled variables, and coefficient eta [7, 8]
suitable for an observed nominal- or ordinal-scaled variable and
a metric variable. Later, such robust, non-parametric coefficients
were developed for the observed association for ordinal-scaled
variables as Goodman’s and Kruskal’s lambda, tau, and gamma
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TABLE 1 | Coefficients of association by the scale properties of the observed variables X and Y.

Scale of Y

Scale of X Dichotomous/nominal

categories

Polytomous/ordinal

categories

Continuous/interval

categories

Dichotomous/nominal

categories

Observed: phi

Inferred: tetrachoricb (a

special case)

Observed: lambdaa, taua

[rank–bichoric]c

(a special case)

Inferred: bichoricb,c

(a special case)

Observed:

etaa, rank–biseriald (a

special case), point–biseriala

Inferred: biserialb (a

special case)

Polytomous/ordinal

categories

Observed: gamma (G)a,

delta (D)a, Tau-a, tau-b,

tau-c

[rank–polychoric]c

Inferred: polychoricb

Observed: etaa

Point–polyseriala

[rank–polyserial]d

inferred: polyserialb

Continuous/interval

categories

Observed and

inferred: product-moment

(PMC)

aThese are directional coefficients.
bTetrachoric and bichoric correlations are special cases of polychoric correlation, and biserial correlation is a special case of polyserial correlation.
cBichoric is a new term to cover estimators of the observed correlation between dichotomous and polytomous variables. It is a special case of polychoric coefficient, which is also to

be invented.
dRank–polyserial correlation discussed in this article is, factually, rank–polychoric correlation in the same manner as the traditional rank–biserial correlation coefficient by Cureton [3] is,

factually, rank–bichoric coefficient. However, there are no technical reasons why the coefficients could not be used with the interval-scaled (or better) variables, although the factual

values in the scale are not used in the analysis.

(G) [9, 10], the family of Kendall’s Tau ([11] onwards) and
the family of Somers’ D [12], including Cureton’s rank-biserial
correlation (RRB) [3, 13, 14]; RRB is a special case of D in the case
of a binary variable g and ordinal-scaled X (see Newson [15]).
This relationship is deepened later.

For the coefficients for inferred association between the latent
variables ξ and η, the most known is the polychoric correlation
(RPC = ρξη) and its special case, tetrachoric correlation suitable
for two latent, dichotomized variables (RTC = ρξη) [16, 17].
Pearson also initiated polyserial correlation (RPS = ρξX) between
a latent variable related to the variable with a shorter scale (ξ)
and observed X, and its special case, the biserial correlation for
the dichotomized ξ and observedX (RBS) [17, 18]. Common to all
these is that we intend to infer what could the correlation between
the variables be if measured in their latent, unobservable form.

When it comes to the factual estimation of the inferred
association of two observed ordinal or interval-scaled variables
with (theoretical, unobservable) latent variables, we have
established routines for estimating RPC (e.g., [19–21]; see also
[22]), as well as RBS and RPS (see [23]). The traditional routines
of calculating the estimates by RBS and RPS led, however, to
practicalities that the estimates reached out of range values (RBS,
RPS>>+1) if the embedded PMC and the item variance are high
to start with (e.g., [24]; see the discussion in, e.g., [25, 26]; see the
computational form in Eq. 34). One of the best alternatives for
RBS and RPS, if not the best, is a coefficient called r-bireg and r-
polyreg correlation (RREG; see [27, 28]; see Eq. 37), which have
behaved quite optimally in simulations (see, e.g., [29]).

Missing Coefficients of Correlation
As highlighted in Table 1, we seem to miss a set of coefficients
for the ordinal variables: rank–polyserial and rank–polychoric

correlation coefficients (RRP) for the observed association
between the ordinal-scaled or metric variables. In the ERIC
database with more than 1.2 million articles and research papers,
we found no hits with the fixed keywords “rank polyserial” or
“rank polychoric” at the time of finalising the article (April 2022).
Nevertheless, some possible options such as RRP are available.
These are discussed in this article.

Research Questions
This article discusses and studies the characteristics of a set
of coefficients of correlation that could be called either rank
polyserial or rank polychoric correlation coefficient. In what
follows, the name rank–polyserial is preferred because of
its connection to rank–biserial (RRB) correlation by Cureton.
Although the options for RRP discussed here are not restricted
to item analysis settings, their characteristics are studied in
the framework of measurement modelling. After all, estimators
of the association have a central role to play, for example, as
the estimators of the item–score association and embedded to
estimators of reliability (see discussion in, e.g., [26, 29, 30]).
This perspective leads us to compare the options of RRP with
its traditional alternatives: RPP = ρgX , often called item–total
correlation (Rit), Henrysson’s corrected item–total correlation
(RPPH) [31], also known as item–rest correlation (Rir), coefficient
eta directed so that X explains the order in g or “g given X”2,

2A specific peculiarity in naming of the directions may be necessary to discuss

here (see also [2, 29, 32]) because the directional estimators are used in what

follows. With the truly directional estimators D and eta, in widely used software

packages as IBM SPSS, SAS, and R-libraries, this specific direction is traditionally

named as “X dependent” (see, e.g., [15, 33–37]). This naming is relevant in the

general linear modelling (GLM) settings related to eta squared where the score

cannot explain, for example, the sex of the test takers (g), and, hence, the score X

must be a dependent variable. However, opposite thinking for the same direction
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that is, η
(

g |X
)

, as well as polyserial and polychoric coefficients
of correlation (RPS, RPC).

After introducing a set of possible coefficients relevant to be
taken as RRP, the following questions are asked:

1) What are the statistical properties of the new coefficients?
2) What are the general characteristics of the new coefficient in

comparison with other classical estimators of association?

Empirical notes of the comparison are given based, first, on a
simple numeric example, to introduce the manual computation;
second, on a larger dataset with 6,932 items from 1,440 tests
from real-world testing settings to study the performance of the
estimators in real-life settings; and third, a simulation dataset
of 22,842 estimates related to a hypothetic design there two
identical items are truncated into two different forms to study
their tendency to give deflated estimates. Characteristics of the
dataset are discussed later with numerical examples.

OPTIONS FOR RANK–POLYSERIAL AND
RANK–POLYCHORIC COEFFICIENTS OF
CORRELATION AND A MEASUREMENT
MODEL FOR ASSESSING THE POSSIBLE
DEFLATION IN THE ESTIMATES

In what follows, first, rank–biserial correlation is discussed. In
Rank–Biserial Correlation andU-Test Statistic Section, Cureton’s
ρRB is shown to be strictly related to the directed Mann–
Whitney U-test statistic ([40]; see [14, 41]), and, hence, second,
this connection is utilised when deriving a new coefficient
of correlation, rank–polyserial correlation in Rank–Polyserial
Correlation and JT-Test Statistic section. Third, another possible
coefficient of rank–polyserial coefficients is introduced in
Identity of JTgX and Somers D, Relation of JTgX and Goodman–
Kruskal G, and Dimension-Corrected G and D as Options for
the Coefficient of Rank–Polyserial Correlation sections where
their connexion to Jonckheere–Terpstra test statistic is shown.
Numerical examples of computing the estimators are given later.

Rank–Biserial Correlation and U-Test
Statistic
Assume two sub-samples i = 0 and j = 1 where i and j could be
males and females or incorrect and correct answers in a test item.
The standard procedure of the U-test produces two statistics,
where U1 refers to the higher values and U2 refers to the lower
values (see the estimation ofU-test in, e.g., [33, 37]). Wendt’s [14]

is used in the measurement modelling settings, where the score variable explains

the behaviour in the test item and the other direction does not make sense (see,

e.g., [38, 39]). This is the case also in the nonparametric testing with U-test or

Jonckheere–Terpstra test, as examples, where the idea is to first order the cases

by X, after which the order of the cases in the item is analyzed. Hence, the score

explains the order of the observations in g, and then, this direction should be

named as “g dependent” or “g given X”. In this article, the notations D(g|X) and

η(g|X) refer to the direction of “g given X,” which, in the widely used statistical

packages, would be named as “X dependent”.

modification of ρRB is

RRB = 1 −
2U

n0n1
(2)

related to the lower of the groups i, j regardless of the statisticsU1

and U2; this is discussed later.
The original idea by Cureton was based on the proportion of

favourable cases (f ) and unfavourable cases (u)

RRB = f − u = f − (1 − f ) = 2f − 1, (3)

and this idea is used later in deriving the corresponding rank–
polyserial correlation. To compute the proportion of favourable
cases, the mechanics and heuristics of U-test statistics could be
used. The heuristic of the observed U statistic is to compute
the number of “favourable” incidents of how many observations
from the subsample i = 0 fall below each observation from the
subsample j = 1 after the variable of interest g is ordered by a
metric variable X. If no tied pairs are obtained, the observed U
statistic related to the sub-population j = 1 (Uobs

gX ) is the sum

of those sums (see, e.g., [33, 37]). With tied cases, Wilcoxon’s
method [42] produces the correct value; this is discussed later.
The maximal value of the U statistic is reached when all cases in
the subsample i = 0 (altogether, n0 cases) are ranked lower than
all cases in subsample j= 1 (altogether, n1 cases):

UMax
gX = n0n1 (4)

In the binary (ordinal) case, the proportion of “favourable”
cases is the ratio of the observed and maximal U statistic
UObs
gX /UMax

gX that varies between 0 and 1. This ratio is rescaled

by multiplying it with 2 and relocated by −1, and we get the
values ranging from −1 to +1 as is standard in coefficients
of correlation:

RRB = 2 ×
UObs
gX

UMax
gX

− 1 = 2 ×
UObs
gX

n0n1
− 1 (5)

Notably, Eq. (5) is identical to Eq. (1), while Wendt’s formula
(Eq. 2) is based on the subsample i = 0, and Eq. (5) is based
on the subsample j = 1. All in all, RRB is the rescaled and
relocated proportion of logically (ascending) located cases within
the categorical (ordinal) variable g after they are ordered by
the metric variable X. Notably, Eq. (5) strictly corresponds with
Cureton’s idea (RRB = 2×f – 1; see Eq. 3). The further the
erroneous locations from the deterministic position are and
the more these erroneous locations are, the lower the value in
the estimate. This is illustrated later with a numerical example.

Rank–Polyserial Correlation and JT-Test
Statistic
Jonckheere–Terpstra test statistic (JT) [43, 44], also known as
Jonckheere trend test [43], with a directional nature generalises
U-test statistic and its heuristic to polytomous ordinal cases (see
[33, 37]). This connection is used in proposing a new estimator
of correlation, carrying characteristics relevant to RRP.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 June 2022 | Volume 8 | Article 914932

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Metsämuuronen Rank-Polyserial Correlation

Assume an ordinal variable g with observed categories r = i,
j, and i < j and the metric variable X. Then, ni and nj are the
numbers of cases in the subsamples i and j in variable g. In the
5-point Likert scale, as an example, one pair of subsamples is i
= 1 and j = 4. In general, we have r(r − 1)/2 possible values for
the UObs

gXij statistics. In the case of the 5-point Likert scale, as an

example, we obtain 5×4/2 = 10 values:U12,U13,U14,U15,U23,
U24, U25, U34, U35, and U45. In the computational procedure in
what follows, the sum of the ranks in the higher of the subsamples

i, j,Wj =

n1
∑

j=1

Rj is of interest.

In the same manner, as with RRB, the essence of the new
coefficient is the ratio of the observed and maximal JT statistics
(JTObs

gX and JTMax
gX , respectively). JTObs

gX can be expressed by using

the U statistic:

JTObs
gX =

r
∑

i<j

UObs
gXij (6)

(see [33, 37]) where UObs
gXij refers to the observed U statistics

related to all the pairs of subsamples i and j. This statistic indicates
the number of “favourable” incidents where, after ordering by X,
the cases with a higher value in X have a higher value also in
g. The observed U statistic for the observed JT statistic can be
computed by using Wilcoxon’sW statistic [42]:

UObs
gX = Wj −

nj(nj + 1)

2
(7)

whereWj is the sum of the ranks of the higher of the subsamples
i and j. The maximal value for each U statistic is reached when
all the test-takers in subsample j (altogether, nj cases) are ranked
higher than all test-takers in the subsample i (altogether, ni cases).
Hence, with each pair of subsamples,

UMax
gXij = ninj, (8)

and the maximal value of the observed JT statistic is the sum of
these values

JTMax
gX =

r
∑

i<j

UMax
gXij =

r
∑

i<j

ninj (9)

Because Eqs. (6), (7), (8), and (9), paralleled with the
rank–polyserial correlation, a new coefficient rank–polyserial
correlation is defined as:

JTgX = RRP = 2 ×
JTObs

gX

JTMax
gX

− 1 = 2 ×
JTObs

gX

r
∑

i<j
ninj

− 1

= 2 ×

r
∑

j = 1

[

Wj − nj(nj + 1)/2
]

r
∑

i<j
ninj

− 1 (10)

where r refers to the number of categories in the variable with
a narrower scale (g), j refers to the higher number of the
subsamples i and j in g, and Wj is the sum of the ranks in the
higher number of the subsamples i and j.

The core of the coefficient JTgX is the probability statistics

of the ratio of observed and maximal JT statistic JTObs
gX /JTMax

gX ,

that is, the proportion of “favourable” cases in the spirit of
Cureton that varies between 0 and 1. This ratio is rescaled by
multiplying it by 2 and relocated by −1 to the same scale as
the Pearson correlation. This coefficient could be called either
rank–polyserial correlation as a legacy to Cureton’s rank–biserial
correlation or rank–polychoric coefficient as a robust counterpart
to the classic polychoric correlation; here, the former is used, but
an abbreviation RRP is used to keep both interpretations open.

The value JTgX = +1 indicates the positive deterministic
pattern in g; after being ordered by X, all the observations in
the higher subsample(s) j are ordered higher than those in the
lower subsample(s) i. By using the concept of “concordant pairs”
familiar from many robust coefficients of association such as
Somers D and Goodman–Kruskal G, JTgX = +1 refers to the
situation where all the pairs of observations are concordant. The
further the erroneous locations from the deterministic position
are and the more these erroneous locations are, the closer is
the magnitude in JTgX to zero. The value JTgX = 0 refers to a
situation where the observations are randomly spread in variable
g after being ordered by X. The value JTgX = −1 indicates the
ultimate situation that all the cases in the lower subsample(s) i
would be ranked higher than those in the higher subsample(s)
j. By using the concept “discordant pairs,” the last refers to the
situation in which all the pairs of observations are discordant.
The interpretation of the magnitude of the estimates by JTgX is
the same as that in RPP (ρgX), with the note that, in real-life
datasets, RPP cannot reach perfect +1 or −1 (see e.g., [29, 45])
while JTgX can.

In the specific case that there are only two categories in g, for
example, when only two categories are obtained in a Likert type
of scale (see later the numerical example) or in a binary case,UObs

gXij

includes only oneU statistic,Uij, and JT
Obs
gX is reduced to ordinary

U-test statistic related to the higher number of the subsamples
i, j. Hence, because of Eqs. (10), (2), (4), (5), in the binary or
dichotomous case, RRB is a special case of JTgX :

JTgX = 2 ×

r
∑

i<j
UObs
gXij

r
∑

i<j
UMax
gXij

− 1 = 2 ×
UObs
gXij

ninj
− 1 = RRB (11)

Identity of JTgX and Somers D
JTgX has the identity of Somers’ D directed, so that “g given X,”
that is, D

(

g
∣

∣X
)

, henceforth, plainly D. Assume two variables,
ordinal g with the subsamples i < r with observed values xi and
ordinal X with subsamples with observed values yj sampled from
the same bivariate distribution forming an r× c cross-tabulation.
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The number of cases in the subsamples related to g is ni and

N =

r
∑

i = 1

ni (12)

The computational form of D directed so that “g given X” can be
expressed as

D
(

g
∣

∣X
)

=
2 (P − Q)

N2 −
r
∑

i=1

(

ni2
)

(13)

(e.g., [32, 33, 37]) where P is the sum of the concordant pairs of
two observations xi and xj, and, correspondingly, yi and yj, andQ
is the sum of the discordant pairs. Because of Eq. (12),

N2 −

r
∑

i = 1

(

ni
2
)

= 2

r
∑

i<j

ninj (14)

(see [32]). Hence, because of Eqs. (13) and (14), D can be
rewritten as

D
(

g
∣

∣X
)

=
2 (P − Q)

2
r
∑

i<j
ninj

=
P − Q
r
∑

i<j
ninj

(15)

When all the pairs are concordant, Q equals 0, and

D
(

g
∣

∣X
)

=
PMax

r
∑

i<j
ninj

= 1 (16)

and, consequently,

PMax =

r
∑

i<j

ninj (17)

The statistic Q is strictly related to PMax:

Q = PMax − P (18)

Hence, because of Eqs. (17) and (18),

Q =

r
∑

i<j

ninj − P, (19)

and D
(

g
∣

∣X
)

can be rewritten as

D
(

g
∣

∣X
)

=
P − Q
r
∑

i<j
ninj

=

P −
r
∑

i<j
ninj + P

r
∑

i<j
ninj

=

2P −
r
∑

i<j
ninj

r
∑

i<j
ninj

= 2×
P

r
∑

i<j
ninj

− 1 (20)

Notably, from the JT statistic viewpoint, the observed JT statistic
is the number of concordant pairs in the positive direction:

JTObs
gX = P (21)

Because of Eqs. (10), (21), and (20), JTgX can be expressed as

JTgX = 2×
JTObs

gX

r
∑

i<j
ninj

− 1 = 2×
P

r
∑

i<j
ninj

− 1 = D
(

g
∣

∣X
)

(22)

Hence, because both JTgX(= RRP) and Cureton’s (and Glass’ and
Wendt’s) RRB is a special case of Somers’ D (of the derivation
for RRB, see [15]), these coefficients form a family related to
Somers’ D (X|Y); see other coefficients and test statistics related
to the same family in, e.g., Metsämuuronen [32]. Although JTgX

is a specific case of Somers’ D
(

g
∣

∣X
)

, the advantage over D in
measurement modelling settings is that it leads us strictly to the
correct form of the three alternatives produced by the standard
procedures of calculating Somers’ D.

Because JTgX has the identity of D, it carries the same
advantages and weaknesses asD does. One of the advances is that
the sampling variance and asymptotic standard errors of JTgX are
known (see, e.g., [32, 46, 47]; see Supplementary Appendix 1).
One of the weaknesses of D is that it tends to underestimate
item–score association in an obvious manner when the number
of categories exceeds 3 (see [25, 48, 49]). This characteristic is
discussed later.

Relation of JTgX and Goodman–Kruskal G
Although it is not a generally known fact, Goodman–Kruskal
gamma (G) is a directional measure in the same direction as
D
(

g
∣

∣X
)

(see the proof in [32]), although, usually, G is taken as a
symmetric measure (see, e.g., [50]) because it produces only one
estimate of correlation. However, if there are no tied pairs in the
dataset, as is the case when the metric variable has no tied cases
(see other cases in [32]), G equals D

(

g
∣

∣X
)

and not D
(

X| g
)

nor
D (Symmetric).

Except for the special case of no tied cases, the estimates by G
are more liberal than those by D. The main difference between
G and D is how they treat the tied pairs. By using the concepts
of concordant and discordant pairs (P and Q) as with D, G is
computed by

G =
2 × (P − Q)

2 × (P + Q)
=

(P − Q)

(P + Q)
(23)

The number of all possible pairs can be expressed as

Dg = N2 −

r
∑

i = 1

(

ni
2
)

= 2 ×
(

P + Tg

)

+ 2 ×
(

Q + Tg

)

= 2 × (P + Q) + 4Tg (24)

(see, e.g., [32]) where 4Tg refers to the number of tied pairs, that
is, the pairs where the direction is not known, and the magnitude
of P, Q, and Tg is thought double-sized than the simplified
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formulae indicate3. In computing the probability by G, the tied
pairs are omitted and, hence, the number of pairs used in the
estimation is

2 × (P + Q) =

[

N2 −

r
∑

i = 1

(

ni
2
)

]

− 4Tg (25)

Then, because of Eq. (14) and because Eq. (25), Q =
R
∑

l<h

nlnh −

(

P + 2Tg

)

, and

G =
2 × (P − Q)

2 × (P + Q)
=

2 × (P − Q)
[

N2 −
r
∑

i = 1

(

ni2
)

]

− 4Tg

=
2 × (P − Q)

2
r
∑

l<h

nlnh − 4Tg

=
2 × P

R
∑

l<h

nlnh − 2Tg

− 1 (26)

and, because of Eq. (21),

2 × P = 2 × JTObs
gX (27)

(see footnote 3 discussion of the double content of P and,
consequently, of Tg). Then,

G =
P − Q

P + Q
= 2 ×

JTObs
gX

r
∑

l<h

nlnh − 2Tg

− 1 (28)

[32]. Hence, in G, the core is the probability measure

JTObs
gX /

(

r
∑

l<h

nlnh − 2Tg

)

= JTObs
gX /(P + Q) referring to the

proportion of the “favourable” cases of logically (ascending)
ordered observations in g after they are ordered by X while
considering only those cases for which we know the order where
the pairs are omitted, of which the direction is not known.
Notably, the same logic of computing probability is used in such
famous procedures as the sign test (traced to [52]; see [33]) and
Wilcoxon signed-rank test [42]. In the specific case that there are
no tied pairs, Tg = 0 and G= D= JTgX .

Simulations within the measurement modelling settings have
shown that coefficients G and D have a major deficiency to
underestimate the association between an item and a score in an
obvious manner, with polytomous items having more than three
categories (in D) or four categories (in G) (see Metsämuuronen
[25, 45, 49]; see also [48])4. To overcome this obvious deficiency,

3In the simplified notation of P and Q, they are usually seen without doubling.

Technically though, P and Q are always calculated two times (see, e.g., [32, 51]).

Hence, in the form of D, the doubling is seen strictly in the form (Eq. 13), but, in

the form on G, both P and Q need to be thought doubled. Hence, 2× in Eqs. (23)

and (24).
4This character is typical for the measurement modelling setting, but it is not

relevant in general. Both G and D estimate probability, and this they make without

underestimation. However, probability with a linear nature tends to give lower

values of association than covariance with a trigonometric nature when two

variables are continuous (see discussion in, e.g., [29, 34, 53]). This phenomenon

is reflected in the item–score association with polytomous items.

two related estimators have been suggested: dimension-corrected
G and dimension-corrected D.

Dimension-Corrected G and D as Options
for the Coefficient of Rank–Polyserial
Correlation
Because of the obvious conservative nature of G and D with
polytomous items in the measurement settings with wide-ish
scales, Metsämuuronen [45, 49] proposed two new estimators,
dimension-corrected G and D (G2 and D2) specific for the
measurement modelling settings5. The computational form ofG2

is [45],

G2 = G ×
(

1 +
[

1 − abs (G)
]

× A
)

(29)

whereG is the observed value ofG, abs(G) is the absolute value of
G, and

A =

[

df
(

g
)

− 1

df
(

g
)

]3

, (30)

where df (g) = (number of categories in variable g−1).
Correspondingly, the computational form of D2 is

D2 = D ×
(

1 +
[

1 − abs(D)
]

× A
)

(31)

(originally, in [49], corrected [45]) where D is the observed value
of D

(

g |X
)

, and A is as in Eq. (30). Sampling variances and
asymptotic standard errors of these estimators are discussed in
Metsämuuronen [45] (see also Supplementary Appendix 1).

Inherited from G and D, G2 and D2 are based on probability,
but, because of the third-order element A, they are described
as semi-trigonometric in nature (see [29]). Coefficients G2 and
D2 can be used both with binary and polytomous items, and,
when D = G = 1 and with binary items, G2 = G and D2=

D. In simulations [29, 45], G2 tends to give estimates with a
magnitude of close to those by RPC. Of G2 and D2, D2 gives more
conservative estimates. This is inherited from the behaviour of D
towards G.

To condense the discussion by far, on the one hand, the new
coefficient of correlation JTgX can be taken as a coefficient of
rank–polyserial correlation with a directional nature of the same
manner and same direction as D, G, eta, and RPP are directed6.
JTgX is the general case for the classic rank–biserial coefficient
of correlation RRB. On the other hand, JTgX has the identity of
Somers’ D directed so that “g given X” (or “X dependent” in
the GLM settings), and, in the case that there are no tied pairs
in the dataset, JTgX also has the identity of Goodman–Kruskal

5These are specific coefficients for the measurement modelling settings because

they are developed in the settings related to measurement modelling settings, and

they are not studied in other contexts. They may be applicable in general settings,

too, but more studies are needed to confirm or reject this.
6The directionality of the point–biserial and point–polyserial correlation is

generally not known. However, this is obvious because of the relation between

PMC and coefficient eta. In the binary settings, RPB equals η(g|X) and not η(X|g).

In polytomous settings, RPP follows closely the direction of η(g|X) and not that of

η(X|g) (see [2]).
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G. The statistical properties of JTgX are identical to those by D.
Because the underlying coefficientsG andD can be taken as rank–
polyserial coefficients of correlations, G2 and D2 could be taken
dimension-corrected rank–polyserial coefficients of correlations.

NUMERICAL EXAMPLES OF COMPUTING
DIFFERENT OPTIONS FOR RRP AND
RELATED BENCHMARKING
COEFFICIENTS

In what follows, the behaviour of JTgX = D, G, G2, and D2 is
studied in comparison with relevant benchmarking estimators
in the context of measurement modelling: item–total correlation
(Rit = RPP), Henrysson’s item–rest correlation (Rir = RPPH),
coefficient eta, polyserial correlation (RPS), and polychoric
correlation (RPC). The computational forms of these estimators
are discussed with numerical examples. First, a simple example is
given with which the computation of the estimates is discussed
in Section Simple Comparison of the Options for RRP. Second, a
published dataset of 6,932 polytomous items from a real-world
test is used to study the differences between the estimators in
Section Comparison of the Estimates With a Larger Dataset.
Third, their tendency to resist deflation in the estimates is
discussed in Section Deflation in the Estimates.

Simple Comparison of the Options for RRP
Assume a simple dataset with four items with a Likert type of
scale and the score X as in Table 2. Two of the items (g1 and
g2) represent a deterministically discriminating response pattern,
while two others (g3 and g4) include stochastic error either in
minor extent (g3) or wider extent (g4).

Item g1 represents items with an extreme “difficulty” level
where we expect to see obvious underestimation by Rit, Rir, and
coefficient eta (see [2]). With these kinds of items, G and D, and
consequently, JTgX detect the deterministic pattern as G = D =

JTgX = 1. Item g2 is a deterministic one, but it includes a minor
tie in X, and, hence, the estimate by D = JTgX is expected to
give a slightly more conservative estimate of the association in
comparison with that by G. Items g3 and g4 have both tied cases
and error in the order, and, hence, both G and D are expected to
give estimates with the magnitude of D̂ < Ĝ < 1. In all cases, the
estimates by G2 and D2 are expected to be higher than those by G
and D.

The manual calculation of the estimates of the coefficients is
discussed by using item g4 as an example. The statistics related
to Wilcoxon’s statistics are seen in Table 3 and the contingency
table of g4 × X in Table 4.

JTgX
By using the heuristics of U-test statistic, assuming no ties, the
sum of the statistics Ug4Xij equals 49 and the ties add 1.5, totaling

to JTObs
gX = 50.5 (Table 2). The same is obtained strictly by using

the routine ofWilcoxon (Eq. 7; seeTable 3). Themaximal value is

JTMax
g4X

=
r
∑

i<j
ninj = 57 (Eq. 9; Table 2). This can be obtained also

by using Eq. (14) and Table 4: the maximum value is JTMax
gX =

1
2

[

N2 −
r
∑

i=1

(

ni
2
)

]

= 1
2 × [144− (4+ 4+ 9+ 9+ 4)] =

114/2 = 57. Then, JTg4X = 2 ×
(

JTObs
g4X

/JTMax
g4X

)

− 1 = 2 ×

(50.5/57 )−1= 0.772. The core in the estimator, JTObs
g4X

/JTMax
g4X

=

50.5/57 = 0.886 indicates that 88.6% of the observations in item
g4 are logically (ascending) located after they are ordered by the
score X.

For Table 2, the estimates by JTgX were computed manually
by using the information from Table 2. However, in real-life
settings, JTgX has the identity of D(g|X). Then, it is easy to use
traditional software packages, such as IBM SPSS, Stata, SAS, or R-
packages for calculation. For instance, with IBM SPSS, the syntax
for D is CROSSTABS /TABLES = item BY Score/STATISTICS
= D. In Stata, a module by Newson [54] is available. In SAS,
the command PROC FREQ provides D by specifying the TEST
statement by D, SMDC and R options. Correspondingly, in R,
D can be computed by Somers Delta (x, y = NULL, direction =

c(“row,” “column”), conf.level=NA, ...) (see https://rdrr.io/cran/
DescTools/man/). From the output, the option “X dependent”
is selected.

D and G
When it comes to coefficients D and G, statistics P and Q are
needed for the manual calculation. These can be computed by
using a contingency table (Table 4). By using the strategy of
“count all entries that lie to the ‘Southeast’ of the particular entry”
(see the manual calculation, e.g., [33, 37]), the number of pairs in
the same direction is P= (2×) 49. Parallel, the number of pairs in
the opposite directions is counted by using the strategy of “count
all entries that lie to the ‘Southwest’ of the particular entry”: Q =

(2 ×) 5. Consequently, 2 × (P – Q) = 2 × 44 and 2 × (P + Q)
= 2 × 54. The number of all pairs in the direction of “g given X”
is Dg = 122 −

(

22 + 22 + 32 + 32 + 22
)

= 144 − 30 = 114.
Then, G = 44/54 = 0.815 and D(g4|X) = (2 × 44)/114 =

0.772. Notably, the latter equals the estimate by JTg4X because of
Eq. (22).

For Table 2, the estimates by D and G were calculated
manually based on contingency tables. In traditional software
packages, such as IBM SPSS, for instance, the syntax for
G is CROSSTABS/TABLES = item BY Score/STATISTICS =

GAMMA and the syntax for D is CROSSTABS/TABLES = item
BY Score/STATISTICS = D. In Stata, the command tabulate g X
[if] [in] [weight] [,gamma] produces G (see [55]), and Newson’s
module [54] produces D. In SAS, the command PROC FREQ
providesG andD by specifying the TEST statement by GAMMA,
D, SMDCR options. Correspondingly, by using R, G can be
computed by GoodmanKruskalGamma (x, y = NULL, conf.level
= NA, ...) and D by Somers Delta (x, y = NULL, direction = c
(“row,” “column”), conf.level = NA, ...) (see https://rdrr.io/cran/
DescTools/man/). From the output related to D, the option “X
dependent” is selected.

D2 and G2

The dimension-corrected rank–polyserial coefficients D2 and G2

are based on the observed values of D and G and knowledge of
the number of categories in the item. In the case of g4, df (g) =
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TABLE 2 | A hypothetic dataset to illustrate the computing of coefficients of rank–polyserial correlation.

ID g1 g2 g3 g4 X Uij g1 g2 g3 g4 ninj g1 g2 g3 g4

1 1 1 1 1 4 U12 0 8 4 4 n1×n2 0 8 4 4

2 1 1 1 1 4 U13 0 8 4 6 n1×n3 0 8 4 6

3 1 1 1 2 5 U14 0 8 16 6 n1×n4 0 8 16 6

4 1 1 1 3 6 U15 11 8 8 4 n1×n5 11 8 8 4

5 1 1 2 4 8 U23 0 1 1 5 n2×n3 0 1 1 6

6 1 1 4 2 8 U24 0 1 4 5 n2×n4 0 1 4 6

7 1 1 3 4 9 U25 0 1 2 4 n2×n5 0 1 2 4

8 1 1 4 3 9 U34 0 1 3 4 n3×n4 0 1 4 9

9 1 2 4 4 11 U35 0 1 2 5 n3×n5 0 1 2 6

10 1 3 4 5 13 U45 0 1 8 6 n4×n5 0 1 8 6

11 1 4 5 3 13 SUM 11 38 52 49 SUM 11 38 53 57

12 5 5 5 5 20 effect of ties 0 −0,5 −1,5 +1,5

SUM(Uij) 11 38 52 49

effect of ties 0 −0,5 −1,5 +1,5

JTObs = SUM(Uj) – ties 11 37,5 50.5 50,5

JTMax = SUM(ni×nj ) 11 38 53 57

JTgX = 2×JTObs/JTMax – 1 1 0.974 0.906 0.772

P 11 37 49 49

Q 0 0 1 5

D 1 0.974 0.906 0.772

G 1 1 0.960 0.815

D2 1 0.985 0.942 0.846

G2 1 1 0.976 0.879

Rit = RPP 0.740 0.904 0.854 0.799

Rir = RPPH 0.589 0.814 0.694 0.639

Eta 0.740 0.929 0.906 0.866

RREG 0.879 0.991 0.909 0.487

RPC (Rit restricted < 0.99999999) 1.000 1.000 0.980 0.897

TABLE 3 | Rank-orders (R) in different pairs of i, j between variables g4 and X; the ranks of the higher sub-population j are highlighted.

g4 X R12 R13 R14 R15 R23 R24 R25 R34 R35 R45

1 4 1,5 1,5 1,5 1,5

1 4 1,5 1,5 1,5 1,5

2 5 3 1 1 1

3 6 3 2 1 1

4 8 3 2,5 2 1

2 8 4 3 2,5 2

4 9 4 4 3,5 2

3 9 4 4 3,5 2

4 11 5 5 5 3

5 13 3 3 3,5 4

3 13 5 5 6 3,5

5 20 4 4 5 5

Wj = SUM(Rj) 7 12 12 7 11 11,5 7 10,5 8,5 9

nj 2 3 3 2 3 3 2 3 2 2

nj(nj+1)/2 3 6 6 3 6 6 3 6 3 3 SUM

Wj–nj(nj+1)/2 4 6 6 4 5 5,5 4 4,5 5,5 6 50,5
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TABLE 4 | Crosstable of variables g4 and X.

X

4 5 6 8 9 11 13 20 Total n2

g4 1 2 0 0 0 0 0 0 0 2 4

2 0 1 0 1 0 0 0 0 2 4

3 0 0 1 0 1 0 1 0 3 9

4 0 0 0 1 1 1 0 0 3 9

5 0 0 0 0 0 0 1 1 2 4

Total 2 1 1 2 2 1 2 1 12 144

5–1 = 4. For the calculation, A = (3/4)3 = 0.421. Then, by using
Eq. (31), an estimate of item–score association is D2

(

g4 |X
)

=

D2 = 0.772× [1+ (1–0.772)× 0.421]= 0.846 and, by using Eq.
(29), G2

(

g4 |X
)

= G2 = 0.815× [1+ (1–0.815)× 0.421]= 0.879.
For Table 2, these were computed manually by using traditional
spreadsheet software.

Rit and Rir
When it comes to the benchmarking estimators, the mechanics
of PMC are used in the point–polyserial correlation, that is, in
item-total correlation for observed association of the item and
the score:

ρPP = ρgX = Rit =
σgX

σgσX
(32)

and in Henrysson’s item–the rest correlation

ρPPH = ρgP = Rir =
σgP

σgσP
(33)

where σgX , σg , and σX are covariation and standard deviations of
the item (g) and the score (X), and σgP are the covariation and
standard deviation of the item g and modified score P where the
item in interest has been omitted from the compilation.

For item g4, the estimates are Rit = 0.799 and Rir = 0.639. In
the real-life testing settings, the magnitude of the estimates by Rir
is always lower than those by Rit (see algebraic reasons in, e.g.,
[56]), and both estimators underestimate item–score association
when the scales are not equal (e.g., [29]) as is the case with g4
and X. From this viewpoint, it is known that in the hypothetical
example in Table 2, D needs to underestimate the association
in an obvious manner as 0.772 < 0.799; this type of obvious
underestimation was the reason why the dimension-corrected
estimators D2 and G2 were developed (see the discussion in
[25, 45, 49]). In the case of g4, the estimate by G (0.815) exceeds
the one by Rit. However, this is not true in general; when the
number of categories in an item exceeds 4 as here, in real-
life testing settings, G tends to give estimates that are lower in
magnitude than those by Rit (see [29]; see also later Figure 3).

For Table 2, the estimates by Rit and Rit were computed
manually by using standard spreadsheet software. Both indices
are defaults for the classical item analysis in the widely used
general software packages, such as IBM SPSS [50], SAS (e.g.,
[57]), STATA [55], and in some libraries of R (e.g., [58, 59]).

FIGURE 3 | Average estimates by the number of categories in the item (k

=14,888 items).

Eta
Coefficient eta is a close sibling to Rit; with binary and
dichotomous items, eta= Rit (see [60, 61]), and with polytomous
items Rit follows closely the direction of η(g|X), henceforth,
just eta, usually denoted as “X dependent”—which is the same
direction as in D(g|X)—and not the opposite direction η(X|g)
(see [2]). This is its traditional direction in settings related to
GLM (“X dependent”). One of the advances of eta over Rit is that,
unlike Rit, eta can detect the possible non-linear pattern in the
item, and, hence, in the polytomous settings, the magnitudes of
the estimates by eta are always somewhat higher than those by Rit
(see the algebraic reasons in, for example [2]).

The traditional form for is

η
(

g |X
)

=
√

η2g|X =

√

SSbetween
(

g |X
)

SStotal
(

g |X
)

=

√

√

√

√

√

√

√

√

r
∑

g = 1
ng
(

X̄Xg − GMX

)2

r
∑

i = 1

c
∑

j=1

(

xij − GMX

)2
(34)

(e.g., [62]) where X̄Xg =
ng
∑

j=1

yj
ng

refers to the means of X in

different categories in g, and GMx =
R
∑

g=1
ngX̄Xg/

R
∑

g=1
ng is the

grand mean of X. However, Metsämuuronen [2] suggests that
a better form—also considering the possible negative values of
eta—would be

η
(

g |X
)

= sign (RPP) ×

√

SSbetween
(

g |X
)

SStotal
(

g |X
) (35)

This is a relevant modification because using variances in the
estimation of eta automatically leads to a positive outcome even
if the true association would be negative.
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In Table 2, the identity of eta and Rit is seen in g1(0.740),
which is, factually, a dichotomous item because only two
categories are obtained. In the case of g4, the magnitude of the
estimate by eta is notably higher [η

(

g
∣

∣X
)

= 0.866] than that by
Rit (ρgX= 0.799).

For Table 2, the estimates by eta were computed by using
IBM SPSS software by using the syntax Crosstabs/Tables = g by
X/Statistics = ETA. In Stata, the positive values of eta can be
obtained by taking the square root of eta squared obtained by
the command estatesize after the ANOVA command. In SAS,
the positive values of eta can be found by taking the square root
of etasquared after PROC GLM with the option EFFECTSIZE.
Correspondingly, by using R, eta is computed by eta (x, y, breaks
= NULL, na.rm = FALSE) (see https://rdrr.io/cran/ryouready/
man/eta.html).

RPS

The parametric polyserial coefficients of correlations are the
natural counterparts for the robust rank–polyserial coefficients
of correlation. While the previous estimators are intended to
estimate observed correlation, RPS is intended to estimate the
inferred correlation between a latent g and observed X. In the
early years of item analysis, the traditional RPS was the most used
estimator of the item–score association (see [24]). However, from
early on, it was known that the traditional way of estimating
RPS leads to obvious overestimation with out-of-range values if
the embedded ρgX and σg are high to start with (RPS>>1.000).
During the years, Clemans [24], Turnbull [63], Brogden [64], and
Henrysson [65], as examples, offered solutions to the challenge
of overestimation (see the history in [28]). By far, the most
promising option in this family is a coefficient called r-polyreg
correlation (RREG; see [27, 28]), which produces estimates that do
not exceed 1, nor does it rely on bivariate normality assumptions.
It has shown to be very resistant to deflation, although, with
short scales in X, it seems to give underestimations (see [29];
see also later Section Comparison of the Estimates With a
Larger Dataset).

For the general interest, the traditional estimates by RPS were
computed for the items in Table 2, although they are not seen in
the table. The estimates are ρPS_g1 = 1.334, ρPS_g2 = 1.120, ρPS_g3
= 0.945, and ρPS_g4 = 0.841. The two first ones are, obviously,
out of range in magnitude, and there is a reasonable doubt also
with the other estimates. In Table 2, the estimates by RREG are
seen. By using RREG in estimating the inferred association related
to the item g1, the estimates are notably higher in magnitude
(0.879) than those by Rit, Rir, and eta (≤0.740), although the
magnitude is far lower than those by G, G2, and RPC (1.000),
which are known to detect the deterministic pattern accurately
(see [29, 45]). With g2, also with a deterministic pattern, the
estimate by RREG (0.991) is very close to those by G, G2, and
RPC (1.000). With g3, the estimate by RREG (0.909) is close to that
by D (0.906) but lower than those by G (0.960) and RPC (0.980).
Notably, with item g4, RREG seems to underestimate association
in an obvious manner (0.487).

The traditional RPS can be obtained by the two-step procedure
introduced by Olsson et al. ([1], see also [23]) where, in the
first phase, the marginal proportions of the categorical ordinal

variable (pj) are used to obtain the threshold estimates (γj), and
these are used, in the second phase, to give estimates by RPS. The
estimate by RPS can be obtained by

ρPS =
ρgX × σg

r
∑

j=1
8
(

γj
) (

gj+1 − gj
)

(36)

(e.g., [23]) where ρgX is the point–polyserial correlation between
g and X, σg is the standard deviation of the categorical ordinal
variable, γj = 8−1

(

pj
)

is the inverse of the standard normal

density, 8
(

γj
)

= (2π)−1/2 exp
(

−γ 2/2
)

is the standard normal
density, and gj is the category in the ordinal variable g. The last is
not needed when all the categories are met as they are in items g2
– g4; in these cases, gj+1-gj = 1. However, in item g1, gj+1 – gj =
5 – 1= 4.

For computing RREG, a statistic βi is needed. This is the
slope parameter of the probit regression model P

(

xi ≤ 1
∣

∣y
)

=

8
(

ai − βiy
)

where Φ is the standard normal cumulative
distribution function and ai and βi are intercept and slope
parameters. The β-value can be computed, for example, in IBM
SPSS software using the syntax

Genlin g(Order = Ascending) With X/Model X

Distribution = Multinomial

Link = Cumprobit/

Criteria Method = Fisher/Print Solution.

After the estimates of β and the population variance of the
score variable X (β̂ and σ̂ 2

X , respectively) are computed, RREG is
estimated as

ρREG =
β̂σ̂X

√

β̂2σ̂ 2
X + 1

(37)

For Table 2, the β values were computed by using SPSS software,
and the estimates of σ 2

X and RREG were computed manually by
using a spreadsheet software package. Note that the standard
outputs of generally known software packages produce, usually,
the sample variances2X . This is transformed into the “population”
variance by multiplying the outcome with (N − 1)/N. If using
MS-Excel, as an example, we can select whether the sample
variance (= VAR.S) or population variance (= VAR.P) is used.
The latter is used in Table 2.

RPC

As RBS above, also the parametric coefficient of correlation is
a natural counterpart for the nonparametric or robust rank–
polyserial (or polychoric) coefficients of correlation. RPC differs
from the previous ones in that no closed-form expression
for the relation between RPP and RPC is available. Instead,
several alternatives for the process to obtain the estimates are
suggested, which produce slightly different estimates (see [23]).
As an estimator of correlation, RPC is advantageous over RPP,
specifically, with ordinal datasets (e.g., [66–69]), and it is very
resistant against several sources of deflation (see [29, 45]).
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Also, it is robust in accurate reproduction of the measurement
models with unbiased standard errors even in small sample sizes
(e.g., [66–68]).

One practical challenge in from the item analysis viewpoint
is that we do not know what kind of composite the item
discrimination refers to; the estimates refer to hypothetical
composites to the research is not privy to (see [25, 70]). Also, the
computational challenges are well-known; the estimation needs
complicated procedures (e.g., [71]). Additionally, the established
routines for estimating ρPC (e.g., [19–22]) cannot reach the
extreme values +1 and −1 because the deterministic patterns
lead to computational problems. The last challenge is easy to
solve though (see below the restrictions used in estimation).

In reference to Table 2, RPC accurately detects the
deterministic patterns in items g1 and g2. This is expected
by its behaviour in simulations (e.g., [29, 45]). Also, the
magnitudes of the estimates in g3 and g4 (0.980 and 0.897,
respectively) seem to be quite close to those by G2 (0.976 and
0.879, respectively). Hence, if the estimates by RPC are taken as
the closest approximation of the latent variables manifested in
ordinal or interval-scaled form, it seems that, of the options for
rank–polyserial coefficients of correlation, G2 could be taken a
quite close match to RPC. In-depth studies are needed to confirm
this. Some light on this matter is given in the next section, with a
comparison with a larger dataset.

In IBM SPSS [50], the syntax for RPC is not available,
although some macros have been published (e.g., [72]). In SAS,
the command PROC CORR provides RPC. Correspondingly,
in R, RPC can be computed by CorPolychor (x, y, ML =

FALSE, control = list(), std.err = FALSE, maxcor = 0.9999)##
S3 method for class “CorPolychor” print (x, digits = max
(3, getOption (“digits”)-3),...) (see https://rdrr.io/cran/DescTools/
man/CorPolychor.html). In computing the estimates in Table 2,
the two-step estimator by Martinson and Hamdan [20] was used.
Simplified by Zaionts [73], the task is to find an estimate of RPP =
ρgX , which maximises the log-likelihood function LL, where

LL =

r
∑

g = 1

c
∑

X = 1

ngXLN
[

P
(

g = i,X = j
)]

(38)

In the first step, the threshold coefficients γi and τj are estimated
for both g and X, and in the second step by iteration, we find
RPP that maximises LL. The estimates were computed manually
by modifying Zaionts’ [73] procedure for MS-Excel: Rit was
restricted to be Rit < 0.99999999, and, in each operation with
logarithm, an additional 0.000000001 was added. The latter is for
the cases of deterministic patterns, causing value 0 in the cell; the
logarithm of zero is not defined. Hence, technically, RPC cannot
reach the ultimate correlation. InTable 2, this is denoted by value
1.000 instead of 1 as with G and G2.

Comparison of the Estimates With a Larger
Dataset
The coefficients of RRP are compared with relevant estimators by
using 6,932 real-world items from 1,440 datasets. The estimators
are studied from three viewpoints. First, how the factual estimates

differ from each other in different situations by varying the
number of categories in the item and the score, varying the item
difficulty, and varying the number of observations in the sample.
Second, the estimators are compared from the viewpoint of how
efficiently they reflect the population value. Third, the estimators
are briefly compared related to their tendency to resist deflation
as estimators of the item–score association.

Empirical Real-Life Datasets Used in the Comparison
The dataset used in the comparison is a public one. The
dataset of 14,888 estimates of item–score association is
published at doi: 10.13140/RG.2.2.10530.76482 in CSV format
and at doi: 10.13140/RG.2.2.17594.72641 in SPSS format. Of
these items, 6,932 are polytomous, and these are used in
the comparison.

The datasets are formed by different compilations of 20–30
binary items and their sums forming items with 2 to 15 categories
(to form polytomous items). Randomly selected test-takers of n=
25, 50, 100, and 200 were picked from a nationally representative
dataset of a mathematics test for Grade 9 [74] with N = 4,023.
The items and scores formed 1,440 tests with different numbers
of test-takers (n), test lengths (k), difficulty levels (p̄), reliabilities
(α), and a number of categories in the items and scores [df (g) and
df (X), respectively].

Comparison of the Estimates in Varying the

Conditions
First, an obvious lift of the comparison of the estimators is that
the estimates by JTgX = D and G underestimate item–score
association in an obvious manner when the number of categories
exceeds 3 (in D) and 4 (in G) (see Figure 3 also including
the binary items; see Table 1 in Supplementary Appendix 2).
This is also known by previous simulations (e.g., [29, 45]). The
phenomenon is known from the fact that the estimates by RPP
are always deflated whenever the scales are not identical in two
variables (see the algebraic reasons in [75, 76]) as is always the
case with an item and a score. Notably, the magnitude of the
estimates by RPP tends to exceed those by D and G with items
with a wide scale.

Second, the estimates by D2 tend to be close to those by RREG
and RPC , and the estimates by G2 tend to be slightly higher than
those by RPC regardless of the number of categories in the items.
These are not general characteristics though. It is to be seen that,
more frequently, the magnitude of the estimates by D2 tends to
be close to those by RREG and the magnitude of the estimates by
G2 tends to be close to those by RPC.

Third, the binary case is given as a benchmark here; the
estimates by RPP and eta are notably deflated with the binary
dataset. With the special case suitable for a point–biserial
correlation, all other estimators than RPP and eta would produce
closely the same estimate. The differences between the estimators
come with items with a wide scale [df (g) > 3]. In what follows,
the binary cases are omitted, and just k = 6,932 items with
polytomous nature are used in the study.

Regarding the number of categories in the score, it seems that
the estimates are stable if the score has more than 15 categories
(Figure 4; see Table 2 in Supplementary Appendix 2). If the
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FIGURE 4 | Average estimates by the number of categories in the score (k =

6,932 items).

number of categories is less than 16, all the estimators tend to
produce unstable estimates. The instability in the estimates with
tests with a narrow scale in a score is discussed later with the
efficiency of the estimators to reflect the population value. When
it comes to the magnitude of the estimate, the estimators seem
to form three groups. With scores wider than 15 categories, RRP
based on D tends to give estimates with notably lower magnitude
than the other estimators. RRP based on G tends to give estimates
that are at the same level as those by RPP and eta. RRP based on
G2 and D2 tends to give estimates that are at the same level as
those by RREG and RPC. Of these estimators, the magnitude of the
estimates by D2 tends to follow closely those by RREG , and the
magnitude of the estimates by G2 tends to follow those by RPC.

When it comes to the difficulty levels of the items, the
traditional RPP and eta include obvious deflation in estimates
with extremely easy and difficult items—and in the binary
case, as discussed in Figure 3 (Figure 5, see Table 3 in
Supplementary Appendix 2). The phenomenon is known from
the previous simulations (e.g., [25, 29, 45, 49]). In the
given dataset, this phenomenon is indicated by the notably
lower magnitude of the very easy items—extremely difficult
polytomous items were not obtained in the polytomous dataset.
The magnitude of estimates by JTgX = D and G tends to be lower
than by the other estimators with items of medium difficulty
levels, but, with items with extreme difficulty levels, they tend to
not differ from those by the other estimators. This is caused by the
fact that the probability to obtain deterministic patterns is high
with items with extreme difficulty levels. Then, the magnitude
of the estimates by D and G tends to get closer to D2 and G2.
Correspondingly, the magnitude of the estimates by D2 and G2

does not differ notably from the benchmarking estimators RREG
and RPC.

When it comes to sample size, all estimators tend to give stable
estimates when the sample size n = 50 is reached (Figure 6; see
also Table 3 in Supplementary Appendix 2). When the sample

FIGURE 5 | Average estimates by the item difficulty (k = 6,932 items).

size is very small (n = 25 in the dataset), the magnitudes of the
estimates are deflated. As above, the magnitude of the estimates
by D2 tends to follow closely those by RREG , and the magnitude
of the estimates byG2 tends to follow those by RPC. The estimates
by D, G, RPP, and eta tend to be deflated in comparison with RPC
andG2. The estimators of RRP form four distinguished estimators
when it comes to magnitude of the estimates. Coefficient D is
known to be the most conservative of the options for RRP, and,
hence, the magnitude of the estimates by JTgX and D is the
lowest in comparison. Coefficient G is more liberal than D, and
the magnitudes of the estimates tend to follow the tendency of
RPP and eta when the number of sample size exceeds n = 50.
Coefficient D2 is somewhat more conservative in comparison
with G2, but the magnitudes of the estimates are notably higher
than those by D and G. Notably, with very small sample size (n
= 25 in the dataset), the magnitude of the estimates by D2 seems
to be very close to those by eta, and, when the sample sizes reach
n= 50, the magnitude starts to follow the tendency of RREG. The
highest magnitudes of the estimates are given byG2, and its trend
follows closely the tendency by RPC.

To condense the results by far, it seems that, with items with
wide or wide-ishscale (more than 3–4 categories), the estimators
JTgX = D and G tend to underestimate item–score association in
an obvious manner, while the magnitude of the estimates by D2

tends to be close to those by RREG , andmagnitude of the estimates
by G2 tends to be close to those by RPC. The magnitudes of the
estimates tend to be as follows:

JTgX = D̂ < Ĝ < D̂2 < Ĝ2 (39)

This order is expected because of the known characteristics of
the estimators; the estimates by D are more conservative than
those by G (see, e.g., [45]), and the estimates by D2 are more
conservative than those by G2 (e.g., [29]).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 June 2022 | Volume 8 | Article 914932

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Metsämuuronen Rank-Polyserial Correlation

FIGURE 6 | Average estimates by the number of cases in the sample (k =

6,932).

TABLE 5 | Average “population” estimates for the comparison.

N Minimum Maximum Mean Std. deviation

JTgX = D 6,932 0.53 0.87 0.701 0.077

G 6,932 0.56 0.91 0.729 0.080

D2 6,932 0.56 0.96 0.762 0.101

G2 6,932 0.59 0.97 0.785 0.099

RPP 6,932 0.52 0.95 0.725 0.112

Eta 6,932 0.52 0.95 0.726 0.113

RREG 6,932 0.48 0.95 0.758 0.099

RPC 6,932 0.58 0.95 0.778 0.087

Efficiency of the Estimators to Reflect the Population

Value
The efficiency of the estimators of RRP and related benchmarking
estimators to reflect the population value is studied by comparing
the sample and “population” estimates computed from the
original real-world dataset of 4,023 test-takers. As a combination
of different sets of items, the procedure for producing the
simulation dataset came up with 137 different score variables
related to polytomous items. These all produce slightly different
population values. The average estimates are collected in Table 5.

Because we do not know the real population value of item–
score association in the real-life datasets, each estimator races
its own race against itself: D from the sample is compared with
the corresponding D from the population, as an example. A
simple and straightforward statistic is computed: the difference
(d) between the sample estimate and the population estimate. If d
> 0, the population value was overestimated, if d= 0, the estimate
was equal in the sample and the population, and if d < 0, the
population value was underestimated. This statistic is denoted as
d in the name of the coefficient: dD refers to a difference between
the sample D and population D.

FIGURE 7 | Average difference between the sample and population by df(g) (k

= 6,932 items).

When it comes to the number of categories in the item, the
first point to make is that the estimates by D2 and G2 are the
least effective in reaching the population value—they tend to
underestimate the population value the greatest (Figure 7; see
Table 5 in Supplementary Appendix 2). In contrast, second, the
estimates by eta tend to be overestimated with items with wide
scales. This is an interesting phenomenon, knowing that eta tends
to give obvious underestimates in the same manner as RPP does.
It means that the wider the number of categories gets, the more
probable it is to find association by eta from the population (or
in large sample size), with a lower magnitude in comparison with
the sample estimates. This seems to be the opposite with D2 and
G2. Third, except RREG, all estimators in comparison share the
common characteristic that the narrower the scale in item (up to
8 categories) is, the more the estimator tends to underestimate
the population parameter up to 0.02 units of correlation. RREG
seems to be surprisingly robust against the effect of the scale in
item; regardless of the length of the scale, the estimates tend to be
very close to the population value.

When it comes to the number of categories in the score, above,
it was noted that, when the number of categories in the score
exceeds 15, the estimates tend to be stable. From the perspective
of reflecting the population estimate, except RREG, all estimators
tend to notably underestimate item–score association with tests
with a narrow scale in the score, that is, when df (X) < 15
(Figure 8, see Table 6 in Supplementary Appendix 2). In this
respect, there seem to be no differences between the estimators
except that RREG produces robust estimates and eta does not
underestimate the association as much as the other estimators.

When it comes to the difficulty of the items, all estimators
tend to underestimate the population correlation with difficult
items (Figure 9, see Table 7 in Supplementary Appendix 2),
and the underestimation may be notable up to 0.09 units of
correlation. Notably, the dataset used in the comparison does
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FIGURE 8 | The average difference between the sample and population by

df(X) (k = 6,932).

FIGURE 9 | The average difference between the sample and population by

the item difficulty (k = 6,932).

not include polytomous items, with an extreme difficulty level;
it is possible that, with more extreme (difficult) items, the
underestimation may be more drastic. Notably, with extremely
easy items, the underestimation is not as radical as with extremely
difficult items (<0.02 units of correlation). Systematic studies
in this respect would be beneficial. In this respect, there are
no notable differences between the estimators of RRP —all are
conservative. Again, it seems that RREG is more robust than the
other estimators.

Finally, when it comes to the sample size, except eta,
all estimators tend to be conservative; they underestimate
the population estimate (Figure 10; see also Table 8 in

FIGURE 10 | The average difference between the sample and population by

the sample size (k = 6,932).

Supplementary Appendix 2). With a very small sample size
(n = 25), the underestimation is notable (0.04–0.05 units of
correlation), and, when the sample size is n = 50 or higher, all
estimators tend to give estimates that are close to the population
estimate. The pattern is notably identical with all estimators
except RREG and eta; the sample eta overestimates mildly the
population eta (<0.005 units of correlation) and the population
RREG gives roughly the same estimate as is the population RREG
regardless of the sample size.

Deflation in the Estimates
General Measurement Model Related to Deflation in

Estimators of Correlation
It is a well-known fact that PMC is prone both to attenuation
caused by errors in measurement modelling and to radical
deflation caused by a technical or mechanical errors in the
calculation process. These concepts are discussed, amongst
others, by Chan [77], Gadermann et al. [78], Lavrakas [79], and
Metsämuuronen [26, 30, 80].

Both attenuation and deflation in PMC are artificial and
systematic. Sometimes, attenuation has been connected to the
phenomenon called restriction of a range or range restriction
(see literature, e.g., in [81–84]). Pearson (5) himself was the
first to offer a solution to the attenuation problem, and many
solutions have been offered to correct the attenuation in the X
variable (see the typology in [82]). However, even if there is no
manifestation of range restriction in X in the sense discussed
by Sacket et al. [82], PMC is very vulnerable to several sources
of mechanical error in the estimates of correlation causing
deflation. Metsämuuronen [29, 45] found seven such sources:
(1) the division of subpopulations in g (or item difficulty in the
measurement modelling settings), (2) the discrepancy in scales
of the variables, (3) the distribution of the latent variable, (4) the
number of categories in g, (5) the number of categories in X, (6)
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the number of items forming the score, and (7) the number of
tied cases in the score. In practical terms, the deflation is obvious
when assuming two identical normally distributed variables with
obvious perfect correlation. If we dichotomized one variable (g)
and polytomize the other (X), PMC and many other estimators
based on covariation cannot reach the (obvious) perfect (latent)
correlation (see the algebraic reasons for PMC in [75, 76], and for
coefficient eta in [2]). The deflation, that is, the underestimation
of the true latent association because of technical or mechanical
reasons is the greater the more extreme is the division (or the
difficulty level) in g.

While the effect of attenuation may be nominal in the dataset,
deflation in PMC = RPP may be radical; it approximates 100%
if the variance in the item is small, that is, with an item with an
extreme difficulty level, causing a small item–total covariation;
this is strictly inherited by the formula of PMC (see Eq. 32).
To make this radical deflation visible in the measurement
model, Metsämuuronen [26, 29, 30] has proposed a general
measurement model, combining a latent variable (θ), observed
values of an item (xi), and a weight factor wiθ that links θ with
item i, and the measurement error eiθ:

xi = wiθθ + eiθ (40)

generalised from the traditional measurement model (see, e.g.,
[85, 86]).

In the general model, the unobservable θ may be manifested
as a varying type of relevantly formed compilation of items,
including a theta score formed by the raw score (θX), a principal
component score (θPC), a factor score (θFA), item response
theory (IRT) or Rasch modelling (θIRT), or various non-linear
combination of the items (θNon−Linear). The weight factor wiθ is a
coefficient of correlation in some form, also including a principal
component and factor loadings (λi). In a normal case, wiθ varies
−1 ≤ wiθ ≤ +1; values higher than +1 or smaller than −1,

sometimes obtained by bi- and polyserial correlation or by factor
loadings, are taken out-of-range values.

The mechanical error in the estimation of correlation leading
to deflation in the estimates has been re-conceptualised in the
measurement model as

xi = wi ×θ+
(

ei_Random + ewiθ_MEC

)

(41)

(e.g., [29]), where the notation in the element ewi θ _MEC refers to
the fact that the magnitude of deflation caused by the mechanical
error in the estimation (MEC) depends on the weighting factor
w, item i, and score variable θ. This characteristic of the rank–
polyserial coefficients of correlation is discussed in what follows.

Deflation in the Estimates of RRP

Based on a simulation of 11 sources of mechanical error, causing
deflation in estimates of the item–score association [29], of the
options for RRP, the estimators D and D2 were noticed to be the
most prone to deflation, while the estimators G and G2 tended
to be close to be deflation free. Of the benchmarking estimators,
RPC appeared to be close to deflation free, while RREG is mildly
defected by the number of categories in the item and the score,
the distribution of the latent variable, and RPP is severely affected
by several sources of deflation. That D and D2 were ranked lower
in comparison is caused by the fact that, in a theoretical dataset
with identical latent variables, D and D2 tend to be sensitive to
the number of categories in the item and the score as well as
for the distribution of the latent variable (see Table 6). However,
in real-life datasets, as seen in the previous sections, the factual
magnitude of the estimates by D2 tends to follow the magnitude
of those by RREG (see Section Comparison of the EstimatesWith a
Larger Dataset).

Simulations have shown that such coefficients of correlation
in Table 1 related to PMC as RPP and coefficient eta include a
notable magnitude of deflation in the estimates (see [2, 29, 45]).
This can be easily verified by using a simple example related to

TABLE 6 | Sensitivity of the estimators of RRP to deflation (based on Metsämuuronen [29]).

Source of deflation JTgX = D G D2 G2 RPP RREG RPC

(1) Discrepancy of scalesa +1 +2 +1 +2 −2 +2 +2

(2) Item difficulty and variancea +1 +2 +1 +2 −2 +2 +2

(3) Distribution of the latent variablea −2 +2 −2 +2 −2 +2 +2

(4) Number of categories in the itema +1 +2 +1 +2 −2 +2 +2

(5) Number of categories in the scorea −2 +2 −2 +2 −1 +1 +2

(6) Number of items forming the scorea −2 +2 −2 +2 −1 +1 +2

(7) Number of tied cases in the scorea −1 +2 −1 +2 −1 +1 +2

(8) Linear or trigonometric nature b −1 −1 +1 +1 +1 +1 +1

(9) Directional or symmetric nature b +1 +1 +1 +1 +1 ±0 ±0

(10) Possible instability in estimatesc ±0 ±0 ±0 ±0 ±0 +1 ±0

(11) Possible overestimationd +1 +1 +1 +1 +1 +1 +1

SUM −3 +15 −1 +17 −8 +14 +16

aScale: +2 = no effect = MEC-free, +1 = insignificant effect, 0 = unknown effect, –1 = notable effect, –2 = remarkable effect lowering the estimate.
bScale: +1 = trigonometric / directional nature, 0 = unknown, −1 = linear / symmetric nature.
cScale: +1 = stable in reflecting population parameter, 0 = instable only in very small samples, −1 = notably instable.
dScale: +1 = no tendency for overestimation, 0 = very small overestimation, −1 = notable tendency for overestimation.
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FIGURE 11 | Deflation in the estimates in an item with p = 0.616, df(g) = 4,

and df(X) = 7, latent normality, n = 1,000.

Figure 2 and the related discussion. Take two identical variables
with a continuous scale, and they (obviously) have a perfect
correlation (ρθθ = 1). In the case we truncate one into 5
categories as in Section Simple Comparison of the Options for
RRP (categories 1–5; Item g) and the other into more than two
categories (Score X); these estimators of association cannot reach
the factual latent correlation. Depending on the cut-offs of the
values in g, that is, the “difficulty level” of the items and the
number of categories in X, the deflation in the estimates may
be notable, approximating 100% with extremely difficult items.
In contrast, such estimators as RPC, RREG, G, and D include
notably less mechanical error (MEC) than Rit if not being MEC
free (see [29, 45]). This phenomenon of deflation is illustrated
in Figure 11.

Let us assume an item close to g4 in Table 2. Two identical
variables with 1,000 cases with a normal distribution are
truncated so that the other includes 5 categories [df (g) = 4] and
the other 8 categories [df (X) = 7], and the cut-offs in the item
are selected so that p = 0.6167. Figure 10 presents the estimates.
The outcome is that, if we would have two perfectly correlated
variables and their technical manifestations would have been like
in g4, we would expect that an estimate byDwould have deflation
of 0.180 units of correlation and D2 would have deflation of
a magnitude of 0.104 units of correlation. Correspondingly,
G and G2 can detect the perfect latent correlation in the
same manner as RPC does—no deflation is detected. Of the
benchmarking estimators, RREG includes a minor amount
of deflation (0.009), while RPP and eta include a notable
magnitude of deflation (0.138 and 0.137 units of correlation,
respectively. This phenomenon explains—at least partly—why

7A dataset in CSV format at doi: 10.13140/RG.2.2.17241.65127 and in SPSS

format at doi: 10.13140/RG.2.2.20111.30882 is available for the comparison of

two identical variables truncated into two different forms. The dataset consists of

22,824 estimates related to three types of a latent variable (normal, even, gamma),

different difficulty levels (p = 0.002–0.998), several score variables [df (X) = 5, 7,

13, 21, 26, 31, 41, and 61] and items with df (g)= 1–4, that is, the usual scales from

binary to Likert type of scale are covered.

the magnitude of the estimates by D is lower than those by G,
for example.

All in all, referring to the measurement model in Eq. (40)
and the element ewiθ_MEC related to the deflation caused by the
mechanical error in the estimating process (MEC), we end up
with the following relation of the deflation in the estimators of
RRP: eJTgXi_MEC = eDi_MEC > eD2i_MEC > eGi_MEC = eG2i_MEC ≈ 0.

CONCLUSIONS AND LIMITATIONS

Main Results in a Nutshell
This article started with the note that we seem tomiss a coefficient
of correlation that could be used as the rank–polyserial coefficient
of the observed correlation between a categorical ordinal variable
and an interval- or ordinal-scaled variable. The quest for finding
the “missing” coefficient led us, first, to a new coefficient of
correlation, rank–biserial correlation between an ordinal variable
g and a metric variable X(JTgX) that was derived by generalising
rank–biserial correlation into polytomous ordinal cases by using
Jonckheere–Terpstra test statistics—hence, the name JTgX . It was
shown that two traditional coefficients of correlation, Somers D
and Goodman–Kruskal G, are strictly related to JTgX , and, hence,
these also could be considered as rank–polyserial coefficients.
Furthermore, two related estimators of correlation, dimension-
corrected D and G (D2 and G2), are strictly related to D and
G, and, hence, those could be considered dimension-corrected
coefficients rank–polyserial correlation.

To conclude the outcomes from the empirical section, by
using different estimators carrying characteristics of rank–
polyserial coefficient, the estimates by JTgX = D, G, D2, and
G2 tend to follow the following pattern: The magnitude of
the estimates by JTgX and D is the lowest; D is the most
affected by several sources of deflation. The magnitude of the
estimates by G tends to be higher than those by D, and
the estimates tend to follow the tendency of RPP and eta when
the sample size exceeds n = 50. The magnitude of the estimates
by D2 is higher than those by D and G, and the estimates
seem to follow the tendency of RREG when the sample size
exceeds n = 50. The highest magnitudes of the estimates are
given by G2, and its trend follows closely the tendency of the
estimates by RPC.

Hence, on the one hand, if the estimates by RREG and RPC are
taken as accurate reflections of the latent item–score correlations,
rank–polyserial coefficients based on D2 and G2 seem to be
relevant options to use as RRP and to study more. These are based
on observed variables because the underlying estimators D and
G are based on observed variables. On the other hand, rank–
polyserial coefficients based on D and G given the possibility of
an interesting practical interpretation because of Eqs. (20) and
(28): 0.5 × D + 0.5 and 0.5 × G + 0.5 strictly indicate the
proportion of logically (ascending) ordered observations in Item
g after they are ordered by the score. Hence, if D = 0.90, 95% of
the observations (0.5× 0.90+ 0.5= 0.95) are logically ordered in
the item.

Characteristic of all these estimators proposed as estimators
of RRPis that they all are directional—the same also holds
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with the rank–biserial correlation. They all indicate to what
extent the variable with a wider scale (X)—ordinal, interval,
pseudo-continuous, or continuous scale—explains the ordinal
pattern in the variable with a narrower ordinal scale (g). In the
measurement modelling settings, this can be taken as an advance.
After all, the whole apparatus in testing settings is based on
the idea that the latent variable manifested as the score variable
explains the behaviour in a test item, and the other direction does
not make sense. All the options of RRP discussed in this article
are directed to favour this direction. A possible advantage of the
new coefficient JTgX is that it leads us strictly to the correct form
of the three alternatives produced by the standard procedures of
calculating Somers’ D.

Known Limitations
An obvious limitation in the study is that the characteristics
of the behaviour of the coefficients were illustrated only by
using a limited real-world dataset with very limited sample
sizes. Although the sample sizes may be taken relevant from
the practical testing setting viewpoint—after all, arguably, most
tests in the world are administered in the classroom situation
or lectures with a very limited number of test takers. However,
controlled simulations with the known true association and
with large sample sizes would be beneficial. In this, using
the character in D and G to strictly indicate the proportion
of logically ordered observations after ordered by the score
could be utilised.

The simulation is Section Comparison of the Estimates
With a Larger Dataset did not include very difficult
items—this is clearly a deficiency in the original dataset.
Hence, systematic studies of the behaviour of the options
for RRP with items with extreme difficulty levels would
be beneficial.
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