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Extreme events are defined as events that largely deviate from the nominal

state of the system as observed in a time series. Due to the rarity

and uncertainty of their occurrence, predicting extreme events has been

challenging. In real life, some variables (passive variables) often encode

significant information about the occurrence of extreme events manifested

in another variable (active variable). For example, observables such as

temperature, pressure, etc., act as passive variables in case of extreme

precipitation events. These passive variables do not show any large excursion

from the nominal condition yet carry the fingerprint of the extreme events.

In this study, we propose a reservoir computation-based framework that

can predict the preceding structure or pattern in the time evolution of the

active variable that leads to an extreme event using information from the

passive variable. An appropriate threshold height of events is a prerequisite

for detecting extreme events and improving the skill of their prediction. We

demonstrate that the magnitude of extreme events and the appearance of a

coherent pattern before the arrival of the extreme event in a time series a�ect

the prediction skill. Quantitatively, we confirm this using ametric describing the

mean phase di�erence between the input time signals, which decreases when

the magnitude of the extreme event is relatively higher, thereby increasing the

predictability skill.
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extreme events, coupled neuron model, active and passive variable, precursory
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Introduction

In recent years, extreme events (EEs) have gained attention

of the researchers and decision-makers due to increase in

the occurrence of highly intense climate extremes, such as

hurricanes, floods, heatwaves, etc., due to global warming and

climate change [1–3]. They have devastating impact on life

and infrastructure. There are several other examples of such

extraordinary devastating events in various other disciplines

aside from climate, like rogue waves in lasers and tsunamis

in the ocean, earthquakes in seismology, share market crashes

in finance, regime shift in ecosystems, etc., which are also

rare but may have a long-term correlation in their return

periods [4–11]. The study of extreme events focuses on the

self-organizing principles [5, 12–19] that may enable us to

forecast and mitigate the after effect. Various tools have been

developed to study the underlying dynamics of such extreme

events, e.g., complex networks have been extensively used to

analyze climate extremes [20–24], numerous studies have been

conducted to analyze extreme events based on their statistical

properties [25, 26]. Recurrence plot analysis has been used to

study the recurring behavior of flood events [27]. Because of

their rare occurrence and complex dynamics, understanding and

predicting extreme events is a challenge in the studies of complex

natural systems using the dynamical system approach only

[15, 28–30]. Alternatively, data-based and model-free machine

learning techniques have been recently shown to be more

promising for predicting such events [31–36]. To put it simply,

such a prediction process involves training of the machine using

past data records of EEs from other observable and then testing

the ability of machine to successfully predict the prior shape of

the observable which leads to extreme event.

As the term “extreme event” is used in various disciplines, a

precise definition of EEs is not available. Rather, it depends on

the particular discipline where this term is being used. In this

work, we select the EEs based on their magnitude. Therefore,

it is crucial to set a threshold height so that we can call an

event “extreme” when it exceeds the threshold. The choice of an

appropriate threshold plays a pivotal role in prediction [37, 38].

In our study, we found that for data-based machine learning, a

certain threshold height augments the efficient detection of the

arrival of a coherent pattern and thereby leverage the prediction

process. In particular, we raise the following question here that

for a given multivariate data set in which one of the variables

exhibits EEs, whether a seemingly benign variable (with no

signature of EE) can be used in a machine for the prediction of

the preceding structure or pattern indicative of the forthcoming

EE expressed in another observed variable. We refer to the

preceding structure pattern as a precursory signal in the data

that is typically correlated with the occurrence of EE in near

future. For example, farmers anticipate rain when they observe

red clouds in the early morning sky.

The aforementioned question is motivated from the fact that

the occurrence of EEs in one variable are a manifestation of

the rich dynamics of a multivariate higher dimensional system

as caused by the non-linear interactions among its various

constituents [5, 13]. Due to the paucity of observations of some

EEs occurring in nature, collection or reconstruction of data

directly from a dynamic variable that flares up with an extreme

value (active variable) such as the extreme precipitation, over a

long time period is seldom possible. It is easier to reconstruct

data for those observables which are slow varying (temperature,

pressure, etc.). Some of these observables may remain silent or

passive with a weak response and do not show up with any

manifestation of large size extreme value. However, such passive

variables carry significant information related to the EEs. We

emphasize here that the data collected from the passive variable

is used as inputs to a reservoir computing machine, i.e., the

echo-state network (ESN), in order to check how efficiently

the machine can capture the a priori structure in the active

observable that precedes the EE. ESN is a simple version of

recurrent neural networks [39] that has been used extensively to

predict complex signals ranging from time series generated from

chaotic model, stock-price data to tune hyperparameter [40–50].

Recently, it has been shown that ESN can efficiently capture

the onset of generalized synchronization [51–55], quenching

of oscillation [56, 57], detect collective bursting in neuron

populations [58], and predict epidemic spreading [59]. ESN has

been shown to have great potential in handling multiple inputs

of temporal data, and ability to trace the relation between them

[52, 58, 60]. Due to its simple and computationally effective

character and its suitability for dynamical systems, we use ESN

for our study. Other machine learning-based methods, such as

deep learning [61] might also be useful for the problem we

address in this work.

While collecting data, the first important task is to detect

the EE by assigning an appropriate threshold height and collect

a number of data segments prior to all the available EE in a

time series, to address the question of predictability as suggested

earlier [38, 62, 63]. In the present work, we rely on data

generated from numerical simulations of a model system for

training and testing of the ESN for efficient detection of the

structure preceding the extreme events. Firstly, we identify a

large number of visible EEs from the active variable using a

threshold height and save a data segment of identical length

prior to the occurrence of each EE from the active variable

along with the corresponding data segment from the passive

variable. A multiple number of data segments of identical length

corresponding to EEs in the active variable are thus collected

from the passive variable and used as inputs to the machine. A

part or fraction of the data points from each segment is used

for training and the rest of the data points is kept aside for

predicting the preceding structure of EE in the active variable

during testing.
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We repeat the whole process of data collection, training

and testing of the machine by varying the choice of the

threshold height and then make a quantitative comparison

based on predictability skill to select the most suitable threshold

height for detection and prediction of EE. It must be noted

that by prediction we imply the identification of a common

pattern or structure in the test signal that always appears

quite ahead of time before the arrival of extreme events

and hence, effectively works as a precursor to the extreme

events. Our machine learning based recipe unfolds two useful

information: (i) Data collected from a passive variable before

the appearance of EE in an active variable can provide clues

to capture the future trend of an active variable and thereby

predict the precursory shape of the forthcoming EE, (ii)

machine can efficiently suggest a choice of appropriate threshold

height that may augment the prediction process. A possible

reason for the necessity of a critical threshold for accurate

prediction by the machine is explained further in light of

a coherent pattern that always appears in the ensemble of

multiple segments of data inputs that has been collected prior

to the EE.

For demonstration purpose, we use a paradigmatic model

neuron that consists of active variables (fast variables) expressing

the triggering of extreme events when its passive counterpart

(slow variable) shows no signature of extremes.

Methodology

Dataset

For data generation of EEs, we numerically simulate a

synaptically (chemically) coupled slow-fast Hindmarsh-Rose

(HR) neurons model [64],

ẋi = yi + bx2i − ax3i − zi + I − θi(xi − vs)Ŵ(xj)

ẏi = c− κx2i − yi

żi = ρ[s(xi − xR)− zi],

(1)

where xi and yi (i, j = 1, 2; i 6= j) are the fast variables and

oscillate with firing of spiking or bursting potentials. The slow

variable zi controls the fast oscillations. Each variable has its

specific biological functional meaning. The system parameters

a, b, c, and s are appropriately chosen where r < 1 is the slow

parameter. xR and vs are constant biases and Ŵ(x) =
1

1+e−λ(x−2)

is a sigmoidal function, typically used [65] to represent chemical

synaptic coupling. The parameters, a = 1, b = 3, c = 1, κ =

5, xR = −1.6, ρ = 0.01, s = 5, I = 4, vs = 2, λ = 10,2 =

−0.25, are kept fixed for generating data. The coupling constant

θ1,2 decides the strength of mutual communication between the

neurons via chemical synapses. We collect data on xi and zi (i =

1, 2) from numerical simulations and define two new variables,

u = x1+x2 and v = z1+z2. Extreme events are expressed [65] in

the fast variable u, which is denoted as our active variable, while

the slow variable v is defined as the passive variable. The passive

variable does show a signature of rising amplitude when extreme

events arrive in the active variable. However, we have to make a

cut-off in the range of the threshold as usually used from 4σ to

8σ in the literature. The rising peaks in the slow variable are not

significantly large than our considered significant height (3.5σ

to 6σ ). Our motivation is to predict the precursory structures for

rare peaks, and for this purpose, we consider the v variable as a

passive variable. Information from the passive variable v is then

used as input data to the machine for predicting the preceding

structure of extremes in u.

The local maxima of a time series are identified as events and

accordingly all the events are extracted from u for a long run. A

standard definition is used for the identification of an extreme

event [14, 15, 66] with a threshold Hs = 〈µ〉 + dσ , where 〈µ〉

is the mean of the time series, σ is the standard deviation and

d is a constant. Any event larger than Hs is considered as an

extreme where d is allowed to vary from system to system or

for a measured time series under consideration. The question

of prediction and enhancing predictability is addressed here by

setting different threshold limits of Hs by varying d.

For the purpose of numerical experimentation, we first

detect a number of extreme peaks n from a long time series of u

(total length of the time series : 2×107) that crosses a predefined

threshold Hs for a particular choice of d. Next, we collect k data

points prior to each of the n peaks from u, i.e.,

û1 = (u1(t), u1(t − 1), u1(t − 2), ..., u1(t − k))

û2 = (u2(t), u2(t − 1), u2(t − 2), ..., u2(t − k))

:

:

ûn = (un(t), un(t − 1), un(t − 2), ..., un(t − k)),

(2)

where û1, û2, ..., ûn are the n events selected from active variable

u. We also collect the corresponding data points from the v-time

series, i.e.,

v̂1 = (v1(t), v1(t − 1), v1(t − 2), ..., v1(t − k))

v̂2 = (v2(t), v2(t − 1), v2(t − 2), ..., v2(t − k))

:

:

v̂n = (vn(t), vn(t − 1), vn(t − 2), ..., vn(t − k)).

(3)

In other words, we collect n time segments each containing

k data points prior to all the n extreme events, and construct a

matrix called event matrix E of size n×k from the active variable

and, similarly, construct a matrix P of the same size n × k by

storing the corresponding data points from the passive variable.

A set of m (m < n) (gray region A in Figure 2A) time segments

each with data points p (p < k) (Figure 2B) as collected from v

is then fed into the machine for training to predict the preceding
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structure of (n − m) segments in u signals (light red region B

in Figure 2), which is considered as a precursor to the arrival

of extreme events later. How the machine extracts information

from the inputs of v and transforms them into u at the output

is defined in the input-output functional relation of the machine

as a description of the ESN in the next section. Once the training

is over, the rest of the (k − p) data points for each of the m time

segments are used for testing whether the machine can predict

the future structure of (n − m) time segments of u. The whole

process is repeated multiple times by using four different choices

of d (3.5, 4, 5, 6) for detecting extremes from the time series

of u. We emphasize once again that an input to the machine

for training and testing consists of multiple segments of data

points of identical length collected from v corresponding to the

successive number of EE detected in u for each d-value. The data

points collected from u are used at a later stage for comparison

with the machine output during the testing process. Certainly

this recipe works only when certain amount of data prior to

the extreme events is available from both the variables, and the

passive variable of the system can be identified. However, the

advantage of such a methodology is that it is data-driven and

model-free.

Reservoir computing: Echo-state
network model

An echo state network (ESN) is a type of recurrent

neural network and is extensively used due to its simple

architecture [39]. It has three parts—(1) input layer—in which

the weights are randomly chosen and fixed, (2) reservoir or

hidden layer—it is formed by randomly and sparsely connected

neurons and (3) output layer—in which the output weights

are the only trainable part by input data. A standard leaky

network with a tanh activation function is considered here as

the ESN. The dynamics of each reservoir node is governed by

the following recursive relation:

r(t + 1) = (1− α)r(t)+ α tanh
(

Wresr(t)+Win[1; v(t)]
)

, (4)

where r(t) is a nres-dimensional vector that denotes the state of

the reservoir nodes at time instant t, v(t) is the m-dimensional

input vector and 1 is the bias term. The matrices Wres (nres ×

nres) and Win (nres × (m + 1)) represent the weights of the

internal connection of the reservoir nodes and weights of the

input, respectively. The parameter α is the leakage constant,

which can take any values between 0 to 1. It is to be noted that

the tanh function operates element-wise. The choices of α and

nres can be varied. Here, we have fixed α = 0.6 and nres = 600

throughout all simulations. The reservoir weight matrix Wres

is constructed by drawing random numbers uniformly over an

interval [−1, 1] and the spectral radius of the matrixWres is re-

scaled to less than unity. The elements of the input weight matrix

Win are also generated randomly from the interval [−1, 1]. Next

we consider data of n-segments sequentially from the time series

of v corresponding to n extreme peaks in u from which a set

of first m-segments of length p of the total length of k data

points are fed into the ESN for training. Thereafter, the output

weight Wout is optimized to capture the trend of the (n − m)

segments (each length: (k − p)) of u signals. Once the machine

is trained, the input ofm-segments each with (k− p) data points

are fed into the machine to predict the trend of the (n − m)-

segments of the u signals prior to the arrival of EE in time. At

each instant of time t, the m−dimensional input vector of data,

v(t):[v1(t), v2(t), ..., vm(t)]
T is fed intom-number of input nodes

of the machine when the contribution of the input weight matrix

in the dynamics of the reservoir (see Equation 4) is written as,













Win(1, 1) · · · Win(1,m+ 1)

Win(2, 1) · · · Win(2,m+ 1)
...

...
...

...

Win(nres, 1) · · · Win(nres,m+ 1)













×

















1

v1(t)

v2(t)
...

vm(t)

















.

During the training process, at each time instant t, the reservoir

state r(t) and input v(t) are accumulated in Vtrain(t) =

[1; v(t); r(t)]. The matrix Vtrain having dimension (nres + m +

1)× p look like,







































1 1 · · · 1

v(1, 1) v(1, 2) · · · v(1, p)

v(2, 1) v(2, 2) · · · v(2, p)
...

...
...

...

v(m, 1) v(m, 2) · · · v(m, p)

r(1, 1) r(1, 2) · · · r(1, p)

r(2, 1) r(2, 2) · · · r(2, p)
...

...
...

...

r(nres, 1) r(nres, 2) · · · r(nres, p)







































.

The output weight is determined by:

Wout = UtrainV
T
train(VtrainV

T
train + λI)−1, (5)

where Utrain is a matrix which stores the value of u from

(n − m) segments of training length p, and λ = 10−8 is the

regularization factor that avoids over-fitting. Now, the output

weight is optimized, the final output is obtained by,

U = WoutV, (6)

An important point to note is that we use the information of

u only to optimize the output weight.
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FIGURE 1

Time series of slow variable v and fast variable u of the coupled Hindmarsh-Rose (HR) system. (A) Horizontal red lines in the time series of u
(lower panel) and v (upper panel), indicate two threshold heights Hs1 = 〈µ〉 + 3.5σ (thin line), Hs2 = 〈µ〉 + 6σ (bold line); µ and σ are the mean
and standard deviation of the time series, respectively. Threshold height Hs2 filters out many large peaks that are otherwise qualified as extremes
by the lower threshold Hs1 , and thereby allows a selection of rarer extreme events only. One particular extreme peak (shaded region) is marked
in (A) as shown in u, and zoomed in the lower panel of (B) for illustration. This extreme peak is larger than both the horizontal lines Hs1 and Hs2

so as to qualify as a rare extreme event. The corresponding part of the time series of the slow variable v in the upper panel of (A) that never
crosses either of the thresholds, Hs1 and Hs2 , is zoomed in and shown in the upper panel of (B). Although a slight increase in size of the peak is
seen (B) compared to its neighboring peaks (upper panel), there is not much significant change in height in comparison to the extreme peak
observed in u in the lower panel.

Results

For illustration of our proposed scheme, the original time

series of u and v for a long run of numerical simulations are

plotted in Figure 1A. As the threshold height is increased from

Hs1 = 〈µ〉 + 3.5σ and Hs2 = 〈µ〉 + 6σ by varying d from

3.5 to 6, many large peaks are filtered out that declares only a

few peaks as rare and extremes. The extreme peaks are selected

as those which are higher than a selected threshold height Hs

(horizontal line, Figure 1A) for a particular choice of d, and

used as data for training and testing the reservoir shown in

Figures 2B–D. It is clear that some of the peaks in u are higher

than the designated thresholds Hs1 and Hs2 whereas the height

of all the peaks in v are lower than both thresholds. A zoomed

version is shown in Figure 1B to demonstrate the time evolution

of u and v around a single extreme peak marked by a shaded

region in Figure 1A. Extremes are only expressed in the active

variable u with no similar manifestation in the passive variable

v, which is considered here as the input candidate to themachine

for the prediction of the a priori structure of successive EEs

in u.

An exemplary predicted output of u for (k − p) = 200

data points (blue circles) vis-à-vis the original u signal of the

same length (blue line) is plotted in Figures 3A–D for four

different d-values. A visual impression provides a clear evidence

that the error between the predicted signal (blue circles) and

the original input signal (blue line) during 1, 300 to 1, 500

time units decreases with the increase in the value of d.

For a more comprehensive understanding of the scenario, the

root mean square error (RMSE) estimated for 20 predicted

output signals and the original signals of u is plotted

which confirms the increasing predictability with higher Hs

(Figures 3E–H). To verify the robustness of the outcome, we

repeat the whole process for 400 realizations drawn from 400

different initial conditions. RMSE is calculated as follows:

RMSE =

√

√

√

√

√

1

tf − tr

tf
∑

t=tr

(uoriginal(t)− umachine(t))
2. (7)

where tr and tf are training and final time respectively and

tf − tr = k− p.

To understand the reason for the machine’s improved

performance with higher a Hs, we compare all the

180 input signals of the passive variable (v) as well as

the active variable (u) prior to the occurrence of EEs

(p = 1, 300 data points) (Figure 4). Upper row plots in

Figures 4A–D represent the input signals v before the

EEs for four different threshold values. As we increase

the threshold Hs (by increasing d from 3.5, 4, 5, 6),

signals observed to get less dispersed and tend to form a

coherent bundle.

In fact, the increasing coherent pattern among the input

signals is more prominent in the corresponding active variable

u in the lower row of Figures 4E–H than the v variable. For the

highest threshold value, the time signals are almost coherent
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FIGURE 2

Schematic diagram of the ESN and the prediction process. (A) Time series of the passive variable v (upper panel) and active variable u (lower
panel) with a number of extreme events, here selected using a threshold height Hs = µ+ 6σ , are shown. Data points (k = 1, 500) from v, and u

prior to n extreme peaks are saved. A few exemplary extreme peaks are shown for demonstration. For our proposed scheme, data points around
such n = 200 extreme peaks are collected. (B) Two exemplary input signals corresponding to two extreme events are shown here, while the
actual number of input signals are m = 180 as for the training purpose. For each input node, p = 1, 300 data points (solid red line) are used for
training purpose and the rest of (k− p) = 200 data points (dotted red line) are used for testing, which are separated by a vertical line (black line).
(C) Echo state network structure: input layer consists of Am nodes, where m = 180 input signals (data segments prior to each of the extreme
events) are used for training. The output layer consists of Bn−m = 20 nodes. (D) Preceding pattern of predicted u signals from 20 nodes each for
(k− p) = 200 datapoints (blue circles) and the original u signal (blue line) for 200 datapoints are plotted for comparison. Two such output signals
are shown as examples.

similar to what was reported by [62], where they showed the

formation of coherent structure before the arrival of extreme

events in the active variables. The increasing coherence in v with

higher Hs enhances the machine’s predictability skill for higher

amplitude events compared to the lower amplitude ones. Thus,

the machine establishes a general fact, in quantitative terms, that

predictability is enhanced for larger value of threshold height

when the input signals are more coherent for a longer duration

of time [62, 63].

We repeat our experiments using the same ESN by

considering two different length of data inputs (p = 800, 1, 300)

prior to each of the extreme events for training, and keeping

the same set length of data points (k − p) = 200 for

testing as done above. The number of inputs (Am; m =

180) for training and outputs for testing (Bn−m; n − m =

20) remain unchanged. Thereafter, we calculate the RMSE of

the predicted output signals from 20 output nodes for each

length of data inputs (p) and repeat the whole process for

increasings d-values. We plot the RMSE against the d-values

and for two different time lengths (800, 1, 300) in Figure 5A.

The RMSE is high for d = 3.5, and it gradually decreases

and converges to a low value for higher threshold values.

We confirm that our results machine learning framework also

work for changing the number of inputs and outputs, and

also by changing the length of the testing data length (see

Supplementary material).
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FIGURE 3

Prediction of extreme events by the ESN. Upper panels in (A–D) show original active signal u for (k− p) = 200 data points (blue line) along with
the predicted signal for (k− p) = 200 data points (blue circles) for comparison for EEs selected using four di�erent threshold heights computed
using: (A) d = 3.5, (B) d = 4, (C) d = 5, and (D) d = 6. It shows an increased resemblance between the predicted and original extreme peaks with
increasing d. Lower panels in (E–H) show RMSE between the original signal u and their predicted signals for (k− p) = 200 data during testing,
estimated over 20 extreme events, corresponding to (A–D), respectively. Results of 400 realizations of data from numerical simulations of the
model using 400 di�erent initial conditions for each d-value are presented in (E–H) and the vertical bars mark their standard deviation.

FIGURE 4

Comparative picture of coherence in the input time signals (p) extracted before an extreme events. (A–D) Input signal of passive variable v for
threshold values (d = 3.5, 4, 5, 6). (E–H) are the corresponding active variable u for threshold values (d = 3.5, 4, 5, 6). Coherence between the
input time signals increases with the threshold height determined by higher d-values. Di�erent color signifies di�erent trajectories.

Next we introduce another measure ψ based on the

instantaneous phases of the time signal inputs,

ψ =
2

n(n− 1)

n
∑

i=1

n
∑

j=i+1
j 6=i





1

T

T
∑

t=1

| φi(t)− φj(t) |



 (8)

where φi(t) is the instantaneous phase of the i-th signal of the

passive variable v at time t, n is the total number of segments

and T is the segment length. Here, φi(t) of i th signal is

calculated using the Hilbert transform [67]. High value of ψ

indicates less coherent structure and vice-versa. This variable

ψ represents the average phase difference (on the number of

segment and segment length) between all the 180 input signals

of different length.

We plot values of ψ against d for the two different time

lengths (800, 1, 300) in Figure 5B. A phase coherence is observed

with increasing d. When the threshold is low (lower value of d),

the time signals of v are dispersed (see Figure 5A). As a result,

the average phase difference ψ is high. ψ gradually converges
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FIGURE 5

Predictability of extreme events. For 20 extreme events, (A) RSME against threshold d for di�erent length of input data, (B) average phase against
threshold d for di�erent length of input data. Here, for both cases the average of 400 realizations are presented. Instantaneous phase φi(t) of ith
signal is estimated using the Hilbert transform [67].

for higher values of d with the formation of a coherent bundle of

the input signals. This indicates that there is a higher tendency

of phase coherence between input signals for higher magnitude

EEs which enhances the ability of the machine to predict their

precursory structure.

Conclusion and discussion

We have proposed an Echo State Network based scheme

for the prediction of the preceding shape of extreme events

from a passive variable which shows no visible manifestation

of extreme events, but connected to an active variable that has

clear indications of rare and recurrent high amplitude events.

Such a situation occurs in the real world where maintaining

data records of subsidiary variable is easier, and may be useful

for studies related to prediction of extreme events in another

observable that is difficult to record. To test our scheme, we

generated data using a synaptically (chemical) coupled model

of two Hindmarsh-Rose (HR) neurons. Two types of variables

are involved in the HR model, two fast variables (defined as

active) that exhibit extreme events in their time evolution, and a

slow variable (defined here as passive) having a slower time-scale

and most importantly, showing no visible signs of extremes. The

passive variable was considered as our input candidate for the

machine for the purpose of predicting the preceding structure of

extreme events in the active variable.

Our strategy was first to identify the extreme events in a long

time series of an active variable with a choice of an appropriate

threshold height and collect data from the passive variable that

corresponds to each extreme in the active variable. We saved

the data only prior to the arrival of extreme events barring all

extremes, then a part of the collected dataset from the passive

variable is used for testing a multi-input machine and another

part of the data for testing/predicting the prior structure of

the forthcoming extremes. Our results indicated that higher the

magnitude of extreme events, the efficiency of the machine to

predict its precursory structure is higher. Higher intensity events

are defined only by increasing the threshold height. On further

investigation, we found that for higher intensity extreme events

the input signals collectively form a coherent pattern, which

aided the machine to predict the prior structure with increased

efficiency. Thus, coherence of the multi-input time signals is the

key to a better prediction of the forthcoming extreme events

by the machine. A possible quantitative explanation of the

enhanced predictability is provided. For this purpose, a new

coherence measure ψ is introduced to represent the average

phase differences between the segmented time signals. It was

observed that ψ decreases with increasing threshold height,

therefore confirming our finding that the enhanced ability of the

machine to predict higher amplitude extreme events is related to

an increase in the phase coherence of the input signals.

Our machine learning scheme opens up an alternative

strategy for predicting extreme events from passive variables

in the real world. Furthermore, our findings maintains those

reported by [37, 38] that higher the magnitude of extreme

events, higher is the predictability skill. Finding suitable passive

variables for real world systems is a challenge. Most of the

time they typically belong to very high dimensional system and

often can be a combination of multiple variables. For example,

Moon and Ha [68] identified the relation between the onset of

Indian summer monsoon with the soil moisture in the Iranian

desert, our method could be used to predict the early warning or

precursory signal to the forthcoming climate extreme if we can

identify the slow variables properly.
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