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In this paper, we tackle innovation di�usion from the perspective of an institution

which aims to encourage the adoption of a new product (i.e., an innovation) with

mostly social rather than individual benefits. Designing such innovation adoption

policies is a very challenging task because of the di�culty to quantify and predict

its e�ect on the behaviors of non-adopters and the exponential size of the space

of possible policies. To solve these issues, we propose an approach that uses

agent-based modeling to simulate in a credible way the behaviors of possible

adopters and (deep) reinforcement learning to e�ciently explore the policy search

space. An application of our approach is presented for the question of the use

of digital technologies in agriculture. Empirical results on this case study validate

our scheme and show the potential of our approach to learn e�ective innovation

di�usion policies.

KEYWORDS

innovation di�usion, policy design, reinforcement learning, agent-based simulation, deep

reinforcement learning, digital agriculture

1. Introduction

Many areas such as agriculture have been transformed by the arrival of new innovations.

These transformations are sometimes desired by institutions that wish to promote for

instance more environmentally friendly models. In this paper, we propose to tackle this

issue from the perspective of an institution which aims to encourage the adoption of

some innovation. In particular, we focus on domains in which individuals are reluctant,

for a variety of possible reasons, to adopt the innovation even when it can benefit them:

misinformation, distrust of the hidden agenda of the institutions promoting it, lack of skills
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to use it, etc. In this situation the institution may make use

of different policy actions (information, financial aid, training,...)

in order to overcome these barriers hindering the widespread

adoption of the innovation. However, designing such innovation

adoption policies is a very challenging task because of: (i) the

difficulty to quantify and predict the effect of policies on the

behaviors of non-adopters (e.g., the effect of an advertising

campaign can be widespread over time and difficult to differentiate

from the effect of other similar actions); and (ii) the exponential

size of the policy search space. In more detail, when designing

an innovation diffusion policy the institution faces a budget-

constrained sequential decision making problem in which, at each

time step, it needs to decide if it launches new (parallel) actions on

several areas of interest as well as the parameters that accompany

each of these actions. Therefore, it is not only which actions but

when, with which combination and in which parameterization.

Moreover, to perform such decisions the institution has only access

to some aggregated indicators at global level (e.g., the number of

adopters) and none at individual level, resulting in a very partial

view of the state of the environment.

Against this background, we propose to study the problem

of designing innovation diffusion policies using agent-based

simulations and reinforcement learning.

On the one hand, a computational simulation environment

is necessary given the limited opportunities to experiment with

policy-making in the real-world. In this context, agent-based

simulation has proven to be an effective tool to study the

complex social dynamics that emerge in the diffusion of innovation

among an heterogeneous population of potential adopters [1].

In particular, agent-based modeling addresses the limitations

of aggregate models [2] by explicitly representing individuals,

their social interactions, and their decision-making processes.

The difficulty that remains is how to define credible behaviors

for the agents while keeping the computational cost of the

simulations affordable. In particular, in innovation diffusion we

need to model the human decision-making key-factors deciding

on innovation adoption. We tackle this problem by building an

agent-based model of the innovation diffusion process based on

the theory of planned behavior [3] to describe the adoption of a

new behavior.

On the other hand, even when the institution is expected

to be able to adapt the public policy in place to the context,

most current works are content to represent it as a fixed variable

or a set of scenarios to explore [4]. Instead, in this paper, the

institution is modeled as an intelligent agent which learns, by

reinforcement learning (RL), how to adapt the public policy over

time. In particular, and as it is common in the literature when

dealing with highly complex partially-observable environments, we

based our approach on deep reinforcement learning, where deep

stands for an artificial deep neural network (NN) that is used to

approximate the policy function. Recent works have already shown

the capacity of deep RL to automatically learn public policies, but

on markedly different domains, e.g., on the problem of designing

taxation [5], pandemic response [6] and market-price intervention

[7] policies. However, to the best of our knowledge, no previous

work has used (deep) RL to address the problem of designing public

policies that maximize the number of adopters of an innovation,

i.e., the so-called innovation diffusion policy design problem that

we formalize in this paper. As we analyze in this work, it turns out

that the action space of this problem is particularly complex due

to the fact that: (i) an action is composed of a set of sub-actions,

corresponding to different types of initiatives that the institution

launches in parallel; (ii) each sub-action is parameterized by a set of

(real-valued) parameters that accompany that action; (iii) actions

in a given time are constrained by the available budget, shared

among all sub-actions. These characteristics make standard deep

RL methods not directly applicable to the innovation diffusion

policy design problem. The problem can be cast as a Constrained

Markov Decision Process (CMDP) and optimized by one of

the general-purpose approaches which have been proposed to

solve CMDPs [8]. However, such approaches typically negatively

affect the performance and scalability (or both) of the learning

compared with the non-constrained case. Given this, in this

paper we instead opted for a specific architecture that is able

to exploit the structure of the particular action space of this

problem. More precisely, we propose a NN policy architecture in

which the policy learns the budget allocation among the multiple

action types along with the values of the parameters of those

actions. All in all, our approach allows for AI-designed policies for

innovation diffusion.

We illustrate the use of our approach on a particular application

in the framework of digital technologies in agriculture and more

particularly, on the adoption of communicating water meters by

farmers in the Louts region (South-West of France). Nowadays,

farmers in this area mainly use mechanical meters which poorly

estimate water consumption due to a low accuracy. This is an

advantage for farmers, as they are less likely to be overcharged

if they exceed the allocated quota. Nevertheless, this over-

consumption is an important issue in this region where the water

level of the rivers tends to decrease every year due to climate

change, which has major consequences for the local ecosystem.

For this reason, the Ministry of the Environment has required a

periodic refurbishment of the metering system every 9 years. The

institution in charge of managing water distribution in this area

is counting on this regulation to install its new communicating

meters. These new meters are more accurate and allow for real-

time monitoring of each farmer’s consumption and thus better

manage water use. However, the institution is having difficulty

convincing farmers to install this device because they perceive it

negatively. This obstacle is closely linked to the farmers’ distrust

of the institution. A large part of the farmers think that the new

meter does not bring them anything and that it is only useful

to the institution. Thus, the institution is now questioning the

policy to be implemented in order to encourage the adoption of

new meters.

Our main contributions in this article are the following:

• We propose an AI framework for the problem of designing

effective innovation diffusion policies that combines agent-

based simulations with (deep) reinforcement learning

techniques;

• Our agent-based model for innovation diffusion combines

for the first time three existing models ([4] for the

theory of planned behavior to model the adoption of
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the innovation, Deffuant et al. [9] and Deffuant et al.

[10] for the bounded confidence model to represent the

social influence among individuals and Sadou et al. [11]

for the integration of several topics to build an opinion)

with the objective to simulate the behavior of adopters in

a credible way, while keeping the computational cost of

simulations affordable;

• We model the institution as an intelligent agent that

learns by (deep) reinforcement learning how to adapt

the public policy in place to the particular observed

context. The reinforcement learning mechanism of this

institution agent extends previous approaches to deal

with non mutually-exclusive parameterizable actions and

budget constraints;

• We illustrate this generic model on the particular application

of the adoption of digital tools in agriculture. We motivate

this particular application with a real use case of the adoption

of communicating meters by farmers in the Louts region

(South-West of France);

• We provide a first validation of our approach showing, using

simulations, how our institution agent can learn effective

policies that promote the adoption of an innovation for this

particular application.

The rest of this paper is structured as follows. Section 2

reviews the related work. Section 3 introduces our agent-based

model of innovation diffusion, while Section 4 instantiates this

model on the adoption of digital tools in agriculture. Section 5

details the reinforcement learning method used to search for

an optimal policy and Section 6 presents our experimental

validation. Finally, Section 7 draws conclusions and sets paths for

future research.

2. Related work

Concerning the modeling of the innovation adoption process,

many studies have tackled this topic with most of the models

building on the work of Rogers [12] on the diffusion of innovations.

Agent-based modeling is becoming increasingly popular for the

study of this type of process [1], each agent representing an

individual that can influence the others on their adoption of the

innovation. As discussed in Kiesling et al. [1], aggregate models

such as the classical Bass model [2] do not explicitly account

for consumer heterogeneity and the complex dynamics of social

processes involved in innovation diffusion. Agent-based modeling

addresses this limitation by explicitly representing individuals,

their social interactions, and their decision-making processes.

Zhang and Vorobeychik [13] proposed a critical review of these

agent-based models. In particular, they proposed to categorize

these models based on how the models represent the decision to

adopt. Among these categories, we can distinguish cognitive agent

models that are closest to our concerns: they aim to explicitly

represent how individuals influence each other in cognitive and

psychological terms. A particularly popular model in this category

is the relative agreement model of Deffuant et al. [9], which focuses

on the notion of opinion about an innovation. The individual’s

opinion and uncertainties are represented by numerical values that

evolve during interpersonal interactions. Other models are more

interested in the adoption process as such: how an individual will

decide whether or not to adopt an innovation. In this context, a

classical approach is to base the decision of agents on the theory of

planned behavior (TPB) [3]. This theory states that the intention

to perform a behavior is a reliable predictor of the implementation

of that behavior. The intention is derived from 3 factors: attitude,

subjective social norm, and perceived behavioral control (PBC).

The attitude represents the opinion that an individual has about

the behavior. The subjective norm is the individual’s perception of

the adoption opinion of her/his social network. Finally, the PBC

is the capacity felt by the individual to adopt the behavior (in

terms of cost, time, skills...). A representative model of this use is

that proposed by Bourceret et al. [14] concerning the adoption of

more environmentally friendly agricultural practices. They propose

a simple model based on the work of Beedell and Rehman [15] for

the calculation of the intention from the attitude, the social norm

and the PBC. In this model, the interaction between the agents

is indirect through the social norm, there is no direct exchange

between them. On the contrary, Sadou et al. [11] propose a more

complex model, also based on the PBC, in which the agents try to

convince each other explicitly through the exchange of arguments.

In addition, this model introduces heterogeneity between agents

by integrating the notion of point of view on different subjects

(economy, environment...) which is used to compute the attitude of

agents. While this model offers a powerful way of representing the

change of opinion of agents, it requires a lot of data (arguments)

and can be computationally heavy.

The model proposed is based on the three previous models:

the model of Bourceret et al. [4] for its use of TPB for the

decision making regarding the adoption of the innovation, the

model of Deffuant et al. [9] and more particularly on the

bounded confidence model [10] for the representation of the

social influence between people, and finally the model of Sadou

et al. [11] for the integration of several topics for the building

of opinion.

Concerning the issue of governance representation in agent-

based models, Bourceret et al. [4] have recently conducted

a systematic review of the literature for socio-ecological

issues. This review shows that in most works, governance

is represented in the form of variables and not in the form

of an agent: thus, if governance impacts the other agents,

very few models take into account the fact that governance

can be impacted by the other agents and in particular adapt

the policy implemented according to the context. Generally,

governance is just studied as a set of scenarios or parameters to

be explored, which is not representative of most real contexts

where the governance is able to adapt its policies according to

the setting. Contrary to works like [4], we propose to represent

it as an agent able to learn, by reinforcement learning (RL),

how to adapt the policy to the context. Given the large body

of work on reinforcement learning, on the remaining of this

section we focus on the most relevant areas for our work,

namely: deep RL for policy design and RL advances to deal

with complex (e.g., parametrized, combinatorial, constrained, ..)

action spaces.

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2023.1000785
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Vinyals et al. 10.3389/fams.2023.1000785

Deep RL for policy design. Recently, some works [5–7] have

also applied deep reinforcement learning to the problem of

designing public policies. In Danassis et al. [7] a Deep RL

policymaker agent adjusts the prices in a production market

(e.g., the common-fishery market) to consider multiple objectives,

including sustainability and resource wastefulness. Nevertheless,

the output of this model is just a vector of continuous action values

(i.e., corresponding to the price of each good in the next market

round) and they do not consider any constraint on the budget

of the policymaker (i.e., the cost of the policymaker intervention,

defined as the difference between RL computed prices and the

traditional competitive market prices, is not bounded). Zheng

et al. [5] and Trott et al. [6] in the context of the so-called

AI Economist frameworks applied Deep RL to the problem of

designing taxation and pandemic response policies, respectively.

However, in both works the policy outputs a single action

discretized in intervals (so their setting ends up being a basic

TABLE 1 State variables of an Individual agent i.

State
variable

Data type Description

social_networki List of individual

agents-static

List of individual agents with whom

i is in contact

Piinteract Float [0,1]-static Probability of interaction with an

individual agent on 1 day

W i
attitude Float [0,1]-static Importance of the attitude in the

intention computation

W i
social Float [0,1]-static Importance of the social norm in

the intention computation

W i
pbc Float [0,1]-static Importance of the PBC in the

intention computation

�i Float [0,1]-static Adoption threshold

W i
k Float [0,1]-static Importance of topic k

W i
c Float [0,1]-static Importance of constraint c

Adoptioni(t) Boolean-dynamic Has the agent adopted the

innovation at year t ∈ {1, ..,H}?

µi Float [0,1]-static Speed of opinion convergence

di Float [0,1]-static Maximal opinion difference

accepted for convergence

Ii(t) Float [0,1]-dynamic Current intention value

Ai(t) Float [0,1]-dynamic Current attitude value

SN i(t) Float [0,1]-dynamic Current social norm value

PBCi(t) Float [0,1]-dynamic Current PBC value

Opik(t) Float [0,1]-dynamic Opinion on the topic k

Skillic(t) Float [0,1]-dynamic Agent’s capacity regarding a

constraint c

Supportik(t) Float [0,1]-dynamic Value of the temporary support

currently in place in relation to

topic k

Supportic(t) Float [0,1]-dynamic Value of the temporary support

currently in place in relation to

constraint c

discrete action space) and do not consider any constraint on the

cost of policy actions.

Parametrized action spaces. Several frameworks and algorithms

[16, 17] have been proposed to deal with parametrized action

spaces, in which the policy requires specified parameters associated

to (discrete) action values. However, those works consider

mutually-exclusive actions and the solution is typically built

through a two-level decision making in which first the action

to be applied is selected and, second, the parameters are

defined for this action. Here we can not apply this type

of approach since in our problem the institution can launch

any combination of actions in parallel, i.e., at the same

time step.

Combinatorial action spaces. Other works [18, 19] focused on

action spaces where each action is a set of multiple interdependent

sub-actions (i.e., non-mutually exclusive). However, in such works

the complexity of the action space emerge from considering a

large number of actions leading to an exponential combinatorial

action space. Instead, in innovation diffusion policies the number

of types of actions is typically small and the complexity rather

emerges from the fact that actions are parametrized by a set of

continuous parameters along with a budget constraint that creates

interdependencies among them.

Bounded action spaces. Bounded action scenarios in discrete

domains are typically addressed by action masking [20] whereas

in continuous domains they are typically addressed by bounding

the corresponding distributions [21]. However, given that the

budget constraint is defined over every types of actions (creating

interdependencies among them) we can not use individual

bounding techniques here1.

Constrained action spaces. Given the budget constraint, our

work is also related to constrained policy learning. In Liu

et al. [8], the problem of learning with constraints is modeled

as a Constrained Markov Decision Process (CMDP). Existing

approaches to solve CMDPs include enhancing: (i) the NN with

an extra layer that projects actions onto a feasible space [22, 23]

or (ii) the policy gradient algorithm itself [24–26]. However, given

the general-purpose characteristic of these approaches (i.e., they

can deal with any kind of constraint), they typically complexify the

learning process, affecting its performance/scalability. Thus, even

though the innovation diffusion policy design problem can be cast

as a CMDP, in this work we take advantage of the fact that the

budget constraint is explicit and known by the learner to exploit its

structure and represent it in the policy network in amore expressive

form (i.e., in our approach the policy network directly outputs the

budget distribution among the multiple action types and once this

is known we can act as in a bounded action space).

All in all, to the best of our knowledge, innovation

diffusion policy design has not been tackled in the machine

learning literature. Moreover, the complex action space of this

problem, composed of multiple continuous parametrizable actions

constrained by a common budget, argues for novel architectures

that can deal with this action space efficiently.

1 In our approach we use bounding to restrict action parameters to their

feasible interval (which is independent of the state).
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3. Agent-based model of innovation
di�usion

This section presents themodel following the Overview, Design

concepts and Details (ODD) protocol [27].

3.1. Overview

3.1.1. Purpose and patterns
The model aims to assess the impact of the governance’s policy

regarding the adoption of an innovation. We evaluate our model

by its ability to reproduce two patterns. The first one concerns the

impact of interpersonal relation in the innovation diffusion process.

Indeed, as stated in many works such as Rogers [12], the process of

diffusion of innovation is partly due to interactions between people.

The second concerns the capacity of institutions to promote the

adoption of an innovation, as public policies can play an important

role in the diffusion process [28].

3.1.2. Entities, state variables, and scales
Two types of entities are represented in the model: the possible

adopters (Individual agents) and the Institution (unique agent).

Tables 1, 2, respectively, present the state variables of the Individual

and Institution entities.

Let H be the simulation length (total number of steps), then

three time frames are taken into consideration (see Figure 1):

• Time frame of the interactions between the Individual agents

(Tind)

• Time frame of the institution’s action implementation (Tinst)

• Time frame of the updating of the institution’s budget (Tbudget)

There is no explicit representation of space.

3.1.3. Process overview and scheduling
Algorithm 1 details the pseudocode of the model. During the

Individual agent interaction, each Individual agent i first has the

probability Piinteract of interacting with another individual agent in

social_networki (randomly chosen) (lines 3–5), which will result in

a potential convergence of their opinion on a topic (lines 6–7). In

case of convergence, the Individual agents update their intention

to adopt (line 8) and decide whether or not they wish to adopt

TABLE 2 State variables of the Institution agent at time step t.

State
variable

Data type Description

Budget(t) Float-dynamic Budget available to implement

public policies

Adopters(t) Float [0,1]-dynamic Fraction of adopters

Steps(t) Int-dynamic Number of remaining decisions

steps left to implement institutional

actions (e.g., Tinst − t)

the innovation (line 9). The details of the computation of the

intention of the Individual agents and the interactions between

them are given in Section 3.3.2. The agent adopts the innovation if

the intention of the agent at time t, Ii(t), is higher than the adoption

threshold �i:

if Ii(t) > �i: Adoptioni(t) = true (1)

It is possible to consider two cases depending on the innovation:

either an Individual agent cannot go back (once adopted, it keeps

the innovation), or it can decide not to keep the innovation.

During the institution’s action implementation time frame (line

11–13), first the supports of all agents will be set to null, then

the Institution agent will choose which actions to implement. The

actions can act directly on the Individual agents by permanently

changing their opinion on a topic or their skills to handle a

constraint, or they can be temporary (only during the period when

the action is active). In the first case, the action will directly modify

the opinion Opi
k
(t) or skill Skillic(t) values of the agents at time t. In

the second case, it will modify the support on a topic, Supporti
k
(t),

or on a constraint, Supportic(t) of the agents. The actions that the

institution can implement depend on the field of application. As

such, we present in Section 4.2 the actions of the institution for the

case of the adoption of communicating water meters in agriculture.

while time < Endtime do

for all Individual agents i do

if random(0.0, 1.0) ≤ Piinteract then

i′ ← one_of(Individual agent in social_networki)

topic ← one_of(topics)

if |Opitopic − Opi
′

topic| < threshold di then

convergence of opinion on topic (Equations 9,

10)

updating of intention for i and i′ (Equation

2)

updating of the adoption status for i and i′

(Equation 1)

end if

if time modulo (6 months) = 0 then

actions of the Institution agent

end if

if time modulo (1 year) = 0 then

updating of the Institution agent’s Budget

end if

end if

end for

time ← time + 1 day

end while

Algorithm 1. Pseudocode of the agent-based model of innovation

di�usion.

Finally, during the updating of the institution’s budget time

frame (line 14–16), the agent Institution receives a new budget

Budgetyear which is added to its current budget:

Budget(t)← Budget(t)+ Budgetyear .
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The computational complexity of the process described above

for our agent-based model is linear in the number of agents.

3.2. Design concepts

3.2.1. Basic principles
Themodel is based on the use of the theory of planned behavior

[3] to describe the adoption process of agents.

3.2.2. Interaction
Individual agents can interact directly with each other to try to

influence each other. Also, Individual agents will interact indirectly

through the social norm: the choice to adopt or not depends on the

number of adopters in their social network.

The Institution agent will implement actions that will impact

the Individual agents and in particular the opinion they have on the

innovation with regard to different topics (at stake in the attitude

computation), and also lift constraints to adoption (at stake in the

PBC computation).

Also, there is an indirect interaction between the Individual and

the Institution agents: the number of adopters can have an impact

on the institution’s decisions in terms of which action to implement.

3.2.3. Stochasticity
Apart from the initialization of the model which may involve

stochasticity, an important element of stochasticity concerns the

interactions between Individual agents: an Individual agent has a

certain probability to choose to interact with another agent. The

choice of the Individual agent with whom it interacts and the topic

on which it wishes to discuss are chosen randomly.

Also, the choice of actions implemented by the Institution agent

and the scope of these actions may involve stochasticity.

3.3. Details

3.3.1. Initialization
The initialization of the model includes the generation of the

population of Individual agents: it is in particular a question of

giving them values for all their attributes (linked to TPB, to the

topics, to their social network...). Similarly, the Institution agent

must be created and its attributes initialized. Section 4 gives an

example of initialization of the model.

3.3.2. Submodels
3.3.2.1. Computation of the Intention

The intention of an Individual agent i is computed as follow:

Ii(t)←Wi
attitude×Ai(t)+Wi

social × SNi(t)+Wi
pbc× PBCi(t) (2)

With:

Wi
attitude +Wi

social +Wi
pbc = 1 (3)

The attitude Ai of an agent i considering the policy of the

Institution agent is computed as follows:

Ai ←
∑

k∈K

Min[1.0,Opik(t)+ Supportik(t)]×Wi
k (4)

With, K the set of adoption topics considered, and:

∑

k∈K

Wi
k = 1 (5)

The social norm SNi of an agent i is computed as follows:

SNi(t)←
mi(t)

ni
(6)

where, mi(t) is the number of Individual agents of the social

network social_networki who have adopted at year t (|{i′ ∈

social_networki, Adoptioni
′
(t) = true}|), and ni is the number of

Individual agents in social_networki.

The attitude PBCi(t) of an agent i at year t is computed as

follows:

PBCi(t)←
∑

c∈C

Min[1.0, Skillic(t)+ Supportic(t)]×Wi
c (7)

With, C the set of adoption constraints considered, and:

∑

c∈C

Wi
c = 1 (8)

FIGURE 1

Time frames considered: every day, interaction of individuals; every 6 month’s, implementation of the actions of the institution; every year, updating

of the institution’s budget.
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3.3.2.2. Interaction between Individual agents

To manage interactions between Individual agents, we use the

classic bounded confidencemodel [10]: when two Individual agents

i and i′ meet and begin a discussion on a topic k, they adjust their

opinions on k as long as their difference of opinion on k is below

a given threshold di. More formally, the opinions on k of i, i′ are

modified at time t + 1 if |Opi
k
(t)− Opi

′

k
(t)| < di as follows:

Opik(t + 1)← Opik(t)+ µ×
(

Opi
′

k (t)− Opik(t)
)

(9)

Opi
′

k (t + 1)← Opi
′

k (t)+ µ×
(

Opik(t)− Opi
′

k (t)
)

(10)

4. Application for adoption of
communicating water meters by
farmers

The model presented in the previous section is intended to be

completely generic and adaptable to any type of innovation2. In

this section we instantiate this generic model for the particular

application of the adoption of communicating water meters by

farmers in South-West France.

4.1. Context

During the summer period, problems of water availability are

common in some regions of France, particularly in the southern

part of the country. These periods of drought have a direct impact

on the daily life of irrigating farmers whomust closelymonitor their

water consumption.

In a context of better resource management, various studies

have highlighted the advantages that communicating meters could

represent. Thus, on the Louts river (South-West of France), the

Compagnie d’Aménagement des Coteaux de Gascogne (CACG),

which is in charge of water distribution in this area, is proposing to

irrigating farmers new communicating water meters to replace the

aging mechanical meters. This is encouraged by the Ministry of the

Environment, which requires the metering system to be replaced

every 9 years.

Communicating watermeters offer advantages overmechanical

meters: they are more accurate and, above all, they allow for

remote reading of consumption in real time. However, despite these

advantages, CACG is having difficulty convincing farmers to install

this device because, in general, they have a negative perception of

it [29].

The questions then arise as to whether communicating meters

will be adopted by farmers, what the impacts of the different

information circulating on these devices are, and whether it is

possible to implement public policies to promote a virtuous impact

of these technologies. Answering these questions requires studying

the social dynamics that lead to the adoption (or not) of an

innovation within a population.

2 The model in Bourceret et al. [14] can be seen as a particular application

of our model with low-input agricultural practices as innovation and with the

following parameters: no interaction between individuals (Piinteract =0), 2 topics

(Economy and Environment) and one constraint related to farmers’ skills.

4.2. Specification of the model and
description of the institution’s actions

We have initialized the generic model presented in Section 3

for the case of the adoption of communicating water meters. In

this model, Individual agents represent farmers. Based on the work

of Sadou et al. [30] who have analyzed the arguments used by the

stakeholders regarding communicating water meters, we identified

3major topics: economy, environment and farmmanagement (ease

of management).

Concerning the adoption constraint, we chose to use the same

type as Bourceret et al. [14], i.e., the technical skill.

We have integrated 3 types of actions for the institution:

training, financial aid and environmental awareness. The actions

are defined as follows:

• Training: For Ntrain(t) Individual agents chosen randomly at

time t, increasing permanently their opinion on the “Farm

management" topic (Opimanagement) and their skill regarding

the constraint “Technical" (Skilli
technical

) of a value θtrain(t):

Opimanagement(t + 1) ← min(1.0,Opimanagement(t)

+ θtrain(t)) (11)

Skillitechnical(t + 1) ← Skillitechnical(t)+ θtrain(t) (12)

The cost of this action is: Ntrain(t)× θtrain(t)

• Financial support: For all agents, increases temporary the

opinion on the “Economy" topic (Supportieconomy) of a value

θaid(t):

Supportieconomy(t + 1)← min(1.0, Supportieconomy(t)+ θaid(t)) (13)

The cost of this action is: Nnew_adopters(t) × θaid(t), with

Nnew_adopters(t) the number of Individual agents who have

adopted during the policy period t.

• Environmental awareness: For Nenv(t) Individual agents

chosen randomly, increases permanently the opinion on the

“Environment” topic (Opienvironment) of a value θenv(t):

Opienvironment(t + 1)← min(1.0,Opienvironment(t)+ θenv(t)) (14)

The cost of this action is: 12 ×Nenv(t)× θenv(t). We defined

a lower cost for this action because unlike the training action

which concerns both Attitude and Perceived behavior control,

this one concerns onlyAttitude. Moreover, unlike the financial

support action which only incurs a cost on the budget if an

agent adopts the innovation, here the cost of the action is spent

as soon as the action is triggered even if it has no effect on the

adoptions.

Table 3 summarizes all the argument values linked to the

actions.

At the time of applying an action, the cost of the action is

subtracted from the available budget and the action only applied

if there is enough budget left. In more detail, for training and
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TABLE 3 Parameters that determine the action of the Institution agent at

time step t.

Action
variable

Data type Description

Ntrain(t) Int [0, 100] Number of Individual agents who will

be trained

θtrain(t) Float [0.0, 1.0] Level of training

θaid(t) Float [0.0, 1.0] Level of financial support

Nenv(t) Int [0, 100] Number of Individual agents who will

be environmentally educated

θenv(t) Float [0.0, 1.0] Level of environmental sensibilization

environmental awareness actions (in this order), the simulation:

(i) verifies whether there is enough budget left to apply the action

(otherwise the action is not applied at all); and (ii) if it is the case,

it applies the action, subtracts its cost from the available budget

and continues to process the next type of action if any. Finally,

for financial support actions, the aid is offered to new adopters (at

the financial level decided by the institution for that period) and its

cost subtracted as soon as new individuals adopt until no remaining

budget is left or until the period ends.

The model is initialized with the creation of Nind

Individual agents.

The initialization of an Individual agent works as follows:

its social network (social_networki) is filled by Nsocial Individual

agents chosen at random. Then for each topic k (among Economy,

Environment and farm management), the initial value of opinion

Opi
k
(1) and weight Wi

k
for this topic are chosen randomly

between 0.0 and 1.0 (uniform distribution). The weights of the

different topics are then normalized so that the sum of the

weights is equal to 1.0. The value of TPB weights (Wi
attitude

,

Wi
social

and Wi
pbc

) are also chosen randomly between 0.0 and

1.0 (uniform distribution) and then normalized. The adoption

threshold (�i) is initialized between 0.0 and 1.0 using a truncated

Gaussian distribution with a mean of �mean and a standard

deviation of �std. The speed of opinion convergence (µ), the

maximal opinion difference accepted for convergence (d) and the

probability of interaction (Pinteract) are considered homogeneous

for all agents.

Once all these parameters are initialized, the initial value of the

Intention is computed using Equation 2.

All (non random) parameters’ values as instantiated in

experiments are given in Table 4.

5. Policy design using reinforcement
learning

This section details our approach that builds on machine

learning, and in particular on reinforcement learning, to

automatically learn effective policies for innovation diffusion. As

initially discussed in the introduction, designing an effective policy

for innovation is a very challenging problem. At each decision

step, the institution needs to decide if it launches new (parallel)

actions on several areas of interest (i.e., training, financial aid

TABLE 4 Parameter values used for the simulations.

State variable Initial value

Nind 100

Nsocial 5

Pinteract 0.1

�mean 0.7

�std 0.1

µ 0.1

d 0.5

Budgetyear 10.0

Endtime 5 years

and environmental awareness in the particular case study) as well

as the extent of each of these actions (i.e., level of increment on

the opinion/skill and, for training and environmental awareness

actions, the number of individuals reached by the action).

Therefore, it is not only which actions to launch but when, in

which combination and which parameters’ values to choose. This

task gets even more complex considering that, to do achieve it,

the institution cannot observe any characteristic of the internal

state of any individual (e.g., intention, preferences, ...) but only

some aggregated statistics at the level of the population (e.g., the

number of adopters). The institution can neither target the policy

actions to reach specific individuals, but only choose the number

of individuals reached.

The remainder of this section describes in detail the approach

used: we mathematically formalize the policy design problem faced

by the institution as a reinforcement learning problem (Section

5.1) and we describe how to solve it by a deep learning approach

(Section 5.2).

5.1. The innovation policy design problem

In what follows we formally define the optimization problem

faced by the institution when designing a policy that aims to

maximize the number of adopters of an innovation over a finite

time horizon, Tinst (i.e., the policy will be evaluated for the state

reached after Tinst institution decision steps). In this problem, the

policy actions launched in a given time step t are restricted by the

available budget on that time step (Budget(t)). We cast this problem

in the RL framework in which the institution learns efficient

innovation diffusion policies by directly applying action policies

on the (simulated) environment. Figure 2 depicts the main steps of

interaction occurring between the institution and the environment

within a RL iteration.

At every institution decision step t ∈ Tinst , the institution

receives three observations from the environment (① in Figure 2):

the fraction of adopters, the available budget and the number of

decision steps remaining before time limit. These observations

form the state of the environment perceived by the institution on

that time step, i.e., S(t) =< Budget(t),Adopters(t), Steps(t) >.

Notice that the only indicator that the institution can observe
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FIGURE 2

Schematic overview of the interactions between the institution (the learner) and the environment during the di�erent RL steps.

from the population is the fraction of adopters. The decision steps

remaining before time limit are included to provide time-awareness

in the state representation, an approach that has proven good

results in time-limited domains [31].

Given the observed state of the environment, the institution

applies its policy (② in Figure 2) to decide which actions, A(t),

to launch in that state. For this, in this work we consider that

the institution needs to define the value of a set of (continuous)

parameters for each possible type of action and that multiple types

of actions can be launched in parallel3. As detailed in Section 4.2,

in the particular application studied in this paper, i.e., the adoption

of communicating water meters by farmers, there are three types of

policy actions: training, financial aid and environmental awareness.

In more detail, the institution acts by specifying: (i) the level of

each type of action (i.e., the level of training, θtrain, the level of

the financial aid, θaid and the level of environmental sensibilisation,

θenv); and (ii) the number of individuals to be reached by the action

for training (Ntrain) and environmental awareness (Nenv) actions
4.

Therefore, for this application, the policy of the institution will be a

stochastic mapping of the following form:







Budget

Adopters

Steps






→















θtrain

Ntrain

θenv

Nenv

θaid















This stochastic mapping builds on a policy function π(S(t);2)

which in turn is a parametrized mapping (we use the notation

2 to denote the set of policy parameters) from environmental

states to probability distributions over actions. As standard-practice

3 This di�ers from similar problems studied in the literature where at each

time step the agent can only select one actionwhose parameters are typically

decided in a second decision phase.

4 As discussed in Section 4.2, for financial aid the number of individuals

reached is not decided ex-ante but determined ex-post since the aid is given

i� an individual adopts.

in continuous action spaces, we based our approach on policy-

gradient methods in which the institution will learn directly a

parameterized policy that can select actions without consulting a

value function5.

Given a policy function, the actions to apply at a given time step

t are obtained by directly sampling π on the current state:

A(t) ∼ π(S(t);2) (15)

These actions, sent by the institution (③ in Figure 2), are

applied to the environment at time step t constrained to the

available budget (i.e., an action is only applied if there is enough

budget left). In this model we consider that each type of action

incurs a cost on the budget which depends on its particular

parametrisation and that the institution is aware of the cost of its

actions. In Section 4.2, we detailed the costs of each type of action

for the particular application studied in this paper.

At time step t + 1 the environment sends the reward signal6

observed to the institution (④ in Figure 2). In RL, the learner’s

sole objective is to maximize the total reward received in the long

run. Thus, given that here we are trying to maximize the number

of adopters, the reward at a time step t is naturally defined as

the increment on the fraction of adopters with respect to the

previous step:

R(t) = Adopters(t)− Adopters(t − 1) (16)

Then, for learning purposes, the Institution agent stores in its

training dataset the information related to this experience, i.e.,

< S(t),A(t),R(t + 1) >.

The objective is to find a parametrization of the policy function

that maximizes the discounted sum of rewards over time:

max
2

E





Tinst
∑

t=0

γ t · R(t + 1) | 2



 (17)

5 A value function may still be used to learn the policy parameters, but is

not required for action selection.

6 Reward at time t, R(t) is typically a (stochastic) function of St−1 and At−1.
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where γ ∈ [0, 1] is the discount factor.

At each training step7 ( T© in Figure 2), the Institution agent will

input its training dataset to the training module which will output

a new set of parameters (i.e., which will be used from this moment

to parameterize the current policy in place).

In the next section we describe in detail the design of this

training module as well as the particular parametric distributions

we propose for the innovation diffusion policy design.

5.2. A deep learning approach to optimize
public innovation di�usion policies

This section details the learning approach proposed to optimize

the public innovation diffusion policies following the objective

detailed in Equation (17). As common in the recent literature when

dealing with highly complex partially-observable environments, we

based our approach on deep reinforcement learning, where deep

stands for an artificial deep neural network (NN) that is used to

approximate the policy function. In deep RL, the set of parameters

2 that are adjusted by the learning are the weights of the NN.

Also, as typically done in policy parametrization for continuous

actions, the policy function is defined as a parametric probability

distribution over actions8 and the outputs of the NN are used to

update the parameters of this distribution.

There are several challenges that we need to overcome

when designing a neural network policy for this problem. These

challenges emerge from the budget constraint that bounds the

space of feasible actions depending on the state (i.e., the budget

available). The typical approach of dealing with continuous action

spaces in deep RL consists in using a normal (Gaussian) policy

parametrization in which the NN outputs the mean and the

standard deviation of the corresponding normal distribution. If

the action is composed of multiple sub-actions, one normal

distribution is used to specify each sub-action and the global

action distribution is defined as the aggregation of individual

distributions. However, notice that if we apply this approach to

our problem there is no guarantee that the sampled solution will

respect the budget. Still, this does not prevent us from sending these

(possibly unfeasible) actions to the environment. As explained in

Section 4.2, in this case the actions whose cost exceeds the available

budget will not be applied, having the same effect as not launching

these actions. However, as highlighted in the literature [20], acting

as if there was no constraint in environments with large action

spaces typically leads to inefficient learning and poor convergence

rate if any. Given this, in this work we opted for an approach which

explicitly considers the constraint in the policy, guaranteeing that

the actions selected by the policy respect the budget.

Creating a policy that respects the budget constraint is

particularly challenging in the innovation policy design problem.

In more detail, many constrained problems deal with constraints

7 An agent is trained by batches of experiences, the number of experiences

per batch being determined by the hyperparameters of the particular learning

algorithm used.

8 This parametric distribution over actions can be defined as the

aggregation of several parametric distributions on di�erent actions as we do

in this work.

that apply to individual actions (i.e., define independent bounds

on the domain of each sub-action) and, in the continuous action

domain, they can be addressed by independently bounding the

corresponding distribution of each sub-action [21]. Instead, here

the budget is shared among all sub-actions, which in turn can be

launched in parallel, so the bounds on an action not only depend

on the state but also on the values of other sub-actions. Thus, we

can not guarantee that we will respect the constraint by bounding

each action individually depending on the state.

Next section describes the particular NN architecture that we

propose to overcome the above-mentioned open challenges of

using deep RL for innovation diffusion policy design.

5.2.1. A NN architecture to optimize public
policies

In the proposed architecture, a classical Gaussian policy

parametrisation approach will be used for the probability

distributions that define the level with which we apply each type

of action at individual level (i.e., θenv, θtrain and θaid). But for the

other parameters that characterize the actions, i.e., the number

of individuals reached by training and environmental awareness

actions, we take a different approach (i.e., those actions will not

be directly sampled from probability distributions) that guarantees

that the actions selected by the policy respect the budget constraint.

In more detail, the NN will output a second set of parameters that

define a probability distribution on the allocation of the available

budget among the different types of actions. Then, the number

of individuals reached by training and environmental awareness

actions are unequivocally determined after the realizations of the

budget allocation and the level of these actions. Figure 3 depicts

this NN architecture along with the different steps of the process

that goes from the NN output to the institution policy actions.

5.2.1.1. Normal (Gaussian) distributions for each

real-valued θ action

As shown in Figure 3, the NN will output a first set of

parameters composed of a mean and a standard deviation

for each type of action (e.g., θmean
a , θ stda for each a ∈

{train, env, aid}). These parameters will be used to define a tanh-

squashed normal (Gaussian) distributions over the real-valued

action levels. Formally,

P(θa|s) = T(N (θmean
a , θ stda )) ∀a ∈ {train, env, aid} (18)

Where T is a tanh-squashed transformation to bound the range of

actions (R→ [0, 1]) andN is the gaussian distribution.

The values of the extent levels of actions are obtained by directly

sampling the corresponding distributions on the current state:

θtrain(t) ∼ P(θtrain|s), θenv(t) ∼ P(θenv|s), θaid(t) ∼ P(θaid|s) (19)

5.2.1.2. Dirichlet distribution for budget allocation

For modeling the budget allocation among the different types

of actions, we propose to use a Dirichlet distribution, a type

of distribution typically used in the allocation of (continuous)

resources [32] given that the realizations of the distribution satisfy

a simplex constraint (i.e.,
∑

x = 1, x ∼ Dir(·)). Thus, as depicted

in Figure 3, the NN will output the concentration parameters of

a three-dimensional Dirichlet distribution: one for the training
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FIGURE 3

Schematic overview of the process from the NN input to the institution policy actions. (1) The NN gets as input the current state of the environment.

(2) The outputs of the NN are used to define some parametric distributions over actions in the current state. (3) The distributions are sampled to

obtain realizations for the current iteration. (4) Policy actions are defined from the realizations.

dimension (αtrain), one for the environmental awareness dimension

(αenv) and one for the budget left for the financial aid dimension

and/or to be transferred to the next time step (αleft)
9. Formally,

P(xtrain, xenv, xleft|s) = Dir(αtrain,αenv,αleft) (20)

A realization (xtrain(t), xenv(t), xleft(t)) of the Dirichlet

distribution represents a partition of the current budget Budget(t):

(xtrain(t)× Budget(t), xenv(t)× Budget(t), xleft(t)× Budget(t)).

5.2.1.3. Determining Nenv and Ntrain actions given the

budget and θ-actions realizations

Finally, given the current budget partition and the level of

extent of each action, the number of individuals reached by

training and environmental awareness actions are determined as

the maximum number of individuals to which we can apply the

selected level for that action while respecting the allocated budget.

Formally, ∀a ∈ {train, env}

Na(t) = arg max
N∈{0,...,Nind}

[

N × Ca(θa(t)) ≤ xa(t)× Budget(t)
]

(21)

Where Ca(θa(t)) is a function which, given the level of extent

to which the action will be applied in the period, returns the cost

of applying that action to a single individual. The costs of the

actions are specified in Section 4.2, Ctrain(θtrain(t)) = θtrain(t) and

Cenv(θenv(t)) =
1
2 × θenv(t) for the particular case of study.

Therefore, the Deep NN policy allocates a probability

distribution over joint actions to every possible state of the

system (year, budget, adopters). This distribution can be sampled

whenever we require an action to apply to the system.

9 Note that how the budget left is distributed between the financial aid

dimension and budget not spent at time t and thus transferred to time t + 1

is not controlled by the institution policy.

6. Results

This section presents the experiments performed to validate

the model (Section 6.1) and the framework proposed for policy

design using reinforcement learning (Section 6.2) on the adoption

of communication water meters in the farmers use case.

The model has been implemented in the open-source platform

GAMA [33].10 The choice of this platform is due to the ease

of implementation of models with it, but also, in a perspective

of evolution of the model. Indeed, we plan to enrich the model

with geographical data to represent real farms and thus be able

to calculate in a more advanced way the economic context

of the farm and what the communicating water meters can

bring them. We also plan to enrich the model by taking up

work of Sadou et al. [11] on argumentation to allow a more

detailed calculation of the attitude from the knowledge and point

of view of the farmer. And GAMA offers integrated tools to

support both extensions, namely to integrate geographical data

and to explicitly represent arguments in the model [34]. Finally,

GAMA also supports communication with external software using

message exchange which has facilitated the coupling with the

learning module (implemented in Python to take advantage of

the existing deep learning libraries). We perform experiments

using our implementation of the RL logic and the Proximal

Policy Optimization (PPO) algorithm [35] but building on the

Tensorflow framework11 for the deep learning part. For the sake of

reproducibility, we have made publicly available12 the source code

10 https://gama-platform.org/

11 https://www.tensorflow.org/

12 https://github.com/ptaillandier/policy-design
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FIGURE 4

Comparison of the standard errors of the adoption rate for the di�erent numbers of replicates.

FIGURE 5

Whiskers plots of the adoption rate for the di�erent numbers of replicates. The black lines represent the median values; the boxes represent the

interquartile range (IQR), the whiskers represent the minimum/maximum excluding 1.5 IQR outliers. Points are outliers beyond that distance.

of the agent-based model and the reinforcement learning methods

used in the experiments.

6.1. Analysis of the model

6.1.1. Stochasticity sensitivity analysis
In a first experiment, we analyze the impact of the stochasticity

of the simulations on the results and in particular on the

number of adopters. The main objective is to find a threshold

value of replications beyond which an increase in the number

of replications would not imply a significant marginal decrease

of the difference between the results. To do this, we compare

the number of adopters at the end of the simulation (i.e.,

after 5 years) between different numbers of replications of the

simulation. We undertake this exploration with the simplest

possible scenario, i.e., without any action implemented by the

Institution agent.

Figure 4 shows the standard error of the adopters rate

obtained with different numbers of replicates. Figure 5

shows the impact of the number of replicates on adoption

rate: the black lines show the median, the boxes show the

second and third quartiles (IQR), the whiskers show the

minimum and maximum excluding outliers (simulation

results that differ from the median by more than 1.5 times

the IQR).

The results suggest that increasing the number of replications

beyond 50 does not have a great impact on the aggregate trend of

the simulations.

6.1.2. Analysis of the impact of the institution’s
actions

We propose here to study the impact of the different possible

institution’s actions individually. In more detail, we calculate,

for the three possible types of action defined (financial support,

environmental sensibilisation and training), the average values of

adoption obtained for 50 replications, depending on the level of

these actions. We consider in these experiments that the same

action is applied at each institution’s action implementation stage

(every 6 months) - the action is thus applied 10 times during the

simulation period (5 years).

Table 5 presents the results in terms of adoption rate and

cost for different levels of financial support. Tables 6, 7 show,

respectively the adoption rate and the cost of the training action

according to the level of training and proportion of farmers

concerned. Finally, Tables 8, 9 show, respectively the adoption rate

and the cost of the environmental sensibilisation action according

to the level of sensibilisation and proportion of farmers concerned.

A first result is that it is the training action that is the most

effective in bringing new adopters. This result is not surprising

since this action allows the farmer to better understand the interest
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TABLE 5 Adoption rate by level of financial support: mean value for the

50 replications and standard deviation in brackets.

θaid Adoption rate Cost

0.0 0.045 (0.02) 4.5 (2)

0.2 0.059 (0.025) 5.9 (2.5)

0.4 0.078 (0.034) 7.8 (3.4)

0.6 0.116 (0.046) 11.6 (4.6)

0.8 0.175 (0.066) 17.5 (6.6)

1.0 0.242 (0.078) 24.2 (7.8)

TABLE 6 Adoption rate by level of training support (θtrain) and number of

farmers concerned (Ntrain): mean value for the 50 replications and

standard deviation in brackets.

Ntrain

θtrain
0.0 0.2 0.4 0.6 0.8 1.0

0 0.045

(0.026)

0.045

(0.026)

0.045

(0.026)

0.045

(0.026)

0.045

(0.026)

0.045

(0.026)

20 0.045

(0.026)

0.184

(0.067)

0.521

(0.198)

0.764

(0.194)

0.801

(0.171)

0.805

(0.179)

40 0.045

(0.026)

0.373

(0.134)

0.736

(0.187)

0.805

(0.176)

0.824

(0.167)

0.85

(0.154)

60 0.045

(0.026)

0.491

(0.181)

0.778

(0.182)

0.809

(0.174)

0.842

(0.162)

0.872

(0.14)

80 0.045

(0.026)

0.558

(0.186)

0.792

(0.179)

0.825

(0.172)

0.85

(0.156)

0.886

(0.133)

100 0.045

(0.026)

0.574

(0.186)

0.804

(0.169)

0.831

(0.163)

0.866

(0.142)

0.893

(0.13)

of the innovation for managing the farm (and thus, increase her

attitude toward adoption) and at the same time to remove the

technical obstacles to adoption (increase the perceived behavior

control). However, this action is the most expensive, as in this case

of application we consider a budget of 10 per year and that for 5

years, the action allows at best to bring the adoption percentage

to 18.4% (training of 20% of farmers to improve their level of

technicality of 0.2). At the same time, the financial support action

allows for an average adoption percentage of around 24.2% for a

budget of 24.2.

Indeed, the advantage of the financial support action is that it is

only spent when one farmer adopts the innovation, which greatly

limits the cost in the case where few farmers adopt the innovation.

Note that this cost could have been much higher if more agents had

adopted the innovation.

The environmental sensibilization action had a much smaller

effect on results with at best a 4% increase in the adopter percentage

for a budget of 50.

6.2. Experiment on policy design

In this experiment the Institution agent uses (deep) RL to

optimize its policy, following the approach and architecture

detailed in Section 5. The Institution agent uses a two-layer

TABLE 7 Cost by level of training support (θtrain) and number of farmers

concerned (Ntrain).

Ntrain

θtrain
0.0 0.2 0.4 0.6 0.8 1.0

0 0 0 0 0 0 0

20 0 40 80 120 160 200

40 0 80 160 240 320 400

60 0 120 240 360 480 600

80 0 160 320 480 640 800

100 0 200 400 600 800 1,000

TABLE 8 Adoption rate by level of environmental sensibilisation (θenv ) and

number of farmers concerned (Nenv ): mean value for the 50 replications

and standard deviation in brackets.

Nenv

θenv
0.0 0.2 0.4 0.6 0.8 1.0

0 0.045

(0.026)

0.045

(0.026)

0.045

(0.026)

0.045

(0.026)

0.045

(0.026)

0.045

(0.026)

20 0.045

(0.026)

0.062

(0.03)

0.074

(0.032)

0.076

(0.033)

0.077

(0.033)

0.077

(0.033)

40 0.045

(0.026)

0.071

(0.031)

0.078

(0.031)

0.079

(0.032)

0.081

(0.033)

0.084

(0.031)

60 0.045

(0.026)

0.072

(0.031)

0.078

(0.03)

0.079

(0.031)

0.081

(0.032)

0.084

(0.032)

80 0.045

(0.026)

0.073

(0.03)

0.079

(0.03)

0.082

(0.033)

0.084

(0.033)

0.087

(0.032)

100 0.045

(0.026)

0.073

(0.03)

0.08

(0.03)

0.083

(0.033)

0.085

(0.033)

0.088

(0.033)

TABLE 9 Cost by level of environmental sensibilisation (θenv ) and number

of farmers concerned (Nenv ).

Nenv

θenv
0.0 0.2 0.4 0.6 0.8 1.0

0 0 0 0 0 0 0

20 0 20 40 60 80 100

40 0 40 80 120 160 200

60 0 60 120 180 240 300

80 0 80 160 240 320 400

100 0 100 200 300 400 500

(64 neurons each) feed-forward neural network for the policy

approximation. The policy is trained using the Proximal Policy

Optimization (PPO) algorithm [35] with the agent learning by

batches, each batch containing experiences of 100 complete13

episodes14. Since each complete episode is composed of 10

13 Since our problem is characterized by a fixed finite time horizon there is

no need to truncate the episode before its end as happens in other domains.

14 Following RL standard notation, an episode tracks all experiences

obtained during the whole time horizon.
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TABLE 10 Training hyperparameters.

Parameter Value

RL Discount factor (γ ) 0.99

Advantage function GAE

GAE-lambda 0.95

Training algorithm PPO

PPO Sampling horizon 10 (until episode

termination)

Number of learning iterations 30

Number of episodes per batch 100

Number of training epochs per update 10

Number of training minibatches per

update/epoch

10

Clipping ratio 0.2

Early termination with KL divergence No

Mini-batch splitting Shuffle transitions

Recomputation of advantages at epoch

level

yes

Separated networks for policy and value yes

Optimizer Adam

Adam learning rate 0.0003

Adam epsilon parameter 0.0000007

Policy NN Activation function for hidden layers Tanh

Number of (hidden) fully-connected

layers

2

Fully connected layer dimension 64

Last layer scaling 0.01

Initializer (hidden layers) Orthogonal with

gain=1.41

Value NN Activation function for hidden layers Tanh

Number of (hidden) fully-connected

layers

2

Fully connected layer dimension 64

Last layer scaling 1.0

Initializer (hidden layers) Orthogonal with

gain=1.41

The Last layer scaling parameter rescales the network weights of the last layer after

initialization [36].

experiences, this leads to 1000 experiences sampled from the

environment in each training iteration using the last policy

parameters. In every training iteration, we perform 10 epochs

(i.e., the learner will perform 10 passes over the whole batch

training dataset). In each epoch, the indices of experiences in

the batch are randomly shuffled (i.e., shuffling transitions) and

shuffled experiences are partitioned into 10 mini-batches (i.e., each

minibatch containing 100 experiences). Table 10 details the training

hyperparameters used in our experiments. The hyperparameters

were defined following the recommendations issued after the large

experimental study carried out for online deep RL methods in

Andrychowicz et al. [36]. Regarding the execution time, as it is

FIGURE 6

Fraction of adopters reached at the end of each simulation episode

with the stable training period marked with a box.

FIGURE 7

Mean values of the Dirichlet concentration parameters, output of

the NN to define budget distribution, per institution decision step for

the training stable period. Error bars stand for standard deviation.

frequent in deep reinforcement learning the execution time is

dominated by the generation of experiences on the simulation

module (the simulation of one complete episode15 takes around 10

s16). The time spent to actual training is negligible in comparison

(one training iteration takes less than 1 s16).

Figure 6 shows the empirical training progress by plotting the

adoption rate reached at the end of each episode, resulting from

the application of the current policy learned by the institution.

The first thing we observe is that the Institution agent is able to

learn efficient policies (converging to policies with more than 33%

of adopters) after 10 learning iterations (recall that with the used

parameters the learning occurs every 1000 simulation episodes).

For the whole training period the minimum fraction of adopters

is 0.09, the maximum is 0.57 and the mean is 0.32 (with standard

15 One complete episode contains 10 decision steps for the institution but

also the 365(days)*5(years) simulation steps for individual agents.

16 Experiments where run on an Intel(R) Xeon(R) W-2133 CPU @ 3.60

machine with 128GiB System memory and GPU GeForce RTX 2080.
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FIGURE 8

Mean values of the Ntrain and Nenv parameters chosen by the institution and of the observed Naid on odd decision steps during the training stable

period. Error bars stand for standard deviation.

FIGURE 9

Mean values of the level of impact of each type of action (i.e., θ-parameters) chosen by the institution on odd decision steps during the training

stable period. Error bars stand for standard deviation.

deviation of 0.0489). We consider that the learning is stabilized

after 10,000 training episodes (this with no parallelisation, i.e., all

simulations run sequentially, which requires 1–2 days of training16)

and use the interval 10,000–30,000 to study the structure of the

learned policies.

Figure 7 shows, for each institutional decision step, the average

of the concentration parameters generated by the NN, i.e., used

to define the Dirichlet probability distribution on the budget

allocation among the different action types. The first thing we

observe in this graph is that concentration values of odd decision

steps (corresponding to the beginning of the year when the

institution budget gets incremented by 10) are much larger than

those of even steps. In fact, this is a consequence of the institution

using the budget as soon as it becomes available (i.e., leaving no

budget left for future time steps). This is very clear on steps 5, 8 and

9 for which the concentration parameter αleft is close to 0. Instead,

steps 1 and 3 allocate some budget via αleft but as we will see later in

Figure 8, this budget is not left for the next step but instead entirely

spent on the financial support action (i.e., providing the financial

aids to new adopters). As a result of this, budget allocation at even

steps has no effect on the reward and the NN is unable to reduce

the variance of the distribution leading to the observed smaller

concentration values.

The second thing we observe in Figure 7 is that the institution

learned to spend nearly all budget on the most effective type of

action: the training action. As discussed in Section 6.1.2 when

evaluating the baselines policies for each type of action, the

effectiveness of this type of action is explained as it increases

the attitude to adoption at the same time as it increases the

perceived behavior control. Despite this dominance of the training

dimension, in the first decision steps the institution finds profitable

to reserve some budget for ex-post financial aids. Finally, no budget

is allocated to environmental sensibilisation actions.

Figures 8, 9 show respectively for the N-parameters and the

θ-parameters, the average values of the parameters chosen by the

institution at each decision step to parameterize each type of action.

For the sake of clarity, we only plot decision steps corresponding

to the beginning of a year (i.e., odd time steps) since, as discussed
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above, for the rest of the time steps there is no budget left to apply

any action to any individual. The first thing we observe in Figure 8

is that, unsurprisingly and as a consequence of the budget allocated,

the number of agents reached by environmental awareness actions

(Nenv) is 0 in all decision steps. For financial aids, there is some

percentage of individuals that get financial aids on the first steps

(i.e., around 2 individuals get the financial aid at step 1 and around

a single individual at step 3). As we see in Figure 9 the level of aid

(θaid) proposed to individuals is quite high (values around 0.75).

Finally, for training actions, we observe that the level of training

does not vary much across the decision steps and it is quite high

(values around 0.72). In Figure 8, we observe that this results in

around 10-11 individuals trained at each earlier time steps (in

which some budget was allocated to financial aids) and in around

14 individuals trained at later time steps (in which the whole budget

is allocated to that type of action).

7. Conclusions and future work

This paper proposes an AI framework for the design of

innovation diffusion policies. The innovation diffusion policy

design problem is a complex sequential decision-making task in

which an institution needs to decide which policy actions to launch

over time in order to maximize the number of adopters of an

innovation after a finite time horizon. The actions available are

constrained by the available budget at the decision time. The

proposed framework builds on two distinguished components:

• Agent-based simulations, used as a virtual environment in

order to conduct a large number of experiments that would

be prohibitive on the real environment; and

• (Deep) reinforcement learning, used to automatically identify

good-candidate policies in the extremely large search space of

possible ones.

In our framework, the agent-based simulations make use

of the theory of planned behavior to simulate the behavior of

adopters in a credible way, while keeping the computational cost

of simulations affordable. Then, a deep reinforcement learning

agent interacts with these simulations in order to efficiently

explore the exponential space of institutional policies, eventually

learning the structure of efficient innovation diffusion policies. The

learning represents the policy via a neural network architecture

that guarantees the respect of the budget constraint by implicitly

learning the budget allocation among the different types of actions.

The proposed framework is illustrated in the specific use

case of the adoption of communicating water meters by farmers

in the Louts region (South-West of France). Empirical results

demonstrate the viability and soundness of our approach to

identify good-candidate innovation adoption policies for this

particular application.

We identify multiple directions that can be pursued as future

work. The paper demonstrates for the first time that an AI

framework that combines (deep) RL and agent-based simulations

is sound and viable for the innovation policy design problem,

learning effective policies in the presence of nonmutually-exclusive

parameterizable actions and budget constraints. However, these

results are a first step since any real-support to policymaking

will require simulations with ground in real-data as well as

widespread consultation with policy-makers. So future research

should calibrate the model with real-world data. For the specific

use case of communicating water meters we are currently carrying

out interviews with farmers in the South-West of France in order

to better understand their opinion on these water meters and

to be able to move from a random initialization of the agents’

attributes to values based on real data. We also hope to get real

data on the adoption of these new water meters so that we can

also calibrate the model with this information. Second, regarding

the NN internal architecture, as future work we plan to test Long

Short-Term Memory (LSTM) networks, typically used [5, 6] for

encoding the history of past observations in partially-observable

environments, in order to analyze the performance impact, instead

of the simpler feed forward NN architecture used in this paper.

Finally, regarding the objective used in the policy optimization, in

this work the budget of the policy maker is represented only as a

constraint but not in the objective function. Future work would

consider enhancing the reward function in order to minimize the

budget as a secondary objective and analyzing the impact of this on

the structure of optimal policies.
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