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We propose an intraguild predation ecological system consisting of a

tri-trophic food web with a fear response for the basal prey and a

Lotka–Volterra functional response for predation by both a specialist predator

(intraguild prey) and a generalist predator (intraguild predator), which we

call the superpredator. We prove the positivity, existence, uniqueness, and

boundedness of solutions, determine all equilibrium points, prove global

stability, determine local bifurcations, and illustrate our results with numerical

simulations. An unexpected outcome of the prey’s fear of its specialist predator

is the potential eradication of the superpredator.
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Introduction

A functioning ecosystem depends on the framework of food webs that it supports

[1]. Food webs involve many types of predator–prey interactions, which are fundamental

interactions for sustaining species [2]. Interaction between the prey and the predator can

be affected by factors such as refuge, disease, stage structure, competition, and fear [3–7].

Intraguild predation (IGP), on the other hand, is described as predator–prey interactions

among consumers who may be fighting for limited resources. In natural communities,

there is a growing body of literature emphasizing the relevance of intraguild predation [8,

9]. Three species are involved in the simplest intraguild predationmodel: a superpredator

(IG predator), a specialist predator (IG prey), and a basal prey. Bai et al. recently

suggested a three-species IGP food web model with the IG predator, IG prey, and basal

prey, in which the basal prey grows logistically with a large Allee effect [10]. They looked

into the model’s local and global dynamics, focusing on the impact of the Allee effect

and discovered that the intraguild predation food web model has rich and complicated

dynamic behavior and that a large Allee effect in the basal prey raises the danger of

extinction for not only the basal prey but also the IG prey or/and IG predator.

Many predators in food webs are superpredators, who may not restrict their diets to

a specific prey species but feed also on other predators [11]. Therefore, superpredators

are expected to compete not only with other predators for food and space but in many

cases also through intraguild predation [5, 12, 13]. Predators induce indirect effects such
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as fear in prey that can change the prey’s behavior [14]. Fear

takes the form of sustained psychological stress on the prey,

as prey species are always wary of possible attack [15]. Suraci

et al. experimentally showed that fear of large carnivores reduces

mesocarnivore foraging, which benefits the mesocarnivore’s

prey [16].

A handful of mathematical models have studied the effect

of fear on food webs. Panday et al. investigated the impact

of fear in a tri-trophic food chain model, with prey fear in

response to both predators [15], from the middle predator to

the generalist predator [17] and with delays [18]. Cong et al.

introduced a fear-adjusted birth rate to a three-species food web

[19]. Hossain et al. limited the growth of the prey due to fear

in an intraguild predation model [20]. Mukerjee incorporated

interspecific competition and fear affecting the death rate of

the prey [21]. Ibrahim et al. limited prey growth due to fear

of the generalist predator and showed that fear could have a

stabilizing effect on the system [22]. Mondal et al. showed that

the prey’s fear of predators was responsible for the increase

in intraspecific competition among the prey species [23]. Roy

et al. showed that fear could play a destablizing role if it caused

a reduction in the birth rate of susceptible prey, whereas the

levels of fear responsible for the increase in the intraspecies

competition of susceptible prey and eradication of the disease

prevalence could stabilize an otherwise unstable system [24].

Maity et al. considered time-varying fear effects, showing that

periodic solutions could arise [25]. Hossain et al. showed that

perceived fear of predators could reduce the prey birth rate [26].

Tiwari et al. showed that seasonal variations in the level of prey

fear generated higher-order periodic solutions [27].

Here, we examine the impact of fear on the dynamical

behavior of an IGP food web system in which the prey responds

with fear to the specialist predator but not the superpredator;

because the superpredator has alternative food sources, it will

be less dangerous to the basal prey compared to the IG prey.

To the best of our knowledge, this is the first model to examine

this effect.

Food-web model formulation

Our food web consists of a prey at the first level, a specialist

predator at the second level, and a superpredator at the third

level. Let x(t), y (t) , and z(t) be the population densities at time t

for the prey, specialist predator, and superpredator, respectively.

The prey grows logistically in the absence of predators, while

it has a fear property of predation in the presence of the

specialist predator. Hence, the intrinsic growth rate of prey

becomes r
1+ky

, which is a monotonic decreasing function of

both k and y, where k represents the fear rate [28]. The food

transport attack rates are given by the parameters a1, a2, and

a3, with conversion rates e1, e2, and e3. Finally, the predators

face natural death rates d1 and d2 for the specialist predator and

superpredator, respectively. The dynamics of the food web with

fear can be represented mathematically by the following set of

differential equations:

dx
dt

= rx (1− x)
(

1
1+ky

)

− a1xy− a2xz = xf1
(

x, y, z
)

,

dy
dt

= e1a1xy− a3yz − d1y = yf2
(

x, y, z
)

,

dz
dt

= e2a2xz + e3a3yz − d2z = zf3
(

x, y, z
)

.

(1)

Initial conditions satisfy x (t) ≥ 0, y (t) ≥ 0, and z (t) ≥ 0, and

all parameters are assumed to be positive.

The interaction functions fi (i = 1, 2, 3) are continuous and

have continuous partial derivatives and are thus Lipschitzian, so

system (1) has a unique solution. Furthermore, for any initial

condition in R
3
+, the solution of system (1) is positive and

uniformly bounded as shown in the following theorem. Hence,

system (1) will be a dissipative system.

Theorem (1): The domain of system (1), R3
+, is positively

invariant, and all solutions of system (1) starting in R
3
+ are

uniformly bounded.

Proof. Let x (t) , y (t) , and z(t) be any solution of system

(1). Since the solution
(

x (t) , y (t) , z(t)
)

of the system (1) with

initial condition in R
3
+ exists and is unique on [0 , δ) , where

0 < δ ≤ +∞, we have:

x (t) = x (0) e

∫ t
0

[

r(1−x(s))
(

1
1+ky(s)

)

−a1y(s)−a2z(s)
]

ds ≥ 0

y (t) = y (0) e
∫ t
0 [e1a1x(s)−a3z(s)−d1]ds ≥ 0

z (t) = z (0) e
∫ t
0 [e2a2x(s)+e3a3y(s)−d2]ds ≥ 0.

From the first equation of system (1):

dx

dt
≤ rx (1− x ) .

Then, it is easy to verify that x (t) ≤ r
4 for all t.

Let= x+ y+ z. Then, since ei ∈ (0, 1) ; i = 1, 2, 3, we have
dW
dt

≤ r
4 −M

[

x+ y+ z
]

,

where M = min
{

1, d1, d2
}

. Solving the following linear

differential inequality

dW

dt
+MW ≤ r

4
,

we obtain that, as t → ∞,

W (t) ≤ r

4M
.

Existence of equilibrium points

System (1) has at most five nonnegative biologically feasible

equilibrium points. The trivial equilibrium E0 = (0, 0, 0) always

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2022.963991
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Fakhry et al. 10.3389/fams.2022.963991

exists. The axial equilibrium E1 = (1, 0, 0) always exists on

the boundary of the first octant. The specialist-free equilibrium

point, E2 = (x̄, 0, z̄), where

x̄ = d2

e2a2
and z̄ = r (1− x̄)

a2
, (2a)

exists provided that

d2 < e2a2. (2b)

The superpredator-free equilibrium point, E3 =
(

x̂, ŷ, 0
)

, where

x̂ = d1

e1a1
and ŷ = − 1

2k
+ 1

2a1k

√

a21 + 4kr

(

e1a1 − d1
)

e1
, (3a)

exists, provided that

d1 < e1a1. (3b)

There is also an interior equilibrium point, E4 =
(

x∗, y∗, z∗
)

, where

y
∗ = d2 − e2a2x

∗

e3a3
and z

∗ = e1a1x
∗ − d1

a3
, (4a)

with x∗ a positive root of the following second-order

polynomial equation:

β1x
2 + β2x+ β3 = 0, (4b)

where

β1 = e2a1a2
2k [e1e3 − e2] ,

β2 = e2e3a1a2a3 − re3
2a3

2 + 2e2a1a2kd2 − e1e3a1a2a3
2

−e1e3a1a2kd2 − e2e3a2
2kd1,

β3 = re3
2a3

2 − e3a1a3d2 − a1kd2
2 + e3a2a3

2d1 + e3a2kd1d2.

Therefore, there is a unique interior equilibrium point in the

interior of R3
+ provided that the following conditions hold:

d1

e1a1
< x

∗
<

d2

e2a2
(4c)

β1 > 0;β3 < 0

OR

β1 < 0;β3 > 0











. (4d)

Persistence

Next, we determine the requirements that ensure persistence

in the system (1). Because the types of attractors available in

the boundary planes affect the creation of our IGP food web

model’s persistence conditions, an analysis of the dynamics in

the boundary planes of the IGP food web system is conducted.

System (1) has two subsystems: the first occurs in the absence

of the superpredator (IG predator) and the second occurs

in the absence of the specialist predator (IG prey). The first

subsystem is

dx
dt

= x
[

r(1−x)
1+ky

− a1y
]

= xf1
(

x, y
)

dy
dt

= y
[

e1a1x− d1
]

= yg1
(

x, y
)

.
(5)

The second subsystem can be written as follows:

dx
dt

= x [r (1− x)− a2z] = xf2 (x, z)
dz
dt

= z
[

e2a2x− d2
]

= zg2 (x, z).
(6)

Subsystem (5) has a unique positive equilibrium point in the

interior of xy-plane given by
(

x̂, ŷ
)

≡ E3, while subsystem (6)

has a unique positive equilibrium point in the interior of xz-

plane given by (x̄, z̄) ≡ E2. The interior equilibrium point of

subsystem (5) corresponds to system (1)’s superpredator-free

equilibrium point; similarly, the interior equilibrium point of

subsystem (6) corresponds to system (1)’s specialist-predator-

free equilibrium point. The dynamics around these equilibrium

points can be described in the following theorem.

Theorem (2): There are no periodic dynamics in the interior

of xy-plane or the xz-plane.

Proof.Define a continuously differential function B
(

x, y
)

=
1
xy . Then, we have:

1 =
∂
(

Bf1
)

∂x
+
∂
(

Bg1
)

∂y
= − r

y
(

1+ ky
) .

Clearly, 1 has the same sign and does not equal zero almost

everywhere in a simply connected region of the xy-plane. By the

Dulac–Bendixson criterion, system (1) has no periodic solutions

lying entirely in the interior of xy−plane. The second part

follows by using the Dulac function C (x, z) = 1
xz .

Theorem (3): System (1) is uniformly persistent in the

interior of R3
+, provided that

e1a1 > d1, (7a)

e2a2 > d2, (7b)

e1a1x̄ > a3z̄ + d1, (7c)

e2a2x̂+ e3a3ŷ > d2. (7d)
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Proof. Consider the function
(

x, y, z
)

= xb1yb2zb3 , where bi, i =
1, 2, 3, are positive constants and U

(

x, y, z
)

is a C1 nonnegative

function in the interior of R3
+. Hence, we have

dU
dt

= ∂U
∂x

dx
dt

+ ∂U
∂y

dy
dt

+ ∂U
∂ z

dz
dt
,

with

∂U

∂x
= b1x

(b1−1 )yb2zb3 ,

∂U

∂y
= b2x

b1y(b2−1 )zb3 ,

∂U

∂z
= b3x

b1yb2z(b3−1 ).

Therefore,

9
(

x, y, z
)

= ( dU
dt
)

U(x,y,z)
= b1

x
dx
dt

+ b2
y

dy
dt

+ b3
z

dz
dt
,

= b1

[

r (1− x)
(

1
1+ky

)

− a1y− a2z
]

+b2
[

e1a1x− a3z − d1
]

+ b3
[

e2a2x+ e3a3y− d2
]

.

Since there are no periodic solutions in the boundary planes of

the system (1), it follows that system (1) is uniformly persistent

provided that9 (Ei) > 0 for each i = 1, 2, 3. We have

9 (E1) = b2
[

e1a1 − d1
]

+ b3
[

e2a2 − d2
]

,

9 (E2) = b2
[

e1a1x̄− a3z̄ − d1
]

,

9 (E3) = b3
[

e2a2x̂+ e3a3ŷ− d2
]

.

Consequently, conditions (7a)–(7d) satisfy 9 (Ei) > 0 for each

i = 1, 2, 3.

Global stability analysis

Here, we use Lyapunov functions to investigate the global

stability of equilibria.

Theorem (4): The axial equilibrium point E1 = (1, 0, 0)

is globally asymptotically stable provided that the following

sufficient condition holds:

e2 < e1e3 <
d2

a2
. (8)

Proof. Consider the following positive-definite, real-valued

function around E1:

V1 = c1
[

x− 1− ln x
]

+ c2y+ c3z .

Then, we have:

dV1
dt

= − c1r
1+ky

(x− 1)2 − (c1 − c2e1) a1xy− (c1 − c3e2) a2xz

− (c2 − c3e3) a3yz −
(

c2d1 − c1a1
)

y−
(

c3d2 − c1a2
)

z.

Then, by choosing c1 = e1, c2 = 1 and c3 = 1
e3
, we obtain

dV1

dt
= − e1r

1+ ky
(x− 1)2 −

(

e1 −
e2

e3

)

a2xz −
(

d1 − e1a1
)

y

−
(

d2

e3
− e1a2

)

z.

Clearly, under condition (8), dV1
dt

is negative definite. Moreover,

sinceV1 is radially unbounded, the axial equilibrium point E1 =
(1, 0, 0) is globally asymptotically stable.

Theorem (5): The specialist-free equilibrium point E2 =
(x̄, 0, z̄) is globally asymptotically stable provided that the

following sufficient conditions hold:

a1x̄ <
d1

e1
+ e3a3

e2
z̄, (9a)

e1e3 < e2. (9b)

Proof. Consider the following positive-definite, real-valued

function around E2:

V2 = c1

[

x− x̄− x̄ ln
x

x̄

]

+ c2y+ c3

[

z − z̄ − z̄ ln
z

z̄

]

.

Then, we have:

dV2
dt

= −c1r (x− x̄)2 − a2 [c1 − c3e2] (x− x̄) (z − z̄)

− (c1 − c2e1) a1xy

−
(

c2d1 − c1a1x̄+ c3e3a3z̄
)

y− (c2 − c3e3) a3yz.

Then, by choosing c1 = 1, c2 = 1
e1

and c3 = 1
e2
, we have:

dV2

dt
= −r (x− x̄)2 −

(

d1

e1
+ e3a3

e2
z̄ − a1x̄

)

y

−
(

1

e1
− e3

e2

)

a3yz.

Obviously, under conditions (9a)–(9b), dV2
dt

is negative definite.

Moreover, since V2 is radially unbounded, the specialist-free

equilibrium point E2 = (x̄, 0, z̄) is globally asymptotically stable.

Theorem (6): The superpredator-free equilibrium point

E3 =
(

x̂, ŷ, 0
)

is globally asymptotically stable, provided

that, in addition to condition (9b), the following sufficient

conditions hold:

a2x̂+
a3

e1
ŷ <

d2

e2
, (10a)

(

x− x̂
) (

y− ŷ
)

> 0. (10b)

Proof. Consider the following positive-definite, real-valued

function around E3:

V3 = c1

[

x− x̂− x̂ ln
x

x̂

]

+ c2

[

y− ŷ− ŷ ln
y

ŷ

]

+ c3z.
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Then, we have

dV3
dt

= − c1r(x−x̂)2

R − c1rk(1−x̂)(x−x̂)(y−ŷ)

RR̂
− (c1 − c2e1) a1

(

x− x̂
) (

y− ŷ
)

− (c1 − c3e2) a2xz

− (c2 − c3e3) a3yz −
(

c3d2 − c1a2x̂− c2a3ŷ
)

z,

where R =
(

1+ ky
)

and R̂ =
(

1+ kŷ
)

. Then, by choosing

c1 = 1, c2 = 1
e1

and c3 = 1
e2
, we obtain:

dV3

dt
≤ −

r
(

x− x̂
)2

R
−

rk
(

1− x̂
) (

x− x̂
) (

y− ŷ
)

RR̂

−
(

1

e1
− e3

e2

)

a3yz −
(

d2

e2
− a2x̂−

a3

e1
ŷ

)

z.

Under conditions (10a)–(10b), dV3
dt

is negative definite. SinceV3

is radially unbounded, the superpredator-free equilibrium point

E3 =
(

x̂, ŷ, 0
)

is globally asymptotically stable.

Theorem (7): The coexistence equilibrium point

E4 =
(

x∗, y∗, z∗
)

is globally asymptotically stable provided

that, in addition to condition (9b), the following sufficient

condition holds:

(

x− x
∗) (

y− y
∗)
> 0. (11)

Proof. Consider the following positive-definite, real-valued

function around E4:

V4 = c1

[

x− x
∗ − x

∗
ln

x

x
∗

]

+ c2

[

y− y
∗ − y

∗
ln

y

y
∗

]

+ c3

[

z − z
∗ − z

∗
ln

z

z
∗

]

.

Then, we have:

dV4
dt

= −
c1r
(

x−x
∗)2

R −
c1rk

(

1−x
∗)(

x−x
∗)(

y−y
∗)

RR
∗

− (c1 − c2e1) a1

(

x− x
∗) (

y− y
∗)

− (c2 − c3e3) a3

(

y− y
∗) (

z − z
∗)

− (c1 − c3e2) a2

(

x− x
∗) (

z − z
∗)

,

where R∗ = 1 + ky∗. Then, by choosing c1 = e2, c2 = e3, and

c3 = 1, we have

dV4

dt
= −

e2r
(

x− x
∗)2

R
−

e2rk
(

1− x
∗) (

x− x
∗) (

y− y
∗)

RR
∗

− (e2 − e1e3) a1

(

x− x
∗) (

y− y
∗ )

.

Then, under condition (11) with (9b), dV4
dt

is negative definite.

Since V4 is radially unbounded, the coexistence equilibrium

point E4
(

x∗, y∗, z∗
)

is globally asymptotically stable.

Bifurcation analysis

In this section, we investigate the effect of varying parameter

values on the dynamics of the system (1) using local bifurcation

analysis and the Sotomayor theorem [29]. First, we rewrite

system (1) in the vector form as follows:

dX

dt
= F (X) ,X =

(

x, y, z
)T

and F =
(

xf1, yf2, zf3
)T

.

The second derivative of F with respect to X can be written as:

D2F (U,U) =






− 2ru1
2

1+ky
− 2kr(1−2x)u1u2

(1+ky)2
− 2a1u1u2 − 2a2u1u3 + 2k2rx(1−x)u2

2

(1+ky)3

2e1a1u1u2 − 2a3u2u3
2e2a2u1u3 + 2e3a3u2u3






,

(12)

where U = (u1, u2, u3)
T is a general vector.

Theorem (8):Assume that d2 = e2a2
(

≡ d2
∗). Then system

(1) undergoes a transcritical bifurcation at the axial equilibrium

point E1, but neither a saddle node nor a pitchfork bifurcation

can occur if

e1a1 < d1. (13)

Proof. The Jacobianmatrix of system (1) at the axial equilibrium

point E1 with d2 = e2a2
(

≡ d2
∗) can be written as:

J1 = J
(

E1, d2
∗) =











−r − a1 − a2

0 e1a1 − d1 0

0 0 0











.

J1 has eigenvalues λ11
∗ = −r < 0, λ12

∗ = e1a1 − d1 < 0

under condition (13), and λ13
∗ = 0. Hence, the necessary but

not sufficient condition for a bifurcation is satisfied, and E1 is a

non-hyperbolic point.

Let Φ1 = (v11, v12, v13)
T be the eigenvector of J1

corresponding to the eigenvalue λ13
∗ = 0. Straightforward

computation gives Φ1 = (β1v13, 0, v13)
T , where v13 represents

any nonzero real number and β1 = − a2
r < 0.

Let 91 = (ψ11,ψ12,ψ13)
T be the eigenvector of J1

T

corresponding to the eigenvalue λ13
∗ = 0. Direct calculation

shows that 91 = (0, 0,ψ13)
T , where ψ13 is any nonzero real

number. Because ∂F
∂d2

= F
d2

= (0, 0,−z)T , we obtain that

Fd2
(

E1, d2
∗) = (0, 0, 0)T , which yields:

91
T
[

Fd2

(

E1, d2
∗)] = 0.

By Sotomayor’s theorem, system (1) at E1 with d2 = d2
∗ does

not experience a saddle-node bifurcation. Moreover, we have

91
T
[

DFd2

(

E1, d2
∗)
Φ1

]

= −v13913 6= 0,
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where DFd2 represents the derivative of Fd2 with respect to X.

Applying equation (12) at
(

E1, d2
∗) with the eigenvectorΦ1, we

obtain that

91
T
[

D2F
(

E1, d2
∗)
(Φ1,Φ1)

]

= 2e2a2β1v13
2ψ13 6= 0.

By Sotomayor’s theorem, system (1) near the equilibrium point

E1 with d2 = d2
∗ undergoes a transcritical bifurcation, but a

pitchfork bifurcation cannot occur.

Theorem (9): System (1) at the specialist-free equilibrium

point E2 undergoes a transcritical bifurcation when d1 =
e1a1x̄+ a3z̄

(

≡ d1
∗), but neither a saddle-node nor a pitchfork

bifurcation can occur, provided

e1e3a1a2 + re3a3 6= e2a2
[

kr (1− x̄)+ a1
]

. (14)

Proof. The Jacobian matrix of system (1) at the specialist-free

equilibrium point E2 with d1 = d1
∗ takes the form:

J2 = J
(

E2, d1
∗) =











−rx̄ −krx̄ (1− x̄)− a1x̄ −a2x̄

0 0 0

e2a2z̄ e3a3z̄ 0











.

J2 has eigenvalues

λ21
∗ = − rx̄

2
+ 1

2

√

(rx̄)2 − 4e2a22x̄z̄ ,

λ23
∗ = − rx̄

2
− 1

2

√

(rx̄)2 − 4e2a22x̄z̄,

while λ22
∗ = 0; hence, the necessary but not sufficient condition

for a bifurcation is satisfied, and E2 is a non-hyperbolic point.

Let Φ2 = (v21, v22, v23)
T be the eigenvector of

J2 corresponding to the zero eigenvalue. Straightforward

computation gives Φ2 = (α1v22, v22,α2v22)
T , where v22

represents any nonzero real number, with

α1 = − e3a3

e2a2
and α2 =

re3a3 −
[

kr (1− x̄)+ a1
]

e2a2

e2a22
.

Let 92 = (ψ21,ψ22,ψ23)
T be the eigenvector of J2

T

corresponding to the zero eigenvalue. Direct calculation shows

that 92 = (0,ψ22, 0)
T , where ψ22 is any nonzero real

number. Because ∂F
∂d1

= Fd1 =
(

0,−y, 0
)T

, we obtain that

Fd1
(

E2, d1
∗) = (0, 0, 0)T , which yields

92
T
[

Fd1

(

E2, d1
∗)] = 0.

Thus, by Sotomayor’s theorem, system (1) at E2 with d1 =
d1

∗ does not experience a saddle-node bifurcation. Moreover,

we have:

92
T
[

DFd1

(

E2, d1
∗)
Φ2

]

= −v22ψ22 6= 0,

where DFd1 represents the derivative of Fd1 with respect to X.

Using equation (12) at
(

E2, d1
∗) with the eigenvector Φ2, we

obtain that

92
T
[

D2F
(

E2, d1
∗)
(Φ2,Φ2)

]

= (2e1a1α1 − 2a3α2 ) v22
2ψ22.

It is easy to verify that92
T
[

D2F
(

E2, d1
∗) (Φ2,Φ2)

]

6= 0 due to

condition (14). Hence, by Sotomayor’s theorem, system (1) near

the equilibrium point E2 with d1 = d1
∗ undergoes a transcritical

bifurcation but a pitchfork bifurcation cannot occur.

Theorem (10): At the superpredator-free equilibrium point

E3, system (1) undergoes a transcritical bifurcation when d2 =
e2a2x̂+e3a3ŷ

(

≡ d2
∗), but neither a saddle-node nor a pitchfork

bifurcation can occur, provided

e2a2

[

kr
(

1− x̂
)

+ a1(1+ kŷ)2
]

6=

e3(1+ kŷ)
[

a3r + e1a1a2(1+ kŷ)
]

. (15)

Proof. The Jacobian matrix of system (1) at the superpredator-

free equilibrium point E3 with d2 = d2
∗ is

J3 = J
(

E3, d2
∗) =













− rx̂
1+kŷ

− krx̂(1−x̂)

(1+kŷ)2
− a1x̂ −a2x̂

e1a1ŷ 0 −a3ŷ

0 0 0













.

J3 has eigenvalues

λ31
∗ = − rx̂

2(1+ kŷ)

+ 1

2

√

√

√

√

(

rx̂

1+ kŷ

)2

− 4e1a1ŷ

(

krx̂
(

1− x̂
)

(

1+ kŷ
)2

+ a1x̂

)

,

λ32
∗ = − rx̂

2
(

1+ kŷ
)

− 1

2

√

√

√

√

(

rx̂

1+ kŷ

)2

− 4e1a1ŷ

(

krx̂
(

1− x̂
)

(

1+ kŷ
)2

+ a1x̂

)

,

while λ33
∗ = 0; hence, the necessary but not sufficient condition

for bifurcation is satisfied, and E3 is a non-hyperbolic point.

Let Φ3 = (v31, v32, v33)
T be the eigenvector of

J3 corresponding to the zero eigenvalue. Straightforward

computation gives Φ3 = (s1v33, s2v33, v33)
T , where v33

represents any nonzero real number, while

s1 = a3

e1a1
and s2 = −





ra3
(

1+ kŷ
)

+ e1a1a2(1+ kŷ)2

e1a1

[

kr
(

1− x̂
)

+ a1(1+ kŷ)2
]



 .

Let 93 = (ψ31,ψ32,ψ33)
T be the eigenvector of J3

T

corresponding to the zero eigenvalue. Direct calculation shows

that 93 = (0, 0,ψ33)
T , where ψ33 is any nonzero real number.
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Because ∂F
∂d2

= F
d2

= (0, 0,−z)T , we obtain Fd2
(

E3, d2
∗) =

(0, 0, 0)T , which yields

93
T
[

Fd2

(

E3, d2
∗)] = 0.

Thus, by Sotomayor’s theorem, system (1) at E3 with d2 =
d2

∗ does not experience a saddle-node bifurcation. Moreover,

we have:

93
T [DFd2

(

E3, d2
)

Φ3
]

= −v33ψ33 6= 0,

where DFd2 represents the derivative of Fd2 with respect to X.

By using equation (12) at
(

E3, d2
∗) with the eigenvector Φ3, we

obtain that:

93
T
[

D2F
(

E3, d2
∗)
(Φ3,Φ3)

]

= (2e2a2s1 + 2e3a3s2 ) v33
2ψ33.

Straightforward computation shows that

93
T
[

D2F
(

E3, d2
∗) (Φ3,Φ3)

]

6= 0 due to condition (15).

Thus, by Sotomayor’s theorem, system (1) near the equilibrium

point E3 with d2 = d2
∗ undergoes a transcritical bifurcation,

but a pitchfork bifurcation cannot occur.

Theorem (11): System (1) undergoes a saddle-node

bifurcation at the coexistence equilibrium point E4, but neither

a transcritical nor a pitchfork bifurcation can occur when e3

passes through the value e3
∗ = b12b23b31

(b11b23−b13b21)a3z∗
, provided the

following conditions hold:





krx
∗ (

1− x
∗)

(

1+ ky
∗)2 + a1x

∗



 e2a2 >

(

rx
∗

1+ ky
∗

)

e3
∗
a3, (16a)

a1a2

a3

(

e2

e3
∗ − e1

)

− r

(1+ ky
∗
)
× (16b)



1−
k
(

1− 2x
∗)

e2a2
(

1+ ky
∗)

e3
∗
a3

−
k2x

∗ (
1− x

∗)
(e1a1)

2

(

1+ ky
∗)2

a32



 6= 0.

Proof. Direct computation shows that system (1) at the

coexistence equilibrium point and e3 = e3
∗ has Jacobian matrix

J4 = J
(

E4, e3
∗) =









− rx
∗

1+ky∗ − krx∗(1−x∗)
(1+ky∗)2

− a1x
∗ −a2x

∗

e1a1y
∗ 0 −a3y

∗

e2a2z
∗ e3

∗a3z∗ 0









=
[

bij
]

3 ×3
.

Straightforward computation shows that |J4| = 0, under

condition (16a). Hence, J4 has two eigenvalues with negative real

parts, and the third one is λ∗ = 0. It follows that E4 becomes a

non-hyperbolic equilibrium point.

Let Φ4 = (v41, v42, v43)
T be the eigenvector of J4

corresponding to the eigenvalue λ∗ = 0. Straightforward

computation gives Φ4 = (v41, δ1v41, δ2v41)
T , where v41

represents any nonzero real number, δ1 = − b31
b32

∗ < 0 and

δ2 = − b21
b23

> 0.

Let 94 = (ψ41,ψ42,ψ43)
T be the eigenvector of J4

T

corresponding to the eigenvalue λ∗ = 0. Direct calculation

shows that 94 = (ψ41,µ1ψ41,µ2ψ41)
T , where ψ33 is any

nonzero real number, with µ1 = − b13
b23

< 0 and µ2 =
− b12

b32
> 0.

Since ∂F
∂e3

= F
e3

=
(

0, 0, a3yz
)T

, we have Fe3
(

E4, e3
∗) =

(

0, 0, a3y
∗z∗

)T
, which yields

94
T
[

Fe3

(

E4, e3
∗)] = a3µ2y

∗
z
∗
ψ41 6= 0.

By Sotomayor’s theorem, transcritical and pitchfork bifurcations

cannot occur while the first condition of the saddle-node

bifurcation is satisfied. Moreover, from equation (12) with

E4, e3
∗ andΦ4, we obtain that:

D2F
(

E4, e3
∗)
(Φ4,Φ4) = 2v41

2×










− r
1+ky

∗ −
kr
(

1−2x
∗)
δ1

(

1+ky
∗ )2 − a1δ1 − a2δ2 +

k2rx
∗(

1−x
∗)
δ2

2

(

1+ky
∗ )3

e1a1δ1 − a3δ1δ2

e2a2δ2 + e3
∗
a3δ1δ2











.

Hence,

9T
4

[

D2F
(

E4, e3
∗)
(Φ4,Φ4)

]

= 2v41
2ψ41×

[

− r
1+ky

∗ −
kr
(

1−2x
∗)
δ1

(

1+ky
∗ )2 − a1δ1 − a2δ2

+
k2rx

∗(
1−x

∗)
δ2

2

(

1+ky
∗ )3 + e1a1δ1µ1 − a3δ1δ2µ1 + e2a2δ2µ2

+ e3
∗
a3δ1δ2µ2

]

.

Further computation shows that

94
T
[

D2F
(

E4, e3
∗)
(Φ4,Φ4)

]

= 2v41
2ψ41

[

a1a2
a3

(

e2
e3

∗ − e1

)

− r
(1+ky

∗
)

[

1−
k
(

1−2x
∗)

e2a2

(1+ky
∗
)e3

∗
a3

−
k2x

∗(
1−x

∗)
(e1a1)

2

(

1+ky
∗ )2

a32

]]

.

Using condition (16b), we have

94
T
[

D2F
(

E4, e3
∗) (Φ4,Φ4)

]

6= 0. Hence, system (1) has

a saddle-node bifurcation at E4 when e3 = e3
∗.

Theorem (12): System (2) undergoes a Hopf bifurcation

around E4 when e3 = e3
∗∗, if and only if the following

conditions hold:

(

krx∗
(

1− x∗
)

(

1+ ky∗
)2

+ a1x
∗
)

e2a2 <

(

rx∗

1+ ky∗

)

e3a3, (17a)
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[

A(e3
∗∗

)B(e3
∗∗

)
]′
< C

′
(e3

∗∗
), (17b)

where

A = −b11 > 0,

B = −b12b21 − b13b31 − b23b
∗
32 > 0,

C = b23
(

b11b
∗
32 − b12b31

)

− b13b21b
∗
32,

with b∗32 = e3
∗∗a3z∗ and,

e3
∗∗ = 1

e1a1a2a3y
∗
z∗

[[

kr
(

1− x∗
)

(

1+ ky∗
)2

− a1

]

×
(

e1a1y
∗
(

rx∗

1+ ky∗

)

+ e2a2a3y
∗z∗

)

+ e2a2
2z∗

(

rx∗

1+ ky∗

)]

.

Proof. Consider the Jacobian matrix J4 given in Theorem

(11), where e3 = e3
∗∗. It is simple to determine that the

characteristic equation is

λ3 + Aλ2 + Bλ+ C = 0. (18)

Obviously, condition (17a) guarantees that C > 0. A

straightforward computation shows that AB = C when e3 =
e3

∗∗. Hence, the characteristic equation (18) becomes
(

λ
2 + B

)

(λ+ A) = 0. (19)

Consequently, we obtain that λ1 = −A and λ2,3 = ±i
√
B =

±iδ2(e3
∗∗). Therefore, the Jacobian matrix has one negative real

eigenvalue and two pure imaginary complex conjugates when

e3 = e3
∗∗. As a result, the first criterion for having a Hopf

bifurcation is met.

FIGURE 1

Globally asymptotically stable coexistence equilibrium point using data (17) and multiple initial conditions. (A) 3D-Phase portrait of the system

(1). (B) Time series for trajectories of x. (C) Time series for trajectories of y. (D) Time series for trajectories of z.
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Moreover, where e3 belongs to the neighborhood of e3
∗∗, the

eigenvalues become λ2,3 = δ1(e3)± iδ2(e3).

Next, we substitute δ1 (e3) + iδ2(e3) into equation (18) and

take the derivative of the resulting equation with respect to e3.

Equating their real and imaginary parts, we obtain that

H1 (e3) δ
′
1 (e3)− H2 (e3) δ

′
2 (e3) = −H3 (e3),

H2 (e3) δ
′
1 (e3)+ H1 (e3) δ

′
2 (e3) = −H4 (e3),

(20)

where

H1 (e3) = 3
[

δ1(e3)
]2 + 2A (e3) δ1 (e3)− 3 [δ2 (e3)]

2 + B(e3).

H2 (e3) = 6δ1 (e3) δ2 (e3)+ 2A (e3) δ2 (e3 ).

H3 (e3) = A
′
(e3) [δ1 (e3)]

2 − A
′
(e3) [δ2 (e3)]

2 + B
′
(e3) δ1 (e3)

+C
′
(e3 ).

H4 (e3) = 2A
′
(e3) δ1 (e3) δ2 (e3)+ B

′
(e3) δ2 (e3 ).

Solving system (20) for δ
′
1 (e3) gives

δ
′
1 (e3) = −H1 (e3)H3 (e3)+H2 (e3)H4 (e3)

[H2 (e3)]
2 + (e3) [H2 (e3) ]

2
.

The result follows if and only if δ
′
1 (e3) 6= 0 or, equivalently,

H1 (e3)H3 (e3) + H2 (e3)H4 (e3) 6= 0 when e3 = e3
∗∗. Note

that we have the following:

δ1

(

e3
∗∗) = 0 and δ2

(

e3
∗∗) =

√

B
(

e3
∗∗ )

.

H1

(

e3
∗∗) = −2B

(

e3
∗∗ )

.

H2

(

e3
∗∗) = 2A

(

e3
∗∗)√

B
(

e3
∗∗ )

.

H3

(

e3
∗∗) = −A

′ (
e3

∗∗) [
B
(

e3
∗∗)]+ C

′ (
e3

∗∗ )
.

H4

(

e3
∗∗) = B

′ (
e3

∗∗)√
B
(

e3
∗∗ )

.

Consequently,

H1

(

e3
∗∗)

H3

(

e3
∗∗)+H2

(

e3
∗∗)

H4

(

e3
∗∗)

= 2A
′ (

e3
∗∗)

B2
(

e3
∗∗)− 2B

(

e3
∗∗)

C
′ (

e3
∗∗)+ 2A

(

e3
∗∗)

B
′ (

e3
∗∗)

B
(

e3
∗∗)

= −2B
(

e3
∗∗)

[C
′ (

e3
∗∗)− (A

′ (
e3

∗∗)

B
(

e3
∗∗)+ A

(

e3
∗∗)

B
′ (

e3
∗∗)

].

Condition (17b) ensures that H1
(

e3
∗∗)H3

(

e3
∗∗) +

H2
(

e3
∗∗)H4

(

e3
∗∗) 6= 0.

Hence, the system has a Hopf bifurcation because δ
′
1 (e3) >

0 under the conditions (17a)–(17b).

Numerical simulations

To illustrate the global dynamics of the system and

confirm our analytical findings, we numerically simulated a

FIGURE 2

Trajectories of system (1) for di�erent values of r, with other parameters as in equation (17). (A) Time series for trajectories of x, y, and z for r = 2,

which approach E2 = (0.8, 0, 0.8). (B) Time series for trajectories of x, y, and z for r = 0.3, which approach E3 = (0.06, 0.22, 0).
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hypothetical set of parameter values. Consider the following set

of parameters:

r = 1, k = 1, a1 = 1, a2 = 0.5, a3 = 0.75, e1 = 0.75

e2 = 0.25, e3 = 0.25, d1 = 0.05, d2 = 0.1.
(21)

Using these data, system (1) asymptotically approaches the

coexistence equilibrium point E4 = (0.5, 0.2, 0.43), as shown in

Figure 1.

Next, we varied specific parameters to understand the

effect of that parameter on the dynamical behavior of the

system. For the values of the parameter r satisfying r ≥
1.84 and other parameters as in equation (17), system (1)

approaches the specialist-free equilibrium point, as shown in

Figure 2A for the typical value r = 2. For r ≤ 0.76 and

other parameters as in equation (17), system (1) asymptotically

approaches the superpredator-free equilibrium point, as shown

in Figure 2B.

For different values of the fear rate k with the rest of the data

as given in equation (17), system (1) is solved numerically and

illustrated in Figure 3.

As shown in Figure 2, the superpredator decreases as k

increases, with extinction for k > 2. We also varied the

parameter a1 with other parameters still fixed as in equation

(17). For the range a1 ≥ 1.3, system (1) asymptotically

approaches the superpredator-free equilibrium, as shown in

Figure 4A for the typical value a1 = 1.75. Conversely,

system (1) approaches asymptotically to the specialist-free

FIGURE 3

Trajectories of system (1) using data given in equation (17) with di�erent values of k. (A) 3D-Phase portrait of system (1) for di�erent values of k.

(B) Time series for the trajectory of x, in which x decreases but remains positive as k increases. (C) Time series for the trajectory of y, in which y

increases as k increases. (D) Time series for the trajectory of z, in which z decreases as k increases and approaches zero for k > 2.
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FIGURE 4

Trajectories of system (1) for di�erent values of a1 and other parameters as in equation (17). (A) Time series for trajectories of x, y, and z for

a1 = 1.75, which approach E3 = (0.03, 0.39, 0). (B) Time series for trajectories of x, y, and z for a1 = 0.4, which approach E2 = (0.8, 0, 0.4).

FIGURE 5

Trajectories of system (1) for di�erent values of e2 and e3, with other parameters as in equation (17). (A) Time series for trajectories of x, y, and z

for e2 = 0.4, which approach E2 = (0.5, 0, 1). (B) Time series for trajectories of x, y, and z for e3 = 0.1, which approach E3 = (0.06, 0.58, 0).

equilibrium point, as shown in Figure 4B for the typical value

a1 = 0.4.

System (1) still asymptotically approaches the coexistence

equilibrium point for the data given in equation (17), when

e1 or e3 increases or when e2 decreases. However, for e1 ≤
0.44, system (1) asymptotically approaches the specialist-free

equilibrium point E2 = (0.8, 0, 0.4), as shown in Figure 4B. For

e2 ≥ 0.3 or e3 ≤ 0.2 and the other parameters as in equation

(17), the trajectories of system (1) asymptotically approach

the specialist-free equilibrium point or the superpredator-free

equilibrium point as shown in Figure 5.

Further investigation for the effect of varying parameters

a2 and a3 while keeping the rest of the parameters as in

equation (17) shows that the parameter a2 has similar effects

as the parameter e2 with a bifurcation point at a2 = 0.63.

However, parameter a3 has similar effects as parameter r, with

two bifurcation points: a3 = 1.38 and a3 = 0.62.

Finally, for d1 ≥ 0.31 and the rest of the parameters as

in equation (17), the trajectories of system (1) asymptotically

approach the specialist-free equilibrium point, as shown in

Figure 6A for the typical value d1 = 0.4. However, system (1)

approaches the coexistence equilibrium point otherwise. On the
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FIGURE 6

Trajectories of system (1) for di�erent values of d1 and d2, with other parameters as in equation (17). (A) Time series for trajectories of x, y, and z

for d1 = 0.4, which approach E2 = (0.8, 0, 0.4). (B) Time series for trajectories of x, y, and z for d2 = 0.15, which approach E3 = (0.06, 0.58, 0). (C)

Time series for trajectories of x, y, and z for d2 = 0.08, which approach E2 = (0.64, 0, 0.72).

other hand, for d2 ≥ 0.12 or d2 ≤ 0.08 and the other parameters

as in equation (17), trajectories of system (1) asymptotically

approach either the superpredator-free equilibrium point or the

specialist-free equilibrium point, as shown in Figures 6B,C for

the typical values d2 = 0.15 and d2 = 0.08, respectively.

Varying parameters d1 and d2 together so that they satisfy

conditions (7a) and (7b) while keeping other parameters as in

equation (17) makes the trajectories of system (1) asymptotically

approach the axial equilibrium point E1 = (1, 0, 0) as shown in

Figure 7.

Discussion

Classical intraguild predation food web models have been

extensively studied, but relatively little work has been done on

the effect of fear on the prey. To the best of our knowledge,

this is the first model considering prey fear of only the specialist

predator. We determined the equilibria and global stability

properties of the model, found bifurcations, and illustrated the

theoretical behavior with numerical simulations.

Many previous studies have found that three-species

intraguild predation models, in which a superpredator (IG

predator) both attacks and competes with a specialist predator

(IG prey), are often unstable, either because one consumer is

excluded or because long feedback loops produce sustained

oscillations [30]. Despite this, many natural IGP systems

continue to thrive. Many empirical intraguild predation systems

are entrenched in communities with alternative prey species,

and standard models of intraguild predation simplify actual

systems in significant ways that could affect persistence. Holt

and Huxel [30] presented results of theoretical explorations of

how alternative prey can influence the persistence and stability

of a focal intraguild predation interaction. They reviewed the
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FIGURE 7

Globally asymptotically stable axial equilibrium point for d1 = 0.8, d2 = 0.15 and other parameters as in equation (17). (A) 3D-Phase portrait. (B)

Time series for trajectories of x. (C) Time series for trajectories of y. (D) Time series for trajectories of z.

key conclusions of standard three-species IGP theory and then

presented results of theoretical explorations of how alternative

prey can influence the persistence and stability of a focal

intraguild predation interaction. Conversely, Bai et al. [10]

indicated that the intraguild predation food web model has rich

and complicated dynamic behavior, and a large Allee effect in the

basal prey raises the extinction risk of not only the basal prey but

also the IG prey or/and IG predator.

Hossain et al. investigated fear in an intraguild predation

model, in which the growth rate of a specialist predator (IG

prey) is reduced due to the cost of fear of a superpredator (IG

predator), and the growth rate of a basal prey is suppressed due

to the cost of fear of both the IG prey and the IG predator [20].

In a three-species food chain system, they found that omnivory

can cause chaos in the absence of fear. Fear, on the other hand,

can help to keep the chaos under control. They also discovered

that the system exhibits bistability between the IG prey-free and

IG predator-free equilibrium, as well as bistability between IG

prey-free and interior equilibria. Furthermore, they showed that

the system can display numerous stable limit cycles for a given

set of parameter values.

However, in our study, instilling the fear of a specialist

predator (IG prey) in the presence of a superpredator (IG

predator) had the unintended consequence of eradicating

the superpredator. This demonstrates the often-surprising

complexity of food-chain dynamics and has not been observed

in previous articles dedicated to the study of fear [23–27].

In contrast, if the prey’s intrinsic growth rate is sufficiently

high, the IG prey can be eradicated, while the IG predator can

be removed if the prey’s intrinsic growth rate is sufficiently

low. Coexistence or the eradication of both predators are

other possibilities. As a result, system (1) has rich dynamical

behavior, is sensitive to parameter changes, and at least one

bifurcation point exists for each of the parameters. This result

is comparable to decreasing the productivity of a resource

(comparable to a higher fear effect in the prey in thismanuscript)
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resulting in a reduction in the density of the highest trophic

level [31].

Themost important parameters that influenced the outcome

were, in order, the growth rate r, the fear effect k, predation

upon the prey by the specialist predator a1, the conversion factor

between the prey and the superpredator e2, the conversion factor

between the specialist predator and the superpredator e3, the

death rate of the specialist predator d1, and the natural death

rate of the superpredator d2.

Our model contains several limitations, which should

be acknowledged. We only looked at the prey’s fear of

the specialized predator, not of the superpredator, and we

ignored the specialist predator’s fear of the superpredator.

Our interpretation of such a case is that the pressure of the

superpredator on the basal prey is much lower than that of

a specialist predator due to the existence of alternative food

sources. Mass-action kinetics and a conversion factor are used

to model each predator’s attack rates, which is a simplification

of the genuine dynamics. Finally, the predators were

completely reliant on a single food source, which is not always

the case.

As a result, the dynamics of a food web in which the

prey is afraid of one predator but not the other can produce

unexpected results. In the absence of other fear effects, future

research will consider the prey’s fear of the superpredator but

not the specialized predator; the specialist predator’s fear of the

superpredator could also be incorporated.
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