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In this work, we use a tempering-based adaptive particle filter to infer from a

partially observed stochastic rotating shallow water (SRSW) model which has

been derived using the Stochastic Advection by Lie Transport (SALT) approach.

The methodology we present here validates the applicability of tempering

and sample regeneration using a Metropolis-Hastings procedure to high-

dimensional models appearing in geophysical fluid dynamics problems. The

methodology is tested on the Lorenz 63 model with both full and partial

observations. We then study the e�ciency of the particle filter for the SRSW

model in a configuration simulating the atmospheric Jetstream.
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1. Introduction

Inference for partially observed processes is an ubiquitous task required in many

applications. It sits at the intersection of mathematics, statistics, computer science, data

assimilation, machine learning and many other applied and theoretical domains. As a

result, its framework can be introduced in different ways, depending on the choice of

the domain within which inference is considered. In this paper, we will use the language

of stochastic (and also nonlinear) filtering to provide the background framework for a

Bayesian inference case study for a geophysical fluid dynamics model. For this, we let

X and Z be two processes defined on the probability space (�,F ,P). The process X is

usually called the signal process or the truth and Z is the observation process. In this paper,

X is the pathwise solution of a stochastic rotating shallow water system (see Equation 9

below) approximated using a staggered grid method. Following Crisan and Lang [1], the

solution of the system (Equation 9) exists and it is unique1. The pair of processes (X,Z)

1 Note that in Crisan and Lang [1] we work with infinite dimensional function spaces, while here

the state space is RdX as we use a grid-based discrete approximation of the solution of Equation (9).
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forms the basis of the nonlinear filtering problem which consists

in finding the best approximation of the posterior distribution

of the signal Xt given the observations Z1,Z2, . . . ,Zt
2. The

posterior distribution of the signal at time t is denoted by πt .

We let dX be the dimension of the state space and dZ be the

dimension of the observation space.

In this paper, we study the approximation of the posterior

distribution of the signal by using particle filters. These

are sequential Monte Carlo methods which generate

approximations of the posterior distribution πt using sets

of particles. That is, they generate approximations that are

(random) measures of the form

πt ≈
∑

ℓ

wℓ
t δ(x

ℓ
t ),

where δ is the Dirac delta distribution, w1
t , w

2
t , . . . are theweights

of the particles and x1t , x
2
t , . . . are their corresponding positions

(see e.g., Reich and Cotter [4] and Bain and Crisan [2] for further

details on the framework of the particle filtering methodology

and their asymptotic consistency properties). Particle filters are

used to make inferences about the signal process by using Bayes’

theorem, the time-evolution induced by the signal X, and the

observation process Z. The process X is assumed to be a Markov

process, and we will denote byKt its transition kernel, that is

Kt :R
dX×B(RdX ) → [0, 1], Kt(x,B) = P(Xt ∈ B|Xt−1 = xt−1)

(1)

for any Borel measurable set B ∈ B(RdX ) and xt−1 ∈ R
dX .

The process Z models noisy measurements of the truth, using

the so-called observation operator H :R
dX → R

dZ :

Zt = H(Xt)+ Vt (2)

where (Vt)t≥0 are independent identically distributed random

variables and represent the measurement noise and H is a

Borel-measurable function. In this paper we will assume that

(Vt)t≥0 have standard normal distributions. Nevertheless, the

methodology presented here is valid for much more general

distributions. The observations are incorporated into the system

at assimilation times. The ensemble of particles is evolved

between assimilation times according to the law of the signal.

As we explain below, at each assimilation time the observation is

incorporated into the system through the likelihood function:

g
zt
t :R

dX → R+, g
zt
t (x) = gt(zt−H(xt)) = P(Zt ∈ dzt|Xt = xt)

(3)

∫

A
g(zt − H(xt))dzt = P(Zt ∈ A|Xt = xt), (4)

2 For a mathematical introduction on the subject, see e.g., Bain and

Crisan [2]. For an introduction from the data assimilation perspective of

the filtering problem, see van Leeuwen et al. [3] and Reich and Cotter [4].

where A ∈ B(RdZ ) the σ -algebra of Borel measurable sets

on R
dZ . The following recursion formula holds (see Bain and

Crisan [2])

πt = gt ⋆ πt−1Kt , (5)

where by ‘⋆’ we denoted the projective product as defined in the

Appendix. Schematically, the recursion formula πt−1 −→ πt

can be described as

π
a,z0 : t−1
t−1

Kt−−−−−−→
model
forecast
prediction

π
a,z0 : t−1
t−1 Kt

= :πb
t = : pt

tempering, g
zt
t ⋆

−−−−−−−−−→
assimilation
analysis
update

g
zt
t ⋆ πb

t = π
a,z0 : t
t . (6)

In (6), we used the superscripts z0 : t−1 : = (z0, . . . , zt−1)

and z0 : t : = (z0, . . . , zt) to emphasize the dependence on

the fixed data. The indices a and b stand for analysis and

background, respectively. Here pt : = p
Z0 : t−1
t is the predictive

distribution of the signal, that is the distribution of the signal

Xt given the observations Z0,Z1, . . . ,Zt−1. Taking into account

the definition of the projective product, the recursion Equation

(5) can also be written in the more familiar form (as a Bayes

formula), as follows

πt(B) =

∫

B
g
zt
t (xt)pt(dxt)

∫

RdX
g
zt
t (xt)pt(dxt)

= β−1
t

∫

B
g
zt
t (xt)pt(dxt) (7)

where B ∈ B(RdX ) and βt : =
∫

RdX
g
zt
t (xt)pt(dxt) is a

normalizing constant. The standard (bootstrap) particle filter

runs as follows: Each particle is propagated forward in time by

using the signal transition kernelKt . We model the evolution of

the signal discretely in time through a mapMt :R
dX → R

dX . If

xℓ
t1
, xℓ

t2
is the position of the particle ℓ at time t1 respectively t2

then

xℓ
t2
: = Mt2 (x

ℓ
t1
), P(xℓ

t2
∈ B|xℓ

t1
) = Kt2 (x

ℓ
t1
,B). (8)

In this paper, Mt is chosen to be a discrete time

approximation of a stochastic version of the Lorenz ’63 system,

or a discrete time/discrete space approximation of the SRSW

model, respectively.

At each assimilation time, the particles are weighted

depending on the likelihood of their position, given the

observation. More precisely, the particle ℓ is given the weight

wl
t = g

Zt
t (xℓ). Heuristically, the particle weight measures

how close the particle trajectory is to the signal trajectory.

A selection procedure is then applied to the set of weighted

particles. Particles which are close to the truth and therefore

have higher weights will be multiplied, while those which are
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far away will be eliminated. For the basic particle filter, this

is done by sampling with replacement from the population of

particles, with corresponding probabilities proportional to their

weights. There are several studies (see e.g., Vetra-Carvalho et

al. [5] and van Leeuwen et al. [6]) which have shown that in

high-dimensional spaces the tendency is to have one particle

gaining a (normalized) weight close to one while all the others

have weights close to zero and therefore are discarded. This

is due to the rapid divergence of the particles’ trajectory from

the signal trajectory. As a result the particles fail to give a

good approximation of the posterior distribution. Indeed, the

standard particle filter briefly described above will provide a

suitable approximation of the posterior distribution only when

a huge number of particles are used, particularly in high

dimensions. This is known in the literature as the curse of

dimensionality [3, 5].

Nonetheless, considerable progress has been made in

addressing this problem over the decade. A state-of-the-art

overview of the most recent efforts on tackling the filter

degeneracy problem can be found in van Leeuwen et al. [6]

and Vetra-Carvalho et al. [5]. Innovative remedies arise from

different directions: optimal transport [4], tempering [7–10],

localization [11, 12], model reduction [9], data assimilation

as a boundary value problem [13], jittering [7], nudging [14],

and proposal densities [15]. Some of them have been tested in

operational numerical weather prediction systems, e.g., Potthast

et al. [12].

In this paper we present a case study where the signal is given

by a discrete time/discrete space approximation SALT-SRSW

model, that is the following set of equations:

dvt+
[

ut ·∇vt+ f ẑ×ut+∇pt
]

dt+
∞
∑

i=1

[

(Li+Ai)vt
]

◦dWi
t = 0

(9a)

dht +∇ · (htut)dt +
∞
∑

i=1

[

∇ · (ξiht)
]

◦ dWi
t = 0 (9b)

where Liv : = ξi · ∇v, Aiv : = vj∇ξ
j
i =

2
∑

j=1

vj∇ξ
j
i , v =

(v1, v2),v : = ǫu + R, u = (u1, u2) is the horizontal fluid

velocity vector, p : = h−b
ǫF

is the pressure term, h is the total

depth, b is the bottom topography3, x = (x1, x2), f = f (x) is

the Coriolis parameter, ẑ is a unit vector pointing away from

the center of the Earth, ǫ << 1 is the Rossby number, F is

the Froude number, R = R(x) is the vector potential of the

divergence-free rotation rate about the vertical direction, with

curl R(x) = f (x)ẑ. The model is discretized in space using an

Arakawa C-grid and in time using a Runge-Kutta method of

order 4. The SRSW model configuration we use (see Figure 2)

mimics the atmospheric JetStream which is a zonal (west to east)

3 Note that in our case b = 0.

wind in the atmosphere (see Figure 1). This wind is dominantly

in geostrophic balance, which means that it is maintained by

a meridional (south to north) pressure gradient. The setup we

present here will be used in subsequent work to process real data.

Contributions of the paper

This work is part of the current efforts geared toward

developing efficient particle filter methodologies for high-

dimensional models originating in (stochastic) geophysical fluid

dynamics—see Cotter et al. [10] for a similar application to a

stochastic incompressible 2D Euler model with damping and

forcing and Cotter et al. [14] for an application to a two-

layer quasi-geostrophic model. We study the applicability of

such a particle filter methodology based on adaptive tempering

and sample regeneration using aMetropolis-Hastings procedure

(jittering) to the new SALT-SRSWmodel (Equation 9) with up to

O(104) degrees of freedom. The deterministic rotating shallow

water equations are known (see e.g., Kalnay [16], Vallis [17],

and Zeitlin [18]) for their complex structure which retains key

aspects of the oceanic and the atmospheric dynamics, such as

potential vorticity and energy conservation, and the existence

of gravity waves. At the same time, RSW systems allow for a

proper incorporation of the nonlinear interactions, whichmakes

them favorite systems for modeling geophysical turbulence.

Nonetheless, real geophysical systems are evenmore complex, as

they are subject to several small-scale unknown influences which

are active at subgrid scales andwhich cannot be represented even

when usingmodern computational methods with fine resolution

grids. The aim of the stochastic terms added in Equation (9)

as per [19] is to effectively capture a broad class of such

small-scale interactions. This stochastic procedure facilitates

the design of more realistic models (as they better integrate

the small-scale physics) which can be implemented without

exponentially increasing the computational cost. Nonetheless,

analyzing, discretising and calibrating such a stochastic model

and then assimilating data using it, brings forth several technical

challenges. We describe below how we successfully overcome

these challenges for the SALT-SRSW model introduced in

Equation (9):

• Model implementation. Compressible and incompressible

flow simulations can be subject to large discretization errors

when all the system variables are defined at the same grid

points or at the same time levels. More precisely, spurious

modes associated with the pressure field can appear when

using a collocated mesh due to the intrinsic structure of the

difference scheme which generates an odd-even decoupling

between pressure and velocity. To cope with the problem,

we use a staggered Arakawa C-grid in which the velocity

components are staggered compared to the pressure term

i.e., the pressure is stored in the center of the cell, while

the velocity components are stored at the cell faces. This

generates a reduction of the dispersion errors as well as
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FIGURE 1

Instances of the zonal (west-east) velocity field, the meridional (south-north) velocity field, and the pressure field, for the SRSW model, after 200

time steps. The distance between any two grid points in both x and y direction is 50 km.

FIGURE 2

Example of the Jetstream, from NASA at https://svs.gsfc.nasa.

gov/3864.

improvements in the accuracy of the short-wavelength

components of the solution4. The staggered arrangement,

although not easy to implement, is particularly useful in our

case as it enables a more accurate implementation of the

high-frequency small-scale modes. The system dimension

4 For more details on this type of numerical issues see e.g., Durran [20]

or Harlow and Welch [21].

we allow for (i.e., 104) is still far from the dimension of

the more realistic models used for example in numerical

weather prediction (1010 and higher).

• Data assimilation. The standard particle filter described

above works well for small to medium size models. As

the dimension of the model increases, the effectiveness

of the standard particle filter diminishes. Heuristically, as

the dimension increases so does the distance between the

predictive and the posterior distribution. As a result the

particles can easily drift away from the truth (there is

more space in high dimensions) and will have (possibly

exponentially) small likelihoods. In Beskos et al. [7], a

new methodology has been proposed to alleviate this

problem. The single resampling step in the standard

particle filter is replaced by a repeated application of a

triple procedure: tempering, resampling and jittering, the

number of applications being chosen adaptively by taking

into account the effective sample size of the intermediate

sample. In the language of Beskos et al. [7], the resulting

particle filter is proved to be stable in the dimension, in

the sense that it does not degenerate as the dimension

increases, whilst keeping the number of particles fixed. In

this paper, we successfully adopt the above methodology

for the stochastic rotating shallow water model. It is also

applied to the Lorenz 63 model where, as expected, the

improvements over the standard particle filter are minimal.
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• Stochastic transport forcing. There exist a variety of

methods of introducing stochasticity to model uncertainty.

As examples, we Palmer [22], Majda et al. [23], or

Buizza et al. [24]. In general, the noise is introduced

into the forcing part of the signal process (the prediction

step). Here, we follow the Stochastic Advection by Lie

Transport (SALT) approach, introduce inHolm [19], where

stochasticity is introduced into the advection part of the

model equation so that the resulting stochastic system

models the uncertain transport behavior. The resulting

equation is different: Although the random shift in the

Fourier space is implemented similar to Evensen [25], in

this new approach the random parameter multiplies the

gradient of the solution and it contains also an extra zero-

order operator, see Equation (9). This new form of the noise

(whose amplitude is modulated by the Li + Ai operators)

is meant to describe the (otherwise un-modeled) effect of

the small-scale components on the large-scale components

of the fluid. It offers a new approach, termed Stochastic

Advection by Lie Transport (SALT), to subgrid transport

modeling. To the best of our knowledge this is the first

implementation of the SALT rotating shallow water model

in a data assimilation setting. Numerical implementations

and particle filter algorithms for other SALT models (2D

Euler, SQG) have been developed in Cotter et al. [9, 26].

Our numerical implementation of the stochastic forcing is

equivalent to the one described in Cotter et al. [9] up to an

isomorphism. More precisely, if one applies the approach

described in Cotter et al. [9] to a periodic domain, then the

stochastic vector fields used in Cotter et al. [9] correspond

to the Fourier modes of the transport covariance matrix

and they form a basis of the underlying space. This basis

may be different from the basis chosen in this paper,

but an isomorphism can be established between any two

orthogonal bases corresponding to the same underlying

space.

The following is a summary of the main numerical

experiments and findings contained in this paper:

The Stochastic Lorenz ’63 model

• Standard scenario: We run the particle filter over 500

time steps using 50 particles, with each time step of size

0.01 s. The initial uncertainty is equal to 1 and both the

observation uncertainty and the model error are equal to

0.1. We use one initial ensemble and all three variables

of the system are observed every 20 time steps, with one

observation at each analysis time. The observation operator

is linear.

• For the other scenarios (see Section 3.2) we vary some

of the parameters (e.g., initial uncertainty, observation

uncertainty) and compare the results with those obtained

in the standard scenario. More importantly, we choose

a nonlinear observation operator and analyse the cases

where not all three variables of the system are observed.

The SRSWmodel

• Standard scenario: Using 50 particles, we run the particle

filter over 50 time steps, with each time step of size 90 s,

on a domain of dimension (n,m) = 60 × 556 with 50 km

spatial resolution. The layer thickness is 10 km. The initial

uncertainty and the observation uncertainty are both equal

to 1 and model error in the height field is equal to 200 m.

The system is observed every 10 time steps and we use one

observation at each analysis time.

• To simulate the evolution of the atmospheric Jetstream, the

model domain corresponds to a strip situated between 30

and 60◦ north latitude, with east-west periodic boundary

conditions and free-slip boundary conditions on the

northern and southern domain.

• For the other scenarios (see Section 4.2) we change some of

the parameters and compare the results with those obtained

in the standard scenario.

In both cases:

• We test the forecast reliability by comparing the forecast

root mean square error (RMSE)

RMSE2 = ‖Êx− x⋆‖2

with the forecast ensemble spread (ES)

ES2 = 1

N − 1

N
∑

i=1

‖xi − Êx‖2

where

Êx = 1

N

N
∑

i=1

xi

is the estimated ensemble mean and x⋆ is the truth.

• Using the adaptive tempering particle filter, the numerical

results show that although the dimension of the

observation is low compared to the degrees of freedom

corresponding to the SPDE, there is sufficient information

to allow for an accurate approximation of the truth.

2. The algorithm

To address the problem of filter degeneracy we replace the

direct resampling from the weighted predictive approximations

with a tempering procedure combined with a sample

regeneration using a Metropolis-Hastings methodology
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(jittering). We give below the basics of the two procedures

(further details including the theoretical results justify the

applicability of the methods can be found in Beskos et al. [7]

and Kantas et al. [8]).

The tempering procedure involves an artificial dynamics

which is introduced via a sequence of intermediate target

distributions between the predictive and posterior distribution.

Each intermediate distribution has a characteristic temperature

chosen to ensure that a reasonable number of distinct particles

survive.

The temperature is chosen adaptively. More precisely, in

order to quantify the spread of the weights, we use the effective

sample size statistic:

ess(w) = 1

N
∑

ℓ=1

(w̄ℓ)2

(10)

where w̄ℓ are the normalized weights of the particles. In other

words, w̄ℓ are the original weights divided by the sum of

all weights. The temperature is decreased until the effective

sample size rises above a certain threshold. This will ensure

that the ensemble of particles remains sufficiently diverse after

applying the resampling procedure. By iterating the procedure,

one obtains a sequence of temperatures 0 = φ0 < φ1 <

. . . φR = 1 so that, at each time the effective sample size

remains above the chosen threshold. Once the temperature

is (dynamically) chosen, a resampling procedure is applied.

The output approximates the sequence of tempered posterior

distributions pti = π0
ti

→ π1
ti

→ . . . → πR
ti

that gradually

make the transition from the predictive distribution pti to the

posterior distribution πti . The intermediate tempered posterior

distribution at the rth tempering step is given by

π r
t (B) =

∫

B

(

g
zt
t (xt)

)φr pt(dxt)

∫

RdX

(

g
zt
t (xt)

)φr pt(dxt)

(11)

for any B ∈ B(RdX ) with corresponding normalized tempered

weights. The ensembles of particles follows the above artificial

dynamics. Each intermediate step incorporates a resampling

procedure followed by a jittering one. If we denote by xr =
(xℓ,r)N

ℓ=1 the positions of the ensemble of particles at the

beginning of the intermediate step r = 0, 1, . . .R, then at the

r-step we resample from

π
r,N
ti

=

N
∑

ℓ=1

wr,ℓ
ti
(φr , x)δ(x

ℓ
ti
)

N
∑

ℓ=1

wr,ℓ
ti
(φr , x)

, (12)

where wr,ℓ
ti
(φr , x) =

(

g
zti
ti
(xℓ
ti
)
)φr−φr−1

, The corresponding

effective sample size of π
r,N
ti

is controlled by a suitable choice

of the temperature increment φr − φr−1.

As it is well known, the resampling procedure5 ensures

that particles with low weights are replaced with particles with

higher weights. Following the resampling, an ensemble of equal-

weighted particles is obtained. An artificial predictive step is then

applied, through a Metropolis-Hastings procedure (jittering).

This increases the spread of the ensemble whilst keeping the

approximation asymptiotycally consistent.

The following is a brief algorithmic description of the

tempering and jittering methodology (see also Kantas et al. [8]

and Cotter et al. [9]):

1. Initialization: At initial time t = 0: sample N particles

from the prior distribution of the signal.

2. Iteration: For any arbitrary time interval (ti−1, ti], we

start with an ensemble x of N particles with positions

(xℓ
ti−1

)ℓ and we want to assimilate the new observational

data zti in order to obtain a new ensemble (xℓ
ti
)ℓ that defines

the approximation πN
ti

of πti . For this we implement the

following steps:

2.1. Evolve xℓ
ti−1

SPDE−−−−−−−−−−→
SRSW,Lorenz63

xℓ
ti
.

2.2. Set temperature φ = 1.

2.3. While essi(φ, x) < Nthreshold do

∗ Find φ′ ∈ (1− φ, 1) such that essi(φ
′ − (1− φ)), x) ≈

Nthreshold. Resample according to wℓ
ti
(φ′− (1−φ)), x)

and apply MCMC with jittering if required (i.e., if

there are duplicates)⇒ a new ensemble x(φ′).

∗ Set φ = 1− φ′ and x = x(φ).

2.4. If essi ≥ Nthreshold then go to the (i+1)th filtering step

with (xℓ
ti
, wℓ

i )ℓ.

The Metropolis-Hastings step (jittering) procedure is

standard (see, e.g., Cotter et al. [9]), however we will briefly

explain the gist of the method. Before applying the method,

we have xℓ
t2

= M(xℓ
t1
) In both models treated below xℓ

t2
is

an approximation of the solution of a stochastic differential

equation that starts from xℓ
t1

and it is driven by a Brownian

motionWℓ. The evolution xℓ
t2
= M(xℓ

t1
) can then be written as

xℓ
t2
= M(xℓ

t1
,Wℓ(t1 : t2)),

whereWℓ(t1 : t2) denotes the Brownian path between t1 and t2.

In this case the approximation for the predictive distribution is

5 This is a static procedure.
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given by

pt2 = 1

N

N
∑

ℓ=1

δ(xℓ
t2
). (13)

As explained above, after each tempering step we resample

from the population of particles. As a result, some of the particles

end up in the same place. To avoid a large number of duplicates,

we apply a Metropolis-Hastings procedure. The proposal for the

new position of the particle is obtained bymodifying the last part

of the particle trajectory. More precisely, we choose

x̃ℓ
t2
= Mt2

(

xℓ
t1
, ρWℓ(t1 : t2)+

√

1− ρ2Zℓ(t1 : t2)

)

(14)

where Zℓ is a new standard Brownian motion independent of

Wℓ and ρ is the jittering parameter which controls the size of the

perturbation. We found that a suitable choice for ρ is 0.999999

for SALT-SRSW and 0.99 for L63. This is because, in some

sense, the particles are already "in the right place" following the

resampling step and we wish to move them only ever so slightly.

The new position of the particle is accepted with probability

min



1,

(

g
zti
ti

(x̃ℓ
ti
)
)φr

(

g
zti
ti

(xℓ
ti
)
)φr



 if we are at the r-th intermediate step.

The computational effort C required for each individual

assimilation cycle can be estimated as follows: if N is the number

of particles, T is the number of tempering steps and J is the

number of jittering steps, then C = 0.1× NJT, where 0.1× N is

the number of duplicates after resampling. In our case, N = 50

and T and J are chosen adaptively (depending on the effective

sample size of the ensemble, with the threshold chosen to be

0.8× N).

3. Applications for the Lorenz 1963
model

3.1. Model description

The Lorenz ’63 model is a classical nonlinear three-

dimensional model that is a precursor of turbulence theory

which has been introduced in Lorenz [27]. It reads

dx

dt
= α(y− x) (15a)

dy

dt
= (β − z)x− y (15b)

dz

dt
= xy− γ z, (15c)

where α,β , γ are real positive parameters. The model is well-

known for the broad spectrum of patterns displayed for different

values of α,β , γ and its well-known butterfly attractor. The

original values chosen by Lorenz in Lorenz [27] were α =
10,β = 28 and γ = 8

3 . For a discussion on the behavior of

the solutions for different parameter values see e.g., Sparrow

[28]. This model is implemented using a Runge-Kutta scheme

of order 4, with initial conditions x0 = 1.508870, y0 =
−1.531271, z0 = 25.46091. The details of the Runge-Kutta

scheme can be found in Appendix. We perturb the Lorenz

’63 model with additive noise: after applying the Runge-Kutta

scheme to implement the three variables from system (Equation

15), we generate a Gaussian random field and perturb the

system in a manner which is similar to the one explained in

Equation (14) to obtain a discrete-time dynamical system that

is an approximation of the following system of SDEs, driven by

the 3-dimensional Brownian motionW = (W1,W2,W3):

dx = α(y− x)dt + ζdW1
t (16a)

dy =
[

(β − z)x− y
]

dt + ζdW2
t (16b)

dz =
[

xy− γ z
]

dt + ζdW3
t (16c)

where ζ = 0.1 is themodel error.

3.2. Data assimilation results

Weperform the data assimilation analysis using an ensemble

of 50 particles which we evolve over 500 time steps and each time

step has size 0.01. In the standard scenario (Figures 5A–6B) all

three variables of the system are observed every 20 time steps.

The initial uncertainty is equal to 1, while the observational

uncertainty and the model error are equal to 0.1. The jittering

parameter ρ is equal to 0.99 in the MCMC step. We present

below a couple of scenarios obtained for different values of these

parameters. The output is displayed for the first and the third

variable. The ensemble of particles is represented through a

one standard deviation region around the ensemble mean. We

illustrate bellow in Figures 3A,B how the model evolves without

any assimilation of data.

As it can be seen in Figures 3A,B, in the absence of the

data assimilation step, the particles spread gradually over the

entire attractor. This behavior is exhibited when plotting both

the first variable x and the third variable z. In other words,

the uncertainty increases (at times quite dramatically). The root

mean square error (RMSE) and the ensemble spread (ES) is

plotted in Figure 4. In this case the RMSE and the ES oscillate

around a value which is comparable with the size of the attractor

(in other words, the particles fill out the attractor).

Compared to the previous scenario, we show in Figures 5A–

6B that by assimilating observations every 20 time steps, we

manage to substantially reduce the uncertainty. Through a

repeated application of the forecast/data assimilation step, the

cloud of particles successfully tracks the truth which evolves

around the attractor set.

In Figure 6Awe exhibit the first three instances to emphasize

the reduction of uncertainty resulting from the application of
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FIGURE 3

Evolution of the Lorenz ’63 model for 500 time steps without any data assimilation. (A) x variable. (B) z variable.

FIGURE 4

RMSE and ES.

the particle filter with tempering and jittering, as described in

Section 1.

We plot in Figure 6B the RMSE and the ES. We can see that

the RMSE and the ES are comparable. This is a feature highly

appreciated by data assimilation practitioners and e.g., risk

managers because it shows that our estimate of the uncertainty

as measured by the width of the ensemble is a good estimate of

the actual error in the ensemble mean. Based on this measure

of success we can conclude that the particle filter performs

satisfactory in the case where all the three variables of the system

are observed.

In all previous settings the observation operator was linear.

We next present the results of two tests (Figures 7A–8D) with

nonlinear observation operators. We first make the observations

fully nonlinear (Figures 7A–D). More precisely, for these tests

the observation operator is chosen to be

H(x, y, z) = (x2, y2, z2)

with observations given by

Z = H(Xt)+ Vt

as explained in Section 1. As we can see from Figure 7A

the information available is sufficient to keep the posterior of

the third variable concentrated around the truth at all times.

However, because of their quadratic relation to the model

variables, the observations cannot tell in which wing of the

butterfly the truth is situated. This is visible in the solution for

x direction. All particles remain on the attractor, and some jump

from one wing of the attractor to the other. The uncertainty

in the z direction is much smaller, as the z variable is always

positive, and hence only one solution is present at all times for

this variable. This can be observed in Figure 7B. The values of the

RMSE and the ES are plotted in Figure 7D. We can see that both

can become very large, essentially of the order of the support of

the diffusion (the attractor), as the particles can spread around

the entire attractor. This is not surprising as the RMSE is not a

useful measure for a bimodal distribution.

Note that these results do not point to a failure of the

particle filter. The exact posterior will also show a bi-modal

behavior, and the ensemble of particles keep approximating

posterior as they should. Methods based on linearizations, such

as Ensemble Kalman Filters, would probably show a cloud of

particles between the two wings, thus failing to give ameaningful

approximation of the posterior distribution.

For the final test case, we make the observation nonlinear

just for the first variable (Figures 8A–D). That is,

H(x, y, z) = (x2, y, z).

In contrast to the previous case, the particle filter follows the

truth much better. Ever though the observation operator is only

partially linear, the application of the particle filter results in a

massive uncertainty reduction. The cloud of particles remains

concentrated around the truth and the repeated application of

the data assimilation steps keeps the uncertainty in check. Both

the x and the z variable (Figures 8A,B) are successfully tracked,

as highlighted in Figure 8C. The RMSE and the ES plotted in

Figure 8D confirm our findings: most of the time, the RMSE
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FIGURE 5

Evolution of the Lorenz ’63 model for 500 time steps, all 3 variables are observed every 20 time steps. The initial uncertainty and the

observational uncertainty are both equal to 1, the model error is equal to 0.1. Uncertainty is substantially reduced at assimilation times. (A) x

variable. (B) z variable.

FIGURE 6

Evolution of the Lorenz ’63 model for 500 time steps, all 3 variables are observed every 20 time steps. The initial uncertainty and the

observational uncertainty are both equal to 1, the model error is equal to 0.1. Uncertainty is substantially reduced at assimilation times. (A) x

variable enlarged. (B) RMSE and ES.

remains in the interval [0, 1] with rare excursions away from

this interval. The ensemble spread also remains small, with some

oscillations around the assimilation time. The underlying reason

for this behavior is that, in this case the system knows in which

wing the truth resides via the linear y observation.

4. Applications for the stochastic
rotating shallow water model

4.1. Model description

The rotating shallow water model (RSW) is a classical

nonlinear fluid dynamics model which contains key aspects of

the oceanic and atmospheric dynamics. A detailed analytical

description of this model has been provided in Crisan

and Lang [1]. From a numerical perspective, the system

raises several challenges generated especially by the nonlinear

advective terms. Nonlinear advection is a dispersive process.

While in a linear inviscid case the wave-like solutions

have constant amplitude and propagate at constant speed,

in the nonlinear setting wave speeds depend on the wave

amplitude, and nonlinear interactions among the waves changes

wave amplitudes. The short waves can be amplified by

the nonlinear structure, with direct impact on the accuracy

of the solution [20]. These intricacies can be overcome

by making use of the natural dominant balances which

appear in atmosphere and oceans (geostrophic and hydrostatic

balance) and by implementing the models using suitable

numerical schemes.
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FIGURE 7

Evolution of the Lorenz ’63 model for 500 time steps, all 3 variables are observed every 20 time steps. Observations are denoted by z1, z2, z3.

Fully nonlinear observation operator i.e., z1 = x2, z2 = y2, z3 = z2 plus noise. (A) x variable. (B) z variable. (C) x variable enlarged. (D) RMSE and ES.

The stochastic rotating shallow water model used in our

work is given by Equation (9) which in Itô form reads:

dvt +
[

ut · ∇vt + f ẑ × ut +∇pt
]

dt

+
∞
∑

i=1

[

(Li +Ai)vt
]

dWi
t =

1

2

∞
∑

i=1

[

(Li +Ai)
2vt

]

dt (17a)

dht +∇ · (htut)dt+
∞
∑

i=1

[

Liht
]

dWi
t =

1

2

∞
∑

i=1

[

L
2
i ht

]

dt. (17b)

The SALT-SRSW model (Equation 17) corresponds to a

large-scale stochastic representation of a simplified atmospheric

dynamics. The numerical implementation of this system

requires to work on a grid of finite resolution and to

introduce some sub-grid diffusion terms in order to prevent the

accumulation of enstrophy at small scales possibly generated by

(direct and inverse) cascading effects. To ensure this, numerical

dissipation is artificially introduced by a viscosity term ν1v

in the momentum equation. The model (Equation 9) are

discretized as described in the Appendix. In the spatial domain,

a staggered grid, the Arakawa C-grid, is used because of the

low dispersion errors and the lack of computational modes

associated with it ([29], pp. 313). A Runge-Kutta scheme of

order 4 is used in the time domain. We choose free-slip

boundary conditions in the north-south direction and periodic

boundary conditions in the east-west direction, on a domain

which corresponds to a strip situated between 30 and 60◦

north latitude. This choice is a consequence of the fact that the

model is meant to simulate the evolution of the atmospheric

Jetstream, which is maintained by a meridional (south to north)

pressure gradient. Hence, the model cannot be periodic in the

north-south direction as the pressure in the north has to be

smaller than the pressure in the south. Furthermore, the Coriolis

parameter is an increasing function of latitude. The free-slip

boundary condition ensures that the meridional velocity and the

meridional gradient of the zonal velocity are zero, but not the

zonal velocity itself.

The model is initialized in so-called geostrophic balance, in

which the Coriolis force balances the pressure gradient and all

other terms are assumed to be of much smaller magnitude. To

this end we prescribe the pressure field as a wave-like field with

zonal wave number 8 and calculate the corresponding initial

velocity vector field v0 = (v10, v
2
0) using the geostrophic balance

condition.
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FIGURE 8

Evolution of the Lorenz ’63 model for 500 time steps, all 3 variables are observed every 20 time steps. Observations are denoted by z1, z2, z3.

Partially nonlinear observation operator i.e., z1 = x2, z2 = y, z3 = z plus noise. (A) x variable. (B) z variable. (C) x variable enlarged. (D) RMSE and

ES.

Intuitively, the geostrophic balance can be explained as

follows (see e.g., Vallis [30], pp. 58). The large temperature

gradient between the north pole and the equator generates

a north-south pressure gradient. This pressure gradient will

accelerate air parcels toward the north pole. However, as soon as

the air parcels are set in motion the Coriolis force starts acting

on them, deflecting them to the right (see Equation 9). This

eastward deflection continues until the parcels flow due East,

and the pressure gradient force and the Coriolis force balance.

The resulting direction of the fluid motion is perpendicular

on both the Coriolis force and the pressure force. In the

atmosphere and oceans this balance tends to be stable, especially

away from the boundaries. Small disturbances to it lead to the

appearance of gravity waves that try to restore the balance. The

geostrophic balance is dominant as the wind and the currents

are usually weak in comparison to the speed of the Earth

rotation (Vallis [30], pp.59). The Rossby number in our case is

small (ǫ ∼ 10−1), meaning that the rotation dominates over

the advective part and it is mainly balanced by the pressure

gradient force (Crisan et al. [29], pp. 86). The horizontal flow

is in “near” geostrophic balance, that is in particular “nearly”

divergence-free (Vallis [17], pp.95).

We also assume geostrophic balance for the stochastic

forcing described in Section 4.1.1, to strongly reduce the

generation of artificial gravity waves. We provide explicit

formulas for this in the next subsection, Equation(23).

4.1.1. Stochastic transport forcing

In this subsection we discuss the implementation of the

stochastic transport forcing. Recall from Equation (17) that the

stochastic transport forcing is given by

∞
∑

i=1

BξiXtdW
i
t = (

√
QdWt)Xt = :RXt (18)

where Bξi :W
1,2(T2) → L2(T2) is an operator which depends

on the vector fields ξi. In our case Bξi is equal to Li for the

forcing applied the depth variable, respectively, it is equal to

Li + Ai for the forcing applied to the velocity variable. We

interpret RXt as a random operator in the following manner.

We define the cylindrical Brownian motion

√
QW : =

∞
∑

i=1

ξiW
i

Frontiers in AppliedMathematics and Statistics 11 frontiersin.org

https://doi.org/10.3389/fams.2022.949354
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Lang et al. 10.3389/fams.2022.949354

where
√

Q is the corresponding covariance matrix and re-write
∞
∑

i=1

BξidW
i
t as a random operator applied to the state vector

X and we denote it by R. Here dW is a d-dimensional vector

of independent Brownian motions and Q is a space-covariance

operator. The matrix Q has dimension (3d)2, where d is the

number of mesh points in the space discretisation of (u, v, p).

In our case d = 60 × 556 and Xt = (ut , vt , pt). We rewrite

(Equation 18) as (
√

QdW)∇Xt for the forcing applied the depth

variable, respectively, as (
√

QdW)∇Xt+∇(
√

QdW) ·Xt for the
forcing applied to the velocity variable.

Once we discretize the SPDE in time and space, the time

increments of the cylindrical Brownian motion are replaced by

Gaussian random variables with a covariance matrix, which we

denote, by a slight abuse of notation, again with Q.

Given the fact that generating
√

QdW is computationally

expensive for large d, we first do this in the spectral space,

and then return to the physical space. The covariance matrix

is symmetric and circulant. Using the fast Fourier transform

we determine it in the spectral space for a system which is

periodic in both the x and y directions. Since our original

domain is not periodic, we then truncate the resulting field

to the physical domain, in order to avoid a periodic random

field. In particular, we compute the Fourier transform of a

column corresponding to the circulant matrix. This column

has a Gaussian correlation structure. At every time step, we

generate a Gaussian random field (again in the spectral space)

and then perform the multiplication between the column of

the covariance matrix and this newly generated random field.

Finally, we use the inverse fast Fourier transform to return to

the physical domain.

It is known (see Ruan and McLaughlin [31]) that any

continuous randomfield R can be expressed as a Fourier-Stieltjes

integral over a complex-valued Fourier increment dYR

R(ν) =
∫

eiµ·νdYR(µ). (19)

Therefore, the key ingredient in generating the random field

R is the accurate retrieval of the process YR(µ). In practice

this should be effectuated in discrete space, so that one can

compute the integral (Equation 19) numerically. One way of

efficiently performing this is by using a complex-valued spectral

decomposition, as suggested in Evensen [25]. Let us give details

below: The vector fields R can also be expressed as

R(ν) = R((x1, y1), (x2, y2), . . . , (xd, yd))

=
(∫

R2
eiµ1·ν1 R̂(µ1)dµ1,

∫

R2
eiµ2·ν2 R̂(µ2)dµ2, . . . ,

∫

R2
eiµd·νd R̂(µd)dµd

)

(20)

where R̂ is the Fourier transform of R. In Equation (20) ν =
(ν1, ν2, . . . , νd) and each νi = (xj, yℓ) denotes the variable in the

physical space while µ = (µ1,µ2, . . . ,µd) and µi = (x̂j, ŷℓ)

denotes the corresponding variable in the Fourier space, with

j ∈ {1, ..., 60}, ℓ ∈ {1, ..., 556}, d ∈ {1, . . . d} in both cases.

Following Evensen [25], for any grid point (xk1 , yk2 ) we canwrite

R(xk1 , yk2 ) =
(2π)2

nm1x1y

∑

j,k

R̂(x̂j, ŷk)e
i(x̂jxk1+ŷkyk2 ) (21)

with xk1 = k11x, yk2 = k21y,1x = xk1+1 − xk1 , 1y =
yk2+1 − yk2 , x̂j =

2π j
n1x , ŷk = 2πk

m1y , and

R̂(x̂j, ŷk) =
C
√

nm1x1y

2π
e
−

x̂2j +ŷ2
k

σ2
+2π iϕjk . (22)

where (n,m) = (60, 556) is the dimension of the grid, C

corresponds to the amplitude of the random forcing6, and ϕjk ∈
[0, 1] is a random number which introduces a random phase

shift for any given wave number (as per [25]). Note that R is

normally distributed. As mentioned in the previous section, we

assume that the dominant balance for the random vectors in this

system is the geostrophic balance, that is the pressure gradient

force and the Coriolis force balance each other. We have three

random vectors: Rv
1
,Rv

2
corresponding to each component of

the velocity v = (v1, v2), and Rp which corresponds to the

pressure field p. We obtain them as follows: first, we compute

Rp using Equation (21); then we use Rp to compute Rv
1
and Rv

2

under the geostrophic balance assumption:

Rv
1 = − g

f

∂Rp

∂y
(23a)

Rv
2 = g

f

∂Rp

∂x
. (23b)

Similar types of SALT noise calibration sampled in the

Fourier space have been considered in Resseguier et al. [32, 33].

4.2. Data assimilation results

Weperform the data assimilation analysis using an ensemble

of 50 particles. We plot the ensemble of particles one standard

deviation region about the ensemble mean and compare it with

the truth. The truth is a pathwise realization of the SRSWmodel.

We start with the standard setting (Figures 9A–D) and show

6 In our case C = 1 and we rescale the random vector field R such

that it has the desired variance. The parameter σ 2 = 2
102

is two times the

inverse of a length squared, and it is chosen to specifically determine the

spatial covariance length scale of the random field R. For this value of r,

the length scale of the random perturbation is 10 grid points.
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FIGURE 9

Evolution of the SRSW model for 50 time steps. Left: no assimilation of data. Right: the system is observed every 10 time steps. (A) Pressure field,

no DA. (B) Pressure field. (C) RMSE, no DA. (D) RMSE.

results for 50 model time steps, with a time step size of 90 s

(which corresponds to 1.25 h). We use one observation at each

analysis time, and the observational uncertainty and the initial

uncertainty are equal to 1. The stochastic model error is set

to 200 m. As mentioned, the random forcing is implemented

using a stochastic advection velocity in SALT. We generate

these stochastic advection fields by first generating a stochastic

pressure field of standard deviation 200 m, then determining

the velocity fields in the zonal and meridional directions using

geostrophic balance, as explained in the previous section. These

then form the stochastic fields that are applied in all three

evolution equations.

We first show the output obtained when no data is

assimilated. Figure 9A contains the evolution of the ensemble of

particles corresponding to the pressure field at a grid point in

the middle of the domain. We can see that the prior distribution

is spread out and the truth is not successfully tracked (the

ensemble mean remains far from the truth). The ensemble

spread is of the same order of the RMSE, showing that the

ensemble is consistent.

Now we start to observe the system every 10 time steps

(Figures 9B–D), so every 15 min. In Figure 9B one can see

that the assimilation of data improves the performance of the

ensemble of particles: the standard deviation is reduced and

the particle trajectories are corrected at assimilation times. We

then decrease the stochastic model error to 50 and observe

the system every 5 time steps (Figures 10A,B). In Figure 10A

one can notice that the particle filter efficiency is significantly

improved by the data assimilation time window: by observing

the system more often we obtain a cloud of particles which

are better concentrated around the truth. This success is due

also to the fact that we decreased the model error to 50. The

RMSE and SE illustrated in Figure 10B are much smaller than

before7.

For the next scenario (Figures 11A,B) the system is observed

every 5 time steps and we use 100 observations at each analysis

time. Figure 11A shows that a drastic increase in the number

of observations (100 now as opposed to 1 as we had before)

greatly improves the efficiency of the particle filter. In Figure 11B

one can see that the ensemble spread is substantially reduced

and the accuracy is now also much better. The true innovation

is that although we do not perform any localization, we can

7 Note that all plots are rescaled automatically.
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FIGURE 10

Evolution of the SRSW model for 50 time steps (ts). The system is observed every 5 time steps. The model error is decreased to 50. The particle

filter e�cacy is improved by the time window and the decreased model error. (A) Pressure field. (B) RMSE.

FIGURE 11

Evolution of the SRSW model for 50 time steps. The system is observed every 5 time steps, with 100 observations/analysis time. A large number

of observations improves the performance of the particle filter. (A) Pressure field. (B) RMSE.

assimilate 100 observations without filter degeneracy. This

suggest that this particle filter is an important step toward

beating the curse of dimensionality that plagued particle filtering

for so long.

We show below (Figures 12A,B) the evolution of the SRSW

model for 100 time steps, when observed every 5 time steps, with

5 observations at each analysis time. Although the particles have

a constant tendency to diverge from the truth, especially after

the first assimilation step, by observing the system quite often

and making the observations informative enough, we capture

the truth most of the time.

5. Conclusions and further work

We conclude that our methodology based on a particle filter

that incorporates tempering and jittering can be successfully

used to assimilate data for both Lorenz ’63 and the SALT-SRSW

model.

For Lorenz ’63 the closeness of the particles to the true

evolution of the data assimilation methodology is shown to

be influenced by the linearity of the observation operator and

the observability of the system. However, when the posterior

is wide, e.g., bimodal, the particles should not follow the truth

but cover the full posterior distribution, which the tempering

particle filter does very well. Three observation operators are

used: a fully linear one (H(x, y, z) = (x, y, z)), a partially

linear one (H(x, y, z) = (x2, y, z)), and a fully nonlinear one

(H(x, y, z) = (x2, y2, z2)). We obtain the best results in the

linear case. However, it is worth highlighting that we obtain

good results also in the nonlinear case, where we see a bimodal

distribution. In contrast to this, a standard Kalman filter would

probably fail, due to the difficulties generated bymultiple modes.

In future research we intend to explore also the influence of

other parameters such as: the number of particles, the size of
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FIGURE 12

Evolution of the SRSW model for 100 time steps. The system is observed every 5 time steps, with 5 observations/analysis time. The cloud of

particles follows the truth most of the time. (A) Pressure field. (B) RMSE.

data assimilation window, the effective sample size threshold, the

model error.

Moving on to the high-dimensional SRSW case, we conclude

that the particle filter remains effective in this case too. We

highlight that the particle filter we used in this work does not

incorporate any other strategies (such as localization [11, 12]).

Following the numerical simulations, the following parameters

have a relevant influence on the proficiency of the particle

filter:

• DA time window: the results are better when we observe the

system every 5 time steps, compared to when we observe it

every 10 time steps.

• Number of observations per assimilation time: we

test this for 1 observation, 5 observations, and 100

observations, respectively, per analysis time. The

best output is obtained in the last case. However,

by reducing the number of observations from 100

to 5, but observing the system every 5 time steps,

the truth can be well tracked for a long period of

time (Figure 12A).

• Model error: the particle filter is shown

to be robust with respect to increases in

model error.

The experiments show that the system is underobserved,

as many real-world systems, such as the atmosphere or

the ocean. This is to be expected, as the number of

degrees of freedom is very high (∼ 100, 080). Nonetheless,

the findings in this paper are sufficiently promising to

encourage further in-depth investigations based on further

improvements in particle filter methodologies. In further work,

just as in the case of the Lorenz ’63 model, we intend

to explore the influence of other parameters such as: the

number of particles, observational and initial uncertainty, the

effective sample size threshold, variations of the stochastic

forcing.

This work constitutes a stepping stone for solving a data

assimilation problem where the truth is a model of a horizontal

slice of the atmosphere and the data is given by a set of

atmospheric pressure observations collected by the GermanMet

Office Deutscher Wetterdienst from pressure sensors carried by

commercial aircrafts.
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