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In the censored regression model, the Tobit maximum likelihood estimator is unstable
and inefficient in the occurrence of the multicollinearity problem. To reduce this problem’s
effects, the Tobit ridge and the Tobit Liu estimators are proposed. Therefore, this study
proposes a new kind of the Tobit estimation called the Tobit new ridge-type (TNRT)
estimator. Also, the TNRT estimator was theoretically compared with the Tobit maximum
likelihood, the Tobit ridge, and the Tobit Liu estimators via the mean squared error
criterion. Moreover, we performed a Monte Carlo simulation to study the performance
of the TNRT estimator compared with the previously defined estimators. Also, we used
the Mroz dataset to confirm the theoretical and the simulation study results.

Keywords: censored regression model, multicollinearity, Tobit Liu estimator, Tobit ridge estimator, Tobit new
ridge-type estimator

INTRODUCTION

The limited dependent variables (LDVs) in the regression models are defined as the censored,
the discrete, and the truncated outcomes. Tobin [1] introduced the Tobit model of the censored
dependent variable, which is related to the LDVs, and Goldberger [2] gave its current name. The
censored data appear when the dependent variable has a loss of information, while the truncated
data appear when the dependent and the independent variables have a loss of information. In this
study, we used the standard Tobit regression model, which is the Type 1 model of the Tobit models
(Type 1-5) categorized by Amemiya [3] to deal with the censored dataset and their estimation. The
censored normal regression model, which is called the Tobit model, is used to relieve the deficiency
of biasedness and inconsistency of the results of using the least squares estimator (LSE). Therefore,
to determine the estimates of the parameter and to find the estimates of statistical inference,
the Tobit maximum likelihood estimator (TMLE) is used. When the explanatory (independent)
variables are not independent, it becomes a problem called multicollinearity, which this problem
often ignored in the censored regression models. Also, the multicollinearity makes the Tobit
maximum likelihood estimates of the regression coefficients incorrect, unreliable, and unstable;
because the mean squared error (MSE) values of these estimates are inflated. For this case, Khalaf
et al. [4] examined the multicollinearity effects on the TMLE, and they introduced the Tobit
ridge estimator (TRE). Then, Alhusseini and Odah [5] introduced a Tobit principal component
estimator. Also, Toker et al. [6] introduced a Tobit Liu estimator (TLE).
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In the linear regression model (LRM), several alternative
estimators of the regression coefficients have been produced for
the LSE when the multicollinearity problem happens because, in
this case, the LSE gives large variances, wrong signs, and becomes
unstable. The most popular estimators are the ridge estimator of
Hoerl and Kennard [7] and the Liu estimator of Liu [8]. Recently,
Kibria and Lukman [9] proposed a new ridge-type estimator
(NRTE). The NRTE has been extended in different regression
models in different studies, such as Lukman et al. [10], Lukman et
al. [11], Akram et al. [12], Dawoud and Abonazel [13], Awwad et
al. [14], and Abonazel et al. [15]. The multicollinearity is known
to be a terrible problem in the Tobit model like in the LRM. For
handling multicollinearity, some studies gave and investigated
some biased estimators in the LRM for a long time, but there
is little investigation of these estimators in the Tobit model.
However, studies of the biased estimators instead of TMLE in
deleting multicollinearity effects on regression coefficients in the
Tobit model are needed. In this context, the TRE was introduced
by Khalaf et al. [4] and the TLE by Toker et al. [6] were the biased
estimation beginning points in the Tobit model. Then, we defined
the Tobit NRTE (TNRTE) in this study. Also, we focus on the
theoretical properties of the TNRTE by the MSE criterion and to
compare them to the TMLE, the TRE, and the TLE.

The next content of this study is given as follows: Methodology
Section defines the Tobit regression model and provides the
TNRTE and the theoretical properties. A Monte Carlo Simulation
Section deals with the Monte Carlo simulation study. A Real Life
Data Section deals with the Mroz dataset. Conclusion Section
includes the concluding remarks.

METHODOLOGY
Tobit Regression Model

The model of the Tobit regression is
)’;k :xiﬂ+ui;i: 1>2>~~~an) (1)

where y? is called the dependent latent variable, x; is an i-th row of
the known matrix X with the dimension #n x (p+1); where p is the
number of the explanatory variables. 8 is the unknown (p+1) x 1
coefficient vector (when the model contains the intercept ), and
u; is called an error term that is independent, follows a normal
distribution by mean, and equals 0 and variance equals o2. We
considered the left censoring, where y; is defined as follows:

if yi >0 2)

_
yi= { 0, otherwise

On the basis of n observations on y; and x;, the § and o2
estimation issues are noted. For the defined model in Equation
(1), assuming that n, is the observation number for y; = 0 and
is the observation number for y; > 0, that is, non-zero for y;
occur first, then the log-likelihood function of the censored data

is given as
log S(X: B, o) = Zlog(l G)+Zlog< jT)
b4
_Z 20 2

- xiB)’, (©)

L 5o
A dq.

The TMLE of B is identified after solving the derivate of
Equation (3), but it is not a linear function of B, so it can be solved
iteratively by Fisher’s scoring method that comprises using the
second derivative. The Fisher’s scoring method is given as

xip
where G; = [
—00

A

B = gU=Y LA QBT r=1,2,., ()
Sr—1)y _ 9% log S(X; ﬂ,oz)) S I
where L(8 ) = E(iaﬁ oF sofen = =D is the

matrix of the Fisher information which is given at 1 where
B is B estimate at iteration(r), 871 is B estimate at iteration
(r — 1), D = X'DX, D is called as the diagonal matrix

and Q(AU) = E(W)ﬁ sy S0 the TMLE is
written as:

PO =BV —o2D) T QAT
= (D) (DAY — a2 QB V).

Then, Q (ﬁ(“l))is given as:

A 1 - A A
QBT M) = S D)"Y — V). (6)
o
Since the TMLE becomes inefficient and unstable when the
multicollinearity problem occurs, Khalaf et al. [4] proposed the
TRE and Toker et al. [6] proposed the TLE to eliminate the effects
of this problem.

The TRE is given iteratively as

() _ pr=1) r—1) —1/y A1)
B = B[ D DAY O
and the first step of the TRE is
A= = [i
. ~1
= (D +k1)

_ (D kD YD)AW
D+kn" DAY] o

N

BB,

~ 2 (0) A A
such that B© is the first estimate of 8, D = X’ DX, DO js
given at (0, the TMLE first step values are as same as that of the
TRE, and BWis the first step of the TMLE. When k = 0, B,El) =
A,

The TLE is given iteratively as

B = BV =[BT — DT Danp?] o)

==
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and the first step of the TLE is

3;1) _ Bt(i()) _ [5(0) —(D+ 1)_1(D+ dl)ﬁ(l)]

~(0) -1
— @D +D

p=p0 (10)

2 (0) ~
(D +dDpAW,

where the TMLE first step values are as same as that of the TLE if

d=1, ,8(1) BM [see Amemiya [16], Fair [17], and Toker et al.
[6] for more details].

New Ridge-Type Estimator
The usefulness of the NRTE among the one-parameter estimators
(RE and LE) in many different regression models and the
extension of the one-parameter estimators to the area of the Tobit
regression model encouraged us to derive the NRTE in this model
as follows:

By extending Equation (3), which is the censored data log-
likelihood function with the term of penalization, as

k N R
J =logS(X; B, o%) + ozl B+ B (B+B)—cl, (11)

where ziz is called a Lagrangian multiplier and ¢ is a constant,
and by differentiating J due to 8, we got

) k
@—Q(ﬁ)er

9 log S(X;B,0%)
2B :

B+ B), (12)

where Q(B) =
By finding the J second derivative due to 8 and then taking the
expectation, we got the following form for the matrix:

E(az]) (D+kI) (13)
9B OB ) p—pe-n oz pprt

Then, we employed the scoring of Fisher’s method in order to
introduce the TNRTE as:

r—1) 1/p(r—1) r—1)
'BTNRTE ﬁTNRTE -1 (/STNRTE) Q(ﬁTNRTE)

= Bt — [ @+ k0 (QBT )+ K5+ )] (14)

B=p-1)

By using Equation (4), we have the TNRTE in its final form as:

B = Bt — [+ kD™ (EBIE — 40+ L+ B)]
= Bl = [D+KD™ (VBT = BO) + KA + 40)) ]
= Bt — [(D + kD)~ ( (D + kI) B — (D — kI) 3(r>)]

= Bl — [B) = D+ k0~ (D - kDAY ]

B=Br-D
B=A""V (15)
B=pUr-1

p=pr-

The TNRTE of Equation (15) was obtained iteratively. The first
step of the TNRTE is given as follows:

:B(TII\)fRTE IBTNRTE [B(O) —(D+kn)'(D - kl),é(l)]ﬁz

TABLE 1 | Values of factors that are considered in the simulation.

Factor Symbol Design
Censoring level CL 5, 25, 50%
Sample size n 100, 400, 800
Variance o 0.5,1,5
Degree of correlation T 0.85, 0.9, 0.95, 0.99
Number of explanatory variables p 4,8
Number of replicates MCN 1,000
and the first step of the TNRTE is
(1) 2 (0) RO )
IBTNRTE =D +kI) (D - kl)ﬂ > (17)

where the first step values of the TNRTE are same as that of the
Tobit LE and D© is evaluated at 8 if k = 0, ﬂTNRTE =W,

Asymptotic MSE Comparisons

To observe the estimators’ characteristics, the MSE criterion was
preferred. When B is an estimator of B, then the matrix form of
the MSE criterion is given as

MSE(B) = Var (B) + Bias (B) Bias (B)', (18)

where var(B)is the matrix form of the variance-covariance and
Bias(B) is the bias vector of B estimator. Then, the scalar MSE is
given by

mse (B) = trace (MSE (B)), (19)

Since the TMLE for the first step is known as an asymptotically
unbiased estimator, it means that the asymptotic matrix form
of the MSE equals the asymptotic matrix form of the variance-
covariance as follows:

MSE(BD) = Var (BV)
~(0) 71 (20)
=o%(D )

The asymptotic MSE matrix form of ﬁil) is given as

~(1) 2 2(0) —1,00) 2(0) -1
MSE(B,") = 0" (D +kI) D (D +kI)
1 , ~(0) -1
BB (D +kI)

~(0) -
+K*(D " +kI) (21)

The asymptotic MSE matrix form of ﬁ‘(il) is given as

A1) 5,20 2 (0) 2(0) 71 2(0)
MSE(B;")=0*[(D +I) (D +dDD ) (D +dI)

R ~1
&+ (22)
-1 -1

5 20) ,,2(0)
+d—-1%D +I) BE(D +1)

The first step TNRTE asymptotic bias and its asymptotic
variance-covariance forms are given as follows:

Bias(Bngrg) = (DO + kDD — kD) —118.  (23)
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TABLE 2 | Simulation results in case of p = 4 and o = 0.5.

cL n T & & () 85 (dar) & arekn) & pre (kmin)
0.05 100 0.85 0.08439 0.08177 0.08024 0.07580 0.04701
0.90 0.14477 0.14108 0.13687 0.13340 0.09588
0.95 0.37866 0.30013 0.28805 0.21957 0.14546
0.99 2.12123 1.69281 1.17409 1.36538 1.07352
400 0.85 0.06948 0.06873 0.06862 0.06682 0.04976
0.90 0.03736 0.03698 0.03664 0.03595 0.02226
0.95 0.15997 0.15486 0.15322 0.14427 0.10026
0.99 0.51461 0.44249 0.41698 0.36556 0.26895
800 0.85 0.01500 0.01495 0.01492 0.01482 0.01131
0.90 0.02420 0.02403 0.02393 0.02356 0.01506
0.95 0.05889 0.05823 0.05779 0.05653 0.03707
0.99 0.26189 0.24239 0.23242 0.21132 0.13378
0.25 100 0.85 0.15183 0.13607 0.13891 0.11350 0.09149
0.90 0.34139 0.23299 0.27936 0.16125 0.13711
0.95 0.81721 0.33112 0.47175 0.18070 0.15651
0.99 3.07911 1.94488 1.30970 1.30760 0.94765
400 0.85 0.09315 0.09179 0.09245 0.08912 0.09653
0.90 0.14761 0.14084 0.14458 0.13033 0.12393
0.95 0.28787 0.21218 0.25017 0.14216 0.10127
0.99 1.16488 0.51121 0.64053 0.28221 0.23849
800 0.85 0.05474 0.05454 0.05462 0.05407 0.06394
0.90 0.14315 0.13700 0.14052 0.12498 0.09854
0.95 0.11686 0.10747 0.11202 0.09119 0.06602
0.99 1.23499 0.81775 0.89744 0.53421 0.35129
0.50 100 0.85 0.94398 0.49023 0.72343 0.34857 0.32451
0.90 0.89523 0.37400 0.61122 0.29265 0.28724
0.95 0.45112 0.15818 0.25473 0.12841 0.12884
0.99 4.57183 0.72390 0.72960 0.39133 0.45197
400 0.85 0.41065 0.30470 0.38918 0.25460 0.24267
0.90 0.36824 0.27886 0.34462 0.22898 0.20956
0.95 0.78458 0.39098 0.66041 0.29614 0.27413
0.99 6.15895 3.91878 2.45550 1.67715 0.37830
800 0.85 0.28978 0.27517 0.28713 0.25792 0.24808
0.90 0.38991 0.31360 0.37730 0.26372 0.24913
0.95 0.32927 0.29935 0.32278 0.28405 0.28284
0.99 0.64817 0.29716 0.46906 0.25371 0.24986
and Model (1) is written in the canonical form using the orthogonal

Then, the asymptotic MSE matrix form of B%\)]RTE is given as

3(1) _ 2 3 -
Var(Brypre) = o [(D +kI)
2 (0) 2 (0)

(1) 2, 20 Q)
MSE(Byygrp) = o°[(D +kI) (D

(D~ —kI)(D

2(0) 2 (0)
(D —kI)D +kI)
2 (0)

2 (0)
+[(D +kI)

1

-1

'

+kI)_ l.

(D

) 2(0) ~
—kn(D )

1

1

2 (0) 71
—kn(D )

-1

]
—kI) —1I]

(249)

s, 200 ) ,
BB'L(D +kI) (D —kI) —1I]. (25)

transformation and the spectral decomposition such that the
~(0) _
Fisher matrix form of the first step is given as D = CWC),

where C = [Cy, Cy, ..., Cpliscalleda (p+1) x (p+1) orthogonal
2(0) _
matrix form and D = CWC refers to the eigenvectors
~(0) ~ _
columns, CD C = MDOM = W = diag (w;) is called a

~(0)
(p + 1) x (p + 1) diagonal matrix form with the D (wy >
W) > .. = wp > 0) eigenvalues on the diagonal, such that
M = XC. The canonical form formula of the asymptotic matrix
form and the scalar MSE for ¢, &]((1)) &‘(il) and &(T?,RTE are
written as follows:

MSE (&) = o2(W) ", (26)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org

July 2022 | Volume 8 | Article 952142


https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Dawoud et al.

Tobit Ridge-Type Estimator

TABLE 3 | Simulation results in case of p =4 and o = 1.

cL n 4 & & k) &5 (dar) &ure k) &fure (kmin)
0.05 100 0.85 0.27994 0.22248 0.23948 0.15818 0.09746
0.90 0.48548 0.36945 0.38882 0.26648 0.18523
0.95 1.06487 0.53619 0.59676 0.29376 0.21853
0.99 6.09446 3.40860 1.60770 1.88323 0.79975
400 0.85 0.12066 0.11220 0.11558 0.09571 0.05239
0.90 0.12223 0.11110 0.11400 0.09042 0.04230
0.95 0.29436 0.24058 0.25852 0.17596 0.10436
0.99 1.21836 0.66503 0.71062 0.40058 0.30620
800 0.85 0.03940 0.03824 0.03857 0.03533 0.01791
0.90 0.06245 0.05920 0.06033 0.05186 0.02352
0.95 0.14561 0.13252 0.13633 0.10842 0.05392
0.99 0.66375 0.42483 0.47623 0.26713 0.19121
0.25 100 0.85 0.33660 0.21404 0.26973 0.14257 0.12302
0.90 0.65097 0.29570 0.45169 0.17768 0.15457
0.95 1.35205 0.43767 0.61171 0.19088 0.13035
0.99 6.27692 2.95777 1.26949 1.38631 0.60606
400 0.85 0.12446 0.11477 0.12118 0.10195 0.10170
0.90 0.23884 0.19092 0.22362 0.156172 0.13461
0.95 0.37085 0.19966 0.30011 0.11732 0.09775
0.99 1.80126 0.61418 0.76889 0.25384 0.13237
800 0.85 0.07414 0.07139 0.07309 0.06594 0.06361
0.90 0.17009 0.15060 0.16434 0.12400 0.09976
0.95 0.21158 0.16012 0.19310 0.11050 0.08175
0.99 1.74511 0.87871 1.07884 0.45816 0.25214
0.50 100 0.85 1.13850 0.51946 0.81290 0.35420 0.33801
0.90 1.13729 0.40701 0.68195 0.30323 0.30289
0.95 0.85386 0.20759 0.36866 0.13717 0.13773
0.99 5.99679 0.90344 0.65449 0.41361 0.43331
400 0.85 0.43862 0.28981 0.40717 0.24688 0.24386
0.90 0.42703 0.27502 0.38620 0.22024 0.20849
0.95 1.02445 0.43173 0.79452 0.29342 0.25947
0.99 7.23887 3.73973 2.27123 1.30613 0.39580
800 0.85 0.31729 0.28246 0.31201 0.25644 0.24980
0.90 0.43023 0.30451 0.40978 0.25171 0.24425
0.95 0.38920 0.30205 0.37000 0.27884 0.27794
0.99 0.88767 0.31974 0.54905 0.25139 0.24847
MSE@\") = o> (W +kI) " W (W + kD)~ + k(W +kD) " e ZP: oW + ko G
aa (W + k1)~ (27) TS R
MSE@Y) = o2 (W + D~ (W +dI) (W)™ (W +dI) Lo B+ = 1P
(W+D"1+@d=1D2W+D e/ (W+D™ (28) oS = ,_Zo w; (W + 1)° C @
MSE@ ) = 02 [(W + kD)™ (W — k(W)™ (W — kI) » 2e 12 L agze 2
- -1 217 -1 = -1 mse(&(l) ) = Z A il A, (33)
(WH+KkI) |+ 4k*(W +kI)  aa’(W + kI) (29) TNRTE) = < W (wj+k)2 s
@ =073 L Goy  wherew = CB.al = R0, a = P& = )
i—o Vi andal) =g .
J TNRTE TNRTE
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TABLE 4 | Simulation results in case of p = 4 and o = 5.

)

cL n T &M & (k) & (dar) &S hrre(kr) &Spre (kmin)
0.05 100 0.85 5.85274 0.39991 0.80830 0.18888 0.19297
0.90 9.23801 0.43827 0.75055 0.20275 0.17161
0.95 20.26041 0.63066 0.54674 0.75467 0.93491
0.99 107.51962 3.14511 0.33799 1.95772 1.76879
400 0.85 1.70770 0.16823 0.75322 0.04656 0.03788
0.90 2.563743 0.16743 0.78535 0.04929 0.04044
0.95 4.58955 0.17121 0.79950 0.06594 0.04300
0.99 21.62036 0.42102 0.40384 0.25861 0.13540
800 0.85 0.73929 0.08473 0.47144 0.02380 0.02045
0.90 1.19120 0.09931 0.61501 0.02961 0.02455
0.95 2.38632 0.08583 0.77279 0.02664 0.01796
0.99 11.96986 0.24125 0.53698 0.13878 0.06955
0.25 100 0.85 5.77461 0.46378 0.71224 0.29294 0.30568
0.90 11.21582 0.48987 0.74074 0.22880 0.18155
0.95 18.42567 0.63905 0.54834 0.56494 0.50903
0.99 89.60013 2.05524 0.26170 0.98369 0.41537
400 0.85 1.38431 0.42819 0.68425 0.18593 0.17036
0.90 3.08322 0.35974 0.97073 0.15886 0.13434
0.95 4.08642 0.25720 0.67809 0.12900 0.09643
0.99 22.17859 0.40916 0.36989 0.31214 0.13774
800 0.85 0.83619 0.17091 0.53177 0.06465 0.05761
0.90 1.18690 0.23904 0.63327 0.10522 0.09467
0.95 2.81468 0.17317 0.85394 0.07262 0.06217
0.99 15.32023 0.41075 0.72909 0.15574 0.12420
0.50 100 0.85 9.33358 0.75539 1.21896 0.63396 0.61351
0.90 10.71809 0.76879 0.97905 0.71838 0.71674
0.95 17.16682 0.42785 0.44256 0.42213 0.32800
0.99 64.19689 0.91622 0.55578 1.46511 0.66360
400 0.85 1.84858 0.58827 0.86659 0.36689 0.34593
0.90 2.42662 0.44374 0.82334 0.25360 0.22669
0.95 6.36484 0.40697 0.98929 0.29202 0.24581
0.99 42.22717 1.41102 0.73127 0.44336 0.27481
800 0.85 1.24810 0.45470 0.82589 0.26673 0.25520
0.90 1.79880 0.40571 0.95688 0.25133 0.23683
0.95 2.05814 0.41260 0.74084 0.26399 0.24359
0.99 7.95036 0.33278 0.562525 0.32700 0.23893

The lemmas below are useful to be used in the theoretical
comparisons among the above estimators.

Lemma 1: Suppose for the matrices n x n,if F > 0and I > 0
(or I > 0), then F > I'iff Apnax(IF ™) < 1 such that Agpax(TF~1)
is the matrix IF~! maximum eigenvalue [18].

Lemma 2: If the matrix F is defined as an n x n positive
definite, i.e., F > 0, as well as « is a vector, then, F — a o’ > 0 iff
o Fla < 1[19].

Lemma 3: Suppose o; = Kjm, i = 1,2 are two « linear
estimators and suppose Diff = Cov (&) — Cov (&) > 0, where
Cov(@;); i = 1,2 refers to &; covariance matrix and b; =

Bias (@) = (KiX — I, i = 1, 2 [20], then consequently,

A&y — &) = MSE(&;) — MSE(&) = o Diff + b1V,
—bzb/z >0 (34)

iff b5 [02Diff + b'1b1] by < 1, where MSE (&) = Cov (&) +
bib's.

Comparisons Among the Estimators
Theorem 1: @) .. is superior to ¢V iff

W HKD " (W — kD) — L] x [0 (W)™
—(W 4+ kD™ (W — kD) (W)™ (W — kD(W + kD) )] x (35)
[(W+KD) ™ (W —KI) — L] <1

Proof: The dispersion difference is:

Cov (@MW) = Cov (@W prp) = 2 (W)™ = (W + kD™
(W — kD) (W) (W — kD)(W + kD)),
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TABLE 5 | Simulation results in case of p = 8 and o = 0.5.

)

cL n T &M & (k) & (dar) &S hrre(kr) &Spre (kmin)
0.05 100 0.85 0.21299 0.21003 0.20261 0.19563 0.12179
0.90 0.56969 0.51409 0.48277 0.36650 0.18440
0.95 0.83207 0.72366 0.63084 0.50335 0.28609
0.99 16.52158 10.44695 2.35048 4.92202 2.37078
400 0.85 0.27154 0.26411 0.26211 0.23113 0.13296
0.90 0.13371 0.12809 0.12646 0.10156 0.02604
0.95 0.31037 0.29873 0.29093 0.25102 0.13099
0.99 1.18991 1.01467 0.86321 0.71893 0.45445
800 0.85 0.05024 0.04994 0.04966 0.04810 0.02107
0.90 0.05721 0.05666 0.05614 0.05330 0.01864
0.95 0.18054 0.17206 0.17089 0.13469 0.04490
0.99 1.35089 1.07159 1.04126 0.69134 0.43935
0.25 100 0.85 1.56275 0.58823 1.08474 0.22315 0.19675
0.90 1.89425 0.74730 1.13449 0.31928 0.26897
0.95 3.92006 2.28015 2.15826 1.18369 0.83884
0.99 15.48598 3.40925 0.68261 0.49189 0.45279
400 0.85 0.21475 0.17820 0.19909 0.09342 0.05105
0.90 0.51782 0.36158 0.45851 0.16621 0.10651
0.95 1.89760 1.16085 1.37948 0.40165 0.11108
0.99 3.85082 1.25270 1.42291 0.43649 0.29770
800 0.85 0.36483 0.31813 0.35016 0.20515 0.13247
0.90 0.12170 0.10803 0.11754 0.08141 0.07711
0.95 0.55161 0.37153 0.48398 0.16621 0.08142
0.99 3.11611 0.91577 1.565483 0.29862 0.18130
0.50 100 0.85 4.46921 1.76414 2.69672 0.83017 0.64431
0.90 4.40601 1.93398 2.24012 0.70013 0.41793
0.95 7.70547 2.09302 1.91177 0.47669 0.38454
0.99 16.11585 1.44523 0.69649 0.80656 0.86553
400 0.85 0.58769 0.25876 0.50664 0.19675 0.19763
0.90 0.86237 0.34608 0.72974 0.22902 0.22895
0.95 1.80472 0.60017 1.26100 0.35283 0.33833
0.99 21.83544 5.59858 3.62775 1.13593 0.75091
800 0.85 0.47881 0.34735 0.46012 0.28121 0.27713
0.90 0.83702 0.49046 0.76243 0.29857 0.27414
0.95 1.49459 0.57785 1.22709 0.31494 0.27184
0.99 3.12040 0.66685 1.30715 0.27054 0.24975

We observed that (W)™ — (W + kI) " "(W — kI) (W) "(W —  where

kKD(W + kI)_1 is positive definite since(w; + k)2 — (wj — k)2 =
4wik > 0, for k > 0. By Lemma 3, the proof Vi

is completed.

& iff

o/ [(W+ kD)™ (W — kD) — L]’ x
[ViH((WHKD ™ (W)™ =Ty (WD (W)™ =1,)')(36)
[(W+KD " (W—kI) — L] <1

Amax(IF71) < 1,

(W)™ (W — kD) (W + kD)),
Theorem 2: When Ap.x(IF7!) < 1, &(TllzTRTE is superior to I =k(W+ k[)_1 (W)_I(W+ k])_l,

F=2W+kD) "(W+kD".

Proof:

(37) =o0?k(F-1)

k(W k)T

(W kD" WW + kD)™ — (W + kD)™ (W — kI)

Vi=02(W+kD) " WW + kD)™ — (W + k)™ (W — kI)
WY N W — kD) (W + kDY
= 02k (W +kI) " (W + kI)
(W) (W+kD™)
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TABLE 6 | Simulation results in case of p =8 and o = 1.

cL n T &M & (k) & (dar) &S hrre(kr) &Spre (kmin)
0.05 100 0.85 1.15846 0.87888 0.91697 0.51322 0.27689
0.90 1.53553 1.15383 1.07084 0.68093 0.38196
0.95 4.01636 2.37195 1.80330 1.01617 0.57745
0.99 12.27522 8.05584 2.46922 4.06623 2.06109
400 0.85 0.19309 0.17901 0.18189 0.12447 0.03658
0.90 0.43058 0.37714 0.39135 0.23424 0.09405
0.95 0.73881 0.55514 0.60638 0.27658 0.12419
0.99 4.29109 2.14779 1.75127 0.85536 0.46653
800 0.85 0.11483 0.10893 0.11095 0.08191 0.02236
0.90 0.16419 0.15237 0.15634 0.10503 0.02677
0.95 0.32358 0.28838 0.29549 0.18040 0.05814
0.99 1.60044 0.77540 0.97348 0.29564 0.18525
0.25 100 0.85 2.32574 1.08986 1.36734 0.27468 0.13717
0.90 5.22360 2.78669 2.68889 1.03991 0.49823
0.95 5.40588 3.28294 2.54175 1.61957 0.97862
0.99 27.30491 8.10032 1.35084 1.91940 1.40683
400 0.85 0.44521 0.26832 0.39387 0.11254 0.08142
0.90 0.76937 0.45170 0.65382 0.18471 0.11600
0.95 2.29500 1.21621 1.50964 0.27296 0.10602
0.99 5.17561 1.69015 1.39349 0.33433 0.13233
800 0.85 0.29510 0.24088 0.27898 012772 0.06503
0.90 0.36689 0.24308 0.33794 0.12569 0.10288
0.95 0.37569 0.20298 0.31807 0.08142 0.06467
0.99 3.96692 1.07023 1.72913 0.30098 0.20096
0.50 100 0.85 3.37604 1.06933 1.78404 0.57155 0.55877
0.90 1.37876 0.32910 0.68637 0.19041 0.19209
0.95 5.84301 1.00650 1.43225 0.41051 0.42935
0.99 73.10146 29.99253 1.11649 1.68054 2.97445
400 0.85 1.12473 0.44371 0.94728 0.25330 0.23185
0.90 1.83650 0.65919 1.39858 0.25178 0.18772
0.95 1.39164 0.41154 0.91057 0.30256 0.30279
0.99 12.10185 1.84634 1.58779 0.38332 0.36864
800 0.85 0.48052 0.34534 0.46263 0.29511 0.29213
0.90 0.53634 0.30901 0.49602 0.26758 0.26706
0.95 1.81295 0.66496 1.39854 0.30232 0.25480
0.99 4.02489 0.89612 1.47110 0.29179 0.26844
where I = k(W+kD)'(W) "(Wa+kI)™" and F =  where

2(W kDT (W kD)

It is clear that, for k > 0 and 0 < d < 1,
F > 0and I > 0. It is obvious that F — I > 0
if and only if Amax(IF™Y) < 1, where Ama(IF71) is the
maximum eigenvalue of the matrix IF~!. By Lemma 1, the proof
is completed.

Theorem 3: &(le\)lRTE is superior to &;1) if and only if

LW+ kD (W — kD) — L)' x
[Va+ (1 —dP(W+1) aa (W+1)
[(W+KD) ™ (W —KI) — L] <1

Hx (38)

Vo= a2 (WD) H(W +dD) (W) (W +dD)(W + 1)~ =

(W + kD)™ (W — kD) (W)™ (W — kD) (W + kD))
Proof: The dispersion difference is

Vy =02 (W+ 1) (W+dD)(W) " (W+dD(W+1) ' —
(W + kD) N (W — kD(W) "W = kD)(W + kD))

ey (Witd)?® W=k’
= odiag { IS TETO P

We observed that (W41 "(W + d)(W) (W +
Aw+D"" = WakD'W — kDhW) W —
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TABLE 7 | Simulation results in case of p = 8 and o = 5.

cL n T &M & (k) &3 (dar) &S ki) &S pre (kmin)
0.05 100 0.85 16.48429 0.76265 1.79934 0.47392 0.58901
0.90 2414235 1.02268 1.45280 0.77891 1.03974
0.95 53.51362 2.15790 1.02047 1.79561 2.33215
0.99 239.12441 9.28487 0.34627 455732 5.75055
400 0.85 3.49016 0.13836 1.51275 0.03610 0.03901
0.90 6.20417 0.20077 1.81764 0.05704 0.06378
0.95 11.94495 0.35280 1.73986 0.09322 0.10407
0.99 59.06904 1.59133 0.78171 0.32741 0.37704
800 0.85 1.89563 0.08764 1.17527 0.02067 0.02213
0.90 2.73088 0.09386 1.39951 0.01762 0.01943
0.95 5.56415 0.13841 1.71080 0.02300 0.02574
0.99 27.36199 0.61708 1.10996 0.13521 0.14900
0.25 100 0.85 18.87774 0.82976 1.565346 0.63487 0.74055
0.90 34.43712 2.11859 1.93708 0.82710 0.99253
0.95 56.67286 2.54356 1.20241 1.20350 1.40572
0.99 234.54677 6.24261 0.46401 6.35297 7.65207
400 0.85 3.64835 0.19408 1.46753 0.08255 0.08183
0.90 6.64063 0.26842 1.94108 0.10631 0.11199
0.95 16.55755 0.74765 2.08509 0.21553 0.21790
0.99 53.92402 1.12368 0.64415 0.37636 0.40181
800 0.85 2.28659 0.16307 1.35829 0.06684 0.06702
0.90 2.58707 0.19128 1.28871 0.10171 0.10106
0.95 5.41396 0.18338 1.564659 0.06600 0.06500
0.99 32.35663 0.77203 1.22296 0.19496 0.20403
0.50 100 0.85 20.54085 1.08011 2.06415 0.91851 0.96065
0.90 21.67315 0.57351 1.04308 0.54817 0.55866
0.95 65.76152 2.32354 1.07240 2.24306 2.64051
0.99 299.40422 12.27341 0.42142 11.04547 11.98258
400 0.85 5.14950 0.39194 1.96635 0.25346 0.24852
0.90 7.85514 0.34316 2.15083 0.14905 0.14598
0.95 14.82821 0.65250 1.89624 0.47094 0.45788
0.99 69.45204 1.45136 0.85636 0.94116 0.88360
800 0.85 1.88897 0.37811 1.18269 0.25336 0.25122
0.90 3.04633 0.40105 1.561743 0.30356 0.30175
0.95 8.83255 0.40226 2.39202 0.20527 0.20621
0.99 26.02972 0.54693 0.96760 0.27806 0.25399

kI) (W + kI) ") is applicable if and only if (i¥; + k) (i; + d)* —
(wj — k)z(ﬁ/j—l— 1)) > 0. For k > 0, it was observed that
(wj +k)* (w; + d)> — (w; — k)*(wj + 1)* > 0. By Lemma 3, the
proof is completed.

The Selection of k Parameter of the TNRTE
Using the Kibria and Lukman [9] method, the optimal biasing
parameter k of the TNRTE is given as:

0.2
k= ————, 39
T 202 + (02 /W) 9

and using the unbiased estimates of o> and «?, the optimal
estimated k of the TNRTE is given as:

62

ki= —5——
126+ (67/w))

(40)

A MONTE CARLO SIMULATION

To explain the performance of the proposed TNRTE compared
with other mentioned estimators, we conducted the simulation
experiments using some different factor levels. The design is
constructed by following the techniques of Kibria [21], Yenilmez
et al. [22], Khalaf et al. [4], Yenilmez and Kantar [23], Toker
et al. [6], and Yenilmez et al. [24]. The correlation degree (7)
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TABLE 8 | The regression coefficients and the MSE results.

Estimator oo o o o3 g o5 MSE k/d

& —2.5349 —0.1648 0.6825 —2.6877 0.0781 0.2214 56.6834 NA

& k) —0.4558 —0.1806 0.5691 —2.0635 -0.0077 0.2243 7.7517 2.270
& () ~0.8312 ~0.1811 0.6051 —2.4213 0.0083 0.2230 9.9986 0.029
& ki) 1.2387 ~0.1987 0.5007 —1.9321 ~0.0770 0.2254 34.3714 1.342
oA — ) —0.3934 —0.1883 0.5992 —2.5793 —0.0090 0.2226 8.0258 0.296
&0.3) —1.4565 -0.1766 0.6405 -2.6324 0.0343 0.2220 20.1089 0.300
a03) —1.3068 -0.1766 0.6267 —2.4957 0.0278 0.2225 16.9422 0.300
&) re(0.3) -0.3780 -0.1884 0.5986 —2.5771 ~0.0096 0.2226 8.0235 0.300

among the explanatory variables is one of the essential factors in
the simulation. For providing the correlation changing range, the
data were also generated using the next model:

xij = V(1 —12)zij + T Zjp,

i=1,.2,.,n j=12,.,p

(41)

where z;; is given and follows a standard normal. The dependent
variable is given using the next equation:

yi=Bo+Bixi+Boxip+ -+ Bpxip+u;  i=1,2,.,n,

(42)

where u;’s are considered as pseudo-random numbers, which are
independent and identical and have N(0, 2), and the parameter
vector is considered as 8’8 = 1 as in the studies of Dawoud and
Abonazel [25], Awwad et al. [26], Awwad et al. [14], Abonazel
and Dawoud [27], Algamal and Abonazel [28], Abonazel et al.
[15], and Abonazel et al. [29]. So, the dependent variable has
been censored using Equation (2). Also, all factors used in this
simulation are stated in Table 1.

The TRE, the TLE, and the proposed TNRTE estimated
biasing parameters used in this simulation study are given
as follows:

1. The estimated parameter of k for the TRE is considered
according to Hoerl and Kennard [7], as

3. Following the study of Kibria and Lukman [9], the estimated
biasing parameter minimum value and the harmonic-mean of
k for the proposed TNRTE are considered as follows:

P
. A2
kmin = min o 20 (46)
26"y + 62/ ),
N 52 1
P k) (47)

P
@) + (6 2/w)
=0

J

To examine the performances of the TMLE, TRE, TLE,
and the proposed TNRTE, we computed the estimated MSE
(EMSE) as:

MCN

EMSE(e*) = —— Y (of —a) (] —a),
I=1

48
MCN (48)
where ] is called an estimator as well as « is called a true
parameter. The simulation results (EMSE values) are stated in
Tables 2-7, the smallest value of the EMSE is highlighted in bold.
Based on the simulation results, we conclude the following:

1. The EMSE increases as n decreases.

s p 2. The EMSE increases as p increases.

]A{M — min o (43) 3. The EMSE increases as T increases.

@y | 4. The EMSE increases as o increases.

! =0 5. The EMSE increases as the CL increases.
2. The estimated parameter d for the TLE is considered, 6. The TMLE exhibited the least performance at all levels of
according to Liu [8] as follows multicollinearity and censoring.
7. The TNRTE and the TLE outperform the TRE for all cases.

i (1/Gwj(w; + 1) 8. The Proposed TNRTE has few EMSE values near to that of

N | =0 TLE in case of large o and p values.
dopt =1-6 P (1):2 oo | (44) 9. The proposed TNRTE with the biasing parameters Kumin
Z ((&j ) /(wj+1)%) performs the best of all other mentioned estimators in terms
=0 of the EMSE, followed by the proposed TNRTE with the

when Elupt has negative value, Ozkale and Kaciranlar [30] biasing parameters kj in most cases.
considered the alternative parameter of d as: 10. The proposed TNRTE performance and others
almost depend on the determination of their biasing
. (&(1))2 ? parameter estimators.
dair = min ]—2 (45)  11. Finally, the proposed TNRTE performs the best of all other
(62/w)) + (&j( 1)) =0 mentioned estimators in terms of the EMSE in most cases.
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FIGURE 1 | MSE of TMLE, TRE, TLE, and TNRTE for diffrent k, d.

A REAL-LIFE DATA

In this section, we have the Mroz dataset that was originally
adopted by Mroz [31] to clarify the performance of the
proposed TNRTE and other mentioned estimators. The Mroz
data contains 753 cases of married women with 21 variables,
and the ages of these women range from 30 to 60 years.
Three hundred twenty-five of the 753 cases from these women
have an average wage of zero in an hour. Then, Barros et
al. [32] considered the average hourly wage of the women as
a dependent variable (y), while the independent variables are
as follows: age of the women (x;), education of the women
(x2), number of children <6 years (x3), number of children
between the ages 6 and 18 (x4), and previous labor market
experience of the women (xs5). With the method of Toker et
al. [6], to examine the existence of multicollinearity, or not,
the W matrix eigenvalues are given as 69,601.81, 1,723.52,
334.22, 54.43, 6.22, and 0.36, and the condition number is
calculated as 441.09, and these results connote that there is high
multicollinearity. The parameters and MSE are estimated and
presented in Table 8.

Table 8 shows that the TMLE performs worse as expected.
Also, the TRE has a near MSE value with the biasing parameter

estimator ky to that of the proposed TNRTE with biasing

parameter estimator kp. Moreover, the proposed TNRTE has
the lowest MSE value among the mentioned estimators (TRE

and TLE), followed by TLE and then the TRE, when k = d =
0.3; this means that the proposed TNRTE is the best in this
case.

Figure1 shows that the proposed TNRTE with biasing
parameter k from 0.18 to 0.58 performing better than other
mentioned estimators, and when k equals 0.36, the proposed
TNRTE has the least MSE; which means it is the best of
all given estimators, while the TMLE performs the worst as
expected.

CONCLUSIONS

In this study, we proposed the Tobit new ridge-type estimator
(TNRTE) for overcoming the multicollinearity problem of the
censored model. Theoretically, we compared the proposed
TNRTE with some given estimators: the Tobit maximum
likelihood estimator (TMLE), the Tobit ridge estimator (TRE),
and the Tobit Liu estimator (TLE), and gave biasing parameter
estimators of the proposed TNRTE. Then, a simulation
study was performed to know the performance of the
TMLE, the TRE, and the TLE with the proposed TNRTE.
The results of the simulation indicate that the proposed
TNRTE is better than other existing estimators in most
cases. Moreover, real-life Mroz data were used to clarify the
study results.
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