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In this research, we developed a coinfection model of tuberculosis

and COVID-19 with the e�ect of isolation and treatment. We obtained

two equilibria, namely, disease-free equilibrium and endemic equilibrium.

Disease-free equilibrium is a state in which no infection of tuberculosis and

COVID-19 occurs. Endemic equilibrium is a state in which there occurs not

only the infection of tuberculosis and COVID-19 but also the coinfection

of tuberculosis and COVID-19. We assumed that the parameters follow the

uniform distribution, and then, we took 1,000 samples of each parameter

using Latin hypercube sampling (LHS). Next, the samples were sorted by

ranking. Finally, we used the partial rank correlation coe�cient (PRCC)

to find the correlation between the parameters with compartments. We

analyzed the PRCC for three compartments, namely, individuals infected with

COVID-19, individuals infected with tuberculosis, and individuals coinfected

with COVID-19 and tuberculosis. The most sensitive parameters are the

recovery rate and the infection rate of each COVID-19 and tuberculosis. We

performed the optimal control in the form of prevention for COVID-19 and

tuberculosis. The numerical simulation shows that these controls e�ectively

reduce the infected population. We also concluded that the e�ect of isolation

has an immediate impact on reducing the number of COVID-19 infections,

while the e�ect of treatment has an impact that tends to take a longer time.

KEYWORDS

mathematical model, tuberculosis, COVID-19, coinfection, isolation, treatment,

PRCC, optimal control

Introduction

A healthy and prosperous life is one of the things agreed upon by countries in

the world, including Indonesia. Efforts to promote healthy living and support welfare

for all ages are listed in the third point of the Sustainable Development Goals (SDGs).

These goals include several other things, including reducing the ratio of deaths from the

disease to <70 per 100,000 live births, developing treatments, and defining the AIDS,

tuberculosis, and malaria epidemics [1].

Tuberculosis (TB) is one of the most deadly infectious diseases globally. Even

individuals under treatment for tuberculosis are still infectious for some time
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(different for each individual), especially when the bacteria are

still active [2]. Globally, more than 4,100 people die daily from

TB, and almost 28,000 people are infected with this preventable

and curable disease. Global efforts to fight TB have saved about

66 million lives since 2000. However, the COVID-19 pandemic

has reversed years of progress made in the fight to end TB.

For the first time in a decade, TB deaths increased in 2020.

Globally, TB incidence decreased by about 2% annually in 2015–

2020 with a cumulative 11%. Due to the COVID-19 pandemic,

nearly 9.9 million people were infected, and nearly 1.5 million

people died from TB in 2020 [3]. In 2021, there were 443,235

tuberculosis cases in Indonesia. Until 2 June 2022, 155,822 cases

of tuberculosis were confirmed [4].

COVID-19 is a disease that spreads very quickly, causing

a pandemic and becoming a global health problem. The

pandemic has had a major impact on other sectors, especially

the socioeconomic sector [5]. Based on the Worldometer, as of

30 April 2022, there were 512,466,045 positive cases of COVID-

19 in the world, with 6,257,512 deaths. Indonesia is ranked 18th

in the world and 7th in Asia with 6,046,467 total positive cases

of COVID-19 [6].

Based on these data, efforts are needed to reduce

transmission and prevent the spread of tuberculosis and

COVID-19. Mathematics has an essential role in modeling

the epidemic phenomenon of the disease, one of which

is by using a deterministic model of the spread of the

disease. The study of the COVID-19 model with waning

immunity has undergone various developments. Models with

symptomatic and asymptomatic infected populations show that,

in determining the beginning time of the massive vaccination

strategy, the vaccine efficacy level is a deciding factor, whereas

the natural immunity period is for the latter [7]. Vaccination

and treatment are very effective in suppressing the spread of

COVID-19 [8, 9]. In addition, isolation and vaccination are

effective strategies for reducing the infection [10]. The effort to

control the multiple COVID-19 strains is the demand for more

restrictive measures [11]. The SEIR model with vaccination and

pre-symptomatic populations shows that the waning of vaccine-

induced immunity significantly impacts the disease spreading

[12]. Contact tracing, national-scale social restriction, wearing

face masks, and case detection and treatment are the most

effective scenarios to control the spreading of COVID-19 in

Indonesia [13]. The optimal control of the SEIRmodel inNigeria

can be effective if the optimal control implemented is capable

of sustaining the basic reproduction number to below unity

[14]. COVID-19 reinfection scenario with the SIR model in

Malaysia shows that transmission dynamics could emerge due

to the waning of immunity, even when the reinfection force

is relatively low [15]. The model of COVID-19 with infection

through goods contaminated with SARS-CoV-2 suggests that

the public should be aware [16]. The COVID-19 model with a

healthcare population shows the importance of the protection

of healthcare workers [17]. In the COVID-19 model with an

educated population and contaminated surface objects, in the

absence of a vaccine, countries need to detect and isolate at

least 30% of the asymptomatic individuals while treating at least

50% of symptomatic individuals to control COVID-19 [18].

The SEIR model with isolation and hospitalization shows that

the enhanced government, individual-level interventions, and

the intensity of media coverage could substantially suppress the

transmission of COVID-19 cases in Ghana [19]. A researcher has

started to develop the coinfection model for tuberculosis in the

Middle East [20].

Researchers also constructed a COVID-19 model with the

effect of comorbidity on the population [21] and also the

effect of home care with non-pharmaceutical interventions and

sick vaccinations [22]. It was reported that the authors [23]

developed amodel with a partial comorbid population, while the

other authors [24] examined a comorbid and isolated COVID-

19 model. Some researchers did their research on the model

of tuberculosis and HIV coinfection with optimal control and

sensitivity analysis [25], the model of tuberculosis and HIV

coinfection with the effect of treatment [26], the model of

tuberculosis and HIV coinfection with treatment interventions

[27], the effect of HIV immunity on treatment control [28], the

model of tuberculosis and HIV coinfection with the effect of

saturated care [29], the effect of reinfection on the model of

tuberculosis and HIV coinfection [30], the relationship between

tuberculosis and HIV and diabetes using a fractional differential

equation model [31], the drug resistance from viruses that cause

tuberculosis due to non-treatment [32], and the development of

prevention strategies of spread in an AIDS-influenced model of

tuberculosis [33].

The total number of infections and deaths by tuberculosis

has increased due to COVID-19 [3]. Tuberculosis and

COVID-19 can infect a human at the same time. Therefore,

few researchers developed models of coinfection from

tuberculosis and COVID-19. The model forecasts the dynamics

of COVID-19 and tuberculosis in Delhi, India [34]. In the

differential fractional equation for tuberculosis and COVID-19

coinfection using the Atangana-Baleanu derivative, the result

is that reducing COVID-19 infection by tuberculosis-infected

individuals can reduce the spread of infection and coinfection

in the population [35]. By taking into account the reported and

unreported cases in the model of tuberculosis and COVID-19

coinfection, it was determined that the best control used

to reduce the spread of tuberculosis and COVID-19 in the

population is to focus on preventing COVID-19 at a minimum

cost [36]. The result of this study is that reducing infection

contacts can reduce the spread of tuberculosis and COVID-19

coinfection [37].

Based on the description above, the authors are interested

in developing a mathematical model on the coinfection of

tuberculosis and COVID-19 with the effect of isolation and

treatment. Isolation is an effective strategy to reduce the

spreading of COVID-19 besides vaccination because there

is no specific cure yet for COVID-19 [10]. On the other

hand, treatment for individuals infected with tuberculosis is
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an effective strategy to reduce the spreading of tuberculosis

because it can reduce the risk of transmitting tuberculosis from

the infected individuals [26–28]. Dynamic analysis is used to

study and analyze the behavior and dynamics of the spread

of tuberculosis and COVID-19. The numerical simulations are

used to support the results obtained.

Materials and methods

We developed a mathematical model by dividing the human

population into seven compartments: susceptible individuals

(S), individuals infected with COVID-19 (IC), individuals

infected with tuberculosis (IT), individuals coinfected with

COVID-19 and tuberculosis (ITC), individuals isolated with

COVID-19 infection (Q), individuals under tuberculosis

treatment (T), and recovered individuals (R).

The model has the following assumptions:

i. Individuals infected with tuberculosis can get infected with

COVID-19 and vice versa.

ii. Individuals coinfected with tuberculosis and COVID-19

can transmit either tuberculosis or COVID-19.

iii. Coinfected individuals can recover from either COVID-19

or tuberculosis and the mixed infection at the same time.

iv. There are two different infection rates, namely, the infection

rate of tuberculosis (γT) and the infection rate of COVID-

19 (γC). Infection rates for singly infected and coinfected

individuals are assumed to be the same.

v. Isolated individuals cannot transmit COVID-19,

but individuals under tuberculosis treatment can

transmit tuberculosis.

vi. The recovery rates for individuals infected with

tuberculosis, infected with COVID-19, coinfected

with tuberculosis and COVID-19, isolated because of the

COVID-19 infection, and under tuberculosis treatment

are different.

vii. Coinfected individuals have a higher death rate than singly

infected individuals.

Human populations are recruited into susceptible

individuals with the recruitment rate A. The authors assumed

that natural death is the same for all compartments with the

natural death rate µ. Susceptible individuals decrease due to

the tuberculosis infection following effective contact with either

singly or coinfected individuals at the rate:

βT =
γT (IT + ITC + T)

N

Susceptible individuals also decrease due to the COVID-19

infection after effective contact with either singly or coinfected

individuals at the rate:

βC =
γC (IC + ITC)

N

FIGURE 1

Transmission diagram.

TABLE 1 Description of the compartments.

Compartment Description

S Susceptible individuals

IC Individuals infected with COVID-19

IT Individuals infected with tuberculosis

ITC Individuals coinfected with COVID-19 and tuberculosis

Q Individuals isolated with COVID-19 infection

T Individuals under tuberculosis treatment

R Recovered individuals

The transmission diagram of the model can be seen in Figure 1.

The system of the differential equation for the tuberculosis

and COVID-19 coinfection model with the effect of isolation

and treatment based on the assumptions and the above-given

description is as follows:

dS

dt
= A− (βC + βT + µ) S (t)

dIC

dt
= βCS (t) + αTITC (t) −

(

βT + δ + µ + αC + dC
)

IC (t)

dIT

dt
= βTS (t) + αCITC (t) −

(

βC + ε + µ + αT + dT
)

IT (t)

dITC

dt
= βCIT (t) + βTIC (t)

−
(

αTC + µ + αT + αC + dTC
)

ITC (t) (1)

dQ

dt
= δIC (t) −

(

αQ + µ + dC
)

Q (t)

dT

dt
= εIT (t) −

(

αS + µ + dT
)

T (t)

dR

dt
= αCIC (t) + αTIT (t) + αQQ (t) + αST (t)

+αTCITC (t) − µR (t)

The description of the compartments and the values of

parameters are provided in Tables 1, 2, respectively. Despite the
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TABLE 2 Description and value of the parameters.

Parameter Description Value Source

A Recruitment rate 10000
59.365

[38]

µ Natural death rate 1
59.365

[38]

αT Recovery rate of individuals infected with tuberculosis 0.001− 0.035 Assumed

αC Recovery rate of individuals infected COVID-19 0.001− 0.03 Assumed

αTC Recovery rate of individuals coinfected with tuberculosis and COVID-19 0.001− 0.01 Assumed

αQ Recovery rate of COVID-19 isolated individuals 0.001− 0.3 Assumed

αS Recovery rate of individuals under tuberculosis treatment 0.001− 0.4 Assumed

δ Rate of isolation 0.001− 0.5 Assumed

ε Rate of treatment 0.001− 0.2 Assumed

γT Infection rate of tuberculosis 2× 10−6 Assumed

γC Infection rate of COVID-19 5.5× 10−6 Assumed

dT Death rate of tuberculosis 0.004 [39]

dC Death rate of COVID-19 0.0018 [40]

dTC Death rate of coinfected tuberculosis and COVID-19 0.005− 0.1 Assumed

βT Force of infection of tuberculosis – –

βC Force of infection of COVID-19 – –

unavailability of data to apply to this study, the various assumed

parameters used in our model have demonstrated a behavior of

the spread of tuberculosis. Some of these values are taken from

previous studies as indicated in Table 2, and some of these values

which are not available are assumed within plausible ranges.

Result and discussion

We analyzed the local stability of the equilibrium. Then,

the basic reproduction number is generated from the disease-

free equilibrium using the next-generationmatrixmethod. Next,

the global sensitivity analysis of the model is conducted to find

the most sensitive parameter of the model and how significant

the parameter change affects the model. In this research, we

used the Latin hypercube sampling (LHS) to take samples

and then the partial rank correlation coefficient (PRCC) to

find the partial correlation between the parameters and the

compartments. The most sensitive parameter will be controlled

with the optimal control. Finally, we analyzed the dynamics

of the population using the numerical simulation with and

without control.

Dynamical analysis

Setting all the differential equations from the model (1)

equaling zero and then solving for all compartments, we

obtained two equilibria of the model, namely, disease-free

equilibrium (E0) and endemic equilibrium (E∗).

Disease-free equilibrium:

E0 = {S, IC , IT , ITC ,Q,T,R} =

{

A

µ
, 0, 0, 0, 0, 0, 0

}

(2)

Endemic equilibrium:

E∗ =
{

S∗, I∗C , I
∗
T , I

∗
TC ,Q

∗,T∗,R∗
}

(3)

S∗ =
A

β∗
C + β∗

T + µ

I∗C =
AβC

[

(L2+ L3+ αC + βC + βT ) αT +
(

ε + µ + dT
)

(αC + L3) + L3βC
]

L4
{[

α2
C + (1+ L2+ L3+ βC) L1+ βT (L3+ αC)

]

αT +
[((

ε + µ + dT
)

(αC + L3) + L3βC
)

(L1+ βT)
]}

I∗T =
A βT

[

(L3+ αC) βT + (L3+ L1+ αT + βC) αC +
(

δ + µ + dC
)

(L3+ αT)
]

L4 {[L2αC + (L2+ βC) L3]βT + L1 [L2αC + (L2+ βC) (L3+ αT)]}

I∗TC =
A βCβT (L1+ L2+ βC + βT)

L4
[

(βCL3+ L2 (L3+ αC)) (L1+ βT) + L1αT(βC + L2))
]

Q∗ =
δI∗C

(

αQ + µ + dC
)

T∗ =
εI∗T

(

αS + µ + dT
)
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R∗ =
αCIC (t) + αT IT (t) + αQQ (t) + αST (t) + αTCITC (t)

µ
,

where

L1 =
(

δ + αC + µ + dC
)

L2 =
(

ε + αT + µ + dT
)

L3 =
(

µ + dTC + αTC
)

L4 = (βC + βT + µ)

The basic reproduction number (R0) is the expected

number of secondary cases produced by a typical infected

individual during its entire period of infectiousness [41, 42].

When R0 < 1, the disease will disappear from the population.

Otherwise, when R0 > 1, the disease will remain or spread in

the population.

Let x = (IC , IT , ITC ,T) , then the model can be written

as follows:

dx

dt
= F (X) − V(X),

where V (X) = V− (X)−V+(X).F (X) is the rate of appearance

of new infections in compartments, V+(X) is the rate of transfer

of individuals into the compartment, and V− (X) is the rate of

transfer of individuals out of the compartment.

F (X) =











βCS (t)

βTS (t)

βCIT (t) + βT IC(t)

0











V (X) =











−αT ITC (t) +
(

βT + δ + µ + αC + dC
)

IC(t)

−αCITC (t) +
(

βC + ε + µ + αT + dT
)

IT(t)

(αTC + µ + αT + αC + dTC)ITC(t)

−εIT (t) +
(

αS + µ + dT
)

T(t)











Substituting the disease-free equilibrium in the Jacobian

matrix of F (X) and V (X), we obtained the following equation:

F =











γCA
µ 0

γCA
µ 0

0
γTA
µ

γTA
µ

γTA
µ

0 0 0 0

0 0 0 0











V =











(

δ + µ + αC + dC
)

0 −αT 0

0
(

ε + µ + αT + dT
)

−αC 0

0 0 (αTC + µ + αT + αC + dTC) 0

0 −ε 0
(

αS + µ + dT
)











Hence, the next-generation matrix is as follows:

FV−1 =

















γCA
µθ1

0
γCAαT
µθ1θ3

+
γCA
µθ3

0

0
γTA
µθ2

+
γTAε

µθ2(αS+µ+dT)
γTA
µθ3

[

1+ αC
θ2

(

1+ ε
(αS+µ+dT)

)]

γTA
µ(αS+µ+dT)

0 0 0 0

0 0 0 0

















,

where

θ1 = δ + µ + αC + dC

θ2 = ε + µ + αT + dT

θ3 = αTC + µ + αT + αC + dTC

The basic reproduction number is the spectral radius

of FV− 1:

R0 = ρ

(

FV−1
)

= max

(

γCA

µ
(

δ + µ + αC + dC
) ,

γTA
(

αS + ε + µ + dT
)

µ
(

αT + ε + µ + dt
) (

αS + µ + dt
)

)

(4)

with

R0C =
γCA

µ
(

δ + µ + αC + dC
) (5)

R0T =
γTA

(

αS + ε + µ + dT
)

µ
(

αT + ε + µ + dt
)

(αS + µ + dt)
(6)

The basic reproduction numberR0C andR0T represent the

number of infection cases produced by one infectious COVID-

19 case and by one infectious tuberculosis case, respectively. The

basic reproduction number of the coinfection model (1) is given

in Equation (4).

We analyzed the local stability of each equilibrium

through its eigenvalues [43]. The eigenvalues are obtained

from the Jacobian matrix, which has been substituted with

each equilibrium. The Jacobian matrix of model (1) can be

seen below:
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J =

























−βC − βT − µ −γCS (t) −γTS (t) − (γC + γT) S (t) 0 −γTS (t) 0

βC γCS (t) − βT − θ1 −γT IC (t) −γT IC (t) + γCS (t) + αT 0 −γT IC (t) 0

βT −γCIT (t) γTS (t) − βC − θ2 −γCIT (t) + γTS (t) + αC 0 γTS (t) 0

0 γCIT (t) + βT γT IC (t) + βC γCIT (t) + γT IC (t) − θ3 0 γT IC (t) 0

0 δ 0 0 −αQ − µ − dC 0 0

0 0 ε 0 0 −αS − µ − dT 0

0 αC αT αTC αQ αS −µ

























(7)

Substituting the disease-free equilibrium in Equation (7), we

obtained the following characteristic polynomial:

P0 (λ) = (λ1 + µ) (λ2 + µ) (λ3 + θ3)
(

λ4 + αQ + dC + µ
)

(

λ5 −
AγC

µ
+ θ1

)

(

k2λ
2 + k1λ + k0

)

(8)

From Equation (8), we obtained the following equation:

λ1 = −µ, λ2 = −µ, λ3 = −αC − αT − αTC − dTC − µ, λ4

= −αQ − dC − µ, λ5 =
AγC

µ
− αC − δ − dC − µ.

It is clear that λ1, λ2, λ3, λ4 < 0. For λ5, we obtained the

following equation:

AγC

µ
− αC − δ − µ − dC < 0

AγC

µ
< αC + δ + µ + dC

AγC

µ
(

αC + δ + µ + dC
) < 1

R0C < 1

Then, λi with i = 6, 7 will be negative if kj > 0 with j =

0, 1, 2. We numerically analyzed the coefficient values because

the characteristic polynomial P0 (λ) coefficients are complex.

The result of numerical analysis is for kj with j = 0, 1, 2

(Appendix 1).

Since λi with i = 1, 2, 3, . . . , 7 is negative, it can be concluded

that the disease-free equilibrium is locally asymptotically stable

whenR0 < 1.

By analyzing the stability of the endemic equilibrium by

substituting the endemic equilibrium in Equation (7), we

obtained the following characteristic polynomial:

P
∗ (λ) =

(

m7λ
7 +m6λ

6 +m5λ
5 +m4λ

4 +m3λ
3 +m2λ

2

+m1λ +m0) = 0 (9)

λi with i = 1, 2, 3, . . . , 7 will be negative if mj > 0

with j = 0, 1, 2,. . . ,7. We numerically analyzed the coefficient

values because the characteristic polynomial P∗ (λ) coefficients

are complex. The result of numerical analysis is mj with j =

0, 1, 2, . . . , 7 (Appendix 2).

Since λi with i = 1, 2, 3, . . . , 7 is negative, it can be concluded

that the endemic equilibrium is locally asymptotically stable

whenR0 > 1.

Partial rank correlation coe�cient

We performed a global sensitivity analysis of the model

by using the combination of LHS and PRCC. The purpose

of the global sensitivity analysis is to find the most sensitive

parameter to the model. LHS divides the range of the sample

and so we took samples from each partition evenly. PRCC

gives a partial correlation of each parameter to the model. The

correlation is from −1 to 1. If the correlation is negative, then it

indicates that, when the parameter decreases, the compartment

also decreases; otherwise, the correlation is positive [44]. We

assumed that the parameters follow the uniform distribution

[U(0, 1)], and then, we took 1,000 samples using LHS. Next, the

samples were sorted by ranking. Finally, we used PRCC to find

the correlation between the parameters with compartments. In

this research, we analyzed the PRCC for three compartments,

namely, individuals infected with COVID-19 (IC), individuals

infected with tuberculosis (IT), and individuals coinfected with

COVID-19 and tuberculosis (ITC). The result of the global

sensitivity analysis for all parameters of the infected population

is illustrated in Figures 2–4.

Figure 2 shows that the most sensitive parameters of

the individuals infected with COVID-19 (IC) are the

recovery rate of individuals infected with COVID-19

(αC) , which has a negative correlation, and the infection

rate of COVID-19 (γC) , which has a positive correlation.

Meanwhile, the isolation rate also has a high negative

correlation with the individuals infected with COVID-

19 (IC) . It means that the effort to isolate individuals

infected with COVID-19 (IC) can suppress the spreading

of COVID-19.

Figure 3 shows that the most sensitive parameters of the

individuals infected with tuberculosis (IT) are the recovery rate

of individuals infected with tuberculosis (αT) , which has a

negative correlation, and the infection rate of tuberculosis (γT) ,
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FIGURE 2

PRCC of individuals infected with COVID-19 (IC).

FIGURE 3

PRCC of individuals infected with tuberculosis (IT ).

which has a positive correlation. Meanwhile, the treatment rate

also has a negative correlation with the individuals infected with

tuberculosis (IT). It means that the effort to treat individuals

infected with tuberculosis (IT) can suppress the spreading

of tuberculosis.

Meanwhile, Figure 4 shows that the most sensitive

parameters to individuals coinfected with COVID-19 and

tuberculosis (ITC) are αC ,αT , and αTC , which has a negative

correlation, and γC and γT , which has a positive correlation. It

means that to minimize the case of coinfection of COVID-19

FIGURE 4

PRCC of individuals coinfected with COVID-19 and tuberculosis

(ITC).

and tuberculosis, we need a combination of interventions for

COVID-19 and tuberculosis.

Optimal control

The aim of the optimal control is to reduce the spreading

of COVID-19 and tuberculosis. In this research, we used

prevention control for COVID-19 and tuberculosis, i.e., the use

of masks and hand sanitizer. There are two controls in the

model. The COVID-19 prevention control u(t) is to minimize

the individuals infected with COVID-19 (IC). The tuberculosis

prevention control v(t) is to minimize the individuals infected

with tuberculosis (IT). The objective function is given by the

following equation:

min
(u,v)

J (u, v) = min
(u,v)

∫ tf

0

(

C1IC(t)+W1u
2 (t) + C2IT(t)

+W2v
2 (t)

)

dt (10)

where 0 ≤ u(t) ≤ 1, 0 ≤ v(t) ≤ 1, 0 ≤ t ≤ tf

s.t
dS

dt
= A− ((1− u (t)) γC (IC (t) + ITC (t))

+ (1− v (t)) γT (IT (t) + ITC (t) + T (t))

+µ) S (t) (11)

dIC

dt
=
(

1− u(t)
)

γC
(

IC(t)+ ITC(t)
)

S (t) + αT ITC (t)

− (γT (IT (t) + ITC (t) + T (t)) + δ + µ + αC
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+dC
)

IC (t) (12)

dIT
dt

=
(

1− v(t)
)

γT
(

IT(t)+ ITC(t)+ T(t)
)

S (t)

+αCITC (t) − (γC (IC (t) + ITC (t)) + ε + µ + αT

+dT
)

IT (t) (13)

dITC
dt

= γC
(

IC(t)+ ITC(t)
)

IT (t) + γT
(

IT(t)+ ITC(t)

+T(t)
)

IC (t) − (αTC + µ + αT + αC

+dTC
)

ITC (t) (14)

dQ

dt
= δIC (t) −

(

αQ + µ + dC
)

Q (t) (15)

dT

dt
= εIT (t) −

(

αS + µ + dT
)

T (t) (16)

dR

dt
= αCIC (t) + αT IT (t) + αQQ (t) + αST (t)

+αTCITC (t) − µR (t) , (17)

where S (t) ≥ 0, IC (t) ≥ 0, IT (t) ≥ 0, ITC (t) ≥ 0,Q (t) ≥

0,T (t) ≥ 0,R (t) ≥ 0.

C1 represents the positive constant weight that balance

off the individuals infected with COVID-19 to COVID-19

and C2 represents the positive constant weight that balance

off the individuals infected with tuberculosis to tuberculosis.

W1 and W2 are the constant weights of the prevention

control for COVID-19 and tuberculosis. W1u
2(t) and W2v

2(t)

represent the costs of the prevention control for COVID-19

and tuberculosis. We used a quadratic control function because

the positive balancing cost factors transfer the integral into

monetary quantity over a finite period of time [see Tchoumi et al.

[45] and the references therein].

The Hamiltonian function for the optimal control model is

given by the following equation:

H = C1IC(t)+W1u
2 (t) + C2IT(t)+W2v

2 (t)

+λ1
(

A−
((

1− u(t)
)

γC
(

IC(t)

+ ITC(t)
)

+
(

1− v(t)
)

γT
(

IT(t)+ ITC(t)+ T(t)
)

+µ) S (t) )

+λ2
((

1− u(t)
)

γC
(

IC(t)+ ITC(t)
)

S (t) + αT ITC (t)

−
(

γT
(

IT(t)+ ITC(t)+ T(t)
)

+ δ + µ + αC

+dC
)

IC (t)
)

+λ3
((

1− v(t)
)

γT
(

IT(t)+ ITC(t)+ T(t)
)

S (t)

+αCITC (t) −
(

γC
(

IC(t)+ ITC(t)
)

+ ε + µ + αT

+dT
)

IT (t)
)

+λ4
(

γC
(

IC(t)+ ITC(t)
)

IT (t) + γT
(

IT(t)+ ITC(t)

+T(t)
)

IC (t) −
(

αTC + µ + αT + αC + dTC
)

ITC (t)
)

+λ5
(

δIC (t) −
(

αQ + µ + dC
)

Q (t)
)

+λ6
(

εIT (t) −
(

αS + µ + dT
)

T (t)
)

+λ7
(

αCIC (t) + αT IT (t) + αQQ (t) + αST (t)

+αTCITC (t) − µR (t)) ,

with λi for i = 1, 2, . . . , 7 is the adjoint variable

of S(t), IC(t), IT(t), ITC(t),Q(t),T(t),R(t).

The co-state equation of the optimal control model is given

by the following equation:

dλ1

dt
= −λ1 (t)

(

−
(

1− u(t)
)

γC (IC (t) + ITC (t))

−
(

1− v(t)
)

γT (IT (t) + ITC (t) + T (t)) − µ
)

−λ2 (t)
((

1− u(t)
)

γC
(

IC(t)+ ITC(t)
))

−λ3 (t)
(

1− v(t)
)

γT
(

IT(t)+ ITC(t)+ T(t)
)

dλ2

dt
= −C1 + λ1 (t) (1− u (t)) γCS (t)

−λ2 (t) ((1− u (t)) γCS (t) − (γT (IT (t) + ITC (t)

+T (t)) + δ + µ + αC + dC
))

+λ3 (t) γCIT (t) − λ4 (t) (γCIT (t) + γT (IT (t)

+ITC (t) + T (t))) − λ5(t)δ − λ7(t)αC

dλ3

dt
= −C2 + λ1 (t) (1− v (t)) γTS (t) + λ2 (t) γT IC (t)

−λ3 (t) ((1− v (t)) γTS (t) − (γC (IC (t) + ITC (t)) + ε

+µ + αT + dT
))

−λ4 (t) (γT IC (t) + γC (IC (t) + ITC (t))) − λ6(t)ε

−λ7(t)αT
dλ4

dt
= λ1 (t) ((1− u (t)) γC + (1− v (t)) γT) S (t)

−λ2 (t) ((1− u (t)) γCS (t) + αT − γT IC (t))

−λ3 (t) ((1− v (t)) γTS (t) + αC − γCIT (t))

−λ4 (t) (γT IC (t) + γCIT (t) − αTC − µ − αT

−αC − dTC
)

− λ7(t)αTC

dλ5

dt
= −λ5 (t)

(

−αQ − µ − dC
)

− λ5 (t) αQ

dλ6

dt
= λ1 (t) (1− v (t)) γTS (t) + λ2 (t) γT IC (t)

−λ3 (t) (1− v (t)) γTS (t) − λ4 (t) γT IC (t)

−λ6 (t)
(

−αS − µ − dT
)

− λ7 (t) αS

dλ7

dt
= λ7 (t ) µ.

According to Lenhart and Workman [46], the optimal

condition of the optimal control for 0 ≤ t ≤ tf is given

as follows:

∂H

∂u
= 0

∂H

∂v
= 0

since 0 ≤ u (t) ≤ 1 and 0 ≤ v(t) ≤ 1, we obtained the

optimal control as follows:

u∗(t) = min

{

1,max

{

0,
γCS (t) (λ2 (t) − λ1 (t))

(

IC (t) + ITC(t)
)

2W1

}}
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FIGURE 5

The dynamics of all populations.

v∗(t) = min

{

1,max

{

0,
γTS (t) (λ3 (t) − λ1 (t))

(

IT (t) + ITC (t) + T(t)
)

2W2

}}

Numerical simulation

The aim of the numerical simulation is to observe

the dynamics of the population graphically. The

numerical simulation used the compartment’s initial

values,
{

S(0), IC(0), IT(0), ITC(0),Q(0),T(0),R(0)
}

=

{100000, 10, 10, 10, 10, 10, 10} , and parameter values from

Table 2. We performed the numerical simulations for the

models with and without control.

Dynamics of the population

First, we performed the numerical simulation without

control. The result of the numerical simulation is presented in

Figures 5, 6.

Figure 5 illustrates that the recovered population (R)

improved considerably compared with the other compartments,

so we omitted it from the simulation. Figure 6 illustrates that

the most infected individuals are the individuals infected with

tuberculosis (IT), while the individuals infected with COVID-

19 (IC) and the individuals coinfected with COVID-19 and

tuberculosis (ITC) are not significant.We conclude that isolation

has an immediate impact on reducing the number of COVID-19

FIGURE 6

The dynamics of the population without susceptible (S) and

recovered (R).

FIGURE 7

The COVID-19-infected individuals with control (Icwc) and no

control (Icnc).

infections, while treatment has an impact that tends to take a

long time of up to 120 days or more. It happens because people

who are undergoing treatment can still transmit tuberculosis as

long as the bacteria in their bodies are still active.
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FIGURE 8

The tuberculosis-infected individuals with control (Itwc) and no

control (Itnc).

FIGURE 9

Optimal control u* and v*.

Optimal control

We performed the numerical simulation using optimal

control (u∗(t), v∗(t)). The result of the numerical simulation is

illustrated in Figures 7, 8, while the optimal control is illustrated

in Figure 9.

Figure 7 illustrates the comparison of the dynamics of IC

with control u∗ (t) and no control. Also, Figure 8 illustrates the

comparison of the dynamics of IT with control v∗ (t) and no

control. Both controls are effective in reducing the spreading

of COVID-19 and tuberculosis. It means that the prevention

control for COVID-19 and tuberculosis is a recommended

solution compared with no control for the population. Figure 9

illustrates the most effective control in 60 days. Therefore, we

need to use 100% of the prevention control in the first 30 days,

which can then be relaxed for the next 30 days.

Conclusion

In this research, we presented a coinfection model of

tuberculosis and COVID-19 with the effect of isolation and

treatment. The coinfection model has two basic reproduction

numbers, namely, the basic reproduction number for COVID-

19 and the basic reproduction number for tuberculosis. The

disease-free equilibrium is locally asymptotically stable when

R0 < 1. Otherwise, the endemic equilibrium is locally

asymptotically stable when R0 > 1. Global sensitivity analysis

was performed using the combination of LHS and PRCC.

We analyzed the PRCC for three compartments, namely,

individuals infected with COVID-19 (IC), individuals infected

with tuberculosis (IT), and individuals coinfected with COVID-

19 and tuberculosis (ITC). The most sensitive parameters to

the model are the recovery rate of individuals infected with

COVID-19 (αC), the infection rate of COVID-19 (γC), the

recovery rate of individuals infected with tuberculosis (αT), the

infection rate of tuberculosis (γT), and the recovery rate of

individuals coinfected with tuberculosis and COVID-19 (αTC).

We performed the optimal control in the form of prevention for

COVID-19 and tuberculosis. The numerical simulation shows

that these controls effectively reduce the infected population.

The effect of isolation has an immediate impact on reducing the

number of COVID-19 infections, while the effect of treatment

has an impact that tends to take a longer time.
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Appendix 1

Coefficient values of the characteristic polynomial P0 (λ ):

k2 = 1

k1 = 0.5990320875

k0 = 0.00697110062

Appendix 2

Coefficient values of the characteristic polynomial P∗(λ):

m7 = 1

m6 = 3.151228668

m5 = 3.499353074

m4 = 1.853443921

m3 = 0.5668236943

m2 = 0.1127678992

m1 = 0.008741862824

m0 = 4.056943389 × 10−7
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